
Fundamental identifiability limits in molecular epidemiology

Stilianos Louca1,2 *, Angela McLaughlin3,4, Ailene MacPherson5,6,7, Jeffrey B. Joy3,4,8 & Matthew W. Pennell5,6 *

1Department of Biology, University of Oregon, USA
2Institute of Ecology and Evolution, University of Oregon, USA

3British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
4Bioinformatics, University of British Columbia, Vancouver, Canada

5Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
6Department of Zoology, University of British Columbia, Vancouver, Canada

7Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
8Department of Medicine, University of British Columbia, Vancouver, Canada

*Correspondence should be addressed to SL (louca.research@gmail.com) and MWP (pennell@zoology.ubc.ca)

Abstract

Viral phylogenies provide crucial information on the spread of infectious diseases, and many studies fit

mathematical models to phylogenetic data to estimate epidemiological parameters such as the effective

reproduction ratio (Re) over time. Such phylodynamic inferences often complement or even substitute

for conventional surveillance data, particularly when sampling is poor or delayed. It remains gener-

ally unknown, however, how robust phylodynamic epidemiological inferences are, especially when there

is uncertainty regarding pathogen prevalence and sampling intensity. Here we use recently developed

mathematical techniques to fully characterize the information that can possibly be extracted from seri-

ally collected viral phylogenetic data, in the context of the commonly used birth-death-sampling model.

We show that for any candidate epidemiological scenario, there exists a myriad of alternative, markedly

different and yet plausible “congruent” scenarios that cannot be distinguished using phylogenetic data

alone, no matter how large the dataset. In the absence of strong constraints or rate priors across the en-

tire study period, neither maximum-likelihood fitting nor Bayesian inference can reliably reconstruct the

true epidemiological dynamics from phylogenetic data alone; rather, estimators can only converge to the

“congruence class” of the true dynamics. We propose concrete and feasible strategies for making more

robust epidemiological inferences from viral phylogenetic data.
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For rapidly evolving pathogens, such as RNA viruses, genetic diversity accumulates on the same timescale

as transmission [1]. Thus, pathogen genealogies reconstructed from patient samples can provide valuable

information on the transmission dynamics of diseases [2, 3]. As sequencing technology and computational

methods continue to improve, such phylogenetic approaches [4, 5] are increasingly being used to help inform

public health policy during ongoing epidemics, such as during the 2013-2016 Ebolavirus outbreak [6], the

2015-2016 expansion of Zika virus [7], and the SARS-CoV-2 pandemic that began in 2019 [8]. One of

the most popular mathematical frameworks used for such phylodynamic inferences is the birth-death (BD)

model [9–11], variants of which are also used to reconstruct macroevolutionary dynamics [12]. BD models

are typically either fitted to a given time-calibrated phylogeny (henceforth timetree) or jointly estimated with

the timetree from molecular sequences, to obtain estimates of the birth or speciation rate (λ, corresponding to

transmission between hosts in epidemiology or speciation in macroevolution), the death or extinction rate (µ,

host death or recovery in epidemiology; extinction in macroevolution), and the sampling rate (ψ, number of

pathogen lineages sampled per time and per extant lineage) through time. From these rates one can calculate

critical epidemiological parameters such as the effective reproduction ratio Re = λ/(µ + ψ) [9, 10].

Despite the increasing importance of phylodynamic estimates to public health policy, it is generally un-

known precisely what information we can hope to extract from phylogenetic data and how robust these es-

timates are expected to be, particularly when all rates exhibit temporal variation and are unknown a priori.

In macroevolutionary BD models, where only extant lineages are sampled, much work has been done to

understand identifiability limits [13–18]. That work has shown that if the birth rate λ and death rate µ vary

through time, there are a vast number of alternative plausible combinations of λ and µ that could explain

any extant timetree (i.e., comprising only extant species) equally well. Such “congruent” scenarios cannot

be distinguished from one another statistically, even in the presence of an infinitely large and completely

sampled timetree — in other words, it is impossible to design asymptotically consistent estimation methods

for λ and µ based on extant timetrees alone and without strong prior assumptions [18].

It is largely unknown to what extent and in what form such congruency issues exist in epidemiological BD

models, i.e., with continuous sampling through time. While some relatively minor parameter correlations

have been known for special cases [10, 19], an understanding of general identifiability limits is lacking, and

the macroevolutionary case has taught us that parameter correlations known for specific cases might severely

underestimate the full extent of the problem. This question is non-trivial: while epidemiological BD models

appear similar to macroevolutionary BD models, they are more complex because pathogen sequences are

typically not sampled at a single final time point. Samples obtained serially through time provide additional

information on an epidemic, however new uncertainty is introduced when the sampling rate (ψ) is unknown

and, especially, when it varies over time.

Here we provide a definite answer to the above questions and demonstrate that, similar to the macroevolu-

tionary case, there are fundamental limits to how much information can be gleaned from timetrees sampled

through time in the absence of strong additional constraints. Specifically, we prove mathematically that for

any one hypothesized birth-death-sampling (BDS) scenario — i.e., with specific time-varying λ, µ and ψ,

there exists an infinite number of alternative, markedly different and yet plausible BDS scenarios that are sta-

tistically indistinguishable from the hypothesized scenario, even with infinitely large phylogenetic datasets.

Using simulations and real sequence data from an HIV outbreak in Northern Alberta, Canada we demon-

strate that this identifiability issue means that many epidemiological inferences from phylogenetic data alone

may not be as well-supported as previously thought. Fortunately, and in contrast to the macroevolutionary

case, we are able to identify concrete and feasible approaches towards resolving these issues in practice.
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Identifiability of general birth-death-sampling models

Our starting point is the general birth-death-sampling (BDS) model with arbitrary time-dependent birth rate

λ, death rate µ and sampling rate ψ, where we make the common assumptions that sampled lineages (tips in

the phylogeny) are immediately removed from the pool of extant lineages and that branching events corre-

spond to transmission events [20]. We use the term “BDS scenario” (or “epidemiological scenario”) to refer

to a specific choice of profiles over time for the parameters λ, µ and ψ. Using mathematical techniques simi-

lar to those developed for macroevolutionary models [18], we find that the likelihood of any timetree under a

given epidemiological scenario is entirely determined by only two model parameters, called the pulled birth

rate (denoted λ̃) and pulled sampling rate (denoted ψ̃). Here λ̃ is equal to the birth rate, λ, multiplied by the

probability that a lineage is included in the phylogeny, while ψ̃ is equal to the sampling rate, ψ, divided by

the probability that a lineage is included in the phylogeny (overview of symbols in Table 1). The λ̃ and ψ̃ are

thus the expected occurrence rate of internal nodes and tips, respectively, over time when divided over the

current number of lineages in the tree and in the limit of infinitely large trees (proof in Supplement S.1.3).

Note that λ̃ and ψ̃ are purely theoretical properties of the BDS scenario that can be calculated from λ, µ and

ψ, and do not depend on any particular data set. We henceforth call any two BDS scenarios congruent if they

have the same pulled birth rate λ̃ and the same pulled sampling rate ψ̃. By extension, the congruence class

of any BDS scenario henceforth refers to the set of all congruent BDS scenarios. Any two congruent BDS

scenarios generate timetrees with the same probability distribution (Supplements S.1.3 and S.1.4), and will

yield identical likelihoods for any given timetree. This means that there is no way to distinguish between two

congruent scenarios solely based on the properties of sampled timetrees, no matter how large. This result is

analogous to that of macroevolutionary BD models (i.e., when all the tips are contemporaneous), where the

probability distribution of generated timetrees is entirely determined by the pulled birth rate, and any two

scenarios with identical pulled birth rates are statistically indistinguishable. This result is also analogous to

identifiability issues discovered for population demographic models, where markedly different population

demographies can generate the same sample frequency spectrum for arbitrarily large sample sizes [21, 22].

Several questions follow from this: For any given BDS scenario, (i) how can one easily determine if

another scenario is congruent?; (ii) how many congruent scenarios are there?; and (iii) how different can

the epidemiological implications of these congruent scenarios be? To answer these questions, it is useful to

consider a number of alternative model parameters, the first of which is called the pulled diversification rate

and defined as:

r̃ = λ − µ − ψ +
1

λ

dλ

dτ
, (1)

where τ denotes age or time before present (Table 1). The pulled diversification rate is equal to the net

diversification rate r = λ − µ − ψ (or net exponential growth rate in the case of an infectious disease) when

the birth rate λ is constant over time, but differs from r otherwise. As we prove in Supplement S.1.3, two BDS

scenarios are congruent if and only if they have the same pulled diversification rate r̃ and the same pulled

birth rate λ̃. Hence, to check if two BDS scenarios are congruent one can simply compare their r̃ and λ̃.

Equivalently, two BDS scenarios are congruent if and only if they exhibit the same deterministic branching

density β̃ and the same deterministic sampling density σ̃, which can be interpreted as rescaled probability

densities over time of any randomly chosen observed branching event or sampling event, respectively, in the

limit of infinitely large trees (precise definitions in Supplement S.1.2). Hence, the shapes of β̃ and σ̃ contain

easily interpretable information about the temporal distribution of branching and sampling events in the tree.

Similarly to λ̃ and ψ̃, or λ̃ and r̃, so β̃ and σ̃ constitute an alternative parameterization of congruence classes,

however we stress that all of these parameters do not contain sufficient information for recovering the original

model parameters λ, µ and ψ.

3



Having introduced the above new parameters, it becomes easy to answer questions (ii) and (iii). For any

given scenario (λ, µ, ψ) and any given alternative death rate µ∗, one can find a corresponding λ∗ and ψ∗ such

that the new scenario (λ∗, µ∗, ψ∗) has the same pulled diversification rate and the same pulled birth rate, i.e.,

such that the new scenario is congruent to the first one (Supplement S.1.5.2). Indeed, one just needs to solve

the differential equation:
dλ∗

dτ
= λ∗

· (r̃ + µ∗
− λ∗) + λψ (2)

with any initial condition, and choose ψ∗ = λψ/λ∗. Many other analogous ways exist for creating congru-

ent scenarios: For example, one can first specify an arbitrary sampling rate ψ∗ and then adjust λ∗ and µ∗

accordingly, or first specify an arbitrary birth rate λ∗ and then adjust ψ∗ and µ∗ accordingly, or first spec-

ify an arbitrary effective reproduction ratio R∗

e
and adjust λ∗, µ∗ and ψ∗ (details in Supplement S.1.5). We

note that some scenarios in a congruence class may have negative birth, death, or sampling rates and are

therefore biologically irrelevant [23]. Since µ∗ (or ψ∗, or λ∗, or R∗

e
) can be chosen nearly arbitrarily and can

depend on an arbitrary number of free parameters, the space of congruent BDS scenarios is infinitely large

and infinite-dimensional. Many congruent scenarios can appear similarly plausible and similarly complex,

and yet exhibit markedly different features, including very different values and opposite trends in λ, µ, ψ, or

Re (examples in Fig. 1).

This ambiguity limits the identifiability of epidemiological scenarios when based solely on phylogenetic

data, even for infinitely large datasets. Indeed, whatever the true epidemiological history was, there will

always exist an infinite number of congruent epidemiological histories. When fitting specific functional

forms for λ, µ and ψ, such as piecewise constant profiles known as skyline models [10], estimators will

generally converge to the scenario closest to the congruence class of the true epidemiological history, but

not necessarily to the scenario closest to the true epidemiological history itself (Fig. 2). Depending on the

particular functional forms chosen for λ, µ and ψ, this can yield markedly different rate profiles over time that

may not even approximately resemble the true epidemiological history, including wrong trends and major

spurious features (e.g., Fig. 2C). This can occur even if the fitted functional forms are flexible enough to

reasonably approximate the true epidemiological history (e.g., Fig. 2B). In other words, even if one can

closely identify the congruence class that best explains the data (for example, in terms of the λ̃ and ψ̃, or in

terms of the β̃ and σ̃), without additional constraints or information one cannot determine which member

of the congruence class generated the data. We emphasize that it is not necessary for multiple congruent

scenarios to exist within the class of fitted functional forms in order to run into these issues. Since the

scenarios in a congruent class are indistinguishable for any dataset of any size, with some generally appearing

simpler and others more complex than the true epidemiological history, model selection techniques based on

parsimony that do not incorporate additional information (e.g., from previous or independent studies) cannot

alone resolve this issue (detailed discussion in Supplement S.2). In a Bayesian context, the existence of vastly

different congruent scenarios means that the uncertainty in the estimated λ, µ, and ψ is even more sensitive

to the choice of priors than would be apparent from comparing the posterior to the prior distributions of the

parameters of some fitted model class. These issues are also expected to affect hypothesis testing approaches

that rely on model fitting, for example fitting a linear profile for λ and examining whether the fitted slope is

statistically significant to see if λ has been changing in a specific direction. Following the above arguments,

the fitted slope need not at all reflect the true trend in λ (e.g., it could point in the opposite direction), and

for a sufficiently large dataset this wrong slope will inevitably be statistically significant. The above issues

also apply to other equivalent model parameterizations used in epidemiology, for example based on Re, the

sampling proportion (S = ψ/(µ+ψ)) and the removal rate (δ = µ+ψ, also known as “become uninfectious

rate”) [10]. Note that, in contrast, λ̃, ψ̃, r̃, β̃ and σ̃ are asymptotically estimateable, i.e., given sufficiently

large trees (Supplement S.1.2).
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Figure 1: Examples of congruent epidemiological scenarios. (A–F) Birth (or speciation) rate (A), death (or extinc-

tion) rate (B), sampling rate (C), effective reproduction ratio Re = λ/(µ + ψ) (D), removal rate δ = µ + ψ (E), and

sampling proportion S = ψ/(µ + ψ) (F) of a specific epidemiological scenario (thick black curves), compared to

various alternative congruent (i.e., statistically indistinguishable) scenarios (dashed curves). Similarly colored curves

across sub-figures correspond to a specific diversification scenario. No viral phylogeny, no matter how large, could pos-

sibly distinguish between these (and in fact a myriad of other) scenarios. (G–L) Similar to A–F, but showing scenarios

congruent to a different reference scenario. (M–R) Similar to A–F, but showing scenarios congruent to a different

reference scenario.

It was previously demonstrated that for constant-rate scenarios (i.e., where the parameters λ, µ and ψ do

not vary with time) it is impossible to simultaneously estimate λ, µ and ψ from timetrees alone, because

alternative combinations of constant λ, µ and ψ yield the same likelihood function [10, 19]. It is also known

that when fitting BDS skyline models, at least one of the parameters must be fixed in at least one of the time

intervals to eliminate correlations between parameter estimates [10]. Our findings are a generalization of

these special cases and reveal that these underestimate the true extent of the issue. As soon as one considers

that epidemiological parameters could vary over time in an unknown fashion [24–26], even if they can in

principle be approximated by the considered model type (e.g., Fig. 2B), much more information is needed

to “collapse” the congruence class and accurately reconstruct the true epidemiological dynamics. In partic-

ular, fitting generic BDS skyline models to real molecular data without constraints (or only constraining one

parameter in one time interval), as is common practice [10, 27–34], cannot be expected to yield an accurate

reconstruction, no matter how large the dataset.
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Table 1: Overview of main BDS parameters discussed. A parameter is called congruence-invariant if it is identical

across congruent BDS scenarios (and thus asymptotically identifiable). Non-congruence-invariant parameters cannot

possibly be estimated from phylogenies alone (no matter how large) in the absence of strong additional constraints. Note

that each parameter may be time-dependent, and that τ denotes age (time before present). Definitions are provided for

non-standard BDS parameters. Birth and death rates refer to pathogen lineages, not the hosts.

symbol description definition congr.-

invariant

λ birth (speciation) rate - no

µ death (extinction) rate - no

ψ sampling rate - no

Re effective reproduction ratio λ/(µ + ψ) no

δ removal (become uninfectious) rate µ + ψ no

S sampling proportion ψ/(µ + ψ) no

E probability of a lineage missing from the phylogeny Eq. (3) in S.1.1 no

λ̃ pulled birth rate (1 − E) · λ yes

ψ̃ pulled sampling rate ψ/(1 − E) yes

r̃ pulled diversification rate λ − µ − ψ + (1/λ)dλ/dτ yes

β̃ deterministic branching density Eq. (16) in S.1.2 yes

σ̃ deterministic sampling density Eq. (17) in S.1.2 yes

M̃ normalized deterministic LTT Eq. (15) in S.1.2 yes

The above results are analogous to the macroevolutionary case, where the pulled birth rate is asymptotically

identifiable, but does not contain sufficient information for recovering the true birth and death rates [18].

Further, as in the macroevolutionary case, so here two congruent BDS scenarios have identical deterministic

lineages-through-time (dLTT) curves (i.e., the number of lineages one would expect in the tree over time

based on a deterministic interpretation of the rates λ, µ and ψ) when conditioned on the number of lineages

at some given time point. In contrast to the macroevolutionary case, however, the reverse need no longer

be true, i.e., two BDS scenarios with identical dLTTs need not necessarily be congruent. Moreover, while

in the macroevolutionary case a congruence class could be uniquely described by a single time-dependent

parameter (e.g., the dLTT, or the pulled birth rate over time), here a BDS congruence class is determined by

two time-dependent parameters (e.g., the pulled birth rate and pulled diversification rate).

Simulation examples

To demonstrate the challenges for epidemiological inference stemming from the existence of model congru-

encies, we simulated various hypothetical but realistic epidemiological scenarios and then used two alterna-

tive well-established approaches for reconstructing the original dynamics from the generated data. In the first

approach, we used the true timetree as an input and estimated the epidemiological dynamics via maximum-

likelihood fitting. In the second approach we used nucleotide sequences simulated along the timetree as input,

and jointly estimated the timetree together with the epidemiological dynamics using Bayesian MCMC. The

latter approach resembles the common situation in molecular epidemiology where the phylogeny is not a

priori known, thus introducing additional uncertainty in the reconstruction of the epidemic’s dynamics. To

avoid introducing our own biases, for example in the choice of priors, the Bayesian analysis was performed

in a blinded way, with some members of our team conducting the simulations and others conducting the

Bayesian inference.
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Figure 2: Conceptual illustration of the effects of model congruencies on epidemiological reconstruction. (A)

The large light-blue “balloon” represents the congruence class of a single true epidemiological scenario (dark-blue

circle), in the space of all biologically plausible epidemiological histories. Each straight continuous line represents a

limited set of models or functional forms (e.g., skyline) fitted to data generated by the true scenario, for example via

maximum likelihood, in an effort of approximately reconstructing the true scenario. The specific member (i.e., with

a specific parameterization) chosen among each model set will be the one closest to the congruence class (filled grey

circle) or may even intersect the congruence class (filled red circle), but will not necessarily be the one closest to the

true scenario (open circles). This issue persists even for infinitely large datasets. (B and C) Hypothetical illustration of

a skyline model (grey curve) fit to data generated by a hypothetical scenario (blue curve, here only showing λ). While

no practical model perfectly matches reality, in the absence of model congruencies one would nevertheless expect to

obtain a fit approximately resembling reality, roughly as shown in B. Instead, due to model congruencies one can easily

obtain a fit that very poorly resembles the true scenario, as in C, since the fit closest to the congruence class is not

necessarily the fit closest to the true scenario. See Fig. 4 for a real example.

For the maximum-likelihood inference we simulated timetrees with >50000 tips and fitted generic piecewise-

linear profiles for λ, µ and ψ to each timetree, while selecting the optimal number of inflection points using

AIC. We used such massive timetrees to avoid errors stemming from small sample sizes, thus focusing on

identifiability issues. The fitted models matched the LTTs of the timetrees and the deterministic LTTs of

the true scenarios nearly perfectly (Fig. 3D and Supplemental Fig. S1G). The fitted models also adequately

explained the timetrees based on 3 different statistical tests performed via parametric bootstrapping [35]

(Kolmogorov-Smirnov tests on the distributions of node ages, tip ages, and edge lengths, P > 0.05 in all

cases). Despite the large sizes of the datasets and the adequacy of the models in explaining the data, the

corresponding estimated λ, µ, ψ, Re, δ and S were nearly always very different from the true profiles used

in the simulations, sometimes even exhibiting opposite trends (Figs. 3A–C and Supplemental Figs. S1A–F

and S2A–F). Importantly, the fitted models nearly exactly reproduced the deterministic branching density

β̃ and deterministic sampling density σ̃ of the true scenario (R2 > 0.99 in all cases), which, as explained

earlier, implies that the fitted models came very close to the true scenario’s congruence class (Figs. 3E,F).

This confirms our expectation that fitting yields an estimate of the true epidemiological history’s congruence

class, but not necessarily of the true epidemiological history itself. These issues are expected to be even more

pronounced with the smaller datasets typical in epidemiology, due to elevated stochasticity.

For the Bayesian inference we considered two alternative epidemiological scenarios to simulate timetrees

of sizes typical in molecular epidemiology (590 and 540 tips, spanning about 15 years, Supplemental Fig.

S3). The epidemiological scenarios and the nucleotide substitution models exhibited parameters typically

reported for HIV-1 [36, 36–38]. The profiles of λ, µ, ψ, Re, δ, and S exhibited moderate variation over

time that could be well-approximated using skyline models with three to four intervals. For each of the two
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Figure 3: Limits to reconstructing epidemic’s dynamics via maximum likelihood. (A–C) Maximum-likelihood

estimates (grey dashed curves) of the effective reproduction ratio (Re), removal rate (δ = µ + ψ), and sampling

proportion (S = ψ/(µ + ψ)) over time, based on a timetree with 175,440 tips simulated under a hypothetical birth-

death-sampling scenario (blue continuous curves). Rates are in day−1. Model adequacy was confirmed via predictive

posterior simulations with multiple test statistics. Observe the poor agreement between the estimated and true profiles.

(D–F) Maximum-likelihood estimates of the deterministic lineages-through-time curve (normalized to have unit area

under the curve), deterministic branching density (β̃), and deterministic sampling density (ψ̃), corresponding to the

same fitted model as in A–C, compared to their true profiles. The good agreement between the inferred and true

profiles shows that the fitted model converged towards the true epidemiological scenario’s congruence class but not the

true scenario itself. (G–I) Maximum-likelihood estimates of Re, δ, and S inferred from the same data as in A–F, while

fixing the sampling rate ψ to its true profile. For additional BDS parameters see Supplemental Fig. S1. For a statistical

analysis of estimation accuracies across trees simulated from many random scenarios, see Supplemental Figs. S17 and

S19.

scenarios we then conducted a BDS skyline model inference in BEAST2 [5] using the sampled sequences

as input data. As indicated above, this inference was internally blinded, i.e., the team members performing

the inference had no knowledge of the true epidemiological scenarios used in the simulations. The sole

information provided was (a) that model parameters were within the typical ranges known from HIV-1, (b)

that four time intervals are sufficient for reasonably approximating the true dynamics with a skyline model

(thus avoiding complications in the selection of the number of intervals), (c) the nucleotide substitution

model and number of rate categories used, and (d) the value of the present-day sampling proportion, to

account for known identifiability issues within skyline models (one parameter in one time interval must be

fixed to eliminate correlations between parameters according to Stadler et al. [10]). Each of the parameters

Re, δ, and S varied over time with rate shifts 2, 4, and 8 years before the present, and the sampling proportion
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in the present was fixed to its known value. The adequacy of the posterior models to explaining the true tree

was fully confirmed via predictive posterior simulations [35] based on the same statistical tests as used for the

maximum-likelihood fits. The molecular clock rate and the parameters of the nucleotide substitution model

were also largely accurately estimated (Supplemental Figs. S10 and S12).

In contrast, in both scenarios the estimated λ, µ, ψ, Re, δ, and S deviated substantially from their true

profiles, in many cases exhibiting different trends over time or differing by more than an order of magnitude

(for example, when considering the maximum-posterior or median-posterior profiles, Fig. 4A–C and Supple-

mental Figs. S5 and S7), consistent with our expectations. Moreover, the posterior 95% equal-tailed credible

intervals barely overlapped with the true profiles of these parameters, suggesting that the inferred posterior

distributions severely underestimate the true uncertainty of the parameters. This is not surprising, since these

posteriors only reflect the uncertainty stemming from finite data sizes, but do not account for congruencies.

Importantly, in all cases the posterior distributions of the deterministic branching and sampling densities (β̃

and σ̃) predicted by BEAST2 closely resembled their true profiles (Fig. 4D–F). This implies that BEAST2

accurately inferred the congruence class of the true epidemiological history, just not the true epidemiologi-

cal history itself (again, consistent with our predictions). To further test this interpretation, we repeated the

Bayesian inference while fixing the removal rate to its true profile (approximated by a piecewise constant

curve for compatibility with the skyline model). In both scenarios the inferred BDS model parameters much

more closely resembled their true profiles (Supplemental Figs. S6 and S8), consistent with the fact that fixing

the removal rate profile and the present-day sampling proportion collapses the congruence class to a single

scenario (mathematical proof in Supplement S.1.5.7). Together, these results confirm our expectations that

any tool attempting to reconstruct an epidemic’s dynamics based on phylogenetic data alone and without

strong additional constraints, no matter how large the dataset, can only reconstruct the congruence class of

those dynamics rather than the true dynamics.

To further confirm that the above issues are likely to occur in practice, we performed multiple simulations

of random epidemiological scenarios (i.e., with λ, µ and ψ having randomly constructed but plausible profiles

over time), and examined the accuracy of maximum-likelihood fitted BDS models with generic piecewise

linear profiles (the grid size was chosen according to AIC [39]). Trees comprised between 500 and 50 000

tips, and we only considered cases where the fitted model adequately described the data, based on the same

Kolmogorov-Smirnov tests as above (details in Supplement S.3). In the vast majority of cases, and even for

the largest trees, the estimated parameters λ, µ, ψ, Re, S and δ poorly reflected the true profiles used in the

simulations, often exhibiting opposite long-term trends and spurious major features, and sometimes even

deviated by orders of magnitude from the truth (overview in Supplemental Figs. S17 and S19, examples in

Supplemental Figs. S18 and S20). For example, the coefficient of determination (R2) between the true Re

and the fitted Re was almost always below 0 (Figs. S17A and S19A). In contrast, the deterministic branching

and sampling densities (β̃ and σ̃) were generally accurately estimated (typical R2 > 0.9, Figs. S17D,E and

S19D,E). Similarly, the mean error relative to the average was about an order of magnitude lower for β̃ and

σ̃ (average ≈ 7%) than for Re (average ≈ 80%). These findings show that most fitted models did converge

towards the true congruence classes, but not to the actual true scenarios.

Illustration for an HIV epidemic

To further illustrate the practical implications of model congruencies, we considered the dynamics of HIV-

1 subtype B in Northern Alberta, Canada, over the course of roughly 20 years, reconstructed from 563

molecular sequences using Bayesian BDS skyline models in BEAST2 [5, 10]. We assumed that Re, δ, and

S varied over time and shifted in 1998 (when triple antiretroviral therapy became available) and in 2010 (to
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Figure 4: Limits to reconstructing an epidemic’s dynamics in a Bayesian framework. (A–C) Posterior distributions

of the effective reproduction ratio (Re = λ/(µ + ψ)), removal rate (δ = µ + ψ), and sampling proportion (S =
ψ/(µ+ψ)), as inferred from 590 sequences simulated under a hypothetical birth-death-sampling scenario (blue curves)

using BEAST2. Black curves show posterior median, dark and light shades represent equal-tailed 50%- and 95%-

credible intervals of the posterior. All rates are in yr−1. The present-day sampling proportion was fixed to its true

value during fitting to account for previously reported identifiability issues in skyline models [10]. Model adequacy

was confirmed using predictive posterior simulations with multiple test statistics. Observe the poor agreement between

the posterior predictions and the true profiles. For additional epidemiological parameters (λ, µ, ψ) see Supplemental

Fig. S5. For the molecular evolution parameters see Supplemental Fig. S10. (D–F) Distributions of the deterministic

lineages-through-time curves (normalized to have unit area under the curve), deterministic branching densities (β̃), and

deterministic sampling densities (ψ̃), corresponding to the same posterior models as in A–C, compared to their true

profiles (blue curves). The relatively good agreement between the inferred and true profiles shows that BEAST2 closely

reconstructed the true epidemiological history’s congruence class, but not the true epidemiological history itself. (G–I)

Posterior distributions of Re, δ, and S inferred from the same data, while fixing the present-day sampling proportion

and the removal rate’s profile to their true values. For additional parameters see Supplemental Figs. S6 and S11.

achieve a roughly balanced partitioning of sampling dates). Rate priors were chosen conservatively to reflect

the general uncertainty across HIV outbreaks (see Methods) and an uncorrelated log normal relaxed clock

was supported over a strict clock based on nested sampling [40]. We found that the posterior distribution of

BDS models (Fig. 5E–H) strongly suggests a decline of Re over time, a stabilization of the sampling rate in

the last two intervals, and a dramatic increase in transmission and recovery rates when comparing the first

to the last time interval. The narrow posterior 95% equal-tailed credible intervals for Re in the second and
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third time intervals (Fig. 5H) suggest that Re is well-constrained.

However, this posterior is misleading because the inferred credible intervals do not properly capture the

ambiguities stemming from model congruencies. Indeed, recall that what we are really estimating is the

congruence class of the true epidemiological history, and not the true epidemiological history itself. For

illustration, consider the sampled model with maximum posterior probability, shown in Fig. 5I–L. This rep-

resentative scenario is congruent to a myriad of alternative and markedly different epidemiological scenarios,

many of which are similarly complex and a priori similarly plausible (examples in Fig. 5I–L). All of these

alternative scenarios are equally likely to have generated the data at hand, and this would be true for any

other phylogenetic dataset as well. Ruling out some of these congruent scenarios in favor of others requires

additional knowledge, such as strong priors on the parameters. Hence, the true uncertainty in the inferred

epidemiological parameters is largely determined by the imposed priors, rather than by the computed poste-

rior densities. However, many of the congruent scenarios are not in strong contrast to our priors (examples

in Fig. 5A–D), which are typical in the epidemiological literature. In other words, much stronger priors

would be needed to collapse the congruence class down to a practical size (e.g., suitably precise for policy

decisions), even with massive phylogenetic datasets.

Ways forward

In our recent analysis of macroevolutionary BD models [18] we proposed that researchers could develop

methods to draw insight from asymptotically identifiable variables (i.e., those which are identical between

congruent scenarios); in the epidemiological case such quantities include λ̃, ψ̃, r̃, β̃, and σ̃. Indeed, for the

macroevolutionary case such identifiable variables do contain useful information about historical diversifi-

cation dynamics [41]. A similar strategy could potentially be fruitful for epidemiological data, although we

do not further explore that possibility here. Instead, in the following we discuss a number of ways, some of

which build upon current practices in the field, to robustly reconstruct typical epidemiological variables of

interest such as Re.

First, following on what is sometimes done in practice, one can use additional clinical or surveillance data

to constrain specific epidemiological parameters. While it is generally recognized that parameter estimation

benefits from the use of available constraints, the precise effects of constraints in phylodynamics remained

poorly understood and their importance severely underestimated. Our results precisely clarify the amount of

information necessary to make an epidemiological scenario asymptotically identifiable. For example, if one

of λ or ψ are known beforehand, then the remaining variables become asymptotically identifiable (details in

Supplement S.1.5). This is because in any congruence class there exists at most one scenario with a specific

λ or ψ. Indeed, when we fixed the sampling rate ψ to its true profile in our earlier maximum-likelihood

fitting tests, the fitted BDS models closely reproduced the true scenarios (Supplemental Figs. S1H–N and

S2H–N). Similarly, if µ is somehow independently known and either λ or ψ is known on at least one time

point, then the full scenario again becomes asymptotically identifiable. Similar arguments can be made for

Re, δ, or S (Supplements S.1.5.5, S.1.5.6 and S.1.5.8). Such constraints might be obtained in a variety

of ways. For example, in some situations it might be assumed that nearly all people are diagnosed and

sampled, in which case the sampling proportion might be fixed to 1. Alternatively, one may estimate the true

prevalence of a disease through occasional serological surveys of randomly chosen individuals [42, 43] and

then divide the “background rate” of disease detection by that estimate to obtain ψ. Further, clinical data may

be used to estimate the rate of host death or recovery (i.e., µ). During maximum-likelihood fitting, one can

fix the independently known parameters. In a Bayesian framework, one can impose appropriate data-driven

priors, i.e., based on independent information, to constrain the known parameters. However, we stress that
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Figure 5: Bayesian reconstruction of HIV spread is compromised by model congruencies. (A–D) Specified priors

for BDS (skyline) model parameters of HIV-1 subtype B in Northern Alberta, reflecting our a priori knowledge of the

plausible range of these parameters. (E–H) Distribution of BDS parameters over time, based on models sampled from

the posterior distribution by BEAST2. At each time point, the black curve shows the median value of a parameter

across all posterior-sampled models, while the dark and light shadings show 50% and 95% equal-tailed highest poste-

rior density intervals, respectively. (I–L) Maximum posterior probability BDS “reference” scenario (continuous black

curves) compared to multiple alternative “congruent” scenarios (dashed curves). Each congruent scenario would gen-

erate timetrees with the same probability distribution as the reference scenario, and is thus statistically indistinguishable

from the latter. For the posterior distributions of molecular evolution parameters see Supplemental Fig. S23.

in order to eliminate most congruencies and accurately reconstruct the remaining parameters these priors

will need to be much more restrictive than in typical studies [44]. For example, in the second simulation

of our Bayesian inference tests described earlier the true removal rate was nearly constant; when we used

this information to constrain the removal rate in BEAST2 (i.e., demanding that it is constant across all time-

intervals), the parameters λ, µ, ψ, Re, δ, and S were estimated much more accurately than in the absence

of this constraint (Supplemental Fig. S9). Their accuracy improved further when we fixed the removal rate

to its true profile (Supplemental Fig. S8). While constraints such as the above are sometimes included in

molecular epidemiological studies, many studies still attempt to estimate the full epidemiological dynamics

(λ, µ and ψ) solely from phylogenies [10, 45, 46]. In contrast, multiple sources of information are commonly

utilized when fitting mechanistic epidemiological models, such as differential equation models, or in non-

parametric analyses of surveillance data over time. For example, it is common for surveillance data to be

combined with independently determined infectivity profiles [47], which are essentially a generalization of

λ, or with estimates of the serial interval [48], to estimate Re over time. Our mathematical results clarify

that using additional information beyond just molecular data, e.g., from clinical trials or serological surveys,

is not just a means to increase the number of data points — it is essential for ensuring the identifiability of
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temporally variable epidemiological histories. Developing new phylodynamic models that readily integrate

appropriate additional data sources would greatly facilitate this practice [49, 50] (but see Supplement S.5 on

the use of occurrence data).

Second, while molecular epidemiological studies are typically purely observational — i.e., the sampling

and data analysis are done independently — this does not need to be the case. Indeed, a properly designed

sampling scheme can help reduce identifiability issues. Concretely, short, high-intensity “concentrated” or

“contemporaneous” sampling attempts (CSAs), where many individuals are randomly sampled (in addition

to sampling symptomatic individuals), can yield valuable information for reconstructing the dynamics of an

epidemic and for partly resolving congruencies (details in Supplements S.1.6 and S.1.7). The main require-

ments are that, first, these CSAs are much shorter than the current expected birth and death times (i.e., much

shorter than 1/λ and 1/µ), second, λ does not differ substantially between the beginning and end of the CSA,

and third, the number of lineages sampled during the CSA is much greater than the number of birth or death

events occurring in that time period. Such a sampling strategy is not just a hypothetical possibility: during

2020, multiple governments reportedly conducted such CSAs to estimate the seroprevalence of SARS-CoV-2

[51, 52]. If such sampling attempts are performed repeatedly over time and at sufficient temporal resolution,

and/or they are combined with other local sequencing data, they can enable an accurate reconstruction of λ,

ψ, and consequently µ over time. For example, when we re-simulated the two hypothetical BDS scenarios

used earlier for maximum-likelihood estimation while including 3 CSAs, the subsequently re-fitted models

reproduced the true BDS scenarios much more accurately (Supplemental Figs. S1O–U and S2O–U). Note

that CSAs differ from the common approach of testing individuals only upon the appearance of symptoms,

as in these cases the number of infections detected during any given period tends to be smaller than the

number of new infections occurring during that period. The importance of optimal sampling design to im-

prove identifiability has previously been recognized for coalescent models in epidemiology [53, 54]. Notably,

Stack et al. [53] concluded that sampling sequences at specific time points tends to improve inferential power

compared to less focused sampling protocols, resembling our conclusions above for BDS models.

A third potential approach could be to only fit profiles for λ, µ, and ψ with a strong mechanistic justification,

i.e. derived from models for infectious disease dynamics [11, 20, 55–57], rather than generic profiles (e.g.,

skyline models). Notably, birth-death SIR and SIS models [11, 57, 58] are increasingly used and a good start

in this direction, although for longer time periods or spatially structured epidemics more complex models will

generally be needed. Whether this approach is effective in avoiding the issues stemming from congruencies

in practice is unknown and warrants future investigation. If the true epidemiological history was indeed

perfectly described by a given mechanistic model, then fitting that model to a timetree will probably yield

accurate parameter estimates, provided of course a sufficiently large dataset. However, nature rarely exactly

follows our mechanistic models, and this is certainly true for epidemics. In this situation, as when fitting

generic profiles (e.g., skyline models), fitting a mechanistic model will generally merely yield a scenario

close to the congruence class of the true epidemiological history; in the case of a complex mechanistic model

exhibiting a variety of qualitatively different behaviors (depending on parameter choice) this might yield a

scenario far from the true history itself, even for large datasets (see conceptual Fig. 2 and earlier discussion).

We stress that coalescent analysis, an alternative popular framework for reconstructing an epidemic’s ef-

fective size (Ne) over time based on pathogen sequences [59, 60], cannot resolve the issues discussed here.

While Ne is in theory asymptotically identifiable provided sufficiently large trees, provided that all assump-

tions of coalescent theory are satisfied and provided that the generation time T (or serial interval, which is

analogous to 1/λ) are independently known, the issue of identifiability is essentially being replaced by strong

and questionable assumptions about the sampling and transmission process [61]. For example, using solely

phylogenetic data coalescent theory can a priori only yield information on the product NeT , and additional

assumptions or independent information are needed about T in order to actually obtain Ne and Re [62]. In
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the general situation where λ (and hence T ) can vary arbitrarily through time and is unknown, one is thus

faced with similar identifiability issues as with BDS models.

Conclusions

Our results highlight the limitations of epidemiological inference using phylogenetic data alone. The re-

ported identifiability issues are particularly serious for cases where a reconstruction of historical dynamics

is attempted based solely on phylogenetic data and without any additional strong constraints. In such situa-

tions, it is generally impossible to reliably reconstruct key epidemiological variables, such as Re, over time,

no matter how large the data. We stress that these issues are separate from the well-recognized errors due

to small datasets [55], since any two congruent BDS scenarios remain statistically indistinguishable even for

infinitely large phylogenies and hence large phylogenetic datasets alone cannot possibly resolve these issues.

Instead, additional data sources beyond just phylogenies, such as from clinical experiments or seropreva-

lence surveys, are necessary for accurate reconstruction. On a more positive note, we have fully resolved

the informational connections between major epidemiological parameters and provide tools for determining

their identifiability based on phylogenetic data. In particular, we provide code for exploring the full extent

of congruent BDS scenarios and for assessing which epidemiological scenarios can in principle (i.e., with a

sufficiently large dataset) be distinguished from one another (Supplement S.4). Our results can help guide

proper experimental and sampling designs optimized for epidemiological reconstruction.

Methods

Simulations for maximum-likelihood inferences

To demonstrate the implications of model congruencies using simulated trees, we proceeded as follows.

Timetrees were generated under two alternative BDS scenarios using the function generate_tree_hbds in

the R package castor v1.6.7 [63] (with options “include_extant=FALSE, include_extinct=FALSE,

no_full_extinction=TRUE”). In the first scenario, µ and ψ were assumed to be constant over time while

Re was exponentially decreasing over time (profiles in Supplemental Fig. S1A–F) and the simulation was

halted after 200 days, resulting in a tree with 175,440 tips. In the second scenario, λ and µ were constant over

time while ψ increased continuously towards the present (profiles in Supplemental Fig. S2A–F) and the sim-

ulation was halted after 200 days, resulting in a tree with 55,934 tips. To each tree, we fitted BDS models with

a priori unknown λ, µ and ψ, each defined as a piecewise linear function of time with inflections at fixed time

points (chosen such that their density is approximately proportional to the square root of the tree’s LTT). The

optimal number of time-grid points (i.e., the number of fitted parameters for each of λ, µ and ψ) was chosen

by minimizing the AIC of the fitted model [39]. For any given grid size, fitting was done via maximum-

likelihood using the castor function fit_hbds_model_on_grid, with options “condition=’auto’,

max_start_attempts=100, Ntrials=100”. Additional epidemiological variables of the fitted models

(such as Re and the LTT) were computed using the castor function simulate_deterministic_hbds.

To demonstrate the effects of fixing ψ to its true value during fitting, we repeated the above fitting process

while fixing ψ to its true time profile. To demonstrate the effects of concentrated sampling attempts (CSAs),

discussed in the main article, we also simulated trees under BDS scenarios similar to the above but modified

to include CSAs at 3 discrete time points. We then used these new trees to fit BDS models with unknown λ, µ

and ψ, defined as piecewise linear functions, while also accounting for the added CSAs in the computation of
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the likelihood [20]. As before, fitting was performed via maximum-likelihood and by choosing the time-grid

size according to the AIC. During fitting, the times and intensities (i.e., sampling probabilities) of the CSAs

were fixed to their true values (through options “CSA_ages” and “fixed_CSA_probs”), reflecting general-

population randomized seroprevalence surveys in which these properties can be independently determined.

The fitted models are shown in Supplemental Figs. S1 and S2. We mention that throughout this article “age”

refers to time before present, and “present” refers to the time at which the sampling process was halted.

Simulations for Bayesian inference

To explore the ability of Bayesian MCMC sampling to recover the true epidemiological history with vary-

ing levels of constraints, we conducted an internally-blinded BEAST2 birth-death skyline inference using

sampled sequences generated from realistic HIV epidemic simulations. Specifically, group member A simu-

lated timetrees and nucleotide sequences under two different BDS scenarios lasting approximately 15 years,

resulting in trees with 590 and 540 tips, respectively (Supplemental Fig. S3). The parameters λ, µ, ψ,

Re, δ, and S were all within reasonable ranges, i.e., with values within the priors that would typically be

specified for an HIV model, with moderate variation through time that can be well-approximated using a

skyline model with 3–4 time intervals (Supplemental Figs. S5A–F and S7A–F). Nucleotide sequences of

length 1000 bp were simulated along the timetree under an independent-sites HKY substitution model [64]

with transition/transversion ratio 5 [38] and stationary base frequencies A:0.4, C:0.17, G:0.21, T:0.22 [36].

The root sequence was chosen randomly according to the stationary base frequencies. Nucleotides were ran-

domly assigned to one of 4 strict-clock substitution rate categories, whose rates were chosen according to a

discretized gamma distribution as described by [65], with shape parameter α = 0.5 [36–38] and mean rate

2 × 10−3 yr−1.

The simulated sequence alignments and their sampling dates were provided to a second team (“B”) as input

data for reconstructing the epidemiological dynamics over time using serial skyline (i.e., piecewise constant)

birth-death-sampling models in BEAST2 v2.6.2 with BEAGLE v4.1 [5, 10, 66]. As mentioned earlier, team

B did not have knowledge of the true epidemiological parameters, and was initially only provided with the

following information: the nucleotide substitution model used (HKY with independent sites), the fact that

there were four rate categories according to a discretized gamma distribution, the fact that four time intervals

would be sufficient for reasonably approximating the two epidemic histories, the fact that all parameters were

chosen within ranges typical for HIV-1, and the present-day sampling proportion. Team B confirmed that

there was adequate temporal signal in the sequence data by evaluating the distribution of pairwise patristic

distances and divergence over time on a preliminary approximate maximum likelihood tree made in FastTree2

[67] and rooted using residual mean square fitting in Tempest v1.5.3 [68]. Based on the distribution of

sampling and branching dates (Supplemental Figs. S3C–F and S4), and to ensure similar amounts of data in

each interval, the rate shifts in these models were specified to occur at 2, 4, and 8 years before the present.

Skyline models were parameterized in terms of Re, removal rate δ, and sampling proportion S, each of which

could vary independently in each time interval. In all cases, the present-day sampling proportion was fixed to

its true value, to account for known correlations between skyline model parameters [10]. Runs were set up on

two independent MCMC chains for 100–200 million states, sampled every 10 000 states (overview of priors

in Supplemental Table S1). For each run, log files from both chains were combined using LogCombiner

[5] after confirming convergence in Tracer and removing 10% burn-in. We refer to these two runs as U1

and U2 (“unconstrained” 1 and 2). For each model drawn from the posterior distribution, we calculated the

deterministic LTT, the deterministic branching density, and deterministic sampling density using the castor

function simulate_deterministic_hbds. Equal-tailed credible intervals of various model parameters

were calculated for the posterior distribution of scenarios using the quantile function in R. To investigate
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how the parameter estimates would improve if one were to provide sufficient constraints to collapse the

congruence class, we repeated the BEAST2 runs while fixing the removal rate over the entire time period to

its true profile (approximated by a piecewise constant curve for compatibility with the skyline model) and

while fixing the present-day sampling proportion to its true value (as before); we refer to these new runs

as F1 and F2, respectively (“fixed” 1 and 2). Lastly, for the 2nd scenario where the removal rate was nearly

constant over time, we investigated how this information might improve parameter estimates, by constraining

the removal rate to be constant across all time intervals (with unknown value); we refer to this run as C2

(“constrained” 2). Posterior distributions of epidemiological parameters from runs U1, F1, U2, F2 and C2 are

shown in Supplemental Figs. S5, S6, S7, S8 and S9, respectively. The corresponding posterior distributions

of molecular evolution parameters are shown in Supplemental Figs. S10, S11, S12, S14 and S13. MCMC

traces of runs U1 and U2 are shown in Supplemental Figs. S15 and S16, respectively. The above analyses

were also repeated for sequences simulated under a strict molecular clock model with a single discretized

rate category from the gamma distribution, yielding similar results.

Model adequacy tests

To verify that each maximum-likelihood-fitted model was adequate for explaining the timetree, i.e., that

parameter estimates were not due to bad model fits, we used parametric bootstrapping to compare various

properties of the tree to those expected under the fitted model [35, 69], as follows. For any given tree and fitted

model, we simulated 1000 random trees using the model from the root the present-day using the function

generate_tree_hbd_reverse in the R package castor [70]. We then compared the distribution of tip ages

generated by the fitted model to the original tree using a Kolmogorov-Smirnov test. Specifically, for every

simulated tree we calculated the empirical cumulative distribution function (CDF) of the tip ages (denoted

F , and evaluated at the original tree’s tip ages via linear interpolation), and then calculated the average of

those CDFs, hence obtaining an estimate for the CDF of tip ages generated by the model (denoted F ). The

Kolmogorov-Smirnov (KS) distance between a tree’s CDF F and F , denoted D(F, F ), is the maximum

distance between F and F at any age. The statistical significance (P ) of the original tree’s KS distance

D(Fo, F ) was calculated as the fraction of simulated trees for which D(F, F ) was larger than D(Fo, F ).
Hence, a small P means that the original tree’s distribution of node ages differs substantially from that

expected under the fitted model. A similar approach was followed for comparing the model’s and tree’s

distribution of node ages or edge lengths. To perform analogous model adequacy tests for our Bayesian

analysis, we compared the true timetree (generated during the simulation of the hypothetical epidemic) to

the scenarios drawn from the posterior distribution. The methodology was nearly identical to that described

above for the maximum-likelihood fits, with the only substantial difference being that each random tree was

generated by a scenario randomly chosen from the posterior distribution. The above statistical tests are

conveniently implemented in the castor function model_adequacy_hbds [63].

Empirical HIV analysis

For the empirical HIV analysis we used publicly available HIV-1 sequences from Northern Alberta, Canada,

collected between 2007 and 2013 and previously described by Vrancken et al. [71]. Of the 1055 partial

pol sequences (consisting of full protease and the first 240 or 400 codons of reverse transcriptase) avail-

able on Genbank, the analysis was restricted to 809 subtype B sequences, as determined by Vrancken et

al. based on a maximum likelihood phylogeny of Alberta sequences alongside Los Alamos HIV database

sequences (http://hiv.lanl.gov), confirmed using Comet [72]. Four sequences were removed because

they were duplicates and one sequence was removed because it had >0.05 ambiguous nucleotides, leaving
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804 sequences. Sequences were aligned using mafft v7.402 [73] and known drug resistance mutation sites

relative to HXB2 reference were removed [74]. Similarly to Vrancken et al., we identified a weak temporal

signal within an approximate maximum likelihood tree of all subtype B sequences inferred using FastTree

v2.1.11 [67] and rooted by residual mean squared (rms) regression fit in Tempest [68]. The subtype B phy-

logeny consisted of two deeply split clades herein denoted B.1 (n=624) and B.2 (n=185). After splitting B.1

and B.2 at their MRCA into two trees, re-rooting using rms, and retaining only sequences with residuals <

0.02 substitutions/site (B.1, n=563; B.2, n=164), this yielded an increase in the correlation coefficient of the

molecular clock rate fit from 0.21 to 0.33 and 0.34, respectively. Here we focused our analyses on the larger

B.1 clade (n=563).

The B.1 alignment was used to jointly infer a time-calibrated phylogeny and fit a birth-death skyline se-

rial model in BEAST2 [5, 10]. Model selection consisted of comparing strict and relaxed uncorrelated log

normal (UCLN) clocks with free and fixed mean clock rates, as well as multiple rate intervals for Re, S, and

/delta using nested sampling [40]. For all the models compared, site model averaging was conducted using

bModelTest [75]; additional priors are summarized in S2. UCLN models with free mean clock rates were

more well-supported than their fixed mean clock rate or strict clock model equivalents; and models with rate

shifts occurring in 1998 and 2010 had higher likelihoods than their equivalents with equally spaced intervals

from origin to the most recent sample. For every model, two parallel MCMC chains of 500 million steps

were combined after confirming each run converged, as assessed by effective sample sizes greater than 200

following 10% burn-in. The probability densities of BDS model parameters, based on samples drawn by

BEAST from the posterior distribution, are shown in Supplemental Fig. S22. The posterior distributions

of molecular evolution parameters are shown in Supplemental Fig. S23. MCMC trace plots are shown in

Supplemental Fig. S24.

Data availability

No raw data were generated for this manuscript. The sequence data from the HIV epidemic in Alberta was

described previously Vrancken et al. [71] and is publicly available (see Methods for details). The simulated

trees and sequences (used for maximum-likelihood fitting and Bayesian analyses) are given in Supplemental

File 1.

Code availability

All analyses were performed using freely available software, indicated throughout the manuscript where

appropriate. Novel code for fitting BDS models, examining BDS model congruencies and checking BDS

model adequacy (summarized in Supplement S.4) is provided as part of the R package castor, available

on The Comprehensive R Archive Network. The BEAST2 configuration XML file for the HIV analysis

is provided as Supplemental File 2. The BEAST2 configuration XML files for the analyses of simulated

sequences are provided as Supplemental File 3.
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S.1 Mathematical derivations

S.1.1 General model

The general cladogenic model considered here, and recently formally described by MacPherson et al. [1], is

a stochastic birth-death-sampling model, where lineages split (“speciate”) stochastically at some birth rate

λ, disappear (“go extinct”) at some death rate µ, and are sampled (detected) at rate ψ. In an epidemiological

context, λ corresponds to the transmission rate, µ to the rate of recovery or death of infected individuals, and

ψ to the rate at which infected individuals are detected and their pathogen population sequenced. Note that,

unless stated otherwise, throughout this document the term “birth” refers to the emergence of a new pathogen

lineage (via transmission) and “death” refers to the disappearance of a pathogen lineage without sampling

(due to host recovery or death), and should not be confused with host birth or death. The parameters λ, µ,

and ψ can each depend arbitrarily on time. We consider the distribution of time-calibrated reconstructed

phylogenies (“timetrees”) obtained through this process, i.e., connecting all sampled variants, after some

time τor. Note that this cladogenic process is a generalization of the birth-death-skyline model by Stadler

et al. [2] to the case where λ, µ, and ψ depend arbitrarily on time rather than in a piecewise constant manner,

in the absence of concentrated sampling attempts.

In the following, we count time backward from tips to root, i.e., all variables are expressed as functions of

“age” (time before present), with age zero corresponding to the time at which the sampling process is halted.

It was recently shown [1] that the likelihood (density) of a given bifurcating timetree generated by a specific

BDS scenario starting at age τor, conditioned upon the survival and sampling of at least one lineage, is given

by:

Lor =
Φ(τor)

1 − E(τor)

n−1
∏

i=1

λ(xi)Φ(xi)
n

∏

j=1

ψ(yj)

Φ(yj)
, (1)

where n is the number of tips in the tree, i iterates over all branching events (i.e., internal nodes), j iterates

over all sampling events (i.e., tips), xi is the age of the i-th branching event, yj is the age of the j-th sampling

event, E(τ) is the probability that a lineage alive at age τ will not be sampled by the present-day (i.e., is not

included in the tree), and Φ is the “flow” of the model [3], defined as:

Φ(τ) = exp

[
∫

τ

0

[2λE − (λ + µ + ψ)] ds

]

. (2)

The probability E satisfies the differential equation:

dE

dτ
= −(λ + µ + ψ)E + λE2 + µ, (3)

with initial condition E(0) = 1. Note that one may alternatively consider the likelihood of the tree condi-

tioned on the age of the tree’s root τr, i.e., a splitting occurring at age τr and the eventual sampling of both

child lineages:

Lr =
Φ(τr)

λ(τr) · (1 − E(τr))2

n−1
∏

i=1

λ(xi)Φ(xi)
n

∏

j=1

ψ(yj)

Φ(yj)
. (4)

In the limit of infinitely large trees, i.e., when stochastic effects on the LTT curve become negligible, the

deterministic LTT curve (dLTT) predicted by the model, denoted M , is equal to M = N · (1 − E), where
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N(τ) is the total number of lineages alive at age τ . Using the fact that dN/dt = (λ − µ − ψ) · N as well as

Eq. (3), it is straightforward to derive the following differential equation for the model’s dLTT:

dM

dt
= −M ·

[

(1 − E) · λ −

ψ

1 − E

]

. (5)

Note that to calculate the dLTT one also needs to specify an initial condition, i.e., conditioned on the number

of lineages at some specific age τ > 0 (M(0) will always be zero).

S.1.2 Pulled parameters

The following composite parameters will be particular useful in our derivations. We define the “pulled birth

rate” λ̃ as follows:

λ̃ = (1 − E) · λ. (6)

Note that λ̃ is equal to λ if and only if E = 0, i.e., if all lineages ever alive are represented in the tree. In the

presence of deaths or incomplete sampling, however, λ̃ is “pulled” downwards compared to λ. Observe that

λ̃ is the expected rate at which internal nodes occur in the tree over time, normalized by the current number

of lineages in the tree (M ) and in the limit of infinitely large trees (see Eq. 5). For sufficiently large trees λ̃

becomes identifiable, since it can just be “read off” the tree’s LTT. We also define the “pulled sampling rate”

ψ̃ as follows:

ψ̃ =
ψ

1 − E
. (7)

Note that ψ̃ is equal to ψ if and only if E = 0; otherwise, ψ̃ is pulled upward compared to ψ. Observe that

ψ̃ is the expected rate at which tips occur in the tree over time, normalized by the current number of lineages

in the tree (M ) and in the limit of infinitely large trees (see Eq. 5). For sufficiently large trees ψ̃ becomes

identifiable, since it can just be “read off” the tree’s LTT. We also define the following composite parameter:

ζ̃ = λψ. (8)

Note that for τ > 0 we have ζ̃(τ) = λ̃(τ)ψ̃(τ). In contrast to ψ̃, which becomes infinite at present day (i.e.,

at age 0), the parameter ζ̃ remains finite. Since λ̃ and ψ̃ are asymptotically identifiable (i.e., in the limit of

infinitely large trees), the same also holds for ζ̃. We also define the “pulled diversification rate” r̃ as follows:

r̃ = λ − µ − ψ +
1

λ

dλ

dτ
. (9)

Note that r̃ is equal to the net diversification rate r = λ − µ − ψ only if λ is constant over time. If λ varies

over time, r̃ is pulled upwards or downwards compared to r, depending on how λ varies with time. Taking

the derivative on both sides of Eq. (6) and using Eqs. (3) and (8) it is straightforward to show that λ̃ satisfies

the differential equation:

dλ̃

dτ
= λ̃ ·

(

r̃ − λ̃ + ψ̃
)

. (10)
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Note that we can also write Eq. (10) as:

dλ̃

dτ
= λ̃r̃ − λ̃2 + ζ̃. (11)

Hence, λ̃ is fully determined by r̃ and ζ̃ (note that λ̃ always satisfies the initial condition λ̃(0) = 0). Solving

Eq. (10) for r̃ yields:

r̃ =
1

λ̃

dλ̃

dτ
+ λ̃ − ψ̃. (12)

Since λ̃ and ψ̃ are asymptotically identifiable, the same also holds for r̃. Solving Eq. (10) for ψ̃ yields:

ψ̃ =
1

λ̃

dλ̃

dτ
+ λ̃ − r̃. (13)

Thus, ψ̃ is fully determined by λ̃ and r̃. Multiplying Eq. (13) by λ̃ yields:

ζ̃ = ψ̃λ̃ =
dλ̃

dτ
+ λ̃2

− r̃λ̃. (14)

Hence, ζ̃ is fully determined by λ̃ and r̃. It is also worth introducing three additional parameters, the “nor-

malized dLTT”:

M̃ :=
M

∫

∞

0

M(s)ds

,
(15)

the “deterministic branching density”:

β̃ := λ̃M̃ =
λ̃M

∫

∞

0

M(s) ds

,
(16)

and the “deterministic sampling density”:

σ̃ := ψ̃M̃ =
ψ̃M

∫

∞

0

M(s) ds

.
(17)

Note that neither M̃ , β̃ nor σ̃ depend on the specific dLTT, as long as the latter solves the differential equation

(5), in other words M̃ , β̃ and σ̃ are independent of the specific initial condition chosen for M . Hence, M̃ , β̃

and σ̃ are fully determined by λ̃ and ψ̃, and are thus asymptotically identifiable. Reciprocally, M̃ , λ̃ and ψ̃

are fully determined by β̃ and σ̃. Indeed, from Eq. (5) we have:

dM̃

dτ
= −M̃ ·

(

λ̃ − ψ̃
)

= σ̃ − β̃, (18)

with initial condition X(0) = 0. Hence:

M̃ =

∫

τ

0

(σ̃(s) − β̃(s)) ds, (19)
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and:

λ̃ =
β̃

M̃
, (20)

and:

ψ̃ =
σ̃

M̃
. (21)

The normalized dLTT is simply the dLTT rescaled so that its area-under-the-curve is equal to 1; hence, the

normalized dLTT is a property of the particular BDS scenario that does not depend on the specific initial

condition for M , and which can be interpreted as a probability density over time. The numerator λ̃(τ)M(τ)
on the right-hand-side of Eq. (16) is the expected rate of branching events observed in the tree at age τ , while

the denominator
∫

∞

0
M(s)ds merely acts as a rescaling. Hence the normalized version of β̃ (i.e., if divided

by its integral
∫

∞

0
β̃(s)ds) can be interpreted as the probability density on [0, ∞) for any randomly chosen

observed branching event. The normalization of β̃, however, is such that the integral
∫

∞

0
β̃(s)ds is equal to

the average pulled birth rate, where the average is calculated based on the normalized dLTT:

∫
∞

0

β̃(τ)dτ =

∫
∞

0

λ̃(s)M̃(s) ds. (22)

In particular, β̃ contains information not just about the shape of the branching rate over time, but also about

the absolute magnitude of the pulled birth rate. A similar interpretation exists for the deterministic sampling

density σ̃, i.e. ψ̃ is the (non-normalized) probability density on [0, ∞) for any randomly chosen observed

tip. In contrast to ψ̃, the sampling density σ̃ stays finite at age 0:

σ̃ =
ψN∫

∞

0

M(s) ds

.
(23)

Note that the interpretations of some of the above parameters are strictly speaking only valid in the limit of

infinitely large trees, however the parameters themselves are simply properties of the BDS scenario and thus

well-defined regardless of the size of the tree.

S.1.3 Congruent models

From Eq. (1) and Eq. (4) it becomes clear that the likelihood of a timetree only depends on the sampling and

branching ages in the tree, but not the precise tree topology itself. As we show below, a similar statement

can also be made about the model’s role, as follows: Any two birth-death-sampling scenarios with the same

pulled birth rate λ̃ and the same pulled sampling rate ψ̃ will always yield the same likelihoods. We thus

henceforth call two birth-death-sampling scenarios “congruent” if they have the same λ̃ and the same ψ̃.

Equivalently, following Supplement S.1.2, two scenarios are congruent if and only if they have the same λ̃

and the same r̃, or equivalently, if and only if they have the same λ̃ and the same ζ̃, or equivalently, if and

only if they have the same r̃ and the same ζ̃, or equivalently, if and only if they have the same deterministic

branching density β̃ and the same deterministic sampling density σ̃.

To prove that congruent BDS scenarios have the same likelihoods regardless of the data, we proceed as
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follows. From Eq. (2) we have:

Φ(τ) = exp

[
∫

τ

0
[2λE − (λ + µ + ψ)] ds

]

= exp

[
∫

τ

0

[

2λ − 2λ̃ − λ − µ − ψ
]

ds

]

=e−2Λ̃(τ) exp

[
∫

τ

0
[λ − µ − ψ] ds

]

,

(24)

where we defined:

Λ̃(τ) :=

∫

τ

0
λ̃(s) ds. (25)

Using Eq. (9) we can further write:

Φ(τ) =e−2Λ̃(τ) exp

[
∫

τ

0

[

r̃ −

1

λ

dλ

ds

]

ds

]

=e−2Λ̃(t)+R̃(t)
· exp

[

−

∫

τ

0

d ln λ

ds
ds

]

=e−2Λ̃(t)+R̃(t)
·

λ(0)

λ(τ)
,

(26)

where we defined:

R̃(τ) :=

∫

τ

0
r̃(s) ds. (27)

Using Eq. (26) in the formula for the likelihood, Eq. (1), yields:

Lor =
Φ(τor)

1 − E(τor)

n−1
∏

i=1

λ(xi)Φ(xi)
n

∏

j=1

ψ(yj)

Φ(yj)

=
e−2Λ̃(τor)+R̃(τor)λ(0)

λ(τor)(1 − E(τor))

n−1
∏

i=1

λ(xi)e
−2Λ̃(xi)+R̃(xi)

λ(0)

λ(xi)

n
∏

j=1

ψ(yj)e2Λ̃(yj)−R̃(yj) λ(yj)

λ(0)

=
e−2Λ̃(τor)+R̃(τor)

λ̃(τor)

n−1
∏

i=1

e−2Λ̃(xi)+R̃(xi)
n

∏

j=1

e2Λ̃(yj)−R̃(yj)ψ(yj)λ(yj).

(28)

Since λψ = ζ̃, we can further write:

Lor =
e−2Λ̃(τor)+R̃(τor)

λ̃(τor)

n−1
∏

i=1

e−2Λ̃(xi)+R̃(xi)
n

∏

j=1

e2Λ̃(yj)−R̃(yj)ζ̃(yj). (29)

Note that the likelihood in Eq. (29) depends solely on the variables λ̃, r̃, ζ̃, Λ̃ and R̃, all of which are fully

determined by the pulled birth rate λ̃ and pulled sampling rate ψ̃.

Using a similar approach one can also write the likelihood Lr, i.e., conditioned on the root age, in a format
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that only depends on pulled variables:

Lr =
e−2Λ̃(τr)+R̃(τr)

λ̃2(τr)

n−1∏

i=1

e−2Λ̃(xi)+R̃(xi)
n∏

j=1

e2Λ̃(yj)−R̃(yj)ζ̃(yj). (30)

S.1.4 Congruent models have identical distributions of tree sizes

In the following we show that any two congruent BDS scenarios will generate trees whose size (i.e., number

of tips) has the same probability distributions, when conditioned on the age of the stem and the sampling

of at least one tip (or the age of the root, and the sampling of both daughter lineages). Let Pn(τ) be the

probability that a lineage alive at age τ will have exactly n sampled descendants in the final tree (i.e., at

present-day, where the process ends). It is straightforward to show that Pn (for any n ∈ {0, 1, 2, ..}) satisfies

the differential equation:

dPn

dτ
= λ

n∑

k=0

PkPn−k + µδn,0 + ψδn,1 − (λ + µ + ψ)Pn, (31)

with initial condition:

Pn(0) = δn,0, (32)

where τ denotes age and δ denotes the Kronecker-delta symbol, i.e. δn,k is 1 if k = n and 0 otherwise.

Denote P̃n := Pn/(1 − E). We wish to show that P̃n is the same for any two congruent BDS scenarios, for

any n > 0. We have:

dP̃n

dτ
=

1

1 − E

dPn

dτ
+

Pn

(1 − E)2

dE

dτ

(31)
=

1

(1 − E)2

[

(1 − E)

(

λ

n∑

k=0

PkPn−k + ψδn,1 − (λ + µ + ψ)Pn

)

+
(

λE2 + µ − (λ + µ + ψ)E
)

Pn

]

=
1

(1 − E)2

[

λ(1 − E)
︸ ︷︷ ︸

λ̃

n−1∑

k=1

PkPn−k + 2λEPn + (1 − E)ψδn,1 − (λ + ψ)Pn − λE2Pn

]

=λ̃

n−1∑

k=1

P̃kP̃n−k +
ψ

1 − E
︸ ︷︷ ︸

ψ̃

δn,1 −
ψ

1 − E
︸ ︷︷ ︸

ψ̃

·
Pn

1 − E
︸ ︷︷ ︸

P̃n

−
Pn

1 − E
︸ ︷︷ ︸

P̃n

· (1 − E)λ
︸ ︷︷ ︸

λ̃

=λ̃

n−1∑

k=1

P̃kP̃n−k + ψ̃δn,1 − ψ̃P̃n − λ̃P̃n.

(33)
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Further, according to L’Hopital’s rule one has:

lim
τ→0+

P̃n(τ) = lim
τ→0+

P ′

n(τ)

1 − E′(τ)
= lim

τ→0+

ψ(0)δn,1

ψ(0)
= δn,1. (34)

Since any two congruent scenarios have the same λ̃ and the same ψ̃, each of their P̃n (with n ≥ 1) will

satisfy the same differential equation (33) with the same initial condition (34). We thus conclude that any

two congruent scenarios will have the same conditional probabilities P̃n.

A similar conclusion can be drawn for the case where we condition on the age of the root and the survival

of its two child lineages, as follows. Denote by P̂n(τ) the conditional probability that the tree has size n,

given that the root split at age τ and that both of its child lineages survived. Then for any n ≥ 2 we have:

P̂n =
1

(1 − E)2

n−1∑

k=1

PkPn−k =
n−1∑

k=1

P̃kP̃n−k. (35)

Since the P̃n are identical between congruent scenarios (for any n ≥ 1), we conclude that P̂n are also identical

between congruent scenarios (for any n ≥ 2).

S.1.5 Constructing congruent scenarios

For any given BDS scenario (λ, µ, ψ) there are various approaches towards constructing alternative con-

gruent scenarios, described below. All of the presented methods have in common that one first calculates

the “pulled variables” of the original scenario (which fully define the scenario’s congruence class), and then

provides sufficient additional constraints to obtain a new single scenario within the congruence class. The

discussion below also reveals how scenarios can become fully identifiable when additional constraints are

provided.

S.1.5.1 Congruent scenarios by specifying ψ

In the first approach, we specify a new sampling rate ψ∗ and then adjust the remaining model variables to

obtain a congruent scenario. Specifically, let λ̃, r̃, and ζ̃ be the pulled variables of the scenario as defined in

Supplement S.1.2. Let ψ∗ > 0 be some arbitrary alternative sampling rate. Define λ∗ := ζ̃/ψ∗ and:

µ∗ := λ∗
− ψ∗ +

1

λ∗

dλ∗

dτ
− r̃ (36)

Then the pulled diversification rate of the new scenario (λ∗, µ∗, ψ∗) is:

r̃∗ = λ∗
− µ∗

− ψ∗ +
1

λ∗

dλ∗

dτ

(36)
= λ∗

− λ∗ + ψ∗
−

1

λ∗

dλ∗

dτ
+ r̃ − ψ∗ +

1

λ∗

dλ∗

dτ
= r̃. (37)

Further, ζ̃∗ = λ∗ψ∗ = ζ̃. Hence, the new scenario has the same r̃ and the same ζ̃ as the original scenario. By

Supplement S.1.3, the two scenarios are thus congruent. Hence, simply by choosing an alternative sampling

rate ψ∗, one can find a corresponding congruent scenario (λ∗, µ∗, ψ∗), as long as the resulting µ∗ is physically

meaningful (i.e., non-negative). Reciprocally, if the congruence class of a diversification/epidemiological

scenario is known (e.g., estimated via maximum-likelihood), and in addition ψ is somehow independently
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estimated, then the full scenario can be reconstructed.

S.1.5.2 Congruent scenarios by specifying µ and λ(τo)

Instead of first specifying an alternative ψ∗, one could construct congruent scenarios by first specifying µ∗

and the birth rate λ∗(τo) at some age τo, as follows. Let r̃ and ζ̃ be the pulled variables of the scenario

(λ, µ, ψ) as defined in Supplement S.1.2. For any given death rate profile µ∗, age τo and birth rate λ∗

o
≥ 0 at

age τo, choose λ∗ as the solution of the following differential equation:

dλ∗

dτ
= λ∗

· [r̃ + µ∗
− λ∗] + ζ̃, (38)

with condition λ∗(τo) = λ∗

o
, and set ψ∗ := ζ̃/λ∗. The pulled diversification rate of the new scenario

(λ∗, µ∗, ψ∗) is given by:

r̃∗ =λ∗
− µ∗

− ψ∗ +
1

λ∗

dλ∗

dτ

(38)
= λ∗

− µ∗
− ψ∗

− [λ∗
− r̃ − µ∗] +

ζ̃

λ∗
= r̃. (39)

Further, ζ̃∗ = λ∗ψ∗ = ζ̃. Hence, the new scenario has the same r̃ and the same ζ̃ as the original scenario.

By Supplement S.1.3, the two scenarios are thus congruent. Hence, simply by choosing an alternative sam-

pling rate µ∗ and an arbitrary initial condition λ∗(τo) at some age τo, one can find a corresponding congruent

scenario (λ∗, µ∗, ψ∗), provided that the resulting λ∗ is physically meaningful (i.e., non-negative). Recip-

rocally, if the congruence class of a diversification/epidemiological scenario is known (e.g., estimated via

maximum-likelihood), and in addition µ and λ(τo) are somehow independently obtained (e.g., from clinical

experiments), then the full scenario can be reconstructed.

Note that, as long as λψ > 0 and λ∗(0) > 0, and as long as r̃, ζ̃ and µ∗ are continuous, the corresponding

λ∗ will always be strictly positive. To see why this is the case, observe that if λ∗ was zero or negative at

some point, there would exist an age τz where λ∗(τz) = 0 and λ∗(τ) > 0 for all τ < τz. Since ζ̃(τz) =
λ(τz)ψ(τz) > 0 and λ∗(τz) · [r̃(τz) + µ∗(τz) − λ∗(τz)] = 0, by Eq. (38) the derivative dλ∗/dτ must be

strictly positive at τz, and in fact strictly positive in a small neighborhood of τz, which would mean λ∗ could

not reach zero at τz — a contradiction.

S.1.5.3 Congruent scenarios by specifying µ and ψ(τo)

Alternatively to specifying the profile µ∗ and the value λ∗(τo) at some age τo, one could also specify the

profile µ∗ and the value ψ∗(τo). In that case, simply choose λ∗(τo) = ζ̃(τo)/ψ∗(τo), and apply the procedure

in Supplement S.1.5.2 to obtain a congruent scenario (λ∗, µ∗, ψ∗).

S.1.5.4 Congruent scenarios by specifying λ

Another way of constructing congruent scenarios is to first specify λ∗ and then choose µ∗ and ψ∗ accordingly,

as follows. Let r̃ and ζ̃ be the pulled variables of the scenario (λ, µ, ψ) as defined in Supplement S.1.2. For

any given λ∗, choose ψ∗ := ζ̃/λ∗ and:

µ∗ := λ∗
− ψ∗ +

1

λ∗

dλ∗

dτ
− r̃. (40)
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Then the pulled diversification rate of the new scenario (λ∗, µ∗, ψ∗) is:

r̃∗ = λ∗
− µ∗

− ψ∗ +
1

λ∗

dλ∗

dτ

(40)
= λ∗

− λ∗ + ψ∗
−

1

λ∗

dλ∗

dτ
+ r̃ − ψ∗ +

1

λ∗

dλ∗

dτ
= r̃. (41)

Hence, the new scenario has the same r̃ and the same ζ̃ as the original scenario. The two scenarios are

thus congruent. Hence, simply by choosing an alternative sampling rate λ∗, one can find a corresponding

congruent scenario (λ∗, µ∗, ψ∗), as long as the resulting µ∗ is physically meaningful (i.e., non-negative).

S.1.5.5 Congruent scenarios by specifying Re and λ(τo)

Congruent scenarios can also be constructed by first choosing the effective reproduction ratio profile and the

birth rate λ∗(τo) at some age τo, as follows. Let r̃ and ζ̃ be the pulled variables of the scenario (λ, µ, ψ) as

defined in Supplement S.1.2. For any given basic reproduction ratio profile R∗

e , age τo and birth rate λ∗

o ≥ 0
at age τo, choose λ∗ as the solution of the following differential equation:

dλ∗

dτ
= λ∗

·

[

λ∗
·

(

1

Re
− 1

)

+ r̃

]

, (42)

with condition λ∗(τo) = λ∗

o, and set ψ∗ := ζ̃/λ∗ and µ∗ := λ∗/Re − ψ∗. The pulled diversification rate of

the new scenario (λ∗, µ∗, ψ∗) is given by:

r̃∗ =λ∗
− µ∗

− ψ∗ +
1

λ∗

dλ∗

dτ
= λ∗

−
λ∗

Re
+ ψ∗

− ψ∗ + λ∗
·

(

1

Re
− 1

)

+ r̃ = r̃. (43)

Further, ζ̃∗ = λ∗ψ∗ = ζ̃. Hence, the new scenario has the same r̃ and the same ζ̃ as the original scenario.

By Supplement S.1.3, the two scenarios are thus congruent. Hence, simply by choosing an alternative R∗

e

and an arbitrary condition λ∗(τo) = λ∗

o at some age τo, one can find a corresponding congruent scenario

(λ∗, µ∗, ψ∗), provided that the resulting λ∗ and µ∗ are physically meaningful (i.e., non-negative). Recip-

rocally, if the congruence class of a diversification/epidemiological scenario is known (e.g., estimated via

maximum-likelihood), and in addition Re and λ(τo) are somehow independently obtained, then the full sce-

nario can be reconstructed.

Note that the differential equation (42) is of Bernoulli type, and can thus be solved analytically:

λ∗(τ) =
λ∗

oeR̃(τ)

eR̃(τo) +
(

1 −
1

R∗

e

)

λ∗

o

∫

τ

τo

eR̃(s) ds
, (44)

where R̃ is defined as in Eq. (27).

S.1.5.6 Congruent scenarios by specifying µ + ψ and λ(τo)

Congruent scenarios can also be constructed by first choosing the total removal rate δ := µ+ψ and the birth

rate λ∗(τo) at some age τo, as follows. Let r̃ and ζ̃ be the pulled variables of the scenario (λ, µ, ψ) as defined

in Supplement S.1.2. For any given profile δ∗ ≥ 0, age τo and birth rate λ∗

o ≥ 0 at age τo, choose λ∗ as the
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solution of the following differential equation:

dλ∗

dτ
= λ∗

· (δ∗ + r̃ − λ∗) , (45)

with condition λ∗(τo) = λ∗

o, and set ψ∗ := ζ̃/λ∗ and µ∗ := δ∗ − ψ∗. The pulled diversification rate of the

new scenario (λ∗, µ∗, ψ∗) is given by:

r̃∗ =λ∗
− µ∗

− ψ∗ +
1

λ∗

dλ∗

dτ
= λ∗

− δ∗ + ψ∗
− ψ∗ + (δ∗ + r̃ − λ∗) = r̃. (46)

Further, ζ̃∗ = λ∗ψ∗ = ζ̃. Hence, the new scenario has the same r̃ and the same ζ̃ as the original scenario.

By Supplement S.1.3, the two scenarios are thus congruent. Hence, simply by choosing an alternative δ∗

and an arbitrary condition λ∗(τo) = λ∗

o at some age τo, one can find a corresponding congruent scenario

(λ∗, µ∗, ψ∗), provided that the resulting λ∗ and µ∗ are physically meaningful (i.e., non-negative). Recip-

rocally, if the congruence class of a diversification/epidemiological scenario is known (e.g., estimated via

maximum-likelihood), and in addition δ and λ(τo) are somehow independently obtained, then the full sce-

nario can be reconstructed.

Note that the differential equation (45) is of Bernoulli type, and can thus be solved analytically:

λ∗(τ) =
λ∗

oeR̃(τ)+D
∗(τ)

eR̃(τo)+D
∗(τo) + λ∗

o

∫
τ

τo

eR̃(s)+D
∗(s) ds

, (47)

where R̃ is defined as in Eq. (27) and D∗ is defined as:

D∗(τ) :=

∫
τ

0
δ∗(s) ds. (48)

From Eq. (47) it becomes clear that if τo = 0 and λ∗

o ≥ 0, then λ∗(τ) will be non-negative for all τ ≥ 0 (i.e.,

physically meaningful).

S.1.5.7 Congruent scenarios by specifying µ + ψ and S(τo)

Congruent scenarios can also be constructed by first choosing the total removal rate δ := µ + ψ and the

sampling proportion S∗(τo) at some age τo, as follows. Let r̃ and ζ̃ be the pulled variables of the scenario

(λ, µ, ψ) as defined in Supplement S.1.2. For any given profile δ∗ > 0, age τo and sampling proportion

S∗

o ∈ (0, 1] at age τo, choose λ∗ as the solution of the following differential equation:

dλ∗

dτ
= λ∗

· (δ∗ + r̃ − λ∗) , (49)

with initial condition λ∗(τo) = ζ̃(τo)/(S∗(τo) · δ∗(τo)), and set ψ∗ := ζ̃/λ∗ and µ∗ := δ∗ − ψ∗. The pulled

diversification rate of the new scenario (λ∗, µ∗, ψ∗) is given by:

r̃∗ =λ∗
− µ∗

− ψ∗ +
1

λ∗

dλ∗

dτ
= λ∗

− δ∗ + ψ∗
− ψ∗ + (δ∗ + r̃ − λ∗) = r̃. (50)

Further, ζ̃∗ = λ∗ψ∗ = ζ̃. Hence, the new scenario has the same r̃ and the same ζ̃ as the original scenario.

By Supplement S.1.3, the two scenarios are thus congruent. Hence, simply by choosing an alternative δ∗
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and an arbitrary condition S∗(τo) = S∗

o
at some age τo, one can find a corresponding congruent scenario

(λ∗, µ∗, ψ∗), provided that the resulting λ∗ and µ∗ are physically meaningful (i.e., non-negative). Recip-

rocally, if the congruence class of a diversification/epidemiological scenario is known (e.g., estimated via

maximum-likelihood), and in addition δ and S(τo) are somehow independently obtained, then the full sce-

nario can be reconstructed.

S.1.5.8 Congruent scenarios by specifying ψ/(µ + ψ) and λ(τo)

Congruent scenarios can also be constructed by first choosing the “sampling proportion” S := ψ/(µ + ψ)
and the birth rate λ∗(τo) at some age τo, as follows. Let r̃ and ζ̃ be the pulled variables of the scenario

(λ, µ, ψ) as defined in Supplement S.1.2. For any given profile S∗ > 0, age τo and birth rate λ∗

o
≥ 0 at age

τo, choose λ∗ as the solution of the following differential equation:

dλ∗

dτ
=

ζ̃

S∗
+ λ∗ · (r̃ − λ∗) (51)

with condition λ∗(τo) = λ∗

o
, and set ψ∗ := ζ̃/λ∗ and µ∗ := ψ∗/S∗ − ψ∗. The pulled diversification rate of

the new scenario (λ∗, µ∗, ψ∗) is given by:

r̃∗ =λ∗
− µ∗

− ψ∗ +
1

λ∗

dλ∗

dτ
= λ∗

−
ψ∗

S∗
+ ψ∗

− ψ∗ +
ζ̃

S∗λ∗
+ (r̃ − λ∗) = r̃. (52)

Further, ζ̃∗ = λ∗ψ∗ = ζ̃. Hence, the new scenario has the same r̃ and the same ζ̃ as the original scenario.

By Supplement S.1.3, the two scenarios are thus congruent. Hence, simply by choosing an alternative S∗

and an arbitrary condition λ∗(τo) = λ∗

o
at some age τo, one can find a corresponding congruent scenario

(λ∗, µ∗, ψ∗), provided that the resulting λ∗ and µ∗ are physically meaningful (i.e., non-negative). Recip-

rocally, if the congruence class of a diversification/epidemiological scenario is known (e.g., estimated via

maximum-likelihood), and in addition S and λ(τo) are somehow independently obtained, then the full sce-

nario can be reconstructed.

S.1.6 The information content of concentrated sampling attempts

In the following we describe how samples obtained during concentrated sampling attempts can yield valuable

insight into an epidemic. We define a concentrated sampling attempt (CSA) as a short period of sampling,

taking place between two ages τ1 > τ2 > 0, and satisfying the following assumptions:

A. |τ1 − τ2| is much smaller than 1/λ and 1/µ throughout the CSA.

B. λ does not vary substantially between the times τ1 and τ2, i.e., we assume that λ(τ1) ≈ λ(τ2).

C. The probability that a lineage alive at τ1 will be sampled before age τ2, denoted ρ, is sufficiently high so

that during the CSA the number of lineages sampled is much larger than the number of birth and death

events, i.e. ρ ≫ λ · |τ1 − τ2| and ρ ≫ µ · |τ1 − τ2|.

D. In the exterior vicinity of the open interval (τ1, τ2), λ̃ and ψ̃ are continuous, so that λ̃(τ1), λ̃(τ2), ψ̃(τ1)
and ψ̃(τ2) can be asymptotically identified.
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We will show that in the limit of infinitely large trees, λ(τ1), ψ(τ1) and ρ can be accurately identified.

Assuming that the CSA is so short that birth and death are unlikely to occur in any given lineage (assumption

A), we have:

1 − E(τ1) ≈ ρ + (1 − ρ) · [1 − E(τ2)] , (53)

which is equivalent to:

E(τ1) ≈ E(τ2) · (1 − ρ). (54)

In other words, the probability that a lineage alive at age τ1 will eventually be sampled is approximately equal

to the probability of being sampled during the CSA plus the probability of not being sampled during CSA

multiplied by the probability that a lineage alive at age τ2 will eventually be sampled. In the absence of births

and deaths, the above approximation formula would be exact. Assuming that λ(τ1) ≈ λ(τ2) (assumption B)

and using Eq. (54), we have:

λ̃(τ1) =λ(τ1) · [1 − E(τ1)]
(54)
≈ λ(τ1) · [1 − E(τ2)(1 − ρ)]

=λ(τ1) · [1 − E(τ2)] + λ(τ1)ρE(τ2)
B

≈ λ(τ2) · [1 − E(τ2)] + λ(τ1)ρE(τ2)

=λ̃(τ2) + λ(τ1)ρE(τ2).

(55)

We mention that, strictly speaking, we only need to assume that λ(τ1) ≈ λ(τ2), i.e. in principle λ could

vary during the CSA as long as it returns to its immediate pre-CSA value. The number of lineages sampled

during the age interval [τ1, τ2], denoted S, can be accurately read off the tree, if the tree is sufficiently large.

Assuming that births and deaths within any given lineage are negligible compared to the sampling effort (i.e.,

changes in the total number of extant lineages are mostly due to sampling, assumption C), and for sufficiently

large trees, we have:

S ≈ N(τ1)ρ ≈

M(τ1)ρ

1 − E(τ1)
, (56)

where N is the total number of extant lineages and M is the tree’s LTT. Denoting:

ρ̃ :=
ρ

1 − E(τ1)
, (57)

we see that ρ̃ is asymptotically identifiable, since ρ̃ ≈ S/M(τ1). Note that:

λ(τ1)ρ = λ̃(τ1)ρ̃. (58)

Using Eq. (55) and Eq. (58) we obtain:

λ̃(τ1) = λ̃(τ2) + λ̃(τ1)ρ̃E(τ2), (59)

and hence:

E(τ2) =
λ̃(τ1) − λ̃(τ2)

ρ̃λ̃(τ1)
. (60)

14



Since λ̃(τ1) and λ̃(τ2) are asymptotically identifiable (assumption D), and ρ̃ is also asymptotically identifi-

able, it follows that E(τ2) is also asymptotically identifiable. Note that the condition τ2 > 0 is necessary

for ensuring that λ̃(τ2) is asymptotically identifiable, since we need samples younger than τ2 for estimating

λ̃(τ2). Solving Eq. (54) and Eq. (57) for ρ and E(τ1) leads to:

ρ ≈
ρ̃ · [1 − E(τ2)]

1 − ρ̃E(τ2)
. (61)

Hence, ρ is also asymptotically identifiable. Combined with Eq. (54), this implies that E(τ1) is also asymp-

totically identifiable. Solving Eq. (58) for λ(τ1) leads to:

λ(τ1) ≈
λ̃(τ1)ρ̃

ρ
. (62)

Hence, λ(τ1) is also asymptotically identifiable. Lastly, since ψ̃(τ1) and ψ̃(τ2) are asymptotically identifiable

(assumption D), and since ψ = ψ̃ · (1 − E), we conclude that ψ(τ1) and ψ(τ2) are also asymptotically

identifiable.

S.1.7 Infinitesimally short concentrated sampling attempts

From a numerical perspective, it might be more practical to describe very short CSAs as separate instan-

taneous sampling processes with designated parameters (e.g., the time of the CSA and the probability of

sampling a lineage during the CSA), rather than trying to approximate CSAs as very sharp peaks in ψ. The

resulting model structure would then resemble the one described previously by Stadler et al. [2]. This is also

the approach taken in the R package castor when fitting BDS models to timetrees: CSAs are parameterized

separately from Poissonian sampling [4]. Formally, one can derive the corresponding likelihood starting

from the BDS likelihood introduced earlier (Eqs. (1) or (4)) by considering a modified sampling rate of the

form:

ψ = ψ +
m∑

k=1

wkδ(τ − sk), (63)

where δ is the Dirac distribution, m is the number of CSAs, sk is the age of the k-th CSA (0 ≤ s1 < .. <

sm ≤ τor), wk := − ln(1−ρk) is a weight, ρk ∈ (0, 1] is the sampling probability during the k-th CSA and ψ

is the “background” (Poissonian) sampling rate outside of the CSAs. For a derivation of the corresponding

likelihood of a bifurcating timetree in terms of λ, µ, ψ, the sk and the ρk see [1]. For convenience, we

provide the likelihood below using the notation of the present manuscript. We denote by Nk the number of

tips sampled during and due to the k-th CSA, and by nk the number of lineages “crossing” over sk in the

timetree. The likelihood density of the tree, when conditioned on the age of the origin τor and the survival

of at least one lineage, is then given by:

Lor =
Φm(τor)

1 − E(τor)

n−1∏

i=1

λ(xi)Φmxi
(xi)

m∏

k=1

[(1 − ρk)Φk−1(sk)]nk ρ
Nk

k

n∏

j=1

ψ(yj)

Φmyj
(yj)

, (64)
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where as before E(τ) is the probability that a lineage alive at age τ is not included in the timetree, mτ is the

largest possible integer for which smτ
≤ τ , and Φ0, .., Φm are the sub-flows [3] between CSAs, defined as:

Φk(τ) := exp

[
∫

τ

sk

[2λ(s)E(s) − λ(s) − µ(s) − ψ(s)] ds

]

, k = 0, .., m, (65)

where for notational simplicity we defined s0 := 0. Note that for each k = 0, .., m the probability E satisfies

within the age interval [sk, sk+1) the differential equation:

dE

dτ
= −(λ + µ + ψ)E + λE2 + µ, (66)

with initial condition E(sk) = E(s−

k ) · (1 − ρk) and E(0−) = 1. Similarly, one can derive the likelihood of

a bifurcating timetree conditioned on the age of the tree’s root τr, i.e., a splitting occurring at age τr and the

eventual sampling of both child lineages:

Lr =
Φm(τr)

λ(τr) · (1 − E(τr))2

n−1
∏

i=1

λ(xi)Φmxi
(xi)

m
∏

k=1

[(1 − ρk)Φk−1(sk)]nk ρ
Nk

k

n
∏

j=1

ψ(yj)

Φmyj
(yj)

. (67)

S.2 Why common model selection methods cannot resolve congruencies

In this section we clarify why model selection methods that do not integrate additional independent informa-

tion and are entirely based on parsimony principles, such as AIC [5], BIC [6] or regularization [7], are not

suitable for resolving model congruencies.

S.2.1 General considerations (big picture)

Parsimony-based model selection methods such as AIC, BIC and regularization essentially penalize excessive

model complexity and are designed to prevent overfitting to finite datasets, i.e., to avoid inferring spurious

complexities when the data at hand can also be adequately explained by simpler models. Indeed, it is common

for multiple models to explain a dataset similarly well and in this case it is prudent to select the model with

fewer free parameters since this tends to decrease the prediction error. These approaches do not, by any

means, guarantee or even suggest that for any given dataset the selected (simpler) model is the one closest

to the truth, as is often erroneously assumed. These methods merely constitute a methodological principle

for gradually and conservatively choosing more complex models as new data appear, under the presumption

that as new data accumulate the selected models will eventually converge towards the truth.

When modelling pathogen epidemics, however, one must decide between congruent scenarios with dif-

fering levels of complexity, and no phylogenetic data, no matter how large, can distinguish between their

proximity to the truth. In fact, all scenarios within a congruence class generate phylogenies with the same

probability distribution, and hence they also have identical expected “prediction errors” (which, for exam-

ple, AIC was designed to minimize). Hence, merely selecting the simpler model will almost always lead

to an erroneous scenario, no matter how much sequence data we add. The very promise of conventional

parsimony-based model selection — that selected models eventually converge to the truth as one adds more

data — simply does not hold in this case.

One may of course compare scenarios belonging to different congruence classes since these will generally
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have different likelihoods for a particular dataset, and will certainly be distinguishable as the size of the dataset

becomes very large. However, this does not solve the problem at hand, since one is not really selecting the

best model for the data but in fact merely the best congruence class. Even if one of the candidate scenarios

in the candidate set is entirely adequate for explaining the data at hand, or in the extreme case, is in the exact

same congruence class as the true historical epidemiological dynamics, it does not follow that this scenario

will resemble, even qualitatively, the true historical dynamics.

In conclusion, model selection methods that do not integrate additional independent information can at

most be used to find a congruence class that "most efficiently" reproduces the data, or that has the lowest

prediction error. In that sense, fitting congruence classes (e.g., by directly fitting pulled variables) is a parsi-

monious approach towards describing a phylogenetic dataset, while fitting full birth-death-sampling models

adds redundant complexity that cannot possibly be identified using phylogenetic inference alone.

S.2.2 Regularization

Let us consider specifically the example of fitting piecewise linear (or piecewise constant) profiles for λ, µ and

ψ on a grid over time, combined with a regularization approach that penalizes excessive oscillations or exces-

sively large rate estimates (an example being Tikhonov regularization [8, 9]). To see why such an approach

cannot possibly resolve model congruencies, suppose that a specific epidemiological history occurred, and

consider the hypothetical limit where a phylogeny generated by that epidemic becomes infinitely large while

the considered resolution of the fitted profiles (i.e., the number of grid points) remains fixed. In the absence of

model congruencies, i.e., in typical inverse problems where regularization is commonly applied, one would

expect that the fitted profiles would eventually approach the true historical profiles, provided of course that

the grid resolution is high enough to approximately capture the true historical profiles. But this is clearly not

the case here. Indeed, in the limit of an infinitely large phylogeny regularization becomes irrelevant, since

for any given regularization parameter (also known as “smoothing parameter”) minimizing deviations from

the data becomes infinitely more important than reducing the regularization penalties; in other words, for

very large trees regularized profile fitting becomes equivalent to maximum-likelihood fitting. As we have

demonstrated using simulations (Supplemental Figs. S1 and S2), maximum-likelihood-fitted profiles can

be completely wrong even when using massive phylogenies with tens of thousands of tips and for relatively

simple epidemiological histories. The situation can only be worse for smaller datasets.

S.2.3 AIC and BIC

Alternatively, let us consider the example of fitting various functional forms for λ, µ and ψ via maximum-

likelihood, with the “best” functional form being selected using AIC [5] or BIC [6]. For any given choice of

functional forms, the maximum-likelihood-fitted model will a priori tend to be the one closest to the congru-

ence class of the true epidemiological history, rather than the true epidemiological history itself. Choosing

the functional forms that minimize AIC or BIC would only yield a model that balances the number of pa-

rameters against the goodness of fit to the congruence class, but not against the goodness of fit to the true

epidemiological history. There is little reason to expect that the fitted model selected via AIC or BIC will

happen to actually be close to the true history, even for massive datasets (examples in Supplemental Figs. S1

and S2, as well as in Supplement S.3). The situation can only be worse for small datasets.
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S.3 Statistical evaluation of multiple simulated scenarios

In the following we describe our statistical analysis of models fitted to multiple trees from simulated epi-

demiological BDS scenarios (overview of results in Supplemental Figs. S17, S19, S18, S20). All rates are

given in units yr−1. All simulations were run for 10 years, and only those that generated trees with 500–50

000 tips were kept. We considered two different classes of BDS scenarios. In the first class (henceforth

“exponential”), λ (and similarly µ and ψ) was of the general form:

λ(t) = A + B · eαt, (68)

where t is time and A, B and α are parameters chosen randomly as follows. Denote ts = 0 the start and

te = 10 yr the end of a simulation. We randomly and uniformly chose λ(ts) and λ(te) between 1 and

10, and randomly and uniformly chose α in [−0.5, −0.1] ∪ [0.1, 0.5]. Based on these three constraints, we

algebraically determined the appropriate A and B. A similar approach was taken for constructing µ and

ψ, with the difference that we randomly and uniformly chose each of the ratios µ(ts)/λ(ts) and µ(te)λ(te)
between 0.1 and 1, and randomly chose each of ψ(ts) and ψ(te) between 0.01 and 1 (uniformly on a loga-

rithmic scale). For any particular choice of λ, µ and ψ, we simulated a tree for 10 years using the function

generate_tree_hbds in the R package castor v1.6.7 [4]. If the resulting tree had too few tips (<500) or

too many tips (>50 000), we chose an entirely new set of λ, µ and ψ and repeated the simulation until obtain-

ing an acceptable tree. In the 2nd class (henceforth “OU”) the time-profile for λ (and similarly µ and ψ) was

generated according to an Ornstein-Uhlenbeck stochastic process [10]. This approach was chosen in order to

cover a wide range of epidemiological scenarios with realistic temporal complexity. An Ornstein-Uhlenbeck

process is characterized by its stationary or asymptotic expectation (λex), its stationary or asymptotic stan-

dard deviation (λdev) and its decay rate α. We chose the decay rate randomly and uniformly between 0.05

and 0.2, the stationary expectation λex randomly and uniformly between 1 and 10, and fixed the stationary

standard deviation to λdev = 0.5 · λex. The actual profile λ was then generated randomly according to the

Ornstein-Uhlenbeck process evaluated at 6-month intervals, restricted (capped) to above 0.1 · λex, and lin-

early interpolated between points. A similar approach was taken for constructing µ and ψ, with the difference

that for µ we chose the stationary expectation µex randomly and uniformly between 0.1 ·λex and λex, and for

ψ we chose the stationary expectation ψex randomly between 0.01 and 1 (uniformly on a logarithmic scale).

Similarly to the exponential scenarios, we simulated a tree for 10 years under a OU scenario using the func-

tion generate_tree_hbds, and repeated the process until a tree comprising between 500 and 50000 tips

was obtained. In total we generated 100 trees from exponential scenarios and 100 trees from OU scenarios.

To each generated tree we fitted a BDS skyline model (i.e., with piecewise constant λ, µ and ψ) and

a BDS model with piecewise-linear λ, µ and ψ, via maximum-likelihood using the castor function

fit_hbds_model_on_grid. Fitting was done agnostically of the true scenario used in the simulations, ex-

cept for the constraint that the present-day ψ was fixed to its true value to account for previously known iden-

tifiability issues in BDS skyline models [2]. To avoid local non-global likelihood maxima, we repeated the

fitting using 100 random starting points (option Ntrials=100). The grid points were placed non-uniformly

so that their density was roughly proportional to the square root of the tree’s LTT, using the castor func-

tion get_inhomogeneous_grid_1D; this was done so that points tend to be concentrated in regions with

higher information content. The best grid size was chosen according to the AIC [5]. Since in almost all cases

the best fitted piecewise linear model had a better (lower) AIC value than the best fitted skyline model, we

henceforth focused on piecewise linear models for simplicity. To avoid erroneous parameter estimates stem-

ming from bad model fits, we focused on those trees where the best fitted piecewise linear model (henceforth

simply “fitted model”) adequately explained the input tree, based on the same Kolmogorov-Smirnov tests for

the node ages, tip ages and edge lengths described in the main article (implemented in the castor function
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model_adequacy_hbds). In total we thus considered 92 exponential and 66 OU simulations with adequate

model fits.

For every considered tree and every parameter (such as λ), we calculated the coefficient of determination

between the true profile and the fitted profile, R2, as follows:

R2 = 1 −

N
∑

i=1

(λ(ti) − λ̂(ti))
2

N · V(λ)
,

(69)

where t1, .., tN is a fine time grid, λ is the true birth rate, λ̂ is the estimated birth rate, andV(λ) is the variance

of the true birth rate (evaluated on the same time grid t1,..,tN ). Hence, a negative R2 corresponds to a worse

model fit than if one just used the mean as a prediction. We calculated the mean modulus of the normalized

error (MMNE) as follows:

MMNE =
1

N

N
∑

i=1

∣

∣

∣
λ(ti) − λ̂(ti)

∣

∣

∣

E(λ)
, (70)

where E(λ) is the mean value of the true birth rate. To calculate the linear trend of a model parameter (such

as λ) over time, we used least-squares linear regression with an intercept, applied to the true or estimated

profile of the parameter. The R2, MMNE and true and estimated linear trends of selected model parameters

for all considered simulations are shown in Supplemental Figs. S17 (exponential) and S19 (OU). Specific

examples of fitted Re are shown in Supplemental Figs. S18 and S20. As can be seen, the vast majority of fitted

models poorly reconstructed the true epidemiological scenario, including in particular the Re. However, the

fitted models did generally come close to the true scenario’s congruence class, as seen from the accurately

reconstructed deterministic branching and sampling densities (β̃ and σ̃).

S.4 Overview of computer code

This section provides an overview of computational tools developed as part of this manuscript, and publicly

available in the R package castor v1.6.5 [4], for working with BDS models and congruencies. The functions

described below have been designed with efficiency in mind, and can typically scale well to phylogenies with

hundreds of thousands of tips. For detailed instructions consult the castor user manual.

generate_tree_hbds: Generate a random timetree according to a time-dependent BDS model with arbitrary

rates λ, µ, ψ through time. The rates are specified as piecewise linear curves (or quadratic splines, or cubic

splines) on a discrete time grid. By choosing a sufficiently fine time grid, any arbitrary functional forms can

in principle be accommodated to arbitrary accuracy.

simulate_deterministic_hbds: Simulate a time-dependent BDS model with arbitrary rates λ, µ, ψ through

time, in the deterministic limit (i.e., use differential equations rather than a stochastic process). This function

can be used to calculate various alternative parameters of a BDS model, such as the Re, the removal rate δ,

the sampling proportion S, the LTT, the pulled birth rate λ̃ and so on. In particular, this function can be used

to check if two BDS models are congruent, by comparing their pulled birth rate (λ̃) and event density (λψ).

fit_hbds_model_on_grid: Fit a time-dependent BDS model to a timetree via maximum-likelihood. The λ,

µ and ψ can be assumed to be either piecewise constant, piecewise linear, quadratic splines or cubic splines
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defined on a discrete time grid; the values of these parameters are thus fitted at each grid point. This function

uses parametric bootstrapping to calculate confidence intervals in the estimated parameters.

fit_hbds_model_parametric: Fit a BDS model to a timetree via maximum-likelihood. The profiles of λ,

µ and ψ are described by user-specified functions that depend on a finite number of scalar parameters to

be fitted. This function can thus be used to fit arbitrary functional forms. The function uses parametric

bootstrapping to calculate confidence intervals in the estimated parameters.

congruent_hbds_model: Construct new BDS models by providing information on the congruence class

(such as the pulled birth rate) and any additional constraints needed for identifying a specific member of the

congruence class. This function can be used to explore the set of models congruent to some reference model.

It was used, for example, to generate the scenarios in Fig. 1 in the main article.

model_adequacy_hbds: Test if a given BDS model (or a distribution of BDS models) adequately describes

a given timetree in terms of various statistics. For example, this function can perform a Kolmogorov-Smirnov

test to examine if the distribution of node ages (or tip ages, or edge lengths) in the timetree deviate significantly

from those expected under the model(s). Note that, due to the existence of model congruencies, even if a

BDS model adequately describes a given timetree this does not mean that the model is even close to the

original BDS scenario that generated the tree. If a BDS model adequately describes a timetree, it merely

means that any of the myriad of members of the model’s congruence class would generate trees similar to

the tree at hand.

S.5 On the use of occurrence data with phylogenies

While additional data is generally useful for increasing estimation accuracy, we would like to clarify our

thoughts on the potential use of “occurrence” data, commonly encountered in epidemiology, in combination

with molecular/phylogenetic data, for resolving the identifiability issues uncovered in this paper. Specifically,

we caution that the addition of occurrence data, i.e., reports of positive cases detected at specific times without

sequencing [11–13], need not necessarily resolve congruencies between epidemiological scenarios, if the rate

at which such detections occur (denoted ϑ) is a priori unknown and time-dependent. The reason is that such

data contain a strict subset of the information that would be contained in detected cases with sequences (and

thus included in the phylogeny), and hence phylogenetic data combined with occurrence data can at most

yield as much information as a larger phylogenetic dataset in which each detected case is also sequenced. As

we have shown in this paper, in the absence of further information or constraints, the rates λ, µ and ψ cannot

be reconstructed from phylogenetic data alone. Thus, in the absence of further information or constraints, λ,

µ, ψ, ϑ or ψ + ϑ cannot possibly be reconstructed using phylogenetic and occurrence data alone.
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Figure S1: Limits to reconstructing an epidemic’s dynamics via maximum-likelihood (scenario 1). (A–F)

Maximum-likelihood estimates (grey dashed curves) of the birth rate (λ), death rate (µ), sampling rate (ψ), effec-

tive reproduction ratio (Re), removal rate (δ = µ+ψ) and sampling proportion (S = ψ/(µ+ψ)) over time, based on a

timetree with 175,440 tips simulated under a hypothetical birth-death-sampling scenario (blue continuous curves) and

without any additional constraints. All rates are in day−1. Model adequacy was confirmed using predictive posterior

simulations with multiple tests. Observe the poor agreement between the estimated and true profiles. (G) Deterministic

LTT (dLTT) of the fitted model, compared to the true scenario’s dLTT and the LTT of the timetree (note that all curves

are nearly identical). (H–N) Similar to A–G, but for a model fitted to the same data as in A–G while fixing the sampling

rate to its true profile. Observe the improved agreement between estimated and true profiles. (O–U) BDS parameters

and dLTT for a model fitted to a timetree with 172,888 tips, generated under nearly the same BDS scenario as in A–G

but with 3 added concentrated sampling attempts (CSAs, times indicated by vertical arrows). No additional constraints

were used during fitting.
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Figure S2: Limits to reconstructing an epidemic’s dynamics via maximum-likelihood (scenario 2). (A–F)

Maximum-likelihood estimates (grey dashed curves) of the birth rate (λ), death rate (µ), sampling rate (ψ), effec-

tive reproduction ratio (Re), removal rate (δ = µ + ψ) and sampling proportion (S = ψ/(µ + ψ)) over time, based on

a timetree with 55,934 tips simulated under a hypothetical birth-death-sampling scenario (blue continuous curves) and

without any additional constraints. All rates are in day−1. Model adequacy was confirmed using predictive posterior

simulations with multiple tests. Observe the poor agreement between the estimated and true profiles. (G) Deterministic

LTT (dLTT) of the fitted model, compared to the true scenario’s dLTT and the LTT of the timetree (note that all curves

are nearly identical). (H–N) Similar to A–G, but for a model fitted to the same data as in A–G while fixing the sampling

rate to its true profile. Observe the improved agreement between estimated and true profiles. (O–U) BDS parameters

and dLTT for a model fitted to a timetree with 51,619 tips, generated under nearly the same BDS scenario as in A–G

but with 3 added concentrated sampling attempts (CSAs, times indicated by vertical arrows). No additional constraints

were used during fitting.
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Figure S3: Phylogenetic trees simulated for the BEAST analysis. (A–B) Phylogenetic trees simulated under two

hypothetical epidemiological scenarios, for Bayesian inference. (C, E) Histograms of tip ages and node ages in tree A

(bar heights are in arbitrary units). (D, F) Histograms of tip ages and node ages in tree B (bar heights are in arbitrary

units).
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Figure S4: Choosing rate shift times for the BEAST simulation analysis. The distribution of sampling dates in the

simulated trees informed the timing of specified rate shifts in fitted skyline models, to partially equalize the number of

samples informing each interval and to ensure that the earliest interval had greater than zero samples.
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Figure S5: Reconstructing an epidemic’s dynamics in a Bayesian framework (BEAST2 run U1). (A–F) Posterior

distributions of the birth rate (λ), death rate (µ), sampling rate (ψ), effective reproduction ratio (Re), removal rate

(δ = µ + ψ) and sampling proportion (S = ψ/(µ + ψ)), as inferred from 590 sequences simulated under a hypo-

thetical birth-death-sampling scenario (blue curves) using BEAST2 (tree in Supplemental Fig. S3A). Black curves

show posterior median, dark and light shades represent equal-tailed 50%- and 95%-credible intervals of the posterior.

All rates are in yr−1. The present-day sampling proportion was fixed to its true value during fitting, to account for

previously reported identifiability issues [2]. Model adequacy was confirmed using predictive posterior simulations

with multiple test statistics. Note the poor agreement between the predicted and true profiles. (G–I) Distributions of

the deterministic lineages-through-time curves (normalized to unit area under the curve), branching densities (λ̃) and

sampling densities (ψ̃), corresponding to the same posterior scenarios as in A–F, compared to their true profiled (blue

curves). The relatively good agreement between the inferred and true profiles shows that BEAST2 closely reconstructed

the epidemiological history’s congruence class but not the epidemiological history itself. See Supplemental Fig. S10

for the corresponding posterior distributions of the molecular evolution parameters.
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Figure S6: Reconstructing an epidemic’s dynamics in a Bayesian framework (BEAST2 run F1). (A–F) Posterior

distributions of the birth rate (λ), death rate (µ), sampling rate (ψ), effective reproduction ratio (Re), removal rate (δ =
µ+ψ) and sampling proportion (S = ψ/(µ+ψ)), as inferred from 590 sequences simulated under a hypothetical birth-

death-sampling scenario (blue curves) using BEAST2 (tree in Supplemental Fig. S3A). Black curves show posterior

median, dark and light shades represent equal-tailed 50%- and 95%-credible intervals of the posterior. All rates are in

yr−1. The present-day sampling proportion as well as the removal rate (all intervals) were fixed to their true values

during fitting. Model adequacy was confirmed using predictive posterior simulations with multiple test statistics. Note

the much better agreement with the true profiles, compared to the situation where the removal rate was not fixed

(Supplemental Fig. S5). (G–I) Distributions of the deterministic lineages-through-time curves (normalized to unit area

under the curve), branching densities (λ̃) and sampling densities (ψ̃), corresponding to the same posterior scenarios

as in A–F, compared to their true profiled (blue curves). See Supplemental Fig. S11 for the corresponding posterior

distributions of the molecular evolution parameters.
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Figure S7: Reconstructing an epidemic’s dynamics in a Bayesian framework (BEAST2 run U2). (A–F) Posterior

distributions of the birth rate (λ), death rate (µ), sampling rate (ψ), effective reproduction ratio (Re), removal rate (δ =
µ+ψ) and sampling proportion (S = ψ/(µ+ψ)), as inferred from 540 sequences simulated under a hypothetical birth-

death-sampling scenario (blue curves) using BEAST2 (tree in Supplemental Fig. S3B). Black curves show posterior

median, dark and light shades represent equal-tailed 50%- and 95%-credible intervals of the posterior. All rates are

in yr−1. The present-day sampling proportion was fixed to its true value during fitting, to account for previously

reported identifiability issues [2]. Model adequacy was confirmed using predictive posterior simulations with multiple

test statistics. Note the poor agreement between the predicted and true profiles. (G–I) Distributions of the deterministic

lineages-through-time curves, branching densities (λ̃) and sampling densities (ψ̃), corresponding to the same posterior

scenarios as in A–F, compared to their true profiled (blue curves). The relatively good agreement between the inferred

and true profiles shows that BEAST2 closely reconstructed the epidemiological history’s congruence class but not the

epidemiological history itself. See Supplemental Fig. S12 for the corresponding posterior distributions of the molecular

evolution parameters.
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Figure S8: Reconstructing an epidemic’s dynamics in a Bayesian framework (BEAST2 run F2). (A–F) Posterior

distributions of the birth rate (λ), death rate (µ), sampling rate (ψ), effective reproduction ratio (Re), removal rate (δ =
µ+ψ) and sampling proportion (S = ψ/(µ+ψ)), as inferred from 540 sequences simulated under a hypothetical birth-

death-sampling scenario (blue curves) using BEAST2 (tree in Supplemental Fig. S3B). Black curves show posterior

median, dark and light shades represent equal-tailed 50%- and 95%-credible intervals of the posterior. All rates are in

yr−1. The present-day sampling proportion and the removal rate (all time intervals) were fixed to their true value during

fitting. Model adequacy was confirmed using predictive posterior simulations with multiple test statistics. Note the

good agreement between the predicted and true profiles, made possible by fixing one of the model’s parameters. (G–I)

Distributions of the deterministic lineages-through-time curves (normalized to unit area under the curve), branching

densities (λ̃) and sampling densities (ψ̃), corresponding to the same posterior scenarios as in A–F, compared to their

true profiled (blue curves). See Supplemental Fig. S14 for the corresponding posterior distributions of the molecular

evolution parameters.
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Figure S9: Reconstructing an epidemic’s dynamics in a Bayesian framework (BEAST2 run C2). (A–F) Posterior

distributions of the birth rate (λ), death rate (µ), sampling rate (ψ), effective reproduction ratio (Re), removal rate

(δ = µ + ψ) and sampling proportion (S = ψ/(µ + ψ)), as inferred from 540 sequences simulated under a hypothet-

ical birth-death-sampling scenario (blue curves) using BEAST2 (tree in Supplemental Fig. S3B). Black curves show

posterior median, dark and light shades represent equal-tailed 50%- and 95%-credible intervals of the posterior. All

rates are in yr−1. The removal rate was constrained to be constant over time. The present-day sampling proportion was

fixed to its true value during fitting, to account for previously reported identifiability issues [2]. Model adequacy was

confirmed using predictive posterior simulations with multiple test statistics. (G–I) Distributions of the deterministic

lineages-through-time curves (normalized to unit area under the curve), branching densities (λ̃) and sampling densi-

ties (ψ̃), corresponding to the same posterior scenarios as in A–F, compared to their true profiled (blue curves). See

Supplemental Fig. S13 for the corresponding posterior distributions of the molecular evolution parameters.
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Figure S10: Posterior distributions of molecular evolution parameters (BEAST2 run U1). Posterior distributions

of (A) the mean molecular clock rate, (B) the transition/transversion ratio κ, (C) the shape parameter of the discretized

gamma distribution of substitution rates, (D) the height of the tree or root age, and (E–H) the stationary frequencies of

nucleotide bases A,C,G,T, as inferred from 590 sequences simulated under a hypothetical birth-death-sampling scenario

using BEAST2 (epidemiological parameters in Supplemental Fig. S5, tree in Supplemental Fig. S3A). Histogram bars

show frequencies. Blue vertical lines show the true values used in the simulation.
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Figure S11: Posterior distributions of molecular evolution parameters (BEAST2 run F1). Posterior distributions

of (A) the mean molecular clock rate, (B) the transition/transversion ratio κ, (C) the shape parameter of the discretized

gamma distribution of substitution rates, (D) the height of the tree or root age, and (E–H) the stationary frequencies of

nucleotide bases A,C,G,T, as inferred from 590 sequences simulated under a hypothetical birth-death-sampling scenario

using BEAST2 (epidemiological parameters in Supplemental Fig. S6, tree in Supplemental Fig. S3A). Histogram bars

show frequencies. Blue vertical lines show the true values used in the simulation.
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Figure S12: Posterior distributions of molecular evolution parameters (BEAST2 run U2). Posterior distributions

of (A) the mean molecular clock rate, (B) the transition/transversion ratio κ, (C) the shape parameter of the discretized

gamma distribution of substitution rates, (D) the height of the tree or root age, and (E–H) the stationary frequencies of

nucleotide bases A,C,G,T, as inferred from 540 sequences simulated under a hypothetical birth-death-sampling scenario

using BEAST2 (epidemiological parameters in Supplemental Fig. S7, tree in Supplemental Fig. S3B). Histogram bars

show frequencies. Blue vertical lines show the true values used in the simulation.
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Figure S13: Posterior distributions of molecular evolution parameters (BEAST2 run C2). Posterior distributions

of (A) the mean molecular clock rate, (B) the transition/transversion ratio κ, (C) the shape parameter of the discretized

gamma distribution of substitution rates, (D) the height of the tree or root age, and (E–H) the stationary frequencies of

nucleotide bases A,C,G,T, as inferred from 540 sequences simulated under a hypothetical birth-death-sampling scenario

using BEAST2 (epidemiological parameters in Supplemental Fig. S9, tree in Supplemental Fig. S3B). Histogram bars

show frequencies. Blue vertical lines show the true values used in the simulation.
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Figure S14: Posterior distributions of molecular evolution parameters (BEAST2 run F2). Posterior distributions

of (A) the mean molecular clock rate, (B) the transition/transversion ratio κ, (C) the shape parameter of the discretized

gamma distribution of substitution rates, (D) the height of the tree or root age, and (E–H) the stationary frequencies of

nucleotide bases A,C,G,T, as inferred from 540 sequences simulated under a hypothetical birth-death-sampling scenario

using BEAST2 (epidemiological parameters in Supplemental Fig. S8, tree in Supplemental Fig. S3B). Histogram bars

show frequencies. Blue vertical lines show the true values used in the simulation.
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Figure S15: MCMC traces of molecular evolution and epidemiological parameters (BEAST2 run U1). MCMC

trace plots of molecular evolution and epidemiological (birth-death-sampling skyline model) parameters generated by

BEAST2 (2 independent MCMC chains), based on the sequences simulated under the 1st hypothetical birth-death-

sampling scenario (epidemiological parameters in Supplemental Fig. S5, tree in Supplemental Fig. S3A). Samples are

shown after burn-in removal and after thinning of each MCMC chain, and after concatenating the two MCMC chains.
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Figure S16: MCMC traces of molecular evolution and epidemiological parameters (BEAST2 run U2). MCMC

trace plots of molecular evolution and epidemiological (birth-death-sampling skyline model) parameters generated by

BEAST2 (2 independent MCMC chains), based on the sequences simulated under the 2nd hypothetical birth-death-

sampling scenario (epidemiological parameters in Supplemental Fig. S7, tree in Supplemental Fig. S3B). Samples are

shown after burn-in removal and after thinning of each MCMC chain, and after concatenating the two MCMC chains.

34



C sampling proportionremoval rateB

mean R²:
-2831 mean R²: -41732

Nevents (x1000) Nevents (x1000)

D
deterministic

branching density

Nevents (x1000)

effective repr. ratioA

mean R²: -721

Nevents (x1000)

E
deterministic

sampling density

Nevents (x1000)

mean R²: 0.96 mean R²: 0.98

H sampling proportionremoval rateG Ieffective repr. ratioF J

R
2

mean MMNE: 1.8 mean MMNE: 6.9mean MMNE: 0.84 mean MMNE: 0.064 mean MMNE: 0.064

M
M

N
E

deterministic

branching density

deterministic

sampling density

M sampling proportionremoval rateL Neffective repr. ratioK O

R²: -0.042
R²: -0.15R²: 0.069 R²: 0.99 R²: 0.99

e
s
ti
m

a
te

d
 t

re
n

d

deterministic

branching density

deterministic

sampling density

true trend true trend true trend true trend true trend

R sampling proportionremoval rateQ Seffective repr. ratioP T

R²: -0.026

R²: -0.31

R²: 0.092

R²: 0.998 R²: 0.998

e
s
ti
m

a
te

d
 m

e
a
n

deterministic

branching density

deterministic

sampling density

true mean true mean true mean true mean true mean

asymptotically estimateable parametersnon-asymptotically estimateable parameters

Figure S17: Estimation accuracies using 92 simulated trees (exponential scenarios). Figures summarize the results

of fitting BDS models with piecewise-linear profiles for λ, µ and ψ to simulated trees, via maximum likelihood and

choosing the grid size based on AIC. In each figure, each point corresponds to a different tree and its best fitted model.

Trees were simulated under random epidemiological scenarios in which each λ, µ and ψ had simple exponential forms

over time. Each tree comprised between 500 and 50,000 tips and was adequately described by the fitted model (accord-

ing to Kolmogorov-Smirnov tests for the distribution of node ages, tip ages and edge lengths, P > 0.05 in all cases).

Note that BDS skyline models were also fitted to the same trees, but almost always achieved a worse AIC than the

piecewise linear models. (A) Coefficient of determination (R2, vertical axis) for the estimated effective reproduction

ratio Re compared to the true Re. Cases with R2 below -20 are not shown. The average R2 across all 92 trees is written

in the figure. The horizontal axis denotes the total number of events in the tree (thousands of tips + branching points).

(B-E) Similar to (A) and for the same trees and models, but showing the R2 of the fitted removal rate (δ), sampling

proportion (S), deterministic branching density (β̃) and deterministic sampling density (σ̃). Note the much higher R2

for β̃ and σ̃, consistent with the fact that these are asymptotically estimateable from phylogenetic data. (F–J) Similar

to A–E, but showing the mean modulus of the normalized error (MMNE) of the fitted parameters on the vertical axis

instead of their R2. MMNEs above 20 are not shown. The average MMNE across all 92 trees is written in the figure.

Again, note the much lower MMNE for β̃ (I) and σ̃ (J). (K) Estimated linear trend (vertical axis) of Re, compared

to its true linear trend (horizontal axis), for the same fitted models as in A. Units are 1/year. The diagonal is shown

for reference; the R2 of the diagonal is written in the figure (a value of 1 would mean a perfect agreement between

estimated and true trends). Linear trends were calculated from the fitted and true Re profiles using linear regression

with intercept. (L–O) Similar to K, but for other model parameters. (P–T) Similar to K–O, but comparing the true

versus estimated mean parameter values. The diagonal is shown for reference; the R2 of the diagonal is written in the

figure. For concrete simulation examples see Supplemental Fig. S18. Methods details in Supplement S.3.
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Figure S18: Examples of Re fitted to simulated trees (4 exponential scenarios). (A) Estimated effective reproduc-

tion ratio Re over time (dashed curve), estimated by fitting a BDS model with piecewise-linear profiles for λ, µ and ψ to

a tree generated under a hypothetical epidemiological scenario as in Supplemental Fig. S17. The true Re is shown for

comparison (continuous curve). The number of tips in the tree is written in the figure. (B–D) As in A, but for different

simulations. (E–H) Estimated and true deterministic branching densities (β̃), corresponding to the model fits in A–D.

(I–L) Estimated and true deterministic sampling densities (σ̃), corresponding to the model fits in A–D. Note the good

agreement between the estimated and true β̃ and σ̃, and the general bad agreement between the estimated and true Re,

showing that the fitted models accurately inferred the true scenario’s congruence class but not the true scenario itself.

The fitted models adequately described the trees (i.e., could not be rejected), based on Kolmogorov-Smirnov tests for

the distribution of node ages, tip ages and edge lengths, (P > 0.05 in all cases). Methods details in Supplement S.3.
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Figure S19: Estimation accuracies using 66 simulated trees (Ornstein-Uhlenbeck scenarios). Panels are as in

Supplemental Fig. S17, but for trees simulated under epidemiological scenarios with Ornstein-Uhlenbeck-type profiles

of λ, µ and ψ. For concrete simulation examples see Supplemental Fig. S20. Methods details in Supplement S.3.
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Figure S20: Examples of Re fitted to simulated trees (4 Ornstein-Uhlenbeck scenarios). (A) Estimated effective

reproduction ratio Re over time (dashed curve), estimated by fitting a BDS model with piecewise-linear profiles for λ,

µ and ψ to a tree generated under a hypothetical epidemiological scenario as in Supplemental Fig. S19. The true Re is

shown for comparison (continuous curve). The number of tips in the tree is written in the figure. (B–D) As in A, but for

different simulations. (E–H) Estimated and true deterministic branching densities (β̃), corresponding to the model fits

in A–D. (I–L) Estimated and true deterministic sampling densities (σ̃), corresponding to the model fits in A–D. Note

the good agreement between the estimated and true β̃ and σ̃, and the general bad agreement between the estimated and

true Re (including wrong trends and major spurious features), showing that the fitted models accurately inferred the

true scenario’s congruence class but not the true scenario itself. The fitted models adequately described the trees (i.e.,

could not be rejected), based on Kolmogorov-Smirnov tests for the distribution of node ages, tip ages and edge lengths,

(P > 0.05 in all cases). Methods details in Supplement S.3.
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Figure S21: HIV tree and LTT. (A) Maximum-posterior-probability HIV timetree sampled with BEAST2. (B)

Lineages-through-time (LTT) curve of the tree normalized to have unit area under-the-curve (blue curve), compared to

the normalized deterministic LTTs of the posterior skyline models (black curve shows median, dark and light shades

show 50% and 95% equal-tailed credible intervals).
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Figure S22: HIV sampled posteriors - probability densities. Probability densities of various epidemiological pa-

rameters according to the posterior model distribution sampled by BEAST2, in each of the 3 time intervals. Time

intervals cover the periods 0–4, 4–16 and ≥16 years before present.
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Figure S23: Posterior distributions of molecular evolution parameters (HIV). Histograms of various molecular

evolution parameters drawn from the posterior distribution using BEAST2, for the HIV dataset. Vertical bars depict

frequencies.
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Figure S24: MCMC traces of molecular evolution and epidemiological parameters (HIV). MCMC trace plots of

molecular evolution and epidemiological (birth-death-sampling skyline model) parameters generated by BEAST2, for

the HIV dataset (2 independent MCMC chains). Samples are shown after burn-in removal and after thinning of each

MCMC chain, and after concatenating the two MCMC chains.
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Table S1: Priors and other settings specified for the BEAST2 analysis of the simulated HIV timetrees. * denotes that

the prior parameters are in linear space (default is log).

Tree model BD skyline serial

Substitution model HKY+ I + G

Gamma categories 4

Clock model Strict molecular clock

Clock rate LN(mu=0.003, s=1)*

Reproductive number LN(mu=0, s=1.25); 4 intervals

Become uninfectious rate LN(mu=2, s=1.25)*; 1 or 4 intervals

Sampling proportion BETA(alpha=2, beta=2); 4 intervals

Rate change times 2, 4, 8 years before present

Proportion invariant BETA(alpha=2, beta=2)

Origin LN(mu=20, s=1.25)*

Frequency parameter UNIF(0-1), estimated

Gamma shape EXP(1, offset=0)

Kappa LN(mu=1, s=1.25)

Number of chains 2

Chain length 100–200 million

Sampling frequency 10 000
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Table S2: Priors and other settings specified for the BEAST2 analysis of the empirical HIV-1 data from Northern

Alberta. * denotes that the prior parameters are in linear space (default is log).

Tree model BD skyline serial

Substitution model bModelTest, Dirichlet (1, 1, 1, 1)

Clock model Uncorrelated log normal relaxed

Clock mean LN(mu=0.0035, s=0.001)*

Clock std.dev. Gamma(alpha=0.5396, beta=0.3819)

Reproductive number LN(mu=0, s=1.25); 3 intervals

Become uninfectious rate LN(mu=0, s=1.25); 3 intervals

Sampling proportion BETA(alpha=1, beta=100); 3 intervals

Rate change times 4, 16 years before most recent sample (2014)

Proportion invariant BETA(alpha=1, beta=4)

Origin LN(mu=25, s=1)*

Frequency parameter UNIF(0-1), estimated

Gamma shape EXP(1, offset=0)

Kappa LN(mu=1, s=1.25)

Number of chains 2

Chain length 500 million

Sampling frequency 10 000
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