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Abstract

Background: Understanding the dynamics of the COVID-19 pandemic and evaluating the
efficacy of control measures requires knowledge of the number of infections over time. This
number, however, often differs from the number of confirmed cases due to a large fraction of
asymptomatic infections and variable testing strategies.

Methods: This study uses death count statistics, age-dependent infection fatality risks and
stochastic modeling to estimate the prevalence of SARS-CoV-2 infections among adults (age
> 20 years) in 165 countries over time, from early 2020 until June 25, 2021. The accuracy of
the approach is confirmed through comparison to previous nationwide seroprevalence surveys.
Results: The presented estimates reveal that the fraction of infections that are detected vary
widely over time and between countries, and hence confirmed cases alone often yield a false
picture of the pandemic. As of June 25, 2021, the nationwide cumulative fraction of SARS-
CoV-2 infections (cumulative infections relative to population size) is estimated at 98% (95%-
CI 93-100) for Peru, 83% (61-94) for Brazil and 36% (23—61) for the US.

Conclusions: The presented time-resolved estimates expand the possibilities to study the fac-

tors that influenced and still influence the pandemic’s progression in 165 countries.

Keywords: COVID-19; SARS-CoV-2; prevalence; time series, infection fatality risk; exponen-

tial growth rate
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Background

Accurate estimates of the prevalence of SARS-CoV-2 in a population are needed for evaluating dis-
ease control policies and testing strategies, determining the role of environmental factors, predict-
ing future disease spread, assessing the risk of foreign travel, and determining vaccination needs
(Nguimkeu and Tadadjeu, 2021; Pearce et al., 2020). Even if a retreat of the pandemic seems
within reach in many countries, the efficacy of control measures in 2020 and 2021 and the envi-
ronmental/political/societal factors that influenced the epidemic’s progression in each country will
undoubtedly be the topic of scholarly work for years to come. Due to the existence of a large fraction
of asymptomatic cases as well as variation in reporting, testing effort and testing strategies (e.g.,
random vs symptom-triggered) (Chow et al., 2020), reported case counts cannot be directly con-
verted to infection counts and a comparison of confirmed case counts between countries is generally
of limited informative value (Lachmann et al., 2020). Large-scale seroprevalence surveys (e.g., us-
ing antibody tests) can yield information on the disease’s prevalence and cumulative number of
infections in a population, either directly or using dynamical modeling (Larremore et al., 2021).
However, such surveys involve substantial financial and logistical challenges, and only yield reli-
able prevalence estimates near the time periods covered by the surveys; prevalence estimates based
on seroprevalence surveys are thus largely restricted to short time periods (e.g., (Bogogiannidou

et al., 2020; Le Vu et al., 2021; Merkely et al., 2020; Murhekar et al., 2021)).

In contrast to case reports, COVID-19-related death counts are generally regarded as less sensi-
tive to testing effort and strategy (Flaxman et al., 2020; Lau et al., 2021; Lu et al., 2020; Maugeri
et al., 2020a), and fortunately most countries have established nationwide continuous reporting
mechanisms for COVID-19-related deaths. Hence, in principle, knowing the infection fatality risk
(IFR, the probability of death following infection by SARS-CoV-2) should permit a conversion of
death counts to infection counts (Bohk-Ewald et al., 2020; Flaxman et al., 2020; Lu et al., 2020;
Séanchez-Romero et al., 2021). The IFR of SARS-CoV-2, however, depends strongly on the host’s

age, and hence the effective IFR of the entire population depends on the population’s age struc-
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ture as well as the disease’s age distribution (Dowd et al., 2020). Indeed, it was shown that the
age-dependency of the IFR, the age-dependency of SARS-CoV-2 prevalence, and the age structure
of the population are largely sufficient to explain variation in the effective IFR between countries
(Levin et al., 2020). This suggests that age-stratified death counts (or estimates thereof) should be
used in conjunction with age-dependent IFRs in order to obtain an accurate estimate of infection
counts. This approach has been successfully used to estimate SARS-CoV-2 prevalence over time in
Europe until May 4, 2020, based on reported age-stratified death counts (Flaxman et al., 2020). In
principle, one could also first determine the “effective” (integrated over all ages) IFR for the entire
population and combine that effective IFR with total (non-age-stratified) death counts to estimate
infection rates. This approach was taken by Sdnchez-Romero et al. (2021), who first estimated the
effective IFR for various states in the US based — among others — on age-specific mortality data
and then estimated the cumulative number of SARS-CoV-2 infections across the US as of Septem-
ber 8, 2020. However, such an effective IFR is specific to the population for which it was estimated,
and hence applying it to other countries (even if correcting for the local population age structure,
which is possible in the framework by Sanchez-Romero et al. (2021)) would fail to account for

differences (or uncertainty) in the age distribution of infections or deaths.

Unfortunately, age-stratified and time-resolved death statistics are not readily available for many
countries with insufficiently comprehensive reporting, thus preventing a direct adoption of the above
approaches (Flaxman et al., 2020; O’Driscoll et al., 2021). In cases where only total (i.e., aggre-
gated over all ages) death counts are available, such as the ones disseminated by the World Health
Organization, one needs to independently estimate the age distribution of deaths (or infections) in
order to convert total death counts to infection counts. Bohk-Ewald et al. (2020) disaggregated
nationwide total death counts based on a previously determined global average age distribution of
deaths, to estimate SARS-CoV-2 infections in 10 countries up to July 23, 2020. However, using a
global average age distribution of deaths ignores the fact that the age distribution of infections (and
deaths) actually needs to be adjusted for each country’s population age structure, even if any given

age group were to experience a similar exposure in each country. Further, while the approaches by
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Bohk-Ewald et al. (2020) and Sdnchez-Romero et al. (2021) can account for the average time lag
between infection and death, they cannot account for its actual probability distribution and consid-
erable spread around the mean (Linton et al., 2020), which further complicates the estimation of
time-resolved infections from deaths. Lastly, all of the above studies cover only an early portion of
the pandemic (Bohk-Ewald et al., 2020; Flaxman et al., 2020) or only focus on a single time point

(Sénchez-Romero et al., 2021), and focus on a small number of countries (1-11).

This study addresses the above challenges by leveraging information on the age distribution of
SARS-CoV-2 infections from multiple countries with available age-stratified death reports, to es-
timate the likely age-distribution of SARS-CoV-2 in other countries, while accounting for each
country’s population age structure and for uncertainty due to additional unidentified factors. Based
on these calibrations, national SARS-CoV-2 prevalences (cumulative number of infections, weekly
new infections and exponential growth rate) are estimated over time, while accounting for each
country’s population age structure, the likely age distribution of infections, the age dependency
of the IFR, and variation in the time lag between infection and death. The estimates are specific
to adults aged 20 years or more, covering 165 countries from early 2020 until June 25, 2021. The
estimates are largely consistent with data from multiple previously published nationwide seropreva-
lence surveys. Unless mentioned otherwise, in the following “infection”, “death” and “vaccination”
refer exclusively to SARS-CoV-2 infections, COVID-19-related deaths and full vaccination against

SARS-CoV-2, respectively.

Results and discussion

Calibrating the age distribution of SARS-CoV-2 prevalence

In order to calculate infection counts solely from total (i.e., non-age-stratified) death counts, while
accounting for the age-dependency of the IFR and each country’s population age structure, inde-

pendent estimates of the ratios of infection risks between age groups (i.e., the risk of infection in any

4
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one age group relative to any other age group) are needed. To determine the general distribution of
age-specific infection risk ratios, this study analysed weekly age-stratified COVID-19-related death
reports from 15 countries around the world using a probabilistic model of Poisson-distributed time-
delayed death counts (see Methods for details). Briefly, for any given country c, any given week w,
and any given age group g, the number of new infections during that week (I, 4) is assumed to
be approximately equal to o 41, Ne4/Nc,, where 1 represents some fixed reference age group,
N_. 4 is the population size of age group g, and a4 is the relative risk of an individual in age group
g being infected compared to that of an individual in age group r. The expected number of deaths
in each age group 4 weeks later (roughly the average time lag between infection and death (Linton
etal., 2020)), denoted D, ,y44,4, was assumed to be 1., , 74, where IR, is the IFR for that age group.
Note that while R, could in principle also vary between countries, to date insufficient information
is available for calibrating I, separately for each country (but see discussion of caveats below).
Age-specific IFRs were calculated beforehand by taking the average over multiple IFR estimates
reported in the literature (Levin et al., 2020; Linden et al., 2020; O’Driscoll et al., 2021; Pastor-
Barriuso et al., 2020; Rinaldi and Paradisi, 2020; Salje et al., 2020). This calibration thus accounts
for the age-structure of each country, the age-distribution of the disease in each country and the age-
dependency of the IFR. A critical assumption of the model is that, in any given country, nationwide
age-specific infection risks co-vary linearly between age groups over time, i.e., an increase of dis-
ease prevalence in one age group coincides with a proportional increase of prevalence in any other
age group. This assumption is motivated by the observation that weekly nationwide death counts
generally covary strongly linearly between age groups (Fig. 1A and Supplemental Figs. S1 and
S2); the adequacy of this model is also confirmed in retrospect (see below). For each country, the
infection risk ratios o 4 (for all g # r) and the weekly infections in the reference age-group /., ,
(one per week) were fitted to the age-stratified weekly death counts using a maximum-likelihood ap-
proach and assuming that weekly death counts follow a Poisson distribution. This stochastic model
explained the data generally well, with observed weekly death counts almost always falling within

the 95% confidence interval of the model’s predictions (Supplemental Fig. S3). This supports the
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initial assumption that infection risks co-vary approximately linearly between age groups over time
and suggests that country-specific but time-independent infection risk ratios are largely sufficient
for describing the age-distribution of SARS-CoV-2 infections in a country and over time. For any
given age group g, the fitted infection risk ratios «. , differed between countries but were generally
within the same order of magnitude (Fig. 1B). On the basis of this observation, and as explained in
the next section, it thus seems possible to approximately estimate the number of infections in any
other country based on total death counts, the population’s age structure and the pool of infection
risk ratios a, fitted above (accounting for the uncertainty in the latter due to unknown additional

factors).
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Figure 1: Infection and death rates covary linearly between age-groups. (A) Weekly reported COVID-
19-related death counts in the US, in age group 70-74 (horizontal axis) and age group 50-54 (vertical axis).
Each point corresponds to a different week (defined here as a 7-day period). The linear regression line
is shown for reference. For additional age groups and countries see Supplemental Fig. S1. The strong
co-linearity of death rates between age-groups suggests that infection risks also covary linearly between age-
groups. (B) Relative infection risks (relative to age group 70-74) for different countries, estimated based
on death-stratified COVID-19-related death counts. Each column represents a different age group, and in
each column each point represents a distinct country. Horizontal bars represent medians and boxes span
50%-percentiles of the data.
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Estimating infection counts over time

Based on the pool of fitted infection risk ratios, the same age-dependent IFRs used above, the
probability distribution of time lags between infection, disease onset and death (Linton et al., 2020),
and total (non-age-stratified) COVID-19-related death count reports disseminated by the WHO, the
weekly infection counts were estimated over time in each of 165 countries that met certain data
quality criteria (details in Methods). Briefly, for any given country ¢, week w and any given set of
relative infection risks oy, g, .., the total number of deaths during that week (D, ,,) was assumed

to be Poisson-distributed with expectation equal to:

Limax Nc
E{Dc,w} = Z ]c,w—k,r(skZRgagNyga (1)
k:Lmin g T

where as before 7, is the IFR for age group g, N., is the population size of age group g, dy, is
the probability that a fatal infection will result in death after £ weeks, L,;, and L,,,, are the min-
imum and maximum considered time lags between infection and death, and /., , is the (a priori
unknown) number of new infections in the reference age group r during week w. For the second
sum in Eq. (1), only age groups at 20 years or older were considered (in 5-year intervals), because
estimates of the infection risk ratios a, were unreliable for younger ages (due to low death counts)
and because deaths among below-20-year olds were numerically negligible compared to the total
number of deaths reported. Note that the expected number of deaths in any given week depends on
the number of infections in multiple previous weeks, due to the variability of the time lag between
infection and death (typically 2-6 weeks (Linton et al., 2020)). Hence, the time series of observed
weekly death counts (D, 1, D, 2, ..) results from a convolution (“blurring”) of the weekly infections
counts (.1, I.2,, ..), making the estimation of the latter based on the former a classical decon-
volution problem, similar to those known from electronic signal processing, financial time series
analysis or medical imaging (Mendel, 1990; Wiener, 1964). Put simply, deconvolution can be in-
terpreted as an algebraic inversion of the operation of convolution, similar to inverting the matrix

of a linear transformation. In contrast to estimation approaches based on fitting dynamical mod-
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els (e.g., SIR or SEIR models) (Baccini et al., 2021; Chow et al., 2020; Maugeri et al., 2020a,b),
which assume a particular dynamical model for the epidemic’s growth and often require a priori
knowledge of several model parameters to ensure identifiability, time series deconvolution meth-
ods typically do not assume any particular dynamical model. Dynamics-agnostic deconvolution
methods, including the ones deployed here, can thus be applied to more complex epidemiological
scenarios with no a priori knowledge on the possible dynamics. A major challenge in deconvolution
is to avoid overfitting, which can introduce spurious fluctuations in the estimated infection counts.
Here, for every country c the unknown /., , were estimated using a deconvolution operation based
on maximum likelihood. To avoid the risk of overfitting, infection counts were first estimated on
a lower-resolution time grid, and then linearly interpolated onto a weekly grid (see Methods for
details). The total number of new infections among >20-year olds during week w was estimated as
Tew = Tewr g agNey /N.,. Cumulative (i.e., past and current) infection counts were calculated
as incremental sums of the weekly infection count estimates. The epidemic’s exponential growth
rate over time was subsequently calculated from the estimated weekly infection counts based on a

Poisson distribution model and using a sliding-window approach.

Depending on the particular choice of infection risk ratios, this yielded different estimates for
the weekly nationwide infection counts, the cumulative infection counts and the exponential growth
rates over time. Uncertainty in the true infection risk ratios in any particular country stemming from
non-modeled additional factors was accounted for by randomly sampling from the full distribution
of fitted infection risk ratios (i.e., obtained from the various calibration countries) multiple times,
and calculating confidence intervals of the predictions based on the obtained distribution of esti-
mates. Estimated weekly and cumulative infection fractions (i.e., relative to population size) and
exponential growth rates over time are shown for a selection of countries in Fig. 2 and Supplemen-
tal Figs. S4, S5, S6, S7, S8. A comprehensive report of estimates for all 165 countries is provided
as Supplemental File 6. Global color-maps of the latest estimates for all countries are shown in Fig.

3.
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To assess the accuracy of the above approach, the estimated cumulative infection fractions were
compared to 22 previously published nationwide seroprevalence surveys across 14 countries (Sup-
plemental Table S1) (Alharbi et al., 2021; Anand et al., 2020; Bogogiannidou et al., 2020; Espen-
hain et al., 2021; Hallal et al., 2020; Le Vu et al., 2021; Merkely et al., 2020; Murhekar et al., 2020,
2021; Nah et al., 2021; Poljak et al., 2021; Pollan et al., 2020; Reicher et al., 2021; Snoeck et al.,
2020; Ward et al., 2020). Only surveys attempting to estimate nationwide seroprevalence in the gen-
eral population (in particular, either using geographically or demographically stratified sampling or
adjusting for sample demographics) were included. Agreement between model estimates and sero-
prevalence estimates was generally good: 16 out of 22 seroprevalence estimates (accounting for
the associated 95% confidence interval and the time period of the underlying survey) overlapped
with the model’s 95%-confidence intervals, with 3 non-overlaps observed for Brazil, one for Spain,
one for the UK, and one for France (Supplemental Fig. S4). When comparing point-estimates (i.e.,
not accounting for confidence intervals) relative differences (model estimate minus seroprevalence,
divided by seroprevalence) were mostly in the range 25-50%, although particularly high relative
differences were found for Brazil (170-180%), one time point in France (464%) and one time point
in Greece (348%) (overview in Supplemental Table S1). Apart from the possibility of erroneous
model predictions (discussed extensively below), it should be kept in mind that seroprevalence sur-
veys themselves yield only estimates of the cumulative fraction of infected individuals with an asso-
ciated uncertainty interval, and that this uncertainty interval need not always account for all sources
of error. In particular, deviations of the model from seroprevalence-based estimates may partly be
due to the fact that antibody concentrations in infected individuals (especially asymptomatic ones)
can drop over time, rendering many of them seronegative (Bolotin et al., 2021; La Marca et al.,
2020; Long et al., 2020). Thus, previously infected individuals may not all be recognized as such.
This would be consistent with the fact that in all cases of major disagreement between model pre-
dictions and seroprevalence estimates the former were greater than the latter. Further, sensitivity
and specificity estimates for antibody tests performed in the laboratory or claimed by manufactures

need not always apply in a community setting (La Marca et al., 2020), thus introducing biases in
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seroprevalence estimates despite nominal adjustments for sensitivity and specificity.

Case counts alone can yield wrong impressions

Estimates of SARS-CoV-2 prevalence in a population can yield insight into the epidemic’s scale
and growth dynamics that may not have been possible from reported cases alone. One reason is
that the fraction of infections that is detected and reported varies greatly between countries as well
as over time. Indeed, according to the present estimates, in most countries reported case counts
initially severely underestimated the actual number of infections and often did not properly reflect
the progression of the epidemic, while in many countries more recent case reports capture a much
larger fraction of infections and more closely reflect the epidemic’s dynamics (Figs. 2A—E and Sup-
plemental Fig. S5). For example, in the US, France, Sweden, Belgium, Spain, United Kingdom and
many other European countries reported cases only reflected a small fraction of infections occur-
ring in Spring 2020, while the majority of subsequent infections have been successfully detected.
Nevertheless, in many countries even recent reported case counts poorly reflect the actual dynam-
ics of the epidemic. For example, recent reported cases in Afghanistan, Angola, Brazil, Ecuador,
Egypt, Guatemala and Iran severely underestimate the disease’s rapid ongoing growth, with nearly
all infections remaining undetected or unreported (Fig. 4). Future investigations, enabled by the
infection count estimates presented here, might be able to identify the main factors (e.g., politi-
cal, financial, organizational) driving the discrepancies between infections and reported cases and

suggest concrete steps to eliminate these discrepancies or correct for them.

The above observations imply that comparisons of the epidemic’s extent and progression between
countries should preferably be done based on infection or death counts, rather than reported cases
alone (Flaxman et al., 2020; Sanchez-Romero et al., 2021). For example, as of June 25, 2021
the cumulative per-capita number of cases reported for the Czech Republic (16%) and Slovenia
(12%) were much higher than for Paraguay (5.8%), Peru (6.3%) or Brazil (8.6%), while the median

predicted cumulative infection fractions for the Czech Republic (52%) and Slovenia (38%) are much
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lower than for Paraguay (86%), Peru (98%, Fig. 2.0) and Brazil (83%) (Supplemental Figs. S6 and
S7). Similarly, as of June 25, 2021 the cumulative per-capita number of cases reported for the US
(10%) was much higher than for neighboring Mexico (2%), while the median predicted cumulative
infection fraction for the US (36%, Fig. 2L) is much lower than for Mexico (77%, Fig. 2M). These
examples highlight the value of considering actual infection counts relative to population size when
comparing the extent of the epidemic and its relationship to public policy between countries. Future
investigations, enabled by the prevalence estimates presented here, may be able to identify concrete

political, environmental and socioeconomic factors influencing the epidemic’s growth.

Caveats

The predictions presented here are subject to some important caveats. First, erroneous reporting
of total COVID-19-related deaths will have a direct impact on the estimated infection counts. This
caveat is particularly important for countries with less developed medical or reporting infrastruc-
ture (Bastos et al., 2021; Feyissa et al., 2021; Galvéas et al., 2021; Lloyd-Sherlock et al., 2021;
Natashekara, 2021; Veiga e Silva et al., 2020), as well as for countries were reports may be cen-
sored or modified for political reasons (Kilani, 2021; Kobak, 2021). A general underreporting of
total COVID-19-related deaths, as has been suspected for example for Brazil (Bastos et al., 2021;
Veiga e Silva et al., 2020), Italy (Ciminelli and Garcia-Mandic6, 2020), Turkey (Kisa and Kisa,
2020), India (Chatterjee, 2020) and Nigeria (Ohia et al., 2020), would lead to a roughly propor-
tional underestimation of infections. Similarly, inconsistencies between countries and over time in
the classification of causes of death also have the potential to alter model predictions (Feyissa et al.,
2021; Franca et al., 2020; Leon et al., 2020; Singh, 2021). For example, it was pointed out that
the US and Russia tend to follow rather different criteria for identifying COVID-19 as the under-
lying cause of death, while Kyrgyzstan and Kazakhstan modified their criteria several months into
the pandemic (Singh, 2021). Underreporting of COVID-19-related deaths may also explain why

in some rare instances the number of reported positive cases substantially exceeds the estimated

11
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number of infections (e.g., for Singapore, Supplemental File 6). Comparisons of results between
countries should thus be done with care. In countries where COVID-19-related deaths are suspected
of being grossly misreported, excess mortality rates may provide an alternative means to obtaining

accurate death counts in future analyses (Azofeifa et al., 2021; Beaney et al., 2020; Kobak, 2021).

Second, systematic errors in the age-stratified death counts used for model calibration (obtained
from the COVerAGE-DB (Riffe et al., 2021)) could impact model predictions. For example, a
potentially more frequent erroneous attribution to alternative plausible causes of death (e.g., other
respiratory disorders) in older patients could lead to a relative underreporting of COVID-19-related
deaths in older age groups. Such an age bias would lead to an underestimation of the infection risk
ratios a4 in older groups, essentially shifting the estimated age distribution of infections towards
younger groups. If such erroneous calibrations are subsequently used to estimate infections from
total death count data, this would lead to an overestimation of infections because the IFR is lower
at younger ages (recall that infections ~ deaths/IFR). Further, while the COVerAGE-DB is a rich
and robust dataset, its age group harmonizations could in principle cause distortions in the age
distribution of death counts. To assess whether these distortions are strong enough to substantially
influence the model calibrations, in this study calibrations were repeated using an independent
dataset of national age-stratified death counts, available for a subset of countries, from the French
National Institute for Demographic Studies (INED). Across the 2 countries covered by both INED
and COVerAGE-DB and satisfying the same data criteria as in the earlier analyses, the infection risk
ratios calibrated with the INED data were generally similar to those calibrated with the COVerAGE-

DB data (Supplemental Fig. S9).

Third, even if all data were error-free, the infection risk ratios are calibrated based on available
age-stratified death statistics from a limited number of countries, and may not apply to all other
countries (for example due to strong cultural differences). Uncertainty associated with this ex-
trapolation is accounted for by considering infection risk ratios calibrated to multiple alternative

countries from multiple continents (see Methods).
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Fourth, governmental policies implemented at various time points could in principle change the
infection risk ratios between age groups over time, for example by opening and closing schools
and universities, or allowing or prohibiting visits to nursing homes. To assess the extent of this
possible issue, here the weekly death counts in each age group were compared to the total (age-
integrated) weekly death counts over time (Supplemental Figs. S10 and S2). Age-specific and total
death counts correlated strongly linearly over time in nearly all age groups and countries (Pear-
son correlations >0.5 in almost all cases), suggesting that in any given country the proportion of
infections per age group did not substantially vary over the course of the epidemic. Further, pre-
dictions of the fitted models (which assume time-independent infection risk ratios) were generally
highly consistent with the age-stratified death counts (Supplemental Fig. S3), again suggesting that
time-independent (but country- and age-dependent) infection risk ratios provide a largely adequate

model for the age distribution of infections.

Fifth, age-specific IFRs were obtained from studies in only a few countries (mostly western) and
often based on a small subset of closely monitored cases (e.g., from the Diamond Princess cruise
ship). These IFR estimates may not be accurate for all countries, especially countries with a very
different medical infrastructure, different sex ratios in the population or a different prevalence of
pre-existing health conditions (e.g., diabetes), all of which can affect the IFR. That said, estimated
trends over time within any given country, in particular exponential growth rates (e.g., Figs. 2P—
T), are unlikely to be substantially affected by such biases if the biases remain relatively constant
over time. For example, the exponential growth rates estimated here remained unchanged when
alternative IFRs from the literature (Levin et al., 2020; Linden et al., 2020; O’Driscoll et al., 2021;
Pastor-Barriuso et al., 2020; Rinaldi and Paradisi, 2020; Salje et al., 2020) were considered. To
nevertheless examine the robustness of estimated SARS-CoV-2 prevalences against variations in the
IFR, the above analyses were repeated by considering for each age group an set of multiple IFRs, i.e.,
randomly sampling from the set of previously reported IFRs (Levin et al., 2020; Linden et al., 2020;
O’Driscoll et al., 2021; Pastor-Barriuso et al., 2020; Rinaldi and Paradisi, 2020; Salje et al., 2020)

rather than considering their mean. Median model predictions remained nearly unchanged, however
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the uncertainty (i.e., confidence intervals) of the estimates increased (examples in Supplemental Fig.

S11).

Sixth, in countries where a large fraction of the population is now vaccinated, attention should
be given to the limitations and interpretation of the model’s predictions for the recent parts of the
pandemic. Indeed, while existing vaccines substantially reduce the probability of infection and
death, none of them is 100% effective (Bermingham et al., 2021; Calzetta et al., 2021; Soiza et al.,
2021). Because the IFR may differ between vaccinated and non-vaccinated individuals, converting
from death counts to infection counts using IFRs originally determined for non-vaccinated people
could lead to erroneous infection estimates. This error is relatively small if vaccinated people only
represent a small fraction of new infections, which, given that vaccination substantially reduces
the risk of infection, is probably the case in the many countries where the majority of the popu-
lation is unvaccinated (as of June 25, 2021, 138 out of 145 countries with available vaccination
data, Supplemental File 6). To further assess the implications of vaccination on infection estimates,
consider the following back-of-the-envelope calculation. Let U be the ratio of vaccinated over non-
vaccinated individuals, let ) be the risk of COVID-19-related death for a vaccinated individual
relative to a non-vaccinated one, and let D and D denote the number of deaths among vaccinated
and non-vaccinated individuals, respectively (country and week indices are omitted here for nota-
tional simplicity). We have D /D =~ QU, and hence the fraction of deaths attributed to vaccinated

individuals is roughly:
D QU
D+D QU+

2)

As of June 25, 2021, in nearly all countries the majority of the population was not yet fully vacci-
nated (hence U<1), exceptions being the Seychelles, Malta, Israel, Bahrain, Mongolia, Iceland and
Chile (where U ranged between 1 and 2.2 on June 25, 2021). Field estimates for vaccine effective-
ness against death generally range from 96.7% in Israel (Haas et al., 2021), to 98% in an Italian
province (Flacco et al., 2021) and 98.7% in the US (Vahidy et al., 2021), among fully vaccinated

individuals, corresponding to a () in the range 0.013—0.033. Hence, in nearly all countries (except
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Seychelles, Malta, Israel, Bahrain, Mongolia, Iceland and Chile) vaccinated individuals likely ac-
count for less than 3.2% of the reported deaths in recent months (up until June 25, 2021), and even
less at earlier stages of the pandemic where U < 1. The presented infection count estimates can
thus be interpreted as approximately corresponding to the non-vaccinated part of the population
(e.g., an estimate of 1000 infections essentially means that among the non-vaccinated population
there were about 1000 infections), which in turn likely accounts for the vast majority of infections

in most countries (as discussed above).

Conclusions

This study presented estimates of the nationwide prevalence and growth rate of SARS-CoV-2 in-
fections over time in 165 countries around the world, based on official COVID-19-related death
reports, age-specific infection fatality risks, each country’s population age structure and the dis-
tribution of time lags between infection and death. The complete report for all 165 countries is
provided as Supplemental File 6. These estimates are also provided as machine-readable tables
(Supplemental Files 1-5) for convenient downstream analyses; occasionally updated estimates are
available at: www.loucalab.com/archive/COVID19prevalence. Despite a variety of assumptions
and caveats, the presented estimates turn out largely consistent with data from nationwide general-
population seroprevalence surveys. The presented findings suggest that while in many countries the
detection of infections has greatly improved, there are also numerous examples where even recent
reported case counts do not properly reflect the epidemic’s dynamics. In particular, comparisons
between countries based on infection counts can yield very different conclusions than comparisons
merely based on reported cases. The present work thus enables more precise assessments of the
disease’s past and ongoing progression, evaluation and improvement of public interventions and

testing strategies, and estimation of worldwide vaccination needs.
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Figure 2: Estimated nationwide infection rates (adults aged >20 years). (A-E) Estimated nationwide
weekly number of SARS-CoV-2 infections over time for Canada, US, Mexico, United Kingdom and Peru,
compared to weekly reported cases (blue curves). Black curves show prediction medians, dark and light
shades show 50 % and 95 % percentiles of predictions, respectively. Note that reported cases are shown
1 week earlier than actually reported (corresponding roughly to the average incubation time (Linton et al.,
2020)) for easier comparison with infection counts. (F-J) Estimated nationwide weekly fraction of new
infections and fraction of reported cases (relative to population size), for the same countries as in A-E.
(K=0O) Estimated nationwide cumulative fraction of infections (cumulative infections divided by population
size), for the same countries as in A—E. Small circles show empirical nationwide prevalence estimates from
published seroprevalence surveys for comparison (horizontal error bars denote survey date ranges, vertical
error bars denote 95%-confidence intervals as reported by the original publications; details in Supplemental
Table S1). (P-T) Estimated exponential growth rate based on weekly infection counts, for the same countries
as in A—E. Horizontal axes are shown for reference. Each column shows estimates for a different country.
All model estimates refer to adults aged >20 years, while reported cases (blue curves) refer to the entire
population. Analogous plots for all 165 investigated countries are provided as Supplemental File 6.
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Figure 3: Worldwide overview of latest estimates (adults aged >20 years). Global map of the latest
estimated nationwide (A) cumulative (past and current) number of SARS-CoV-2 infections, (B) cumulative
fraction of infection (infections relative to population size), (C) weekly fraction of new infections (relative to
population size) and (D) current exponential growth rate. Dates of the estimations are given in the lower-right
corner of each figure. Countries for which an estimation was not performed (e.g., due to insufficient data)
are shown in grey. Analogous world maps for older dates are available in Supplemental File 6.
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Figure 4: Case counts can suggest drastically different dynamics than infection counts. Nationwide
predicted weekly number of new infections (black curves and shades, among adults aged >20 years) and
weekly reported cases (blue curves, all ages) over time in Afghanistan, Angola, Brazil, Colombia, Ecuador,
Egypt, Guatemala and Iran. Black curves show prediction medians, dark and bright shades show 50 % and
95 % confidence intervals, respectively. For easier comparison, case counts are shifted backward by one
week (corresponding roughly to the average incubation time (Linton et al., 2020)).
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Methods details

Age-specific infection fatality risks

Age-specific infection fatality risks (IFRs) were calculated based on the following literature: (Levin
et al., 2020; Linden et al., 2020; O’Driscoll et al., 2021; Pastor-Barriuso et al., 2020; Rinaldi and
Paradisi, 2020; Salje et al., 2020). For each considered age group, the average IFR across all of
the aforementioned published IFRs was used, after linearly interpolating where necessary (Supple-

mental Table S2).

Calibrating age-specific infection risk ratios

The age-specific infection risk ratios were calibrated as follows. Age-specific population sizes
for each country (status 2019) were downloaded from the United Nations website (https://
population.un.org/wpp/Download/Standard/CSV)on October 23,2020 (DESA, 2019). Time
series of nationwide cumulative COVID-19-related death counts grouped by 5-year age intervals
were downloaded on April 27, 2021 from COVerAGE-DB (https://osf.io/7tnfh), which is a
database that gathers and curates official death count statistics from multiple official sources (Rifte
et al., 2021). The last 7 days covered in the database were ignored to avoid potential biases caused
by delays in death reporting. For each country included in COVerAGE-DB, and separately for each
age group, it was ensured that cumulative death counts are non-decreasing (monotonic) over time by
linearly re-interpolating death counts at problematic time points. To avoid inaccurate calibrations
due to grossly problematic time series, any country for which the strongest violation in monotonic-
ity (the largest decrease of cumulative deaths between any two time points for any considered age
group) was greater than 1% of the maximum reported total cumulative deaths in that country (for
example Canada) was omitted. For similar reasons, countries for which an interpolation was needed
(either due to missing data, or due to a violation of monotonicity) in any considered age group over

a time span greater than 5 weeks (for example Iceland) was also omitted.
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The remaining monotonized time series of cumulative deaths were linearly interpolated onto a
regular weekly time grid, i.e., in which adjacent time points are 7 days apart; no extrapolation was
performed, i.e., only dates between the first and last available data points were included. The weekly
number of deaths in each age group was calculated as the difference of cumulative deaths between
consecutive time points on the weekly grid. While some of the input time series are available at a
daily resolution, a weekly discretization was chosen here to (a) reduce time series noise and (b) to
“average out” the hard-to-model systematic variations in the epidemic’s dynamics between different
days of the week (e.g., weekends vs. work days). To ensure a high accuracy in the calibrated
infection risk ratios, only countries for which COVerAGE-DB covered at least 20 weeks with at

least 100 reported deaths each were subsequently considered.

For each considered country c, the “reference” age group r was set to the age group that had the
highest cumulative number of deaths. Designating a reference group is done purely for notational
simplicity and consistency, so that age-specific prevalence ratios can all be defined relative to a
common reference. For each other age group g, the infection risk ratio a4, i.e., the probability of
an individual in group g being infected relative to the probability of an individual in group r being
infected, was estimated using a probabilistic model. According to this model, the number of deaths

in group g during week w (denoted D, ,, ,) was Poisson distributed with expectation:

S 3)

Here, N, , is the population size of age group g in country c and R, is the IFR for age group g.
Under this model, the maximum-likelihood estimate for . g4, i.e. given the weekly death count

time series, is given by:

Z Dc7w7g NC,’I" R’I"

Qg = 0T T 4
? ZDC,w,r NC?Q RQ ( )

A

To avoid errors due to sampling noise, only weeks with at least 100 reported deaths were considered

in the sums in Eq. (4). This threshold was chosen as a reasonable compromise between data quality
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(requiring more deaths per week implies less sampling noise) and data quantity (requiring fewer
deaths per week increases the number of weeks available for calibration). Further increasing this
threshold to 200 deaths per week generally had negligible effects on the results (see examples in
Supplemental Fig. S12). Note that o, , might also alternatively be estimated as the slope of the

linear regression:

Neg . h‘ (5)

Dcw ~ O Dcwr'
sW,g9 g yW, Nc,?“ Rc,r

Estimates obtained via linear regression were nearly identical to those obtained using the aforemen-
tioned Poissonian model, suggesting that the estimates are not very sensitive to the precise assumed

distribution.

For purposes of evaluating the model’s adequacy (explained below), this study also estimated the
weekly number of infections in the reference age group, /., ,, via maximum-likelihood based on a

probabilistic model in which D, ,, , was Poisson-distributed with expectation:

Neg

E{Dcﬂl%g} = RgIc,w—4,rCA¥c,g]\[7 . (6)
c,r
Under this model, the maximum-likelihood estimate for /. ,,_4, is given by:
NC,T Z Dc,w,g
) — N
c,w—4,r Z ngRch,g
g

To evaluate the adequacy of the above stochastic model in explaining the original death count data,
multiple hypothetical weekly death counts were simulated for each age group, and the distribution
of simulated death counts was compared to the true death counts. Specifically, for each country c,
week w and age group g, 100 random death counts (Dc,w,g) were drawn from a Poisson distribution

with expectation:

= A . N
E{Daw,g} = RgIc,wfﬁl,TOZC,g Nc’g . (8)
c,r

Median simulated death counts and 50 % and 95% equal-tailed confidence intervals, along with the

original death counts, are shown for various countries and age groups in Supplemental Fig. S3. As
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can be seen in that figure, the model’s simulated time series are largely consistent with the original

data.

In the subsequent analyses, only infection risk ratios o 4 for which the corresponding linear curve
(Eq. 5) achieved a coefficient of determination (R?) greater than 0.5 were used (shown in Fig. 1),
to avoid less accurately estimated infection risk ratios (typically obtained from countries with low
death rates). Infection risk ratios meeting this quality threshold cover 15 countries: Argentina,
Bangladesh, Brazil, Colombia, Czech Republic, Germany, United Kingdom, Hungary, India, Mex-

ico, Paraguay, Peru, Philippines, Ukraine, United States.

Estimating infection counts from total death counts

Time series of total (non-age-stratified) nationwide cumulative reported death and case counts were
downloaded from the website of the World Health Organization (https://covid19.who.int/
table) on July 20, 2021. The last 7 days covered in the database were ignored to avoid potential
biases caused by delays in case and death reporting (Lipsitch et al., 2015). Cumulative death and
case counts were made non-decreasing and interpolated onto a weekly time grid as described above.
Only countries that reported at least one death per week for at least 10 weeks were included in the
analysis below. In addition, any country for which the strongest violation in monotonicity was
greater than 1% of the maximum reported total cumulative deaths in that country, or for which an
interpolation was needed (e.g., due to missing data) over a time span greater than 5 weeks (as done
above for the COVerAGE-DB data), was omitted. For each country ¢, week w and any particular
choice of age-specific infection risk ratios a1, as, .. (uniquely covering all ages >20), the number
of infections was estimated as follows. Let NV be the number of consecutive weeks for which total
deaths are reported. Let r denote some fixed reference age group with respect to which infection risk
ratios are defined, i.e., such that o, = 1 (here, ages 70-74 were used as reference). Let J; denote the
probability that a fatal infection will lead to death after £ weeks, where k = Ly, .., Linax and where

Ly is the minimum and L., the maximum considered time lag. Let L := L. — Liin + 1. Let
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I. ., be the (a priori unknown) number of new infections occurring during week w in the reference
age group. The number of COVID-19-induced deaths during week w in age group g, denoted

D, .4, was assumed to be Poisson-distributed with expectation equal to:

Lmax

Ne
E {Dc,w,g} = Z [c,w—kmékRgagN g (9)
k:Lmin Gr

The total number of deaths in week w, D, ,,, is thus Poisson-distributed with expectation:

L
max NC
E{D.w} = Z Loyt Ok Z RgagN =3 (10)
k=Lmin 9 ar

As explained earlier, only age groups >20 years were included because infection risk ratios could
not be reliably estimated for younger ages and because the contribution of younger ages to total death
counts can be considered numerically negligible. Here, the ¢, were calculated using 1,000,000
Monte Carlo simulations based on the log-normal distribution models fitted by Linton et al. (2020,
Table 2 therein) for the time lags between infection and disease onset and the time lags between
disease onset and death, and assuming that the two time lags are independently distributed (see Sup-
plemental Table S3). The minimum and maximum considered lags were L,;, = 2 and Ly, = 6
weeks, since this range covers the bulk (~90%) of cases, and since further increasing L., or de-
creasing L., increases the width of the convolution kernel, thus increasing the risk of introducing

spurious fluctuations in the estimated /., . Note that the considered 6y, ,,, .., dr,... wWere normal-

min ?

ized to have sum 1, to maintain consistency with the total (i.e., summed over all time lags) IFR.

Given the above model, the goal is to estimate the unknown weekly infection counts in the ref-
erence group, /.., , from the recorded weekly death counts D,.,,. Note that this is a classical de-
convolution problem, since each D, ,, results from the additive effects of infections from multiple

preceding weeks. (Mendel, 1990; Wiener, 1964). Eq. (10) can be written abstractly in matrix form:

E{D}=K-I, (11)
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where K is a convolution matrix of size N x (N + L — 1):

Sp Opt . Sp. 0 0 ... 0
O 5Lmax ce 5Lmin“’1 (SLmin 0 ctt O
Ne
K:=1| 0 0 o Ohr2 Onptt Ong o 0| Rt (12)
g c,r
0 0 ... 0 0 0 ... 6.

and D is a column vector of size N listing the reported weekly death counts D.;,..,D.
and I is a column vector of size N + L — 1 listing the unknown weekly infection counts
Iei—Loaers - de,N—Los.r- Note that for notational simplicity the country index c is omitted from
the I, D, K, but keep in mind that I, D, K refer to a specific country. It is straightforward to show
that, under the above model, the log-likelihood of the observed weekly death counts (D) is given
by:
N
InL = Z [Dy, In(KI),, — (KI),, — In(D,!)] . (13)

w=1

In principle, one could estimate the unknown vector I via maximum-likelihood. Indeed, the above

log-likelihood is maximized when the following condition is met:

N

N D’lL)K’lU’U
Ky = 14
= 3 (14)

w=1 w=1

forallv € {1,.., N+ L—1}. A sufficient condition for Eq. (14) is that KI = D, in other words any
vector I satisfying KI = D is a maximum-likelihood estimate. Such an estimate can be obtained
using the Moore-Penrose pseudoinverse of K, denoted K+ (Moore, 1920; Penrose, 1955): Since
K has linearly independent rows, its pseudoinverse is K* = KT (KK™)~, and hence setting T :=
K™D would satisfy KI = D. However, due to known issues with inverting convolution matrixes
such a naive estimation tends to introduce spurious fluctuations in the estimated I. One approach
is to reduce the temporal resolution of the estimated I, which effectively reduces the number of

estimated free parameters (Louca et al., 2019). Hence, instead of estimating /. ,,, separately for
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each week, a coarser time grid was considered that has 4 times fewer time points than the original
weekly time grid, i.e., such that the infection count /., , is freely estimated only every 4-th week,
while assuming linear variation between these time points. Note that this approach is a variant
of constrained deconvolution using spline functions, pioneered by Verotta (1993) and reviewed by
Madden et al. (1996), using linear splines and maximizing the likelihood function (thus accounting
for the Poisson model described above) rather than minimizing the sum of squared residuals (which
assumes normally distributed data). For example, for an original weekly time series spanning 100
weeks, first the /.., are estimated at about 100/4 discrete time points, each 4 weeks apart, and then
linear interpolation is used to obtain the remaining /., .. Denoting by J the column vector listing
the infection counts on this coarser time grid (/.1-r,....r Le.1—Lyaxtdrs ---), and by G the matrix
mapping J to I via linear interpolation (i.e., I = GJ), one thus obtains the following log-likelihood
in terms of J:

Inf = ivj Dy In(KGJ), — (KGJ),, — In(D,))]. (15)

w=1
The corresponding-maximum likelihood estimate J can no longer be obtained simply by solving
the equation KGJ = D, because this linear problem is over-determined, i.e., it is unlikely that
a J can be found such that KGJ = D is exactly satisfied. However an optimally approximate
solution (in the least-squares sense), J, can be obtained by setting J := (KG)*D. In order to deter-
mine the exact maximum-likelihood estimate J ,i.e., the J maximizing In £ in Eq. (15), numerical
optimization was used, as implemented in the R function nloptr: :nloptr, while using the afore-
mentioned approximation J as a starting point. Subsequently setting I:=GJ yielded an estimate
for the weekly infections counts I ,, .. The corresponding total number of weekly infections, I cws

can be calculated from the estimates IACMT as follows:

9 (16)

The corresponding cumulative number of total infections up until any given week can be obtained

by summing the weekly infection counts.
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Exponential growth rates over time were estimated from the weekly infection counts using a
sliding-window approach, as follows. In every sliding window (spanning 5 consecutive weeks),
an exponential function of the form I(t) = Ae'* was fitted, where ¢ denotes time in days and A
and A\ are unknown parameters (in particular, A is the exponential growth rate in that window).
The parameters A and A\ were fitted via maximum likelihood, assuming that the total number of
weekly infections, I ,,, was Poisson distributed with expectation Aet»*. Under this model, the

log-likelihood of the data (more precisely, of the previously estimated weekly infection counts) is:
InL = Z {fc,w In A+ fcﬁw)\tw — AeMe — ln(fc,w!)} , 17

where w iterates over all weeks in the specific sliding window. The maximum-likelihood estimates
of A and ) are obtained by solving dIn L/OX = 0 and 01n L/0A = 0, which quickly leads to the

condition:

ej‘tw
S
Z tw 6)\tw w
g9

Eq. (18) was solved numerically using the bisection method to obtain the maximum-likelihood

Zfwj\c,w = ch,w' (18)

estimate 5\.

To assess estimation uncertainties stemming from sampling stochasticity and uncertainties in
the infection risk ratios, the above estimations were repeated 100 times using alternative infection
risk ratios (for each age group drawn randomly from the set of infection risk ratios previously
fitted to various countries) and replacing the reported weekly death counts D, ,, with values drawn
from a Poisson distribution with mean D, ,,. Hence, rather than point-estimates, all predictions are
reported in the form of medians and equal-tailed confidence intervals. Tables of all estimates for
all considered countries up until June 25, 2021 are provided in Supplemental Files 1-5; a visual

report is provided as Supplemental File 6.
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Assessing the robustness of COVerAGE-DB-based calibrations

To examine whether the age harmonizations of COVerAGE-DB death counts have had a major
impact on the calibrated infection risk ratios (c. ,), the calibrations were also repeated using an
independent dataset of national age-stratified death counts obtained from the French National Insti-
tute for Demographic Studies, henceforth “INED”, at: https://dc-covid.site.ined.fr/en/
data/pooled-datafiles (accessed July 20, 2021). Only countries also included in the calibra-
tions described above, and meeting the same data size and quality criteria, were considered (United
States, Ukraine). Age groups g not intersecting with at least one finite age interval in the INED
database were also omitted from the comparison. Supplemental Fig. S9 shows the COVerAGE-
DB-based and INED-based calibrated infection risk ratios across all considered countries and age
groups; as can be seen, the two sets largely agree (R? = 0.92), suggesting that COVerAGE-DB’s

age harmonizations did not substantially compromise the model calibrations.

Vaccination data

Data on nationwide completed vaccinations per country over time were obtained from
the GitHub repository of the Johns Hopkins Centers for Civic Impact, at: https:
//github.com/govex/COVID-19/blob/master/data_tables/vaccine_data/global _

data/time_series_covid19_vaccine_global.csv (accessed July 20, 2021). Cumulative
vaccination counts were monotonized and interpolated onto a weekly time grid as described above

for the death counts data.
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