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We consider the minimum norm interpolation problem in the �1(N) space, aiming at
constructing a sparse interpolation solution. The original problem is reformulated in the
pre-dual space, thereby inducing a norm in a related finite-dimensional Euclidean space.
The dual problem is then transformed into a linear programming problem, which can
be solved by existing methods. With that done, the original interpolation problem is
reduced by solving an elementary finite-dimensional linear algebra equation. A specific
example is presented to illustrate the proposed method, in which a sparse solution in the
�1(N) space is compared to the dense solution in the �2(N) space. This example shows
that a solution of the minimum norm interpolation problem in the �1(N) space is indeed
sparse, while that of the minimum norm interpolation problem in the �2(N) space is not.
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1. Introduction

Minimum norm interpolation in a Hilbert space is a classical research topic [8,
13]. In particular, minimum norm interpolation in the �2(N) space produces good
results in the sense of approximation. However, due to the roundness of the unit
ball of a Hilbert space such as �2(N), the resulting minimum norm interpolation
solution is normally represented by a dense vector, in the sense that a majority
of its components are nonzero. Dense vectors are less computationally efficient for
high dimensional problems. Thus for potential use in treating big data sets, we
prefer a sparse vector, in the sense that a majority of its components are zero, for
representing a minimum norm interpolation solution. For this purpose, we consider
minimum norm interpolation in the �1(N) space.

The choice of the �1 space is also motivated by recent exciting progress in signal
processing and machine learning. Compressed sensing [4, 9] based on the �1 norm
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has attracted much attention in recent application areas such as signal processing
and image processing. The use of the �1 norm in compressed sensing gives rise to
desirable sparsity in the resulting solutions [1]. Seeking sparse solutions in machine
learning leads to the introduction of reproducing kernel Banach spaces [22]. For
recent developments in reproducing kernel Banach spaces, the readers are referred
to [15, 16, 21]. Representer theorems for the solution of ill-posed linear inverse
problems are provided in [18], comparing the effects of �1 and �2 regularization. In
[17] a representer theorem is obtained in the general Banach space setting. Such
representer theorems enable a dramatic reduction in the dimension of the space
from which a data fitting solution needs to be sought.

The contribution of this paper is to furnish a method for solving the mini-
mum norm interpolation problem in �1 that determines a sparse solution. In this
method, we transform the minimum norm interpolation problem into two related
finite-dimensional problems, for which established solution methods exist. We first
reformulate the proposed minimum norm interpolation problem using a duality
argument. This process introduces a norm in a related finite-dimensional Euclidian
space. The associated dual extremal problem then takes the form of a basic linear
programming problem, namely, optimizing a linear function on a convex polytope.
There is a substantial literature on optimizing a linear function on a convex polytope
(see, for example, [12, 19]). Finally, a solution of the linear programming problem
enables the original interpolation problem to be reduced to an elementary equation
in finite-dimensional linear algebra. Again, this equation yields to well established
methods.

We organize this paper in five sections. In Sec. 2, we describe the minimum norm
interpolation problem in the �1(N) space, and show that it has a solution. We then
reformulate it via a Banach space duality argument in Sec. 3. We introduce in Sec. 4
a norm in a related finite-dimensional Euclidean space, and further reformulate the
dual problem as an equivalent linear programming problem. In Sec. 5, we leverage
the solution of the linear programming problem into a solution of the original
interpolation problem. Finally, in Sec. 6, we present an example of solving the
problem completely by using the proposed approach, and compare it to the Hilbert
space approach.

2. The �1 Interpolation Problem

In this section, we present the minimum �1 norm interpolation problem, which is the
principal subject of this paper. To frame it properly we review the classical Banach
spaces �1 and c0. We then argue that the interpolation problem has a solution under
natural conditions, to close the section.

We now introduce the main problem under investigation. By �1 := �1(N) we
mean the Banach space of real sequences x := (x1, x2, . . .) such that

‖x‖1 :=
∞∑

k=1

|xk| < ∞.
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The space c0 is the set of real sequences that are convergent to zero. Thus, for
a ∈ c0, we can write

a := (a1, a2, . . .)

and by definition

lim
k→∞

ak = 0.

The set c0 is clearly a linear space, and in fact it is a Banach space under the
supremum norm. That is, for a := (a1, a2, . . .) ∈ c0, we define

‖a‖∞ := sup{|ak| : k ∈ N}.
The scalar field is R. We observe that for an a ∈ c0, it holds that ‖a‖∞ < +∞. For
any x ∈ �1 and a ∈ c0, let us write

〈a,x〉 :=
∞∑

k=1

akxk.

Clearly, we have that

|〈a,x〉| ≤
∞∑

k=1

|akxk| ≤ ‖a‖∞‖x‖1 < +∞.

In other words, for any x ∈ �1 and a ∈ c0, the quantity 〈a,x〉 is well-defined.
We recall the notion of a continuous (or bounded) linear functional on c0. A

continuous linear functional on a Banach space X is a linear function λ : X �−→ R

that is continuous with respect to the metric topologies on X and R. The dual of
a Banach space X is the set of continuous linear functionals on that space. The
dual space, given the symbol X ∗, is a Banach space in its own right, endowed with
the norm

‖λ‖X ∗ = sup
{ |λ(x)|
‖x‖X : x 
= 0

}
.

For any x ∈ �1, the mapping

a �→ 〈a,x〉 (2.1)

induces a bounded linear functional on c0. More will be said about this situation
in the next section.

We now describe the minimum �1 norm interpolation problem. Let S :=
{a1, a2, . . . ,am} be a set of given sequences from c0, and let {y1, y2, . . . , ym} be
a set of real numbers. Consider the problem of finding x ∈ �1 such that the infi-
mum

mS := inf{‖x‖1 : 〈aj ,x〉 = yj , for all 1 ≤ j ≤ m} (2.2)

is achieved. Of course the existence of such a vector needs to be established, and
we address this matter below.

We first consider the linear independence assumption on the vectors of S. To
this end, we introduce an mth order semi-infinite matrix A whose rows are the
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members of S. The system of equations

〈aj ,x〉 = yj, 1 ≤ j ≤ m (2.3)

can be equivalently expressed in a matrix form as

Ax = y, (2.4)

where x is an infinite column vector representing an element of �1, and y is an
m-dimensional column vector. By elementary matrix algebra, there exist an m×m

permutation matrix P and an m × m lower triangular matrix L such that

PA = LU,

and U is in reduced echelon form. We may insist that L has unit entries along
the main diagonal, since it is a product of elementary matrices and a permutation
matrix. Then the system (2.4) can be transformed to

Ux = L−1Py.

If the vectors of S are linearly dependent, then the system could be inconsistent
(depending on the numbers yj), in which case there is no solution. In this situation,
there would be rows of all zeros in U, corresponding to nonzero entries in the
column matrix L−1Py. On the other hand, if the system is consistent, then by
discarding any rows of zeros in U, as well as the corresponding zero components
of the column vector L−1Py, we obtain an equivalent system where the rows of
the truncated U are linearly independent. We may therefore assume at the outset
that any superfluous vectors from S have been discarded, and thus S is linearly
independent and the system is consistent. This ensures that the infimum in (2.2)
is over a nonempty set. To rule out further trivialities, let us also assume that the
infimum in (2.2) is positive. This is to say that y is not the zero vector.

For convenience, let S denote the collection of vectors x in �1 satisfying the
system (2.3). Thus the extremal problem (2.2) could be written as

inf{‖x‖1 : x ∈ S }.
We write A for the closed linear span in c0 of the vectors of S. Let us show that
under the conditions described earlier, the infimum in (2.2) must be attained. A
proof of this result could be fashioned using the Banach–Alaoglu theorem. However,
since c0 is separable, the following elementary argument is made possible. It essen-
tially re-proves the Banach–Alaoglu theorem in the special case that the pre-dual
is separable.

Proposition 2.1. Let m be a positive integer. Suppose that S := {a1, a2, . . . ,am}
is a linearly independent set of sequences from c0, and {y1, y2, . . . , ym} is a set of
real numbers, not all zero. If the system (2.3) is consistent, then there exists x0 ∈ S

satisfying

‖x0‖1 = mS , (2.5)

where mS is defined by (2.2).
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Proof. We prove the claim by a “minimizing sequence” argument. Suppose that
{x(n)}∞n=1 is a sequence of vectors in �1 satisfying the system (2.3) such that

lim
n→∞ ‖x(n)‖1 = mS . (2.6)

The proof will be completed by first constructing the limit x0 of a subsequence of
the given minimizing sequence, showing that it is in �1, then verifying it satisfies
the system (2.3), and finally proving that x0 satisfies (2.5).

We first construct the element x0. By (2.6) the sequence {‖x(n)‖1}∞n=1 is
convergent, hence bounded, and let C be its supremum. We use the notation
x(n) := (x(n)

1 , x
(n)
2 , . . .) for the components of x(n). Then the real sequence (x(n)

1 )∞n=1

is bounded; by the Bolzano–Weierstrass theorem, there is a convergent subsequence.
Let this subsequence arise from the indices (n1,j)∞j=1, and let the x1 be the limit

of x
(n1,j)
1 as j tends to infinity. Having defined x1, x2, . . . , xk, and having selected

the indices (nk,j)∞j=1 for a subsequence of {x(n)}∞n=1, we observe that (x(nk,j)
k+1 )∞j=1

is a bounded real sequence. Hence this subsequence has a further subsequence,
with indices (nk+1,j)∞j=1, convergent to a limit xk+1. In this manner, a vector
x0 := (x1, x2, . . .) is specified.

We next verify that x0 is in �1. To this end, for any N ∈ N, we can choose ν(N)
sufficiently large such that nN, ν(N) > nN−1, ν(N−1), for all N ≥ 2, and

|xj | ≤ |x(nN,ν(N))

j | + 1
2j

, for all 1 ≤ j ≤ N.

Summing both sides of the above inequality leads to
N∑

j=1

|xj | ≤ ‖x(nN,ν(N))‖1 +
N∑

j=1

1
2j

.

This implies that

‖x0‖1 ≤ C + 1. (2.7)

That is, x0 ∈ �1.
We now show that x0 satisfies the system (2.3). To accomplish this, we establish

the weak∗ convergence of x(nN, ν(N)) to x. That is, for any a ∈ c0

lim
N→∞

〈a,x(nN,ν(N))〉 = 〈a,x0〉. (2.8)

For this purpose, we let ek denote the vector in �1 whose kth component is equal
to 1 and all other components are zero. By the construction of x0, for each k we
have that

lim
N→∞

〈ek,x(nN, ν(N))〉 = xk = 〈ek,x0〉.
The continuity of 〈·, ·〉 then allows for

lim
N→∞

〈
K∑

k=1

akek,x(nN, ν(N))

〉
=

〈
K∑

k=1

akek,x0

〉
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for any linear combination
∑K

k=1 akek. Now, suppose that limK→∞
∑K

k=1 akek = a
in the norm topology of c0. Let ε > 0 be chosen. There exists an index K sufficiently
large such that ∥∥∥∥∥a−

K∑
k=0

akek

∥∥∥∥∥
∞

≤ ε

2(2C + 1)
. (2.9)

With K fixed, there exists an index n sufficiently large such that whenever N ≥ n,∣∣∣∣∣
〈

K∑
k=1

akek,x(nN,ν(N)) − x0

〉∣∣∣∣∣ ≤ ε

2
.

Then, we observe that

|〈a,x(nN,ν(N)) − x0〉|

≤
∣∣∣∣∣
〈
a−

K∑
k=1

akek,x(nN,ν(N)) − x0

〉∣∣∣∣∣+
∣∣∣∣∣
〈

K∑
k=1

akek,x(nN,ν(N)) − x0

〉∣∣∣∣∣.
The second term on the right-hand side of the inequality above is bounded by
ε
2 and using (2.7) the first term on the right-hand side is bounded by

∥∥a −∑K
k=1 akek

∥∥
∞(2C + 1), which is also bounded by ε

2 by employing (2.9). There-
fore, we have established (2.8). By choosing a := aj in (2.8) and noticing that
vectors x(nN, ν(N)) for all N satisfy the system (2.3), we see that x0 must satisfy the
system (2.3).

Finally, we establish that x0 satisfies (2.5). To this end, we consider vector b of
the form

bj =

{
sign(xj), 1 ≤ j ≤ M,

0, j > M,

which have the unit norm in c0. For any ε > 0 we can find M sufficiently large such
that

‖x0‖1 − ε ≤
M∑

j=1

|xj | = |〈b,x0〉|

= lim
n→∞ |〈b,x(nN,ν(N))〉| ≤ lim inf

n→∞ ‖x(nN,ν(N))‖1‖b‖c0.

Since ‖b‖c0 = 1, this demonstrates that

‖x0‖1 ≤ lim
n→∞ ‖x(nN, ν(N))‖1 + ε, for every ε > 0.

Equality must hold (since x0 ∈ S ). Furthermore, noticing x(nN,ν(N)) is a subse-
quence of the minimizing sequence, we observe that

lim
n→∞ ‖x(nN,ν(N))‖1 = mS .

Thus, the infimum in (2.5) is attained by x0.
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Proposition 2.1 ensures that the main problem expressed in (2.2) has a solution
under very broad conditions. We emphasize that the infimum of (2.2) need not be
uniquely attained, since the ball in �1 fails to be strictly convex.

We close this section by noting that the infimum problem (2.2) is closely related
to the “regularized” problem of minimizing the quantity

m∑
j=1

|〈aj ,x〉 − yj| + Φ(‖x‖1), (2.10)

where Φ is a monotone increasing function on the positive real axis, as x varies
through �1. That is, we are willing to trade off the exact equality of each 〈aj ,x〉 = yj ,
in return for keeping the down the value of the norm ‖x‖1. Indeed, this second
term in (2.10) is intended to penalize “overfitting” of the data. Regularization
problems for machine learning in reproducing kernel Hilbert spaces have been well-
studied in [7, 10]. For learning a matrix by regularization, see [2]. Moreover, for
regularization problems in functional reproducing kernel Hilbert spaces, see [20],
and in reproducing kernel Banach spaces, see [15, 21, 22]. The regularized problem
related to (2.10) is studied from a function-theoretic approach in a forthcoming
paper.

3. Dual Extremal Problem

In this section, we reformulate the infimum problem (2.2) as a dual extremal prob-
lem. This duality argument is a well established tool in convex analysis. In its
general form can be found in any standard text in functional analysis, for example,
[6]. A particular application of duality to machine learning appears in [2, Sec. 3],
to solve the problem of learning a matrix based on a set of linear measurements.
It results in a significant reduction in the number of free parameters, and hence on
the computational burden. We shall see that a similar reduction is enabled in the
present paper.

The duality argument applied here is made possible by the following relationship
between the spaces c0 and �1. For a derivation of this well-known result, see [14,
pp. 73–74].

Proposition 3.1. The dual space of c0 is �1; that is, c∗o = �1.

Let us note that the set of vectors S over which the infimum is being taken is
a certain hyperplane in �1. To this end, we define a subspace of �1 by letting

M := {z ∈ �1 : 〈aj , z〉 = 0, for all 1 ≤ j ≤ m}. (3.1)

Lemma 3.2. If x′ ∈ S is any particular solution to the system (2.3), then

inf{‖x′ + z‖1 : z ∈ M } = mS . (3.2)

This lemma says that S = x′ + M . That is, the set S over which the infi-
mum (2.2) is taken is a translation of the subspace M of �1. The proof is elementary
and hence omitted.
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The following proposition enables us to reformulate the extremal problem by
means of classical Banach space duality. The result follows from a basic theorem
from functional analysis, namely, if A is a subspace of a Banach space X , then
the dual of A is isometrically isomorphic to the quotient space X ∗/A ⊥, where

A ⊥ := {λ ∈ X ∗ : λ(a) = 0, for all a ∈ A }
is the annihilator of A . For this we refer the reader to [6, Theorem 2.3].

Proposition 3.3. If x′ ∈ S , then

inf{‖x′ + z‖1 : z ∈ M } = sup
(c1,c2,...,cm)∈Rm

∑m
j=1 cjyj

‖∑m
j=1 cjaj‖∞ . (3.3)

Proof. Here is an elementary proof of [6, Theorem 2.3] for the present setting,
where X = c0, and A is the closed linear span in c0 of a1, a2, . . . ,am. (Note
that M = A ⊥ here.) Let us regard the given vector x′ ∈ �1 as a bounded linear
functional restricted to A . By the Hahn–Banach Theorem, there exists a bounded
linear functional on all of c0, represented by some x ∈ �1, such that x agrees with
x′ on A , and

‖x‖1 = sup
(c1,c2,...,cm)∈Rm

〈∑m
j=1 cjaj ,x′〉

‖∑m
j=1 cjaj‖∞ .

That is, the norm of x equals the norm of the restriction of x′ to A . Direct com-
putation on the right-hand side of the above equation leads to

‖x‖1 = sup
(c1,c2,...,cm)∈Rm

∑m
j=1 cjyj

‖∑m
j=1 cjaj‖∞ . (3.4)

Since x and x′ are equal when restricted to A , their difference z := x− x′ belongs
to M . Thus, we have that

inf{‖x′ + z‖1 : z ∈ M } = ‖x‖1.
This combined with Eq. (3.4) leads the desired result (3.3).

According to Lemma 3.2 and Proposition 3.3, solving the original minimum
norm interpolation problem is equivalent by solving the dual extremal problem

sup
(c1,c2,...,cm)∈Rm

∑m
j=1 cjyj

‖∑m
j=1 cjaj‖∞ . (3.5)

Problem (3.5) has only finitely many real parameters, and therefore this step is a
beneficial reduction.

We next consider the existence of a solution of the dual extremal problem (3.5).
To this end, we identify a norm that arises naturally from (3.5). The following
lemma can be verified by inspection.
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Lemma 3.4. Let m be a positive integer. If a1, a2, . . . ,am are linearly independent
vectors in c0, then the mapping

c := (c1, c2, . . . , cm) �→
∥∥∥∥∥∥

m∑
j=1

cjaj

∥∥∥∥∥∥
∞

(3.6)

is a norm on R
m.

In the remaining part of this paper, we shall always assume that a1, a2, . . . ,am

are fixed linearly independent vectors in c0 without further mentioning. Let us give
the associated norm the name

‖c‖� :=

∥∥∥∥∥∥
m∑

j=1

cjaj

∥∥∥∥∥∥
∞

.

We prove in the next proposition the existence of a solution of the extremal
problem (3.5).

Proposition 3.5. The supremum in (3.5) is attained by some choice of
(c1, c2, . . . , cm) ∈ R

m.

Proof. The mapping

(c1, c2, . . . , cm) �→
m∑

j=1

cjyj

is a continuous function from R
m to R. In (3.5) we are taking an extreme value of

this function over a compact set, namely the unit sphere in R
m in the ‖ · ‖� norm

(recall that all norms on R
m give rise to equivalent topologies, and hence this set

is compact under both the Euclidean topology and the ‖ · ‖� topology). Thus the
supremum of this function is attained.

We emphasize that the extremal vector c for (3.5) need not be unique.

4. A Linear Programming Problem

The dual extremal problem described in the last section turns out to be equiva-
lent to a linear programming problem. This section is devoted to establishing this
equivalence.

We first recall some necessary notions from convex analysis. A convex polytope
in R

m is a bounded region of Rm that is the intersection of finitely many halfspaces.
It is equal to the convex hull of its vertices. An m-dimensional polytope is bounded
by finitely many (m− 1)-dimensional facets, each of which is a polytope in a lower
dimensional space. Thus the notion of polytope generalizes that of a polyhedron to
arbitrarily many finite dimensions. (Our source on this subject is [11].)
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Presently we will see that the unit sphere in R
m under the ‖ · ‖� norm must be

the surface of a convex polytope. This reduces the dual extremal problem to one of
standard linear programming.

Proposition 4.1. The closed unit ball B� in R
m under the ‖ · ‖� norm is a convex

polytope.

Proof. We show this result by proving that B� is the intersection of finitely many
halfspaces. For each k = 1, 2, . . ., let Uk denote the region in R

m given by

Uk :=

⎧⎨
⎩x ∈ R

m : −1 ≤
m∑

j=1

xjaj,k ≤ 1

⎫⎬
⎭. (4.1)

Each such region is the gap enclosed between two hyperplanes. Then the closed
unit ball B� in R

m under ‖ · ‖� is given by

B� :=
∞⋂

k=1

Uk.

We claim that in fact B� is the intersection of finitely many of the regions
Uk. To see this, we consider again the m × ∞ matrix A from (2.4) with entries
[aj,k]1≤j≤m, k≥1. We denote by Ak, k ∈ N, the columns of A. By assumption the m

rows are linearly independent vectors aj , j = 1, 2, . . . , m, in c0. Hence, there exist
m linearly independent columns Ak of A, k ∈ Nm := {n1, n2, . . . , nm} ⊂ N, that
span the space R

m.
With that noted, it must be that

B′ :=
⋂

k∈Nm

Uk

is a bounded subset of Rm. For if not, then by symmetry of the regions Uk and the
definition of B′, it must contain a line

L := {αw ∈ R
m : α ∈ R}, (4.2)

where w is some fixed nonzero vector in R
m. To see why this is the case, we point

out that B′ must be convex, being the intersection of halfspaces; furthermore, it is
symmetric about the origin, since that is true of each pair of bounding hyperplanes.
Thus for any point lying in B′, the entire segment connecting the point and its
reflection about the origin must be contained in B′ as well. Next, unboundeness
would imply the existence of points w1,w2,w3, . . . belonging to B′ with ‖wk‖Rm >

k (where ‖ · ‖Rm is the usual Euclidean norm). Then by compactness of the unit
sphere of Rm there must be some subsequence of points wkn/‖wkn‖Rm converging
to a point w. The closedness of B′ then ensures that the entire line L defined
by (4.2) is contained in B′. Further from the definition of B′, the line L must
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be parallel to all of the hyperplanes bounding Uk, k ∈ Nm. This is equivalent
to saying

m∑
j=1

wjaj,k = 0, for all k ∈ Nm.

But since these m columns of A span R
m, this forces w = 0, a contradiction. This

contradiction rules out the possibility that B′ is unbounded.
Let ρ > 0 be sufficiently large that B′ is contained in the (Euclidean) ball of

radius ρ. Now, the Euclidean distance between the two hyperplanes bounding Uk

is given by

dk :=
2(∑m

j=1 a2
j,k

) 1
2
.

Since each sequence aj converges to zero for all 1 ≤ j ≤ m, it follows that dk

diverges to infinity as the index k increases without bound. That is, there is an
index k0 sufficiently large that

1
2
dk > ρ, whenever k ≥ k0. (4.3)

For such k, we have B′ ⊆ Uk, and these Uk contribute nothing to the intersec-
tion defining B′. Because B� ⊆ B′, it must be that B� can be expressed as the
intersection of only finitely many of the Uk.

Finally, the convexity of B� follows from it being the intersection of halfspaces
in R

m, which are themselves convex.

An upper bound for the number of regions Uk contributing to the determination
of B is k0. Therefore an upper bound for the number of faces of the ball B� is 2k0.
Determining the vertices of B� given its bounding hyperplanes is the “Vertex Enu-
meration Problem.” The computational complexity of this problem is the subject
of ongoing research in computer science and graph theory. For example, see [3].

We can arrive at a very crude bound for the number of vertices of B� in the
following manner. Let 2J points in R

m be given, where J ≥ m. It takes m points
to determine a hyperplane in R. This is because the system

m∑
k=1

βj,kxk = c, for all 1 ≤ j ≤ m

where c = 0 or c = 1, will determine at most one solution (x1, x2, . . . , xm), given
the m points (βj,1, βj,2, . . . , βj,m) ∈ R

m, for 1 ≤ j ≤ m. (This is analogous to saying
that three points determine at most one plane in R

3.) Therefore the set of 2J given
points can give rise to at most

N :=

(
2J

m

)
=

(2J)!
(m!)(2J − m)!

faces. The ball B� is dual (in the graph-theoretic sense) to a polytope arising in
this fashion. Accordingly, the number of vertices of B� cannot exceed N .
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In any case, the extreme values in (3.3) must be attained somewhere on the
finitely many vertices of the convex polytope B�. This effectively reduces the dual
extremal problem to one in linear programming. To see this, we begin with an
obvious observation.

Lemma 4.2. Let d be a positive integer. Suppose that f is a linear function of d

real variables, i.e.,

f(x1, x2, . . . , xd) := c0 +
d∑

j=1

cjxj ,

for some c0, c1, . . . , cd ∈ R. If L is any line segment in R
d, then f achieves its

maximum over the points of L at an endpoint of L.

Applied repeatedly, this gives rise to an important fact about linear
optimization.

Proposition 4.3. Let m be a positive integer. If f is a linear function defined on
a polytope Δ ∈ R

m, then f attains its maximum value at a vertex of Δ.

Proof. Suppose that L is any line segment passing through Δ. By Lemma 4.2, the
maximum value of f along L must be attained at an endpoint of L. This shows
that the maximum of f over all of the polytope Δ cannot be achieved at an interior
point of Δ.

The boundary of Δ is made up of (m − 1)-dimensional facets. For each such
facet T , Lemma 4.2 again shows that the maximum of f over T must be attained
at a boundary point of T . Continuing on in this fashion, we see that the maximum
of f along all of Δ must be achieved at an edge point of Δ. Apply Lemma 4.2 one
more time to conclude that such a maximum occurs at an endpoint of an edge.
These endpoints are the vertices of Δ.

With the subsets Uk defined as in (4.1), and the index k0 given by (4.3), we
have therefore reformulated the dual extremal problem in the following terms.

Theorem 4.4. The dual extremal problem (3.5) is equivalent to maximizing the
linear function

f(x1, x2, . . . , xm) :=
m∑

j=1

xjyj

where (x1, x2, . . . , xm) varies over the polytope

Δ :=
k0⋂

k=1

Uk.

Furthermore, a solution of the dual extremal problem (3.5) is attained at one of the
vertices of the polytope Δ.
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Proof. Clearly, the dual extremal problem (3.5) is equivalent to

sup

⎧⎨
⎩

m∑
j=1

cjyj : c := (c1, c2, . . . , cm) ∈ R
m, ‖c‖� = 1

⎫⎬
⎭. (4.4)

By Proposition 4.3, a solution of the extremal problem (4.4) is one of the vertices
of the unit ball {c ∈ R

m : ‖c‖� ≤ 1}, which is identified as the polytope Δ by
Proposition 4.1.

We have therefore shown that the dual extremal problem is equivalent to a
standard problem in linear programming. The complexity of this linear program-
ming problem depends on the parameter k0 associated with the given set of vectors
a1, a2, . . . ,am in c0.

5. Solution to the �1 Interpolation Problem

From here our final objective is to leverage the solution to the dual extremal problem
into a solution of the original problem (2.2). Thus far, we have found a solution to
the dual extremal problem, and calculated the value of the infimum mS in (2.2). It
remains to identify vectors x ∈ �1 for which this extreme value arises.

Our strategy will be to use the concept of norming functional to identify can-
didate vectors in �1 for the solution, based on a solution to the dual problem.
These candidates for the solution will turn out to constitute a finite-dimensional
convex subset of the sphere in �1 with radius mS . To find the actual solutions, it
remains to re-impose the linear system (2.3). When this is done, we are left with
a finite-dimensional linear algebra equation, which can be solved with well-known
techniques. Solving this linear algebra equation leads to the solution of original
problem (2.2).

We begin by giving the name a′ :=
∑m

j=1 c′jaj to a vector in the sequence space
c0 for which the dual extremal problem is attained:∑m

j=1 c′jyj

‖∑m
j=1 c′jaj‖∞ = sup

(c1,c2,...,cm)∈Rm

∑m
j=1 cjyj

‖∑m
j=1 cjaj‖∞ .

We will now utilize the notion of a norming functional for a vector in a Banach
space. Given a nonzero vector x ∈ X , a norming functional for x is a bounded
linear functional λ ∈ X ∗ satisfying ‖λ‖X ∗ = 1 and

λ(x) = ‖x‖X .

The existence of a norming functional for any nonzero vector is assured by the
Hahn–Banach Theorem; however, such a norming functional is generally not unique.
For example, the vector a = (1, 1, 0, 0, 0, . . .) ∈ c0 is normed by both (1, 0, 0, 0, . . .)
and (0, 1, 0, 0, 0, . . .) in �1, as well as any convex combination of these two vectors.
A norming functional of x, multiplied by the length of x, is called a “conjugate”
of x in some texts, such as [17]. The collection of norming functionals of some
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nonzero vector x is sometimes known in the literature as the “peak set” for x; see,
for example, [2, p. 939].

The following lemma relates the solutions of the original extremal problem to
those of its dual, and thus enables us to drastically narrow our search for the
solution set.

Lemma 5.1. If x0 is a solution to the extremal problem (2.2), then x0/‖x0‖1 is a
norming functional for any solution a′ of the dual problem.

Proof. Plainly x0/‖x0‖1 has unit norm. By hypothesis and by Proposition 3.3,

‖x0‖1 = inf{‖x0 + z‖1 : z ∈ M } = sup
c1,c2,...,cm

∑m
j=1 cjyj

‖∑m
j=1 cjaj‖∞ =

∑m
j=1 c′jyj

‖∑m
j=1 c′jaj‖∞ .

Hence, we have that

〈a′,x0/‖x0‖1〉 =

〈
m∑

j=1

c′jaj ,x0

〉
‖x0‖1

=

⎛
⎝ m∑

j=1

c′jyj

⎞
⎠ ∥∥∑m

j=1 c′jaj

∥∥
∞∑m

j=1 c′jyj

=

∥∥∥∥∥∥
m∑

j=1

c′jaj

∥∥∥∥∥∥
∞

= ‖a′‖∞.

According to the definition of the norming functional, we conclude that x0/‖x0‖1
is a norming functional for a′.

Notice that because of Lemma 5.1, it is not necessary to find all of the solutions
to the dual problem; having one dual solution a′ will suffice for solving the original
problem (2.2).

We next describe the norming functionals of a vector in c0 explicitly. Since
the components of a in c0 converge to zero, ‖a‖∞ = supk |ak| must be attained
on a finite set of indices. An index set N is called the extremal index set for
a ∈ c0 if ‖a‖∞ = supk |ak| is attained on N and N is the largest set having this
property.

Lemma 5.2. If a nonzero sequence a ∈ c0 has its extremal index set given by
N := {n1, n2, . . . , nN}, then the set of norming functionals for a consists exactly
of the convex combinations of vectors of the form

va := sign(aj)ej , (5.1)

where j ∈ N .
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Proof. For each j ∈ N , the vector va is a unit vector of �1 such that

〈a,va〉 = |aj | = ‖a‖∞;

that is, va is a norming functional for a. In fact, any convex combination of such
vectors is also norming for a.

Conversely, suppose that v ∈ �1 is a norming functional for a and we shall show
that v must be a convex combination of vectors of the form (5.1). By definition, we
first observe that ‖v‖1 = 1 and 〈a,v〉 = ‖a‖∞. Furthermore, we find that

〈a,v〉 =
∞∑

j=1

ajvj =
∑
j∈N

ajvj +
∑
j /∈N

ajvj . (5.2)

For the first term of the right-hand side in Eq. (5.2), a direct computation leads to∑
j∈N

(sign(aj)aj)(sign(aj)vj) =
∑
j∈N

‖a‖∞sign(aj)vj .

That is, ∑
j∈N

ajvj = ‖a‖∞
∑
j∈N

sign(aj)vj . (5.3)

Our next goal is to show that vj = 0 whenever j /∈ N . To accomplish this we
note that a, as a real sequence, converges to zero and thus to no other point; in
particular, it cannot be that any subsequence converges to ‖a‖∞. Consequently, we
must have

α := sup{|aj| : j /∈ N } < ‖a‖∞.

Suppose now for the sake of argument that

c :=
∑
j∈N

|vj | < 1.

Notice that ‖v‖1 = 1. It would follow∑
j /∈N

|vj | = 1 − c ≤ 1.

This together with (5.3) would imply that

‖a‖∞ =
∞∑

j=1

ajvj ≤
∣∣∣∣∣∣
∑
j∈N

ajvj

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j /∈N

ajvj

∣∣∣∣∣∣ ≤ ‖a‖∞c + α(1 − c) < ‖a‖∞,

an absurdity. This proves that∑
j∈N

|vj | = 1 = ‖v‖1, (5.4)

and consequently vj = 0 whenever j /∈ N . Returning to (5.2) and (5.3), we see
that the second summation vanishes, and it must be that∑

j∈N

sign(aj)vj = 1.
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Combining the equation above with (5.4) yields∑
j∈N

(|vj | − sign(aj)vj) = 0.

This implies that

|vj | = sign(aj)vj , for all j ∈ N .

Namely, for all j ∈ N , the terms sign(aj)vj are nonnegative. From this, it follows
that

v =
∑
j∈N

vjej =
∑
j∈N

[sign(aj)vj ]sign(aj)ej . (5.5)

That is, v must be a convex combination of vectors of the form (5.1).

Observe that the collection of norming functionals for a given a ∈ c0 constitutes
a finite-dimensional “face” or “edge” of a sphere in �1, as expected. Thus our search
for the solution to the original extremal problem is thereby narrowed from the
hyperplane S to those vectors belonging to S that are supported on the finite
extremal index set N , and which take the form (5.5). This is a significant reduction
in the scope of the search. It remains to find the coefficients in this representation
such that v is a solution.

Remark 5.3. The formula (5.5) could be viewed as a kind of Representer Theorem,
in which the solution to the �1 interpolation problem is expressed as certain a finite-
dimensional linear combination.

Among the vectors satisfying (5.5) there are some that also satisfy the
system (2.3). To find them, associated with the extremal index set N :=
{n1, n2, . . . , nN} for a dual solution a′ ∈ c0 as described in Lemma 5.2, we first
define an infinite permutation matrix Q (it is the infinite identity matrix with
finitely many of the columns permutated) that, when acting on a column vector,
interchanges the nkth row with the kth row, for k = 1, 2, . . . , N , and affects N such
pairs of rows.

Using the permutation matrix Q, the original system (2.4) can then be reex-
pressed in matrix form as

(AQ)(Qx) = y

where A is again the m × ∞ matrix with rows being the aj sequences; x is a
∞-dimensional column vector; and y is an m-dimensional column vector.

Let x̂ be the N -dimensional column vector consisting of the first N entries of Qx
(by choice its remaining entries are all zeros), and let B be the m× N rectangular
matrix consisting of the N leftmost columns of AQ. It is elementary to solve the
system

Bx̂ = y (5.6)
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for the N -dimensional vector x̂. This is a finite matrix algebra problem, and numer-
ous techniques exist for computing the solution. A solution for x̂ exists; this is
because if infinitely many zeros are appended to x̂ to make it an infinite column
vector, then some Qx̂ must be a solution to (2.3). Let H be the solution set for
the finite-dimensional system (5.6) and let

I := H ∩
⎧⎨
⎩(w1, w2, . . . , wN ) ∈ R

N :
N∑

j=1

|wj | = mS

⎫⎬
⎭.

In fact for (w1, w2, . . . , wN ) ∈ I , we must have that

N∑
j=1

|wj | = mS =
N∑

j=1

sign(anj )wj ,

in relation to the notation of (5.5). We are in effect narrowing the search further
from a finite-dimensional subset of the hyperplane S to its intersection with the
sphere in �1 with radius mS . This intersection is necessarily confined to a “face”
or “edge” of this sphere, reflecting the form of (5.7). Every vector belonging to the
set QI is a solution x0 to the infimum problem (2.2). Each such solution vector is
supported on a finite collection of indices; that is, it is a sparse vector.

The above discussion establishes the following theorem.

Theorem 5.4. Let a′ ∈ c0 be a solution of the dual problem (3.5), Q the permuta-
tion matrix associated with the extremal index set for a′, and B the m×N matrix, as
defined above. Then solutions to the minimum norm �1 interpolation problem (2.2)
consist of those vectors Qx, where ‖Qx‖1 = mS , the vector consisting of the first
N components of x solves the finite-dimensional matrix equation (5.6), and the
remaining entries of x are zero.

Let us summarize the final stage of this solution method as follows.

Step 1: For a given solution a′ ∈ c0 of the dual problem (3.5), construct the
extremal index set N := {n1, n2, . . . , nN} for a′, necessarily a finite set.

Step 2: Based on the extremal index set N , define the infinite permutation matrix
Q that interchanges the kth row with the nkth row, for every nk ∈ N .

Step 3: Solve the finite-dimensional linear algebra equation (5.6), thus obtaining
a set H of N -dimensional vectors.

Step 4: Among the vectors in H , identify those of length mS , the extremal value
previously obtained in Sec. 4. This effort involves solving a single equation in at
most N variables, and results in a bounded, convex subset I of RN .

Step 5: Re-embedding of the members of I back into �1 using Q yields the com-
plete set of solution vectors to the minimum norm interpolation problem (2.2).



November 10, 2020 16:48 WSPC/S0219-5305 176-AA 2040005

38 R. Cheng & Y. Xu

We have thus shown that the original interpolation problem in �1 is equivalent
to solving a linear programming problem derived from a duality argument, followed
by solving a finite-dimensional linear matrix equation, resulting in a sparse solution.

Remark 5.5. This paper sets forth a conceptual road map for solving the �1
minimum norm interpolation problem (2.2). In practice, consideration must be
given to the computational complexity and stability of the solution method. For
example, computational complexity will increase with the parameter m, the number
of given vectors in the subset S of c0; the number of vertices of the polytope Δ
arising in the associated linear programming problem; the parameter N , the number
of dimensions of the edge or face of the sphere in �1 in the final reduction. Concern
for the stability of the solution arises in connection with solving the dual extremal
problem, identifying the extremal index set, and solving the finite-dimensional linear
algebra equation, and imposing the minimum length condition on the resulting
vectors. These issues relating to the implementation of the solution method will be
addressed in forthcoming research.

6. Example

We now illustrate the method developed in this paper by solving a simple but
nontrivial example.

The number of constraints in the initial interpolation problem will be m = 2.
Fix

y1 = 3, y2 = 4, (6.1)

a1 =
(

1,
1
2
,
1
3
,
1
4
, . . .

)
=
(

1
n

)∞

n=1

, (6.2)

a2 =
(

1,−1
2
,
1
4
,−1

8
, . . .

)
=
(

1
[−2]n−1

)∞

n=1

. (6.3)

We consider the problem of finding x0 ∈ �1 such that

‖x0‖1 = inf{‖x‖1 : 〈ai,x〉 = yi, i = 1, 2}.
This is the main interpolation problem in �1 from (2.2).

The corresponding dual extremal problem (3.5) is to find c ∈ R
2 which attains

sup
c1,c2

c1y1 + c2y2
‖c1a1 + c2a2‖∞ = sup

c1,c2

c1y1 + c2y2
‖(c1, c2)‖�

.

To solve the dual extremal problem we must look at the closed unit ball in R
2 in

the ‖ · ‖� norm. This unit ball consists of the intersection of infinite strips

Uk := {c ∈ R
2 : −1 ≤ c1a1,k + c2a2,k ≤ 1} =

{
c ∈ R

2 : −1 ≤ c1
k

+
c2

(−2)k−1
≤ 1

}
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over all k = 1, 2, . . .. To find U1 ∩ U2, we solve the system

c1 · 1 + c2 · 1 = ±1,

c1 · 1
2

+ c2 ·
(
−1

2

)
= ±1

for all choices of sign. We thereby obtain the convex polytope (in this case, a
polygon) with vertices at(

−1
2
,
3
2

)
,

(
3
2
,−1

2

)
,

(
1
2
,−3

2

)
,

(
−3

2
,
1
2

)
.

In this example, the intersection over all the Uk turns out to be equal to U1∩U2 =
Δ. To see this, first note that each vertex of U1 ∩ U2 lies at a distance√(

1
2

)2

+
(

3
2

)2

=
(

1
2

)√
10 ≈ 1.581

from the origin. On the other hand, the strip U3 lies at a distance
1√(

1
3

)2 +
(
1
4

)2 = 2.4 > 1.581

from 0. That is, U3 encloses U1 ∩ U2 completely, and so U3 ∩ (U1 ∩ U2) = U1 ∩ U2.
The strips Uj, for j > 3, are even wider still, and therefore do not contribute to
defining Δ further. This verfies that U1 ∩U2 = Δ. Thus to solve the dual extremal
problem, we are finding the maximum of a linear function of c1 and c2, confined
to the boundary of the rectangle Δ. We know from Theorem 4.4 that it suffices to
plug in the vertices (c1, c2) of Δ into the function

f(x1, x2) := 3x1 + 4x2, (x1, x2) ∈ Δ,

and compare. The maximum value occurs at the vertex (− 1
2 , 3

2 ), with the maximum
value being

mS = f

(
−1

2
,
3
2

)
=

9
2
.

Our next step is to identify the (necessarily finitely many) indices for which the
sequence

a′ = −1
2
a1 +

3
2
a2

attains its supremum norm. By direct computation we find that∣∣∣∣−1
2
a1,1 +

3
2
a2,1

∣∣∣∣ =
∣∣∣∣−1

2
+

3
2

∣∣∣∣ = 1,

∣∣∣∣−1
2
a1,2 +

3
2
a2,2

∣∣∣∣ =
∣∣∣∣−1

4
− 3

4

∣∣∣∣ = 1,

∣∣∣∣−1
2
a1,k +

3
2
a2,k

∣∣∣∣ =
∣∣∣∣− 1

2k
+

3
(−2)k

∣∣∣∣ < 1, for all k > 2.
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This tells us that the extremal index set N we are seeking is {1, 2}. The solution
of the original extremal problem must be supported on these two indices. Since
they already correspond to the two leftmost components of a vector in c0, the
permutation matrix Q occurring in this example is simply the identity. We also
infer from the above computation that

a′ =
(

1,−1,−13
24

, . . .

)
.

We may therefore truncate the system Ax = y to get

Bx̂ =

⎡
⎢⎢⎢⎢⎣
1

1
2

1 −1
2

⎤
⎥⎥⎥⎥⎦
[
x1

x2

]
=

[
3

4

]
, (6.4)

corresponding to Eq. (5.6). We have thereby reduced the original infinite-
dimensional interpolation problem to a routine linear algebra problem.

The system (6.4) has the solution set H = {[72 ,−1]T}. Since the solution set is
a single vector x̂ = [72 ,−1]T in this example, our search is complete. We re-embed
this vector x̂ into �1, and obtain the following solution to the original extremal
problem:

x0 =
(

7
2
,−1, 0, 0, 0, . . .

)
.

Notice that for the extreme value we get ‖x0‖1 = mS = 9
2 , in agreement with

the dual problem as expected. Furthermore, we can confirm by inspection that
x0/‖x0‖1 is norming for a′, also as expected.

For the sake of comparison, here is the solution to the same example, except we
are using the norm of �2. With y1, y2, a1 and a2 defined as in (6.1)–(6.3), we are
seeking the x0 ∈ �2 for which

‖x0‖2 = inf{‖x‖2 : 〈ai,x〉 = yi, i = 1, 2}.
Here, the notation 〈·, ·〉 denotes the usual inner product in the Hilbert space �2. If
x′ is any particular vector satisfying 〈ai,x′〉 = yi, i = 1, 2, then equivalently we are
seeking to minimize ‖x′ + z‖2 over all z lying in the subspace of �2 annihilated by
a1 and a2. This exactly describes the orthogonal projection of x′ onto the span of
a1 and a2 in �2. Thus if u1 and u2 constitute an orthonormal basis for the subspace
spanned by a1 and a2, then we have

x0 = 〈x′,u1〉u1 + 〈x′,u2〉u2.

The choice

x′ =
(

7
2
,−1, 0, 0, 0, . . .

)
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will suffice, and yields the �2 solution

x0 ≈ (0.4924584)
(

1
n

)∞

n=1

+ (2.7004714)
(

1
(−2)n−1

)∞

n=1

≈ (3.1929568,−1.1039930, 0.8392707,−0.2144443, . . .).

This solution is certainly not a sparse vector.
This example shows that the minimum norm interpolation problem in the �1(N)

space indeed produces a sparse solution, while that in the �2(N) space does not.

Acknowledgments

This work is supported in part by the US National Science Foundation under
Grant DMS-1912958. Y. Xu is also a professor emeritus of mathematics at Syra-
cuse University, New York, USA, and a retired professor at Sun Yat-sen University,
Guangzhou, China. All correspondence should be sent to Y. Xu.

References

[1] B. Adcock, Infinite-dimensional compressed sensing and function interpolation,
Found. Comput. Math. 18 (2018) 661–701.

[2] A. Argyriou, C. A. Micchelli and M. Pontil, On spectral learning, J. Mach. Learn.
Res. 11 (2010) 935–953.

[3] D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration
of arrangements and polyhedra, Discrete Comput. Geom. 8 (1992) 295–313.

[4] E. J. Candés, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information, IEEE Trans. Inform.
Theory 52 (2006) 489–509.

[5] N. L. Carothers, A Short Course on Banach Space Theory (Cambridge University
Press, Cambridge, 2005).

[6] J. Conway, A Course in Functional Analysis (Springer-Verlag, New York, 1985).
[7] F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer.

Math. Soc. 39 (2002) 1–49.
[8] F. Deutsch, V. A. Ubhaya, J. D. Ward and Y. Xu, Constrained best approximation

in Hilbert space III: Applications to n-convex functions, Constr. Approx. 12 (1996)
361–384.

[9] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006) 1289–
1306.

[10] T. Evgeniou, M. Pontil and T. Poggio, Regularization networks and support vector
machines, Adv. Comput. Math. 13 (2000) 1–50.
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