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Abstract1

Background: Understanding the dynamics of the COVID-19 pandemic and evaluating the2

efficacy of control measures requires knowledge of the number of infections over time. This3

number, however, often differs from the number of confirmed cases due to a large fraction of4

asymptomatic infections and variable testing strategies.5

Methods: This study uses death count statistics, age-dependent infection fatality risks and6

stochastic modeling to estimate the prevalence of SARS-CoV-2 infections among adults (age7

≥ 20 years) in 165 countries over time, from early 2020 until June 25, 2021. The accuracy of8

the approach is confirmed through comparison to previous nationwide seroprevalence surveys.9

Results: The presented estimates reveal that the fraction of infections that are detected vary10

widely over time and between countries, and hence confirmed cases alone often yield a false11

picture of the pandemic. As of June 25, 2021, the nationwide cumulative fraction of SARS-12

CoV-2 infections (cumulative infections relative to population size) is estimated at 98% (95%-13

CI 93–100) for Peru, 83% (61–94) for Brazil and 36% (23–61) for the US.14

Conclusions: The presented time-resolved estimates expand the possibilities to study the fac-15

tors that influenced and still influence the pandemic’s progression in 165 countries.16
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Background21

Accurate estimates of the prevalence of SARS-CoV-2 in a population are needed for evaluating dis-22

ease control policies and testing strategies, determining the role of environmental factors, predict-23

ing future disease spread, assessing the risk of foreign travel, and determining vaccination needs24

(Nguimkeu and Tadadjeu, 2021; Pearce et al., 2020). Even if a retreat of the pandemic seems25

within reach in many countries, the efficacy of control measures in 2020 and 2021 and the envi-26

ronmental/political/societal factors that influenced the epidemic’s progression in each country will27

undoubtedly be the topic of scholarly work for years to come. Due to the existence of a large fraction28

of asymptomatic cases as well as variation in reporting, testing effort and testing strategies (e.g.,29

random vs symptom-triggered) (Chow et al., 2020), reported case counts cannot be directly con-30

verted to infection counts and a comparison of confirmed case counts between countries is generally31

of limited informative value (Lachmann et al., 2020). Large-scale seroprevalence surveys (e.g., us-32

ing antibody tests) can yield information on the disease’s prevalence and cumulative number of33

infections in a population, either directly or using dynamical modeling (Larremore et al., 2021).34

However, such surveys involve substantial financial and logistical challenges, and only yield reli-35

able prevalence estimates near the time periods covered by the surveys; prevalence estimates based36

on seroprevalence surveys are thus largely restricted to short time periods (e.g., (Bogogiannidou37

et al., 2020; Le Vu et al., 2021; Merkely et al., 2020; Murhekar et al., 2021)).38

In contrast to case reports, COVID-19-related death counts are generally regarded as less sensi-39

tive to testing effort and strategy (Flaxman et al., 2020; Lau et al., 2021; Lu et al., 2020; Maugeri40

et al., 2020a), and fortunately most countries have established nationwide continuous reporting41

mechanisms for COVID-19-related deaths. Hence, in principle, knowing the infection fatality risk42

(IFR, the probability of death following infection by SARS-CoV-2) should permit a conversion of43

death counts to infection counts (Bohk-Ewald et al., 2020; Flaxman et al., 2020; Lu et al., 2020;44

Sánchez-Romero et al., 2021). The IFR of SARS-CoV-2, however, depends strongly on the host’s45

age, and hence the effective IFR of the entire population depends on the population’s age struc-46
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ture as well as the disease’s age distribution (Dowd et al., 2020). Indeed, it was shown that the47

age-dependency of the IFR, the age-dependency of SARS-CoV-2 prevalence, and the age structure48

of the population are largely sufficient to explain variation in the effective IFR between countries49

(Levin et al., 2020). This suggests that age-stratified death counts (or estimates thereof) should be50

used in conjunction with age-dependent IFRs in order to obtain an accurate estimate of infection51

counts. This approach has been successfully used to estimate SARS-CoV-2 prevalence over time in52

Europe until May 4, 2020, based on reported age-stratified death counts (Flaxman et al., 2020). In53

principle, one could also first determine the “effective” (integrated over all ages) IFR for the entire54

population and combine that effective IFR with total (non-age-stratified) death counts to estimate55

infection rates. This approach was taken by Sánchez-Romero et al. (2021), who first estimated the56

effective IFR for various states in the US based — among others — on age-specific mortality data57

and then estimated the cumulative number of SARS-CoV-2 infections across the US as of Septem-58

ber 8, 2020. However, such an effective IFR is specific to the population for which it was estimated,59

and hence applying it to other countries (even if correcting for the local population age structure,60

which is possible in the framework by Sánchez-Romero et al. (2021)) would fail to account for61

differences (or uncertainty) in the age distribution of infections or deaths.62

Unfortunately, age-stratified and time-resolved death statistics are not readily available for many63

countries with insufficiently comprehensive reporting, thus preventing a direct adoption of the above64

approaches (Flaxman et al., 2020; O’Driscoll et al., 2021). In cases where only total (i.e., aggre-65

gated over all ages) death counts are available, such as the ones disseminated by the World Health66

Organization, one needs to independently estimate the age distribution of deaths (or infections) in67

order to convert total death counts to infection counts. Bohk-Ewald et al. (2020) disaggregated68

nationwide total death counts based on a previously determined global average age distribution of69

deaths, to estimate SARS-CoV-2 infections in 10 countries up to July 23, 2020. However, using a70

global average age distribution of deaths ignores the fact that the age distribution of infections (and71

deaths) actually needs to be adjusted for each country’s population age structure, even if any given72

age group were to experience a similar exposure in each country. Further, while the approaches by73
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Bohk-Ewald et al. (2020) and Sánchez-Romero et al. (2021) can account for the average time lag74

between infection and death, they cannot account for its actual probability distribution and consid-75

erable spread around the mean (Linton et al., 2020), which further complicates the estimation of76

time-resolved infections from deaths. Lastly, all of the above studies cover only an early portion of77

the pandemic (Bohk-Ewald et al., 2020; Flaxman et al., 2020) or only focus on a single time point78

(Sánchez-Romero et al., 2021), and focus on a small number of countries (1–11).79

This study addresses the above challenges by leveraging information on the age distribution of80

SARS-CoV-2 infections from multiple countries with available age-stratified death reports, to es-81

timate the likely age-distribution of SARS-CoV-2 in other countries, while accounting for each82

country’s population age structure and for uncertainty due to additional unidentified factors. Based83

on these calibrations, national SARS-CoV-2 prevalences (cumulative number of infections, weekly84

new infections and exponential growth rate) are estimated over time, while accounting for each85

country’s population age structure, the likely age distribution of infections, the age dependency86

of the IFR, and variation in the time lag between infection and death. The estimates are specific87

to adults aged 20 years or more, covering 165 countries from early 2020 until June 25, 2021. The88

estimates are largely consistent with data from multiple previously published nationwide seropreva-89

lence surveys. Unless mentioned otherwise, in the following “infection”, “death” and “vaccination”90

refer exclusively to SARS-CoV-2 infections, COVID-19-related deaths and full vaccination against91

SARS-CoV-2, respectively.92

Results and discussion93

Calibrating the age distribution of SARS-CoV-2 prevalence94

In order to calculate infection counts solely from total (i.e., non-age-stratified) death counts, while95

accounting for the age-dependency of the IFR and each country’s population age structure, inde-96

pendent estimates of the ratios of infection risks between age groups (i.e., the risk of infection in any97
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one age group relative to any other age group) are needed. To determine the general distribution of98

age-specific infection risk ratios, this study analysed weekly age-stratified COVID-19-related death99

reports from 15 countries around the world using a probabilistic model of Poisson-distributed time-100

delayed death counts (see Methods for details). Briefly, for any given country c, any given week w,101

and any given age group g, the number of new infections during that week (Ic,w,g) is assumed to102

be approximately equal to αc,gIc,w,rNc,g/Nc,r, where r represents some fixed reference age group,103

Nc,g is the population size of age group g, and αc,g is the relative risk of an individual in age group104

g being infected compared to that of an individual in age group r. The expected number of deaths105

in each age group 4 weeks later (roughly the average time lag between infection and death (Linton106

et al., 2020)), denoted Dc,w+4,g, was assumed to be Ic,w,gRg, where Rg is the IFR for that age group.107

Note that while Rg could in principle also vary between countries, to date insufficient information108

is available for calibrating Rg separately for each country (but see discussion of caveats below).109

Age-specific IFRs were calculated beforehand by taking the average over multiple IFR estimates110

reported in the literature (Levin et al., 2020; Linden et al., 2020; O’Driscoll et al., 2021; Pastor-111

Barriuso et al., 2020; Rinaldi and Paradisi, 2020; Salje et al., 2020). This calibration thus accounts112

for the age-structure of each country, the age-distribution of the disease in each country and the age-113

dependency of the IFR. A critical assumption of the model is that, in any given country, nationwide114

age-specific infection risks co-vary linearly between age groups over time, i.e., an increase of dis-115

ease prevalence in one age group coincides with a proportional increase of prevalence in any other116

age group. This assumption is motivated by the observation that weekly nationwide death counts117

generally covary strongly linearly between age groups (Fig. 1A and Supplemental Figs. S1 and118

S2); the adequacy of this model is also confirmed in retrospect (see below). For each country, the119

infection risk ratios αc,g (for all g 6= r) and the weekly infections in the reference age-group Ic,w,r120

(one per week) were fitted to the age-stratified weekly death counts using a maximum-likelihood ap-121

proach and assuming that weekly death counts follow a Poisson distribution. This stochastic model122

explained the data generally well, with observed weekly death counts almost always falling within123

the 95% confidence interval of the model’s predictions (Supplemental Fig. S3). This supports the124
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Estimating infection counts over time134

Based on the pool of fitted infection risk ratios, the same age-dependent IFRs used above, the135

probability distribution of time lags between infection, disease onset and death (Linton et al., 2020),136

and total (non-age-stratified) COVID-19-related death count reports disseminated by the WHO, the137

weekly infection counts were estimated over time in each of 165 countries that met certain data138

quality criteria (details in Methods). Briefly, for any given country c, week w and any given set of139

relative infection risks α1, α2, .., the total number of deaths during that week (Dc,w) was assumed140

to be Poisson-distributed with expectation equal to:141

E {Dc,w} =
Lmax
∑

k=Lmin

Ic,w−k,rδk

∑

g

Rgαg

Nc,g

Nc,r

, (1)

where as before Rg is the IFR for age group g, Nc,g is the population size of age group g, δk is142

the probability that a fatal infection will result in death after k weeks, Lmin and Lmax are the min-143

imum and maximum considered time lags between infection and death, and Ic,w,r is the (a priori144

unknown) number of new infections in the reference age group r during week w. For the second145

sum in Eq. (1), only age groups at 20 years or older were considered (in 5-year intervals), because146

estimates of the infection risk ratios αg were unreliable for younger ages (due to low death counts)147

and because deaths among below-20-year olds were numerically negligible compared to the total148

number of deaths reported. Note that the expected number of deaths in any given week depends on149

the number of infections in multiple previous weeks, due to the variability of the time lag between150

infection and death (typically 2–6 weeks (Linton et al., 2020)). Hence, the time series of observed151

weekly death counts (Dc,1, Dc,2, ..) results from a convolution (“blurring”) of the weekly infections152

counts (Ic,1,r, Ic,2,r, ..), making the estimation of the latter based on the former a classical decon-153

volution problem, similar to those known from electronic signal processing, financial time series154

analysis or medical imaging (Mendel, 1990; Wiener, 1964). Put simply, deconvolution can be in-155

terpreted as an algebraic inversion of the operation of convolution, similar to inverting the matrix156

of a linear transformation. In contrast to estimation approaches based on fitting dynamical mod-157
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els (e.g., SIR or SEIR models) (Baccini et al., 2021; Chow et al., 2020; Maugeri et al., 2020a,b),158

which assume a particular dynamical model for the epidemic’s growth and often require a priori159

knowledge of several model parameters to ensure identifiability, time series deconvolution meth-160

ods typically do not assume any particular dynamical model. Dynamics-agnostic deconvolution161

methods, including the ones deployed here, can thus be applied to more complex epidemiological162

scenarios with no a priori knowledge on the possible dynamics. A major challenge in deconvolution163

is to avoid overfitting, which can introduce spurious fluctuations in the estimated infection counts.164

Here, for every country c the unknown Ic,w,r were estimated using a deconvolution operation based165

on maximum likelihood. To avoid the risk of overfitting, infection counts were first estimated on166

a lower-resolution time grid, and then linearly interpolated onto a weekly grid (see Methods for167

details). The total number of new infections among ≥20-year olds during week w was estimated as168

Ic,w = Ic,w,r

∑

g αgNc,g/Nc,r. Cumulative (i.e., past and current) infection counts were calculated169

as incremental sums of the weekly infection count estimates. The epidemic’s exponential growth170

rate over time was subsequently calculated from the estimated weekly infection counts based on a171

Poisson distribution model and using a sliding-window approach.172

Depending on the particular choice of infection risk ratios, this yielded different estimates for173

the weekly nationwide infection counts, the cumulative infection counts and the exponential growth174

rates over time. Uncertainty in the true infection risk ratios in any particular country stemming from175

non-modeled additional factors was accounted for by randomly sampling from the full distribution176

of fitted infection risk ratios (i.e., obtained from the various calibration countries) multiple times,177

and calculating confidence intervals of the predictions based on the obtained distribution of esti-178

mates. Estimated weekly and cumulative infection fractions (i.e., relative to population size) and179

exponential growth rates over time are shown for a selection of countries in Fig. 2 and Supplemen-180

tal Figs. S4, S5, S6, S7, S8. A comprehensive report of estimates for all 165 countries is provided181

as Supplemental File 6. Global color-maps of the latest estimates for all countries are shown in Fig.182

3.183
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To assess the accuracy of the above approach, the estimated cumulative infection fractions were184

compared to 22 previously published nationwide seroprevalence surveys across 14 countries (Sup-185

plemental Table S1) (Alharbi et al., 2021; Anand et al., 2020; Bogogiannidou et al., 2020; Espen-186

hain et al., 2021; Hallal et al., 2020; Le Vu et al., 2021; Merkely et al., 2020; Murhekar et al., 2020,187

2021; Nah et al., 2021; Poljak et al., 2021; Pollán et al., 2020; Reicher et al., 2021; Snoeck et al.,188

2020; Ward et al., 2020). Only surveys attempting to estimate nationwide seroprevalence in the gen-189

eral population (in particular, either using geographically or demographically stratified sampling or190

adjusting for sample demographics) were included. Agreement between model estimates and sero-191

prevalence estimates was generally good: 16 out of 22 seroprevalence estimates (accounting for192

the associated 95% confidence interval and the time period of the underlying survey) overlapped193

with the model’s 95%-confidence intervals, with 3 non-overlaps observed for Brazil, one for Spain,194

one for the UK, and one for France (Supplemental Fig. S4). When comparing point-estimates (i.e.,195

not accounting for confidence intervals) relative differences (model estimate minus seroprevalence,196

divided by seroprevalence) were mostly in the range 25–50%, although particularly high relative197

differences were found for Brazil (170–180%), one time point in France (464%) and one time point198

in Greece (348%) (overview in Supplemental Table S1). Apart from the possibility of erroneous199

model predictions (discussed extensively below), it should be kept in mind that seroprevalence sur-200

veys themselves yield only estimates of the cumulative fraction of infected individuals with an asso-201

ciated uncertainty interval, and that this uncertainty interval need not always account for all sources202

of error. In particular, deviations of the model from seroprevalence-based estimates may partly be203

due to the fact that antibody concentrations in infected individuals (especially asymptomatic ones)204

can drop over time, rendering many of them seronegative (Bolotin et al., 2021; La Marca et al.,205

2020; Long et al., 2020). Thus, previously infected individuals may not all be recognized as such.206

This would be consistent with the fact that in all cases of major disagreement between model pre-207

dictions and seroprevalence estimates the former were greater than the latter. Further, sensitivity208

and specificity estimates for antibody tests performed in the laboratory or claimed by manufactures209

need not always apply in a community setting (La Marca et al., 2020), thus introducing biases in210
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seroprevalence estimates despite nominal adjustments for sensitivity and specificity.211

Case counts alone can yield wrong impressions212

Estimates of SARS-CoV-2 prevalence in a population can yield insight into the epidemic’s scale213

and growth dynamics that may not have been possible from reported cases alone. One reason is214

that the fraction of infections that is detected and reported varies greatly between countries as well215

as over time. Indeed, according to the present estimates, in most countries reported case counts216

initially severely underestimated the actual number of infections and often did not properly reflect217

the progression of the epidemic, while in many countries more recent case reports capture a much218

larger fraction of infections and more closely reflect the epidemic’s dynamics (Figs. 2A–E and Sup-219

plemental Fig. S5). For example, in the US, France, Sweden, Belgium, Spain, United Kingdom and220

many other European countries reported cases only reflected a small fraction of infections occur-221

ring in Spring 2020, while the majority of subsequent infections have been successfully detected.222

Nevertheless, in many countries even recent reported case counts poorly reflect the actual dynam-223

ics of the epidemic. For example, recent reported cases in Afghanistan, Angola, Brazil, Ecuador,224

Egypt, Guatemala and Iran severely underestimate the disease’s rapid ongoing growth, with nearly225

all infections remaining undetected or unreported (Fig. 4). Future investigations, enabled by the226

infection count estimates presented here, might be able to identify the main factors (e.g., politi-227

cal, financial, organizational) driving the discrepancies between infections and reported cases and228

suggest concrete steps to eliminate these discrepancies or correct for them.229

The above observations imply that comparisons of the epidemic’s extent and progression between230

countries should preferably be done based on infection or death counts, rather than reported cases231

alone (Flaxman et al., 2020; Sánchez-Romero et al., 2021). For example, as of June 25, 2021232

the cumulative per-capita number of cases reported for the Czech Republic (16%) and Slovenia233

(12%) were much higher than for Paraguay (5.8%), Peru (6.3%) or Brazil (8.6%), while the median234

predicted cumulative infection fractions for the Czech Republic (52%) and Slovenia (38%) are much235
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lower than for Paraguay (86%), Peru (98%, Fig. 2.O) and Brazil (83%) (Supplemental Figs. S6 and236

S7). Similarly, as of June 25, 2021 the cumulative per-capita number of cases reported for the US237

(10%) was much higher than for neighboring Mexico (2%), while the median predicted cumulative238

infection fraction for the US (36%, Fig. 2L) is much lower than for Mexico (77%, Fig. 2M). These239

examples highlight the value of considering actual infection counts relative to population size when240

comparing the extent of the epidemic and its relationship to public policy between countries. Future241

investigations, enabled by the prevalence estimates presented here, may be able to identify concrete242

political, environmental and socioeconomic factors influencing the epidemic’s growth.243

Caveats244

The predictions presented here are subject to some important caveats. First, erroneous reporting245

of total COVID-19-related deaths will have a direct impact on the estimated infection counts. This246

caveat is particularly important for countries with less developed medical or reporting infrastruc-247

ture (Bastos et al., 2021; Feyissa et al., 2021; Galvêas et al., 2021; Lloyd-Sherlock et al., 2021;248

Natashekara, 2021; Veiga e Silva et al., 2020), as well as for countries were reports may be cen-249

sored or modified for political reasons (Kilani, 2021; Kobak, 2021). A general underreporting of250

total COVID-19-related deaths, as has been suspected for example for Brazil (Bastos et al., 2021;251

Veiga e Silva et al., 2020), Italy (Ciminelli and Garcia-Mandicó, 2020), Turkey (Kisa and Kisa,252

2020), India (Chatterjee, 2020) and Nigeria (Ohia et al., 2020), would lead to a roughly propor-253

tional underestimation of infections. Similarly, inconsistencies between countries and over time in254

the classification of causes of death also have the potential to alter model predictions (Feyissa et al.,255

2021; França et al., 2020; Leon et al., 2020; Singh, 2021). For example, it was pointed out that256

the US and Russia tend to follow rather different criteria for identifying COVID-19 as the under-257

lying cause of death, while Kyrgyzstan and Kazakhstan modified their criteria several months into258

the pandemic (Singh, 2021). Underreporting of COVID-19-related deaths may also explain why259

in some rare instances the number of reported positive cases substantially exceeds the estimated260
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number of infections (e.g., for Singapore, Supplemental File 6). Comparisons of results between261

countries should thus be done with care. In countries where COVID-19-related deaths are suspected262

of being grossly misreported, excess mortality rates may provide an alternative means to obtaining263

accurate death counts in future analyses (Azofeifa et al., 2021; Beaney et al., 2020; Kobak, 2021).264

Second, systematic errors in the age-stratified death counts used for model calibration (obtained265

from the COVerAGE-DB (Riffe et al., 2021)) could impact model predictions. For example, a266

potentially more frequent erroneous attribution to alternative plausible causes of death (e.g., other267

respiratory disorders) in older patients could lead to a relative underreporting of COVID-19-related268

deaths in older age groups. Such an age bias would lead to an underestimation of the infection risk269

ratios αc,g in older groups, essentially shifting the estimated age distribution of infections towards270

younger groups. If such erroneous calibrations are subsequently used to estimate infections from271

total death count data, this would lead to an overestimation of infections because the IFR is lower272

at younger ages (recall that infections ≈ deaths/IFR). Further, while the COVerAGE-DB is a rich273

and robust dataset, its age group harmonizations could in principle cause distortions in the age274

distribution of death counts. To assess whether these distortions are strong enough to substantially275

influence the model calibrations, in this study calibrations were repeated using an independent276

dataset of national age-stratified death counts, available for a subset of countries, from the French277

National Institute for Demographic Studies (INED). Across the 2 countries covered by both INED278

and COVerAGE-DB and satisfying the same data criteria as in the earlier analyses, the infection risk279

ratios calibrated with the INED data were generally similar to those calibrated with the COVerAGE-280

DB data (Supplemental Fig. S9).281

Third, even if all data were error-free, the infection risk ratios are calibrated based on available282

age-stratified death statistics from a limited number of countries, and may not apply to all other283

countries (for example due to strong cultural differences). Uncertainty associated with this ex-284

trapolation is accounted for by considering infection risk ratios calibrated to multiple alternative285

countries from multiple continents (see Methods).286
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Fourth, governmental policies implemented at various time points could in principle change the287

infection risk ratios between age groups over time, for example by opening and closing schools288

and universities, or allowing or prohibiting visits to nursing homes. To assess the extent of this289

possible issue, here the weekly death counts in each age group were compared to the total (age-290

integrated) weekly death counts over time (Supplemental Figs. S10 and S2). Age-specific and total291

death counts correlated strongly linearly over time in nearly all age groups and countries (Pear-292

son correlations ≥0.5 in almost all cases), suggesting that in any given country the proportion of293

infections per age group did not substantially vary over the course of the epidemic. Further, pre-294

dictions of the fitted models (which assume time-independent infection risk ratios) were generally295

highly consistent with the age-stratified death counts (Supplemental Fig. S3), again suggesting that296

time-independent (but country- and age-dependent) infection risk ratios provide a largely adequate297

model for the age distribution of infections.298

Fifth, age-specific IFRs were obtained from studies in only a few countries (mostly western) and299

often based on a small subset of closely monitored cases (e.g., from the Diamond Princess cruise300

ship). These IFR estimates may not be accurate for all countries, especially countries with a very301

different medical infrastructure, different sex ratios in the population or a different prevalence of302

pre-existing health conditions (e.g., diabetes), all of which can affect the IFR. That said, estimated303

trends over time within any given country, in particular exponential growth rates (e.g., Figs. 2P–304

T), are unlikely to be substantially affected by such biases if the biases remain relatively constant305

over time. For example, the exponential growth rates estimated here remained unchanged when306

alternative IFRs from the literature (Levin et al., 2020; Linden et al., 2020; O’Driscoll et al., 2021;307

Pastor-Barriuso et al., 2020; Rinaldi and Paradisi, 2020; Salje et al., 2020) were considered. To308

nevertheless examine the robustness of estimated SARS-CoV-2 prevalences against variations in the309

IFR, the above analyses were repeated by considering for each age group an set of multiple IFRs, i.e.,310

randomly sampling from the set of previously reported IFRs (Levin et al., 2020; Linden et al., 2020;311

O’Driscoll et al., 2021; Pastor-Barriuso et al., 2020; Rinaldi and Paradisi, 2020; Salje et al., 2020)312

rather than considering their mean. Median model predictions remained nearly unchanged, however313
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the uncertainty (i.e., confidence intervals) of the estimates increased (examples in Supplemental Fig.314

S11).315

Sixth, in countries where a large fraction of the population is now vaccinated, attention should316

be given to the limitations and interpretation of the model’s predictions for the recent parts of the317

pandemic. Indeed, while existing vaccines substantially reduce the probability of infection and318

death, none of them is 100% effective (Bermingham et al., 2021; Calzetta et al., 2021; Soiza et al.,319

2021). Because the IFR may differ between vaccinated and non-vaccinated individuals, converting320

from death counts to infection counts using IFRs originally determined for non-vaccinated people321

could lead to erroneous infection estimates. This error is relatively small if vaccinated people only322

represent a small fraction of new infections, which, given that vaccination substantially reduces323

the risk of infection, is probably the case in the many countries where the majority of the popu-324

lation is unvaccinated (as of June 25, 2021, 138 out of 145 countries with available vaccination325

data, Supplemental File 6). To further assess the implications of vaccination on infection estimates,326

consider the following back-of-the-envelope calculation. Let U be the ratio of vaccinated over non-327

vaccinated individuals, let Q be the risk of COVID-19-related death for a vaccinated individual328

relative to a non-vaccinated one, and let D̃ and D denote the number of deaths among vaccinated329

and non-vaccinated individuals, respectively (country and week indices are omitted here for nota-330

tional simplicity). We have D̃/D ≈ QU , and hence the fraction of deaths attributed to vaccinated331

individuals is roughly:332

D̃

D̃ + D
≈

QU

QU + 1
. (2)

As of June 25, 2021, in nearly all countries the majority of the population was not yet fully vacci-333

nated (hence U<1), exceptions being the Seychelles, Malta, Israel, Bahrain, Mongolia, Iceland and334

Chile (where U ranged between 1 and 2.2 on June 25, 2021). Field estimates for vaccine effective-335

ness against death generally range from 96.7% in Israel (Haas et al., 2021), to 98% in an Italian336

province (Flacco et al., 2021) and 98.7% in the US (Vahidy et al., 2021), among fully vaccinated337

individuals, corresponding to a Q in the range 0.013–0.033. Hence, in nearly all countries (except338
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Seychelles, Malta, Israel, Bahrain, Mongolia, Iceland and Chile) vaccinated individuals likely ac-339

count for less than 3.2% of the reported deaths in recent months (up until June 25, 2021), and even340

less at earlier stages of the pandemic where U ≪ 1. The presented infection count estimates can341

thus be interpreted as approximately corresponding to the non-vaccinated part of the population342

(e.g., an estimate of 1000 infections essentially means that among the non-vaccinated population343

there were about 1000 infections), which in turn likely accounts for the vast majority of infections344

in most countries (as discussed above).345

Conclusions346

This study presented estimates of the nationwide prevalence and growth rate of SARS-CoV-2 in-347

fections over time in 165 countries around the world, based on official COVID-19-related death348

reports, age-specific infection fatality risks, each country’s population age structure and the dis-349

tribution of time lags between infection and death. The complete report for all 165 countries is350

provided as Supplemental File 6. These estimates are also provided as machine-readable tables351

(Supplemental Files 1–5) for convenient downstream analyses; occasionally updated estimates are352

available at: www.loucalab.com/archive/COVID19prevalence. Despite a variety of assumptions353

and caveats, the presented estimates turn out largely consistent with data from nationwide general-354

population seroprevalence surveys. The presented findings suggest that while in many countries the355

detection of infections has greatly improved, there are also numerous examples where even recent356

reported case counts do not properly reflect the epidemic’s dynamics. In particular, comparisons357

between countries based on infection counts can yield very different conclusions than comparisons358

merely based on reported cases. The present work thus enables more precise assessments of the359

disease’s past and ongoing progression, evaluation and improvement of public interventions and360

testing strategies, and estimation of worldwide vaccination needs.361
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Figure 2: Estimated nationwide infection rates (adults aged ≥20 years). (A–E) Estimated nationwide
weekly number of SARS-CoV-2 infections over time for Canada, US, Mexico, United Kingdom and Peru,
compared to weekly reported cases (blue curves). Black curves show prediction medians, dark and light
shades show 50 % and 95 % percentiles of predictions, respectively. Note that reported cases are shown
1 week earlier than actually reported (corresponding roughly to the average incubation time (Linton et al.,
2020)) for easier comparison with infection counts. (F–J) Estimated nationwide weekly fraction of new
infections and fraction of reported cases (relative to population size), for the same countries as in A–E.
(K–O) Estimated nationwide cumulative fraction of infections (cumulative infections divided by population
size), for the same countries as in A–E. Small circles show empirical nationwide prevalence estimates from
published seroprevalence surveys for comparison (horizontal error bars denote survey date ranges, vertical
error bars denote 95%-confidence intervals as reported by the original publications; details in Supplemental
Table S1). (P–T) Estimated exponential growth rate based on weekly infection counts, for the same countries
as in A–E. Horizontal axes are shown for reference. Each column shows estimates for a different country.
All model estimates refer to adults aged ≥20 years, while reported cases (blue curves) refer to the entire
population. Analogous plots for all 165 investigated countries are provided as Supplemental File 6.
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Figure 4: Case counts can suggest drastically different dynamics than infection counts. Nationwide
predicted weekly number of new infections (black curves and shades, among adults aged ≥20 years) and
weekly reported cases (blue curves, all ages) over time in Afghanistan, Angola, Brazil, Colombia, Ecuador,
Egypt, Guatemala and Iran. Black curves show prediction medians, dark and bright shades show 50 % and
95 % confidence intervals, respectively. For easier comparison, case counts are shifted backward by one
week (corresponding roughly to the average incubation time (Linton et al., 2020)).
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Methods details362

Age-specific infection fatality risks363

Age-specific infection fatality risks (IFRs) were calculated based on the following literature: (Levin364

et al., 2020; Linden et al., 2020; O’Driscoll et al., 2021; Pastor-Barriuso et al., 2020; Rinaldi and365

Paradisi, 2020; Salje et al., 2020). For each considered age group, the average IFR across all of366

the aforementioned published IFRs was used, after linearly interpolating where necessary (Supple-367

mental Table S2).368

Calibrating age-specific infection risk ratios369

The age-specific infection risk ratios were calibrated as follows. Age-specific population sizes370

for each country (status 2019) were downloaded from the United Nations website (https://371

population.un.org/wpp/Download/Standard/CSV) on October 23, 2020 (DESA, 2019). Time372

series of nationwide cumulative COVID-19-related death counts grouped by 5-year age intervals373

were downloaded on April 27, 2021 from COVerAGE-DB (https://osf.io/7tnfh), which is a374

database that gathers and curates official death count statistics from multiple official sources (Riffe375

et al., 2021). The last 7 days covered in the database were ignored to avoid potential biases caused376

by delays in death reporting. For each country included in COVerAGE-DB, and separately for each377

age group, it was ensured that cumulative death counts are non-decreasing (monotonic) over time by378

linearly re-interpolating death counts at problematic time points. To avoid inaccurate calibrations379

due to grossly problematic time series, any country for which the strongest violation in monotonic-380

ity (the largest decrease of cumulative deaths between any two time points for any considered age381

group) was greater than 1% of the maximum reported total cumulative deaths in that country (for382

example Canada) was omitted. For similar reasons, countries for which an interpolation was needed383

(either due to missing data, or due to a violation of monotonicity) in any considered age group over384

a time span greater than 5 weeks (for example Iceland) was also omitted.385
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The remaining monotonized time series of cumulative deaths were linearly interpolated onto a386

regular weekly time grid, i.e., in which adjacent time points are 7 days apart; no extrapolation was387

performed, i.e., only dates between the first and last available data points were included. The weekly388

number of deaths in each age group was calculated as the difference of cumulative deaths between389

consecutive time points on the weekly grid. While some of the input time series are available at a390

daily resolution, a weekly discretization was chosen here to (a) reduce time series noise and (b) to391

“average out” the hard-to-model systematic variations in the epidemic’s dynamics between different392

days of the week (e.g., weekends vs. work days). To ensure a high accuracy in the calibrated393

infection risk ratios, only countries for which COVerAGE-DB covered at least 20 weeks with at394

least 100 reported deaths each were subsequently considered.395

For each considered country c, the “reference” age group r was set to the age group that had the396

highest cumulative number of deaths. Designating a reference group is done purely for notational397

simplicity and consistency, so that age-specific prevalence ratios can all be defined relative to a398

common reference. For each other age group g, the infection risk ratio αc,g, i.e., the probability of399

an individual in group g being infected relative to the probability of an individual in group r being400

infected, was estimated using a probabilistic model. According to this model, the number of deaths401

in group g during week w (denoted Dc,w,g) was Poisson distributed with expectation:402

Dc,w,r · αc,g ·
Nc,g

Nc,r

·
Rg

Rr

. (3)

Here, Nc,g is the population size of age group g in country c and Rg is the IFR for age group g.403

Under this model, the maximum-likelihood estimate for αc,g, i.e. given the weekly death count404

time series, is given by:405

α̂c,g =

∑

w

Dc,w,g

∑

w

Dc,w,r

Nc,r

Nc,g

·
Rr

Rg

. (4)

To avoid errors due to sampling noise, only weeks with at least 100 reported deaths were considered406

in the sums in Eq. (4). This threshold was chosen as a reasonable compromise between data quality407
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(requiring more deaths per week implies less sampling noise) and data quantity (requiring fewer408

deaths per week increases the number of weeks available for calibration). Further increasing this409

threshold to 200 deaths per week generally had negligible effects on the results (see examples in410

Supplemental Fig. S12). Note that αc,g might also alternatively be estimated as the slope of the411

linear regression:412

Dc,w,g ∼ αc,gDc,w,r ·
Nc,g

Nc,r

·
Rc,g

Rc,r

. (5)

Estimates obtained via linear regression were nearly identical to those obtained using the aforemen-413

tioned Poissonian model, suggesting that the estimates are not very sensitive to the precise assumed414

distribution.415

For purposes of evaluating the model’s adequacy (explained below), this study also estimated the416

weekly number of infections in the reference age group, Ic,w,r, via maximum-likelihood based on a417

probabilistic model in which Dc,w,g was Poisson-distributed with expectation:418

E{Dc,w,g} = RgIc,w−4,rα̂c,g

Nc,g

Nc,r

. (6)

Under this model, the maximum-likelihood estimate for Ic,w−4,r is given by:419

Îc,w−4,r =

Nc,r

∑

g

Dc,w,g

∑

g

α̂c,gRgNc,g

. (7)

To evaluate the adequacy of the above stochastic model in explaining the original death count data,420

multiple hypothetical weekly death counts were simulated for each age group, and the distribution421

of simulated death counts was compared to the true death counts. Specifically, for each country c,422

week w and age group g, 100 random death counts (D̃c,w,g) were drawn from a Poisson distribution423

with expectation:424

E{D̃c,w,g} = Rg Îc,w−4,rα̂c,g

Nc,g

Nc,r

. (8)

Median simulated death counts and 50 % and 95% equal-tailed confidence intervals, along with the425

original death counts, are shown for various countries and age groups in Supplemental Fig. S3. As426
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can be seen in that figure, the model’s simulated time series are largely consistent with the original427

data.428

In the subsequent analyses, only infection risk ratios αc,g for which the corresponding linear curve429

(Eq. 5) achieved a coefficient of determination (R2) greater than 0.5 were used (shown in Fig. 1),430

to avoid less accurately estimated infection risk ratios (typically obtained from countries with low431

death rates). Infection risk ratios meeting this quality threshold cover 15 countries: Argentina,432

Bangladesh, Brazil, Colombia, Czech Republic, Germany, United Kingdom, Hungary, India, Mex-433

ico, Paraguay, Peru, Philippines, Ukraine, United States.434

Estimating infection counts from total death counts435

Time series of total (non-age-stratified) nationwide cumulative reported death and case counts were436

downloaded from the website of the World Health Organization (https://covid19.who.int/437

table) on July 20, 2021. The last 7 days covered in the database were ignored to avoid potential438

biases caused by delays in case and death reporting (Lipsitch et al., 2015). Cumulative death and439

case counts were made non-decreasing and interpolated onto a weekly time grid as described above.440

Only countries that reported at least one death per week for at least 10 weeks were included in the441

analysis below. In addition, any country for which the strongest violation in monotonicity was442

greater than 1% of the maximum reported total cumulative deaths in that country, or for which an443

interpolation was needed (e.g., due to missing data) over a time span greater than 5 weeks (as done444

above for the COVerAGE-DB data), was omitted. For each country c, week w and any particular445

choice of age-specific infection risk ratios α1, α2, .. (uniquely covering all ages ≥20), the number446

of infections was estimated as follows. Let N be the number of consecutive weeks for which total447

deaths are reported. Let r denote some fixed reference age group with respect to which infection risk448

ratios are defined, i.e., such that αr = 1 (here, ages 70–74 were used as reference). Let δk denote the449

probability that a fatal infection will lead to death after k weeks, where k = Lmin, .., Lmax and where450

Lmin is the minimum and Lmax the maximum considered time lag. Let L := Lmax − Lmin + 1. Let451
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Ic,w,r be the (a priori unknown) number of new infections occurring during week w in the reference452

age group. The number of COVID-19-induced deaths during week w in age group g, denoted453

Dc,w,g, was assumed to be Poisson-distributed with expectation equal to:454

E {Dc,w,g} =
Lmax
∑

k=Lmin

Ic,w−k,rδkRgαg

Nc,g

Nc,r

. (9)

The total number of deaths in week w, Dc,w, is thus Poisson-distributed with expectation:455

E {Dc,w} =
Lmax
∑

k=Lmin

Ic,w−k,rδk

∑

g

Rgαg

Nc,g

Nc,r

. (10)

As explained earlier, only age groups ≥20 years were included because infection risk ratios could456

not be reliably estimated for younger ages and because the contribution of younger ages to total death457

counts can be considered numerically negligible. Here, the δk were calculated using 1,000,000458

Monte Carlo simulations based on the log-normal distribution models fitted by Linton et al. (2020,459

Table 2 therein) for the time lags between infection and disease onset and the time lags between460

disease onset and death, and assuming that the two time lags are independently distributed (see Sup-461

plemental Table S3). The minimum and maximum considered lags were Lmin = 2 and Lmax = 6462

weeks, since this range covers the bulk (∼90%) of cases, and since further increasing Lmax or de-463

creasing Lmin increases the width of the convolution kernel, thus increasing the risk of introducing464

spurious fluctuations in the estimated Ic,w,r. Note that the considered δLmin
, .., δLmax

were normal-465

ized to have sum 1, to maintain consistency with the total (i.e., summed over all time lags) IFR.466

Given the above model, the goal is to estimate the unknown weekly infection counts in the ref-467

erence group, Ic,w,r from the recorded weekly death counts Dc,w. Note that this is a classical de-468

convolution problem, since each Dc,w results from the additive effects of infections from multiple469

preceding weeks. (Mendel, 1990; Wiener, 1964). Eq. (10) can be written abstractly in matrix form:470

E {D} = K · I, (11)
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where K is a convolution matrix of size N × (N + L − 1):471

K :=

































δLmax
δLmax−1 . . . δLmin

0 0 . . . 0

0 δLmax
. . . δLmin+1 δLmin

0 . . . 0

0 0 . . . δLmin+2 δLmin+1 δLmin
. . . 0

...
...

...
...

...
...

0 0 . . . 0 0 0 . . . δLmin

































·
∑

g

Rgαg

Nc,g

Nc,r

, (12)

and D is a column vector of size N listing the reported weekly death counts Dc,1, .., Dc,N472

and I is a column vector of size N + L − 1 listing the unknown weekly infection counts473

Ic,1−Lmax,r, .., Ic,N−Lmin,r. Note that for notational simplicity the country index c is omitted from474

the I, D,K, but keep in mind that I, D,K refer to a specific country. It is straightforward to show475

that, under the above model, the log-likelihood of the observed weekly death counts (D) is given476

by:477

ln L =
N

∑

w=1

[Dw ln(KI)w − (KI)w − ln(Dw!)] . (13)

In principle, one could estimate the unknown vector I via maximum-likelihood. Indeed, the above478

log-likelihood is maximized when the following condition is met:479

N
∑

w=1

Kwv =
N

∑

w=1

DwKwv

(KI)w

, (14)

for all v ∈ {1, .., N +L−1}. A sufficient condition for Eq. (14) is that KI = D, in other words any480

vector Î satisfying KÎ = D is a maximum-likelihood estimate. Such an estimate can be obtained481

using the Moore-Penrose pseudoinverse of K, denoted K
+ (Moore, 1920; Penrose, 1955): Since482

K has linearly independent rows, its pseudoinverse is K+ = K
T(KK

T)−1, and hence setting Î :=483

K
+

D would satisfy KÎ = D. However, due to known issues with inverting convolution matrixes484

such a naive estimation tends to introduce spurious fluctuations in the estimated I. One approach485

is to reduce the temporal resolution of the estimated I, which effectively reduces the number of486

estimated free parameters (Louca et al., 2019). Hence, instead of estimating Ic,w,r separately for487

24



each week, a coarser time grid was considered that has 4 times fewer time points than the original488

weekly time grid, i.e., such that the infection count Ic,w,r is freely estimated only every 4-th week,489

while assuming linear variation between these time points. Note that this approach is a variant490

of constrained deconvolution using spline functions, pioneered by Verotta (1993) and reviewed by491

Madden et al. (1996), using linear splines and maximizing the likelihood function (thus accounting492

for the Poisson model described above) rather than minimizing the sum of squared residuals (which493

assumes normally distributed data). For example, for an original weekly time series spanning 100494

weeks, first the Ic,w,r are estimated at about 100/4 discrete time points, each 4 weeks apart, and then495

linear interpolation is used to obtain the remaining Ic,w,r. Denoting by J the column vector listing496

the infection counts on this coarser time grid (Ic,1−Lmax,r, Ic,1−Lmax+4,r, ...), and by G the matrix497

mapping J to I via linear interpolation (i.e., I = GJ), one thus obtains the following log-likelihood498

in terms of J:499

ln L =
N

∑

w=1

[Dw ln(KGJ)w − (KGJ)w − ln(Dw!)] . (15)

The corresponding-maximum likelihood estimate Ĵ can no longer be obtained simply by solving500

the equation KGĴ = D, because this linear problem is over-determined, i.e., it is unlikely that501

a Ĵ can be found such that KGĴ = D is exactly satisfied. However an optimally approximate502

solution (in the least-squares sense), J̃, can be obtained by setting J̃ := (KG)+
D. In order to deter-503

mine the exact maximum-likelihood estimate Ĵ, i.e., the J maximizing ln L in Eq. (15), numerical504

optimization was used, as implemented in the R function nloptr::nloptr, while using the afore-505

mentioned approximation J̃ as a starting point. Subsequently setting Î := GĴ yielded an estimate506

for the weekly infections counts Ic,w,r. The corresponding total number of weekly infections, Îc,w,507

can be calculated from the estimates Îc,w,r as follows:508

Îc,w = Îc,w,r

∑

g

αg

Nc,g

Nc,r

. (16)

The corresponding cumulative number of total infections up until any given week can be obtained509

by summing the weekly infection counts.510
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Exponential growth rates over time were estimated from the weekly infection counts using a511

sliding-window approach, as follows. In every sliding window (spanning 5 consecutive weeks),512

an exponential function of the form I(t) = Aetλ was fitted, where t denotes time in days and A513

and λ are unknown parameters (in particular, λ is the exponential growth rate in that window).514

The parameters A and λ were fitted via maximum likelihood, assuming that the total number of515

weekly infections, Ic,w, was Poisson distributed with expectation Aetwλ. Under this model, the516

log-likelihood of the data (more precisely, of the previously estimated weekly infection counts) is:517

ln L =
∑

w

[

Îc,w ln A + Îc,wλtw − Aeλtw − ln(Îc,w!)
]

, (17)

where w iterates over all weeks in the specific sliding window. The maximum-likelihood estimates518

of A and λ are obtained by solving ∂ ln L/∂λ = 0 and ∂ ln L/∂A = 0, which quickly leads to the519

condition:520
∑

w

eλ̂tw

∑

g

tweλ̂tw

·
∑

w

twÎc,w =
∑

w

Îc,w. (18)

Eq. (18) was solved numerically using the bisection method to obtain the maximum-likelihood521

estimate λ̂.522

To assess estimation uncertainties stemming from sampling stochasticity and uncertainties in523

the infection risk ratios, the above estimations were repeated 100 times using alternative infection524

risk ratios (for each age group drawn randomly from the set of infection risk ratios previously525

fitted to various countries) and replacing the reported weekly death counts Dc,w with values drawn526

from a Poisson distribution with mean Dc,w. Hence, rather than point-estimates, all predictions are527

reported in the form of medians and equal-tailed confidence intervals. Tables of all estimates for528

all considered countries up until June 25, 2021 are provided in Supplemental Files 1–5; a visual529

report is provided as Supplemental File 6.530
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Assessing the robustness of COVerAGE-DB-based calibrations531

To examine whether the age harmonizations of COVerAGE-DB death counts have had a major532

impact on the calibrated infection risk ratios (αc,g), the calibrations were also repeated using an533

independent dataset of national age-stratified death counts obtained from the French National Insti-534

tute for Demographic Studies, henceforth “INED”, at: https://dc-covid.site.ined.fr/en/535

data/pooled-datafiles (accessed July 20, 2021). Only countries also included in the calibra-536

tions described above, and meeting the same data size and quality criteria, were considered (United537

States, Ukraine). Age groups g not intersecting with at least one finite age interval in the INED538

database were also omitted from the comparison. Supplemental Fig. S9 shows the COVerAGE-539

DB-based and INED-based calibrated infection risk ratios across all considered countries and age540

groups; as can be seen, the two sets largely agree (R2 = 0.92), suggesting that COVerAGE-DB’s541

age harmonizations did not substantially compromise the model calibrations.542

Vaccination data543

Data on nationwide completed vaccinations per country over time were obtained from544

the GitHub repository of the Johns Hopkins Centers for Civic Impact, at: https:545

//github.com/govex/COVID-19/blob/master/data_tables/vaccine_data/global_546

data/time_series_covid19_vaccine_global.csv (accessed July 20, 2021). Cumulative547

vaccination counts were monotonized and interpolated onto a weekly time grid as described above548

for the death counts data.549
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