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Abstract. The goal of this paper is to develop a novel numerical method for efficient multiplicative noise re-
moval. The nonlocal self-similarity of natural images implies that the matrices formed by their
nonlocal similar patches are low-rank. By exploiting this low-rank prior with application to multi-
plicative noise removal, we propose a nonlocal low-rank model for this task and develop a proximal
alternating reweighted minimization (PARM) algorithm to solve the optimization problem resulting
from the model. Specifically, we utilize a generalized nonconvex surrogate of the rank function to
regularize the patch matrices and develop a new nonlocal low-rank model, which is a nonconvex non-
smooth optimization problem having a patchwise data fidelity and a generalized nonlocal low-rank
regularization term. To solve this optimization problem, we propose the PARM algorithm, which
has a proximal alternating scheme with a reweighted approximation of its subproblem. A theoretical
analysis of the proposed PARM algorithm is conducted to guarantee its global convergence to a crit-
ical point. Numerical experiments demonstrate that the proposed method for multiplicative noise
removal significantly outperforms existing methods, such as the benchmark SAR-BM3D method, in
terms of the visual quality of the denoised images, and of the peak-signal-to-noise ratio (PSNR) and
the structural similarity index measure (SSIM) values.
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1. Introduction. We consider the problem of multiplicative noise removal. To effectively
restore images degraded by multiplicative noise, we develop a method which consists of an
optimization model and an iterative algorithm to solve the minimization problem. Based
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on the nonlocal self-similarity of natural images, we propose a nonlocal low-rank model for
multiplicative noise removal. The resulting model is a nonconvex nonsmooth minimization
problem. We develop a proximal alternating reweighted minimization (PARM) algorithm with
a convergence guarantee to efficiently solve the problem.

Multiplicative noise (i.e., speckle noise) widely occurs in coherent imaging systems due to
the interference of coherent waves scattered from distributed targets. For example, images
obtained from synthetic aperture radar (SAR) [27], ultrasound imaging [35], and laser imaging
[30] are naturally contaminated with multiplicative noise. Removing multiplicative noise from
such images is inevitable in many areas of applications.

Methods employed for multiplicative noise removal in the literature include the total vari-
ation (TV) regularization based models, patch based methods, and nonlocal low-rank based
methods. TV regularization has been widely used to preserve edges in the restored images. In
a TV regularization based model, the objective function is the sum of a data fidelity term and
a TV regularization term. The data fidelity term measures the closeness between the desired
image and the observed noisy image, while the TV regularization term measures the total
variation of a desired image or an image in its transformed domain. The AA model [3] used
the Bayesian maximum a posteriori probability (MAP) estimation to derive the data fidelity
term in terms of the desired image. However, this data fidelity term is nonconvex, and the
resulting optimization problem is challenging to solve. To overcome this challenge, the DZ
model [10] modified the data fidelity term by adding a quadratic term. As a consequence, the
objective function of the DZ model becomes convex under some mild conditions. The I-DIV
model [33] used the so-called I-divergence, which was typically designed for dealing with Pois-
son noise [12, 31], as the data fidelity term. By performing the logarithmic transformation,
the SO model [32], the HNM model [18], and the Exp model [25] led to convex, even strictly
convex, data fidelity terms. The mV model [39] and the TwL-mV model [20] used convex or
strongly convex data fidelity terms via the mth root transformation. The TV regularization
based models have good performance in denoising. However, they tend to oversmooth image
textures and generate unexpected artifacts. To reduce the staircase artifacts of traditional
TV regularization based models, the total generalized variation method [11] and the nonlocal
TV method [26] were also investigated for multiplicative noise removal.

The patch based methods make use of the redundancy of image patches to yield a restored
image with fine details. Sparse representations of image patches have been studied in the
patch based methods for multiplicative noise removal. In the learned dictionary method
[17], an optimal overcomplete dictionary was learned from the patches of the logarithmic
transformed noisy image, and then an image was restored via a variational model based
on the learned dictionary and a TV regularization. The SAR-BM3D method [28] is another
remarkable approach relying on a sparse representation, which takes advantage of the nonlocal
self-similarity of natural images [5]. Nonlocal similar patches, collected as 3D groups, were
identified based on a probabilistic similarity measure for multiplicative noise and then were
denoised by jointly nonlocal filtering and a local linear minimum-mean-square-error shrinkage
in a wavelet domain. We remark that these methods constrain the sparsity priors in either
a fixed dictionary or a fixed wavelet domain, which limits their capability in multiplicative
noise removal.

Recently, the nonlocal low-rank based methods were extensively exploited in image pro-
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cessing. It is recognized that natural images are of nonlocal self-similarity. Matrices formed
by nonlocal similar patches are low-rank, and hence the desired image can be restored by low-
rank estimations of nonlocal similar patch matrices. To regularize the rank of the matrices
formed by nonlocal similar patches, different approximations of the rank function, including
the weighted nuclear norm and the log-det function, were adopted; see, e.g., [9, 14, 16, 19, 36].

Existing studies have shown impressive empirical performance of nonlocal low-rank based
methods. However, theoretical analysis of the existing methods is missing, and there is lit-
tle work on applications of nonlocal low-rank based methods to multiplicative noise removal.
To address this issue, we propose developing a new nonlocal low-rank based method that is
theoretically and practically suitable for multiplicative noise removal. The proposed method
includes a novel nonlocal low-rank model and an efficient iterative algorithm to solve the
proposed model with a convergence guarantee. We explore the underlying low-rank prior of
the patch matrices and propose a nonlocal low-rank model for multiplicative noise removal.
The resulting optimization problem is nonconvex and nonsmooth, which made it challenging
to design efficient and theoretically convergence-guaranteed algorithms to solve. In fact, the
well-known alternating direction method of multipliers (ADMM) algorithm is not applica-
ble to this optimization problem, and the alternating minimization (AM) algorithm and the
augmented Lagrange multiplier (ALM) algorithm may not converge [4, 38]. To address this
challenge in developing an efficient convergent algorithm, we propose a proximal alternating
minimization scheme with a reweighted approximation of its subproblem and further use the
Kurdyka-Lojasiewicz (KL) theory [2, 4] to prove its global convergence to a critical point. The
experiments demonstrate that the proposed nonlocal low-rank based method is well suited to
multiplicative noise removal.

The main contributions of this work are as follows:

e We propose a nonlocal low-rank model for multiplicative noise removal. This model
is formulated in the log-transformed domain of images. The objective function of the
model as the sum of a fidelity term and a regularization term is nonconvex and non-
smooth. Its fidelity term is adapted from the corresponding one in the Exp model [25]
to patches and is strictly convex under certain conditions. Its regularization term
is the application of the composition of the rank operator with the patch extraction
operator to the underlying image. Due to the difficulties caused by the composition
and the rank function in solving this model, we propose to split this composition by
introducing an auxiliary variable and to approximate the rank function using a smooth
concave function.

e We develop a proximal alternating reweighted minimization (PARM) algorithm for
solving the proposed nonlocal low-rank model. The key to the PARM algorithm is
dealing with the concave function that is used to approximate the rank function in the
model. We propose approximating this concave function by its affine approximation
(i.e., the reweighted approximation) in each iteration of the PARM algorithm. This
approach could be useful for a wide range of nonlocal low-rank models.

e We provide a theoretical analysis of the PARM algorithm which guarantees its global
convergence to a critical point, in contrast to the practically used algorithms, such as
those in [9, 37], which lack convergence analysis.

e We give a detailed description of the implementation of the PARM algorithm, including
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parameter settings, patch sizes, and search windows. We also test the proposed method
for various images at different noise levels. Furthermore, we conduct a performance
comparison of the proposed method with several existing methods for multiplicative
noise removal, with respect to the visual quality of the denoised images, and the PSNR
(peak-signal-to-noise ratio) and SSIM (structural similarity index measure) values.
This paper is organized into six sections. In section 2, we present the nonlocal low-
rank model for multiplicative noise removal. The proposed PARM algorithm for solving the
resulting nonconvex nonsmooth optimization problem is presented in section 3. Section 4 is
devoted to the convergence analysis of the proposed algorithm. In section 5, we demonstrate
the efficiency of the new method numerically by experimental results. Section 6 concludes
this paper.

2. Nonlocal low-rank model for multiplicative noise removal. In this section we propose
a nonlocal low-rank model for multiplicative noise removal by exploiting low-rank priors of
the nonlocal similar patch matrices extracted from the underlying images.

Throughout this paper, matrices are bold uppercase, vectors are bold lowercase, and
scalars or entries are not bold. Given x,y € R?, (z,y) := Zf:1<xi, y;) is the standard inner
product, and ||z||2 := /(,z) is the standard ¢» norm. Let S denote the set of symmetric
positive definite matrices of size d x d, and let I; denote the identity matrix of size d x d.
Given z,y € R? and H € S%, (x,y)p := (x, Hy) is the H-weighted inner product, and
||| := \/(x, x) g is the H-weighted £ norm. Given X,Y € R™*" (X, Y)p :=tr(X'Y)
is the Frobenius inner product, and || X || := /(X, X)p is the Frobenius norm.

Multiplicative noise removal in this paper refers to reducing multiplicative noise in an
L-look image obtained by the multilook averaging technique. An L-look image v € RY in the
intensity format degraded by multiplicative noise can be modeled as

U =un,

where u € RY is the desired image to be restored, n € RY is the multiplicative noise, and the
multiplication operation is performed componentwise. The multiplicative noise in each pixel
follows a Gamma distribution [13], whose probability distribution function is defined as

LL 'Lfl
S T

p(ni) = W ) N

) Y

which has mean 1 and variance 1/L. A list of TV regularization based models for multiplicative
noise removal is presented in Table 1.

In the following, we present our nonlocal low-rank model for multiplicative noise removal.
According to the nonlocal self-similarity of natural images, for an image patch, we can find
enough nonlocal similar patches across the image or within a local window [5]. This redun-
dancy of patches is important for the effectiveness of the nonlocal low-rank regularization.
We begin with collecting similar patches using block matching [8, 28] and formulating patch
matrices. Suppose that @ € RY is an estimated clean image in the intensity format and that
J is the number of nonlocal similar patch groups to be collected. For the reference patch
u; € R™ with size \/mj X ,/mj in the jth patch group, we search within a local window for a
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Table 1
TV regularization based models for multiplicative noise removal.

Name Model & Transform. Properties of ®
AA [3] min (logx + 2, 1) + Al|lz| v T=u nonconvex
zeRY
DZ [10] min (logz + 2,1) + pll/Z = 1|3 + A|z||lrv r=u strictly convex if
weRf > 2v6
pP= 9
I-DIV [33] min (x —vlogz, 1) + A|z|rv r=u convex
zeR
SO [32] min (x+ %, 1) + Allz|rv x =logu strictly convex
xER :
HNM [18] min (x+ 2. 1) + pllz — w5 + A|w||rv x =logu convex
zeRN weRN
Exp [25] min (z+ %, 1)+ plly/ S — 1|3 + Al|z|rv x =logu strictly convex if
zeRN pyt < 4096
= o7
mV [39] min_(mlogx + 7, 1) + A|z||7v z= u convex if m is suf-
we VU ficiently large
TwL-mV [20] min _ 1(a, @) — L(mloga — 22, 1) + A|z|lrv == Yu strongly ~ convex

m, s
a>0,xc VU with respect to x

1® denotes the objective function of the model. Ry = (0, +00). U = (0,C]Y and C € R4. A >0, p> 0,y > 1, and
s > 1. 1 denotes the vector whose entries are all ones. The division, multiplication, logarithmic, exponential, and square

root operations are componentwise operations.

total of n; patches that are similar to the reference patch, assuming m; <n;, j =1,2,...,J.
To fully exploit the statistics of L-look images, we measure the similarity between two patches
uj € R™ and 4 € R™ using the block similarity measure introduced in [28],

Following the above, for each group we construct a patch matrix from all of the patches in
the given group through an extraction operator. Define Rj; € R™*N to be a binary matrix
(i.e., its entries are either 1 or 0) such that Rj is the Ith patch in the jth nonlocal similar
patch group of the given estimated image w, | = 1,2,...,n;, j = 1,2,...,J. Then we define
a linear operator R; : RY — R™*" ag

Rj(m) = [leac Rjgm s Rjnjac] .

Here, R;(z) is called the jth patch matrix of the (transformed) image & € RY. After the
patch matrix is extracted, the patch matrix can be further processed using, for example,
normalization with mean zero, and the corresponding extraction operator R; can be defined
accordingly. Intuitively, the patch matrix R;(«) with similar structures should be a low-rank
matrix if @ is close to the clean image u, for example, up to a transformation.

Taking advantage of the low-rank prior of image patch matrices R;(x), the objective
function of a patch based nonlocal low-rank model consists of a data fidelity term to restore
the desired image and a nonlocal low-rank regularization term as follows:

J
(2) min f(x) + ) A;rank(R;(x)),
j=1
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where € RY is the desired (transformed) image to be restored, f : RNV — (—o0,+00] is the
data fidelity term that measures the closeness between the observed image and the desired
image, R; : RN — R™i*" is the (normalized) extraction of the jth nonlocal similar patch
matrix, and A; > 0 is the regularization parameter, j = 1,2,...,J.

To restore images degraded by multiplicative noise, our proposed data fidelity term f for
model (2) is formulated based on patchwise data. Let v € RY be the given noisy image,
and let « € RY be the unknown clean log-transformed image to be restored. We extend the
pixelwise data fidelity term of the Exp model [25] as shown in Table 1 to a patchwise data
fidelity term that is a weighted sum of fidelity terms in terms of patch matrices R;(x) as
follows:

J
(3) fl@) =73 pifi(Rj(x)),
j=1

where each patchwise fidelity term f;(R;(x)) is defined as

; eli(@) ’
$i(y@) = (Rotw)+ S 1)) 0 |\ = amstin)|
F

p; > 0 is the weight parameter, 7 > 0 is the data fidelity parameter, 1y denotes the vector
of size N x 1 with all ones, and parameters p > 0 and v > 1 depend on the noise level. The

exponential operation, division operation, and square root operation are performed compo-

nentwise. It follows from [25] that f is strictly convex if py? < 49%.

The patchwise data fidelity term f in the above can be further viewed as a weighted
pixelwise data fidelity term. Define R;— :RMiX" — RN as

j
T ,_ T
Rj (Y) = ZRﬂyi,
=1

where y; € R™ is the ith vector of Y. Since R; and R}r are linear operators such that
(Rj(x),Y)p = (m,R}(Y)) for all z € RY and Y € R™*" | we can rewrite the above as

fi(By(@) = (@+ 2. (R] o R))1) +p<\/f—fyuN,<RI ° R)) (\/f—m».

By defining W := Z}]:l MJ-RJ-T o R, its matrix representation

J nj
(4) W=D Y RjR
=1

j=1 =

is a diagonal matrix whose main diagonal entries indicate the weighted counts for each pixel.
Since we assume that each pixel belongs to at least one nonlocal similar patch group, W € Sf .
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Hence, f in (3) can be written as

— 2
Je
— =1y
v

Model (2) with the data fidelity term f as (5) regularizes low-rank priors on image patch
matrices, but it is not a feasible model from both theoretical and practical perspectives. First,
model (2) as a composition optimization is not easy to solve. Second, the rank function is
discontinuous and nonconvex, and minimizing a problem involving the rank function is NP-
hard [29]; therefore, it is challenging to solve model (2). To tackle the above challenges, we
relax model (2) in the following ways. We first apply the variable splitting method to model
(2) to address the composition optimization problem and then adopt a nonconvex surrogate
of the rank function to replace the rank function.

First, we consider the data fidelity term f as a weighted sum defined in (3) and apply the
variable splitting method to relax model (2). By introducing auxiliary (splitting) variables
Y; € R™i*" such that Y; = R;j(x) and then relaxing these equalities of the splitting variables,
we obtain the following model:

(5) f@) =7 | @+ 5. Inw +p

w

J
iy, S () + 5% - R@IE ) + k() |
j=
where p; > 0 is the weight parameter, 7 > 0 is the data fidelity parameter, and A; > 0 is the
regularization parameter, j = 1,2,...,J.
Second, we utilize a nonconvex relaxation of the rank function to characterize the low-rank
prior of patch matrices. By introducing a function g : [0,00) — R such that g is monotonically
increasing, a generalized relaxation of the rank function is defined as

(6) 1Y |l =D gloi(Y),
i=1

where Y € R™*" m < n, and 0;(Y) is the ith largest singular value of Y. Here, we give
two special cases of the function g. If g(t) = 1 for ¢ # 0 and g¢(t) = 0 otherwise, then |[Y ||« 4
reduces exactly to the rank function. If g(t) = ¢ as a linear function, then ||Y ||, 4 = [|[Y ||« is
exactly the nuclear norm, which is the tightest convex surrogate of the rank function. However,
the rank minimization is NP-hard, while the nuclear norm minimization may overshrink the
singular values with large values [14].

To better approximate the rank function, we would like its nonconvex relaxation || - ||« 4
with the function g to be monotonically increasing, concave, and smooth. For example, a
decent choice of g : [0,00) — R is the logarithmic function defined as

(7) g(t) == log(t +¢),

where ¢ > 0.
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Putting all of the above discussions together, we come up with the following monlocal
low-rank model:

J m;

(8) min f@ﬂ+§:@hMG—&@%%+%§:Mm@ﬂo,
z,Y1,..,Y) o 2 P

where z € RY, Y; € R™>% f : RV — (—o0,+0o0] is defined as in (5), g : [0,00) — R is

defined as in (7), R; : RY — R™5*" is the (normalized) extraction of the jth nonlocal similar

patch matrix, m; < nj, pu; >0, \; >0,7=1,2,...,J.

Clearly, the objective function of model (8) is nonconvex and nonsmooth. Existing al-
gorithms are not directly applicable to this problem. Our goal is to design theoretically
convergence-guaranteed and practically efficient algorithms to solve this nonconvex nonsmooth
optimization problem. In the next section, we will propose an algorithm for the nonlocal low-
rank model (8), and we will analyze its convergence in section 4.

3. Proximal alternating reweighted minimization algorithm. We present a proximal al-
ternating reweighted minimization (PARM) algorithm for solving the nonconvex nonsmooth
optimization problem.

The nonlocal low-rank model regularizes the low-rank prior of patch matrices and can also
be applicable to many image restoration problems, such as image denoising and compressive
sensing, if the patch matrix extraction R; and the data fidelity term f are appropriately
selected. In the following, we consider the nonlocal low-rank model in a general setting. The
objective function of model (8), denoted as ®, can be written as

J
(9) (@, Yi,...,Yy) = f(x) + Y _ 0z, Y)),
j=1
where
(10) @@, Y) = HY = Bi(@)[}+ X Y g(i(Y).
=1

We further assume the following:
(A1) f: RN — (—o0, +0o0] is inf-bounded, proper, and lower semicontinuous, i.e., inf f >

dom f:={x € RV : f(x) < +o0} #0, and f(a) < ligrcn_}gff(m) Va € RY;

(A2) g : [0,00) — R is monotonically increasing and concave (and nonconvex), and ¢ is
continuously differentiable with an Lg-Lipschitz continuous gradient, i.e.,

19'(t1) = g'(t2)] < Lyglts — ta| Vt1 > 0,2 > 0;
(A3) ®(x,Y1,...,Yy) is coercive, i.e.,

lim O(x,Y1,...,Y)) = +o0.
||(:I:,}’17...,YJ)||—>OO
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The nonlocal low-rank model (8) with the data fidelity term f defined as in (5) and the
block measure for extraction operator R; defined as in (1) can reduce multiplicative noise;
model (8) with f(z) = Z|l@ — y||},, where y is the noisy image, and the block measure as
Euclidean distance can reduce Gaussian noise; and model (8) with f(z) = I||Az — y||3,
where y is the observed measurements and A is the measurement matrix with full row rank,
and block measure as Euclidean distance can recover sparse signals in compressive sensing. It
is easy to verify that each function f given above satisfies assumption (A1) and is coercive.
Also, for different low-rank regularizations, g can be chosen as (7) or g(t) = (t + €)?, where
0 < p < lande > 0. Either choice of g satisfies assumption (A2) and the coercivity. Note that
assumptions (A1) and (A2), together with the coercivity of f and g, imply that the objective
function @ is inf-bounded and coercive. Hence, assumptions (A1)—(A3) hold for models with
any combination of f and g mentioned above, including our proposed model for multiplicative
noise removal.

In this general setting, no convexity or smoothness is assumed for f, and the objective
function ® of the nonlocal low-rank model (8) is nonconvex and nonsmooth. For solving
this nonconvex and nonsmooth optimization problem, the alternating minimization (AM)
algorithm was adopted for compressive sensing [9], and the augmented Lagrange multiplier
(ALM) algorithm was adopted for speckle noise removal [37]. However, there is no guaran-
tee that these methods will converge, because the sequence generated by the AM algorithm
may cycle indefinitely without converging if the minimum in each alternating step is not
uniquely obtained [4], and the sequence generated by the ALM algorithm may diverge even
with bounded penalty parameters [38].

The standard approach for solving model (8) is via the proximal regularization of the
Gauss-Seidel scheme (see, e.g., [4]). That is, starting with some initial point (2°, ¥,?,...,Y?}),
we generate the sequence {(z*, Y/*, ..., Y¥)}ren via the scheme
k+1 . k O‘Jk
Y e argymln {(IDj(m YY) + Y

J

x"1 € argmin {(I)(:c, Y YR 4 %Hw - :ckH%V} :
x

where @, ®;, and W are given as in (9), (10), and (4), respectively, and o > 0 and 8 > 0

are parameters. The proximal terms in the above scheme use norms || - || and || - ||w, which

are different from those in the scheme in [4]. To address the computational difficulty in

finding Yk'H caused by the nonconvexity of function g in ®;, we propose linearizing g(o;(Y}))

around al(Y ), the ith singular value of Y*, via g(ai(Y}k)) + (wf)@(al(YJ) — ai(ij)), where

(w j)i =g (UZ(Y]’“)) is iteratively rewelghted. As a consequence, we have

(1) B, Yy) = LY~ R+ A Z( (V) + (Wh)i(oi(¥;) — 0:(Y})))

as a reweighted approximation of Q>j(:nk, Y;) at ij . Now, we propose an algorithm called the
proximal alternating reweighted minimization (PARM) algorithm customized for model (8)
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as shown below:

(12) Y/*! € argmin {(f)j(a:k,Y}) n %HYJ- - y;.’fH%}, J=1,2,...,J;
J

(13) "1 ¢ argmin {@(m, Y YR 4 %Hm - ack||%v} .
x

In (12), we utilize 53- (x*,Y;), a reweighted approximation of ®;(x*,Y;), to approximate
the nonconvex surrogate of the rank function, which yields a closed form for (12). In (13),
the proximal term is in terms of the W-weighted norm, which is to be consistent with the
patchwise data fidelity term f, for example, as defined in (5). In fact, we will continue to use
the W-weighted norm to measure the variable  throughout the entire paper. Moreover, as
an algorithm for nonlocal low-rank models applied to image restoration, the PARM algorithm
can be intuitively interpreted as follows. Equation (12) can be viewed as a low-rank patch
matrix estimation, which returns the nonlocal patch matrices Y; with a low-rank property,
while (13) can be viewed as the image restoration step, which aggregates all of the estimated
nonlocal patch matrices from (12) to form the desired image x.

Before further deriving our PARM algorithm, we review some preliminaries on subdiffer-
entials and proximity operators for nonconvex and nonsmooth functions.

3.1. Preliminaries on subdifferentials and proximity operators. For nonconvex and non-
smooth functions, we use the following definitions for subdifferentials and proximity operators.

Definition 3.1 (subdifferentials). Let f : R? = (—o0, +oo] be a proper and lower semicon-
tinuous function, and let H € Si.
(1) For a given x € dom f, the Fréchet subdifferential of f with respect to H at x, written
3Hf(a:), is the set of all vectors u € R which satisfy

lim inf fly) - f(®) —(wy —x)u

> 0.
YAz y—a ly —z||g

When a ¢ dom f, we set OH f(z) = 0.
(2) The subdifferential of f with respect to H at x € R?, written 0H f(x), is defined
through the following closure process:

OHf(x) ;= {u e R : Iz}, — x, f(x) — f(x) and up € OF f(xy) — u as k — oo}

Definition 3.2 (proximity operators).  Let f : R* — (—o0,400] be a proper and lower
semicontinuous function such that infra f > —o0, and let H € Si. The proximity operator of
f with respect to H at © € R is defined as

. 1
procf (@) = argain { f(w) + u — e |
ucRd

Note that prOX]IE[(m) s a set-valued map. If [ is convex, then proxf(ac) is reduced to a single-

valued map.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/16/21 to 68.131.72.92. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

MULTIPLICATIVE NOISE REMOVAL 1605

The definitions above for subdifferentials and proximity operators are defined on vectors
with respect to the weighted ¢ norm. When H in the above definitions is the identity matrix,
the weighted f2 norm reduces to the standard ¢, norm, and we simply write oH f, 0H f, and
proxfc{ as 0 f, Of, and prox;, respectively. The definitions for subdifferentials and proximity
operators can also be extended to matrices with respect to the Frobenius norm. For the
function f : R™*" — (—o0, +0o0] at a matrix X € R™*™ with respect to the Frobenius norm,
its Fréchet subdifferential is denoted as &F f(X) or df(X), its subdifferential is denoted as
OF f(X) or 0f(X), and its proximity operator is denoted as proxff(X) or prox ¢(X).

Now, we are ready to discuss in detail the proposed PARM algorithm in (12) and (13).

3.2. Patch matrix estimation via a reweighted scheme. To estimate low-rank patch
matrices as shown in (12), we utilize &)J(mk,Y]) to approximate ®;(z*,Y;), a generalized
rank characterization of the patch matrix Y}, via a reweighted scheme.

The reweighted approximation &)j (x*, Y;) defined as (11) is derived using the fact that g
is concave on [0, 00) and continuously differentiable. By the definition of the supergradient,
we have

(14) 9(0i(Y})) < g0 (YF)) + (wh)i(0:(Y;) — o(Y)),

where 'w;? = [(wé“)l, (wf)g,...,(wf)mj]T, and (wf), = g’(ai(ij)) is iteratively reweighted,
i =1,2,...,m;. By replacing the term g(o;(Y;)) in ®;(x*,Y;) with the right-hand side of
the inequality (14), the reweighted approximation E’j(wk, Y;) is immediately obtained as (11).
Hence, the update of the low-rank patch matrix ijH in (12) at the (k + 1)th step can be

rewritten as

m; k k2
. Qi iR (x") + oY,
15 Y*t! ¢ aremin { \; w0 (Y; —l—u Y, - .

Observe that (15) involves minimizing a weighted nuclear norm. The weighted nuclear norm of
Y € R™*" m < n, with the weight vector w := [wy,ws, ..., wy]" andw; > 0,i=1,2,...,m,
is defined as

m
1Y [l =Y wioi(Y),
i=1

where 01(Y) > 02(Y) > -+ > 0,,(Y) > 0. It was proved in [7] that || - ||+ is convex if
and only if w; > wy > -+ > wy,, > 0. In other words, for || - ||« a convex function, the
weights must increase with singular values. However, in order for large singular values to
receive a lesser penalty to help reduce the bias, and for smaller singular values to receive a
heavier penalty to help promote sparsity, the opposite order of the weight is desirable, i.e.,
0 < w <wy < -+ < wy. Under this order of the weights, the weighted nuclear norm
is a nonconvex function, and in general its proximity operator may be a set-valued map.
Fortunately, the proximity operator is a single-valued map, as shown in the following lemma.

Lemma 3.3 (see [7, Theorem 2.3]). For any A > 0, Y € R™", m < n, and w =
[wy, w2, ..., W] " with0 < wy <ws < -+ < Wy,

prOXA”'H*,w (Y) = US)\’w(E)VT,
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where Y = UV is the singular value decomposition (SVD) of Y, and Sy (2) = diag{(Zi;
Aw;) 4} is the weighted singular value thresholding (WSVT) operator.

The assumption that ¢ is monotonically increasing and concave implies that ¢’ is non-

negative and monotonically decreasing. Then the weight vector wj satisfies the ascending
j)l < (wf)g << (wj)mj. Hence, by Lemma 3.3, the low-rank patch
matrix ijH can be uniquely achieved as

R;(xF) + aj YF
ij“:prox y (My i (x") jk ¥

constraint, i.e., 0 < (w

Hitask /’Lj + ajk
1 k k
= 7'“] n ajk pI‘OX)\ ” ” (,LL]R ( ) + OéjkYE )
1 k+1 k k+1\T
= mUj S)\j,w;?(zj)(‘/j )

where UFF'SF (V)T is the SVD of 11 R; (") + o, Y.

Remark 3.4. The ascending constraint on the weight vector wf

satisfied if ¢ is not differentiable and (wf)Z is chosen as a supergradient of g at ai(ij), ie.,

—(w;?)i € 8(—9)(@(ij)), as defined in [24]. For example, suppose that ¢ is not differentiable

at oy, (ij), and then 9(—g)(0y, (Y;k)) contains more than one element. If Ui0+1(}/jk) =0, (Y/“),

then the weights —(w}“)ioﬂ and —(w}“)io that are selected from the same set 9(—g)(0y, (Y]k)) =

6(—9)(0i0+1(Yj’“)) may have (wf)ioﬂ < (w}“)io rather than an ascending order. Thus, we

may not be automatically

have to carefully select the (w;“)l in the case where g is not differentiable. For example, let

(w}); = —mind(~g)(os(Y})).

3.3. Image restoration via W-weighted proximal regularization. After obtaining the
estimates of the low-rank patch matrices Y**! from the generalized rank minimization in
the previous step, we may have a situation where the same pixel may have several estimated
values. That is because one pixel may belong to more than one nonlocal similar patch matrix
when we group nonlocal similar patches by block matching. Thus, at this image restoration
step in (13) of the PARM algorithm, we aggregate all of the estimated patches to restore the

entire image by minimizing the proximal regularization of ®(x, Y1k+1, ceey Y}H'l) with respect
to x.
Note that the term Z] 18 |]Yk+1 R;(x)||% in ®(z, Y, ..., Yf“) can be written as
Hj d Hj d Hj
k k k
> GV - B@IE =30 GV - Riehl + 1 FIRi(e) - Ryt
j=1 j=1 j=1
J
k k k
= ni(Ri(x) — Rj(x*), Y - Rj(2F))p.
=1

Recall that RjT : RmMixXni 5 RY is defined as RJT(Y) =32 R]lyz, where y; is the ith

vector of Y. Since (Rj(x),Y)r = <:1:,R;F(Y)> = (x, W‘lR;—(Y))W and W = ijl u]Rj o
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R; € Sf , the right-hand side of the above equality can be written as

J
N
> = Rl

g 1
=3 Bt - Ri(ah)E + 5 le — 2y - <az—sck > W R (V) - wk> .
w

J=1

The update of the estimated image **! in (13) at the (k + 1)th step can be rewritten as

(16)
. +1
" € argmin { f(x) — (x — z* ZMJ 1RT Yk“) xFyw + BkTH:c —x¥|3,
T
w —1pT (yk+1 k
= prox i R; Y —x

The overall procedure of the PARM algorithm in (12) and (13) is summarized in Algorithm
1.

Algorithm 1. Proximal alternating reweighted minimization algorithm for model ().

1: Set parameters pj;, Aj, ok, and S,
2: Set extraction R; by block matching
3: Compute matrix W
4: Initialize Y, on, and w?
5: Set k=0
6: repeat
e for j from 1 to J do
8: [UFH, S, V) = SVD (1 By() + aguYF) > SVD
) k+1 _ 1 sk
9 2 T opitajp S)\J,'LU] (2]) > WSVT
10: Yk—i—l U;ﬂ+12k+l(vk+1) > Update Y*jk—l—l
11: ( fﬂ) =g ((Eﬁﬂ)n) > Update wf“
12: end for
) k+1 W k 1 J -1 pT(vE+ly _ ok k+1
5 P (o (S W R ) ) Updite

14: k< k+1
15: until stopping criterion is satisfied

3.4. The PARM algorithm for multiplicative noise removal. To remove multiplicative
noise, we apply the PARM algorithm in Algorithm 1 to solve the nonlocal low-rank model
(8), with f defined as in (5) and g defined as in (7). Accordingly, using the definitions of
f and g, Algorithm 1 can be specifically implemented as follows. In line 11 of Algorithm 1,
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k1

(w;

)i = m, in line 13, the proximity operator of ﬁf with respect to W can be
J kX3

computed using Newton’s method. Given that py* <

Hence, prox", ; is single-valued and defined as
Br+1

4096

57, the function f is strictly convex.

~ ) +1 ~
o = proc_ (&) = avgmin {7(@) + "3 o - 3y }.
Brt+1 x 2

Since f is differentiable with respect to the W-weighted ¢, norm with its gradient VW f(x) =

T (11 - Z+p (% - i)), x is the unique solution of the equation

eT v

VW (@) + (B + 1)(z - &) =0,

and this equation can be efficiently solved by Newton’s method.

4. Convergence analysis. The aim of this section is to analyze the convergence of the
PARM algorithm for model (8). The proof is motivated by the inexact descent convergence
results for KL functions in [2, 4].

In what follows, we use the notation

J
Z:=(,Y1,....Ys) and |Z] = |l + 1Yl
j=1

and we denote by ®(Z) the objective function of model (8).
Following are three essential conditions to guarantee convergence of the sequence {Z*}cn
generated by the PARM algorithm:
(H1) Sufficient descent condition: There exists a positive constant ¢; such that for all
keN,
Cl||Zk+1 _ ZkH2 < (I)(Zk:) _ (I)(Zk"'l)'

(H2) Relative error condition: There exists a positive constant ¢z such that for all k£ € N,
HAk-HH < CQHZk—H o ZkH and Ak-i—l e 8(13(Zk+1).
(H3) Continuity condition: There exists a subsequence {Z**};cn and Z* such that

lim Z* = Z* and lim ®(Z") = ®(Z*).
t—o00 t—o0
Next, let us first review the definition of the KL property of a function and recall a
convergence theorem on a function having the KL property.

Definition 4.1 (Kurdyka—tojasiewicz). Let f : R? — (—o0, 00| be proper and lower semi-
continuous.
(a) The function f is called to have the KL property at & € domdf if there exist n €
(0, +00], a neighborhood U of &, and a continuous function ¢ : [0,17) — [0,00) such
that
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(i) 9(0) =
(ii) ¢ is C1 on (0,m) and continuous at 0;
)
)

(iii) for all s € (0,7m), ¢'(s) > 0;
(iv) forallx € Uﬂ{w eRe: f(&) < f(x) < f(&)+n}, the following KL inequality
holds:
¢'(f(x) — f(&))dist(0,0f(x)) > 1
(b) The function f is called a KL function if f has the KL property at each point of
dom Of.

Theorem 4.2 (see [2, Theorem 2.9]). Let ® : R? — (—o00, +00] be a proper lower semicon-
tinuous function. Consider a sequence {x"}ren that satisfies conditions (H1)—(H3). If ® has
the KL property at the limit point * specified in (H3), then the sequence {x*}ren converges
to x*, and x* is a critical point of ®. Moreover, the sequence {x*}ren has a finite length,

i.e.,
o0

Z |2+ — zF|| < 0.
k=0

The KL theory is a powerful tool for nonconvex nonsmooth optimization problems, and
KL functions are ubiquitous. For example, real polynomial functions, logarithmic functions,
exponential functions, || -||o, and || - ||, (where p > 0 is rational) are KL functions [1, 2]. Also,
the function || - ||+,4 defined as in (6), with g a logarithmic or exponential function, is a KL
function [34]. For more examples of KL functions, see [1, 2, 4, 34] and references therein.

In the following, we prove that the sequence {Z k }ren generated by the PARM algorithm
satisfies conditions (H1)-(H3), and then conclude that {Z*},cn converges to a critical point
of ® using the fact that ® is a KL function. To this end, we need the following assumption
on the parameters o, and 3y in the PARM algorithm:

(A4) For the sequences {aji}ren, 7 = 1,2,...,J, and the sequence {f}ren, there exist
positive constants a—, a4, f—, B+ such that

inflajr:keN,j=1,2,...,J} >a_ and inf{f,:keN}>p_,
sup{ojp : k€N, j=1,2,...,J} <ap and sup{B:k e N} <.
4.1. Sufficient descent condition. We show that the objective function ® of model (8)
evaluated at Z*, denoted ®(Z*), decreases sufficiently as k increases.

Proposition 4.3 (sufficient descent condition).  Suppose that the objective function ® of
model (8) satisfies assumptions (A1)—~(A3). Let {Z*}ren be the sequence generated by the
PARM algorithm provided that assumption (A4) holds. Then {®(Z*)}ren is strictly decreasing
and, in particular, there exists a positive constant ¢ such that for all k € N,

(17) a||ZF - ZF|)? < o(ZF) — o(ZF).

Proof. Let ®;(x,Y") be defined as in (10), and let oy ;(x*,Y;) be defined as in (11). Then,
according to the concav1ty of g illustrated in inequality (14) <I> (:1; Yk+1) and its reweighted

approximation <I>j( ,Y;) have the following relationship:

(I)j(wk7yvjk+1) < (AI;j(wk,lfjk-’_l) and @](wk,ij) _ (5](wk‘,‘¥]k)
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Thus, the objective function ® in (9) evaluated at =* and ij'H can be rewritten as

@($k,}qk+l,...,Yf+1) — f(:I)k) +Z(I) ( Yk-i—l Yk—i—l )

HM&

By the update of ij'H in (12), we have
(", V) + Y - YR < (2t V) = 952", Y,

Combining the two inequalities above, we have the following inequality on ®(Z*) and
O(zk, YY)

<

J

3 Za'k
(I)(wk’}/'lk+1 Yk:Jrl <f + q)_] m Yk‘ ; ||¥7k+1_}f]k||%‘

Jj=1 j=1

J
k k
IO A
By the update of 2**! in (13), we have
() < @t Vi) - ke g,

Combining the two inequalities above, we have that ®(Z**!) and ®(Z*) satisfy the following
inequality:

J
Bre .k k Qjk 11k k k k
Tttt - by + 30 YR - VAR < B(25) - a(24),
j=1
Equation (17) holds with ¢; = 1min{8_,a_} > 0, and {®(Z*)},ey is strictly decreasing.
Here, f_ and a_ are the two positive parameters given in assumption (A4). |

The sufficient descent condition proved in Proposition 4.3 immediately yields the following
corollary.

Corollary 4.4. Suppose that the objective function ® of model (8) satisfies assumptions
(A1)-(A3). Let {Z*}1en be the sequence generated by the PARM algorithm provided that
assumption (A4) holds. Then

Jim [|Z% = Z" | =0

Proof. Summing inequality (17) from & =0 to k = K — 1, we have

K-1
a Y 2= ZF)? < 9(2°) - 0(2") < ®(Z°) — Pin,
k=0

where @i = infz &(Z) > —o0.
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Taking K — oo, we have

o0
Z HZk+1 o Zk||2 < 00,
k=0
which implies limy_, || Z¥F! — Z¥|| = 0. m

4.2. Relative error condition. Before proving that a subgradient of ® at Z**! is bounded
above by the iterates gap, we first characterize the subdifferential of ®.

Recall that the variable  is measured in terms of the W-weight ¢ norm and that the
variables Y; are measured in terms of the Frobenius norm. Then using the notation introduced
in subsection 3.1 we define the subdifferential of ® as

0(Z) = {(Asz, Ay,,..., Ay,) : Ay € 0 ®(2), Ay, € Oy, ®(Z),j =1,2,...,J},

where 8;"/ <I>(Z) is the partial subdifferential of ® with respect to the variable & and with
respect to the W-weight /2 norm, and dy, ®(Z) is the partial subdifferential of ® with respect
to the variable Y; and with respect to the Frobenius norm.

By the deﬁmtlon of ® in model (8) and the fact that

J J J

b 1 _ Hj
> Y = Bi@)lF = 5 <m —2% W 1RI<Y»> +> 5 1Yl
j=1 j=1 w =l

we have
oY (2) =" f(=x +:I:—Zug “'RI(Y))
and .
Iy, 2(Z) = p;(Y; — Rj(x)) + ;0 <Zg ° Ui) (Y5).
i=1

To compute the subdifferential of the singular value function ZZZJI g o 0; and further
characterize Jy,®(Z), we recall some definitions and a lemma on singular value functions
introduced in [21, 22].

Definition 4.5. A function f:R™ — R is absolutely symmetric if

f(l‘l, L2y ... 7$n) = f(|l‘7r(l)|’ |x7r(2)|’ R |x7r(n)|)
for any permutation .

Definition 4.6. A function F : R™*™ — R, m < n, is a singular value function if F(X) =
(foo)(X), where f : R™ — R is an absolutely symmetric function, o(X) = [01(X), 02(X),
L om(X)]T, and 0;(X) is the ith largest singular value of X .

The function )", g o 0; can be viewed as a singular value function of the form

<Zgom> (Y) = (Foo)(Y),

=1

where g : R™ — R is defined as g(t) = > g(|t;|) and is absolutely symmetric.
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Lemma 4.7. The subdifferential of a singular value function f oo at X € R™" is given
by the formula

0(f 0 0)(X) = {U diag(@)V T : d € 9 (+(X), (U, V) € M(X)},

where M(X) := {(U,V) e R™! xR . UTU = V'V =1, X = U diag(c(X))V'}.
By Lemma 4.7, the subdifferential of > " | goo; at Y € R"*" can be computed as follows:

’ (Zg ° Ui) (Y) = {Udiag(d)VT vdp = Cig,[ai(Y)]’Ci €d|-(ai(Y)),i=1,2,...,m,
=1

(U, V) e M(Y)},
where
{1} if O'Z(Y) > 0,

9] |(oi(Y)) = {[_17 1] if 0;(Y) = 0.

Now we are ready to derive a subgradient of ® at Z**! using the next lemma and to prove
that it is bounded above.

Lemma 4.8. Suppose that the objective function ® of model (8) satisfies assumptions (Al)—
(A3). Let {Z*}1en be the sequence generated by the PARM algorithm provided that assumption
(A4) holds. Let Uf+12§+1(‘/jk+1)—l— be the SVD of Y}kﬂ. Then, for each k and each j, there

exists cf“ € R"™ such that

(18) (i € d|- 1oV, i=1,2,...,m;,
and
(19) AU diag(@ ) (V)T = —ag (Y = YF) — (Y = Ry(ah)),

where diag(d?“) = diag(c?“) diag(w;“).

Proof. According to the update of Y}kﬂ in (15), we have
0 € i (V] = Ry(a®)) + N0l - [l (V1) + (V1 = V).

Since the weighted nuclear norm || - ||« is a singular value function, by Lemma 4.7 the
subdifferential of || - ||+ can be computed as follows:

Ol oo (¥) = {U diag(d)V'T s di = ciws, 5 € 0] - [(0(Y)),i = 1,....,m, (U, V) € M(Y) }.
Note that (Uf“, ijH) € M(ijJrl). Thus, there exists c?“ € R™i such that (18) holds and
—aj (YT = Y) — (Y — Ry(a")) = \UF diag(di ) (VYT e )0 - s ot (Y,

where diag(d?“) = di&g(C;Hl) diag(wf). .
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Proposition 4.9 (relative error condition). Suppose that the objective function ® of model
(8) satisfies assumptions (A1)—~(A3). Let {Z*}ren be the sequence generated by the PARM
algorithm provided that assumption (A4) holds. Let UJ].“JrlEerl(‘/ij)T be the SVD of ijH,

and let cf“ and d]H'1 be in R™i satisfying (18) and (19).
Define AF1 .= (Ak+1] AI;,"'l, . A];,tl), where
(20) AR = B (! — 2t
and
(21) AP = pi(Ry (@) — Ry(@* )+ 0 U diag(dH =it (VI T —aun (Y -V,
where diag(&?“) = diag(c diag(w
Then the following assertwns hold for all k € N,
(a) ARt c 8<I>(Zk+1),
(b) ||AM| < eo|| ZFH — ZF|| for some ¢ > 0.

Proof. (a) According to the update of "' in (16), we have

k+1) l'f+1)'

0€ W (") + Zﬂj WRI (Y + (B + 1) (2" — o).
Then the definition of A¥*! in (20) implies
A];:-‘rl e 8Wf($k+l k+1 ZM] 1RT Yk+1) 8;4/@(Zk+1)

Also, for each j, the definition of A’;,;“l in (21) and Lemma 4.8 imply
AP = i (Y — Ry(a™h) + \US diag(d ) (V) T
€ i (Y} = Ry(&* ) + X0 - H*,w;”l(ijH)

mj
= 'uj(Y}.]H—l — Rj($k+1)) + )\]8 (Zg o O'i) (}fjk+1)

=1
— %(I)(Zk+1),

(b) It follows from the Cauchy-Schwarz inequality that
J
1A < [ AS  w + Y 1A s
j=1
where || A5y = Bi||2F T — 2F||w and
IAS e <pjl| Rj(2¥) = Ry(@" )| r + N | USH! diag(df ! — a7 (V) T
+ o[ Y — Y|k
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The right-hand side of the above inequality can be computed term by term as follows. The
square of the first term is bounded above by the square of the weighted iterates of the variable
x?

J
k k k k k k
IR, (%) = Ry(e" ) |h < g Y pllRy (@ — 2™ )IIE = pylla? — 2.
j=1
This implies that p;||Rj(z*) — R; (") ||p < /i lle* — 251 ||lw.
Also, the second term is bounded above by the iterates of the variable Y;. Since H&?H -

d¥ |y < ||dET! — ditfy, we have

)\jHUJkH diag(&?“ _ d;eﬂ)(ijH)TH — )\‘H&kﬂ _ dl?JrlH
<\ Z’ kL),

(@YD) = g/ (e (¥})|.

Using the condition that ¢’ is Lg-Lipschitz continuous, we further obtain

mj
MU diag(dh ! — dETH (VT p <X Lolos(YEFY) — 00(Y)))
=1
< Am; Lyl = Y|,

where the last line follows from Theorem 3.3.16 in [15] and HijJrl — Y;kH2 < HijH — Y;kHF
Therefore, combining all of the inequalities above, we obtain

J
LR < (B + M) |2 — 2Flw + Y (\jmyLg + ap) [V = Y |Ie
j=1
< CQHZJI'CJFI - Zf”v
where M, = Z‘j]:l VI and ¢g = max{fy + My, \imiLg+ aq,...,\ymyLs + a}. [ |

The relative error condition proved in Proposition 4.9 immediately yields the following
corollary.

Corollary 4.10. Suppose that the objective function ® of model (8) satisfies assumptions
(A1)-(A3). Let {Z*}ren be the sequence generated by the PARM algorithm provided that
assumption (A4) holds. Define AF*!1 = (AE+T1 A';,'IH, : ,A’;}JH), where AETY is defined as
(20) and A’{,jl is defined as in (21), with j =1,2,...,J. Then

lim [|A* =0
k—oo

Proof. The result follows immediately from Proposition 4.9 and Corollary 4.4. |
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4.3. Continuity condition. We first show the existence of a limit point of {Z*}cn us-
ing the boundedness of {Z*},cy and then prove a continuity condition for any convergent
subsequence of {Z*}cn, which implies condition (H3).

Proposition 4.11. Suppose that the objective function ® of model (8) satisfies Assump-
tions (A1)-(A3). Let {Z*}ren be the sequence generated by the PARM algorithm provided
that assumption (A4) holds. Let S denote the set of all limit points of the sequence {Z*}ren.
Then the following assertions hold:

(a) S#0;

(b) if {Z*}ien is a subsequence of {Z¥}ren such that limy o ZM = Z* € S, then

: key *
lim &(z%) = o(2%).

Proof. (a) We show that {Z*}ey is bounded by contradiction.

Assume to the contrary that there exists a subsequence {Z*};cy such that || Z¥| — oo
as | — co. According to assumption (A3), ® is coercive, and then ®(Z") — oo as | —
oo. However, since {®(Z¥)},ey is strictly decreasing and lower bounded by ®;, > —oo,
{®(ZF)}pen converges, and {®(Z*)}en also converges, which yields a contradiction. Thus,
{Z*}.en is bounded, and there exists a convergent subsequence of {Z*}cn.

(b) Let {Z*},cn be a subsequence such that Z* — Z* as t — oo.

Since f is lower semicontinuous, we have

liminf f(x**1) > f(x*).

t—o0

ki++1

From the update of « referring to (16), we obtain the following inequality:

1
f(mkt-‘rl) + <mkt+1 kt $ Z,u] IRT th+1)> + 6]% + Hmkt—i—l _ wktH%‘/

2
w
< f(@ >+<w ~at Zm WIR( th+1>> P by
w

Letting t — oo on both sides of the above inequality, we get

limsup f(z**1)

t—o00

1
< f(@*) +limsup { (2 — ¥, ot Zm W] (v + P

t—00 2
= f(z"),

where we use the boundedness of the sequences {x*t+1},cy, {ij”l}teN, and { By, }ten and the

kt+1_

result that lim; o || x¥ ||y — 0 following from Corollary 4.4. Hence, lim; o0 f(2FF1) =

f@”).
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Due to the continuity of & ||Y; — R;(z)||% with respect to Y; and @ and the continuity of
g(t) with respect to ¢, we have

J ) m;
lim (2 = f(2") + ) (’;JIIYJ‘ — Rj(a)F + A ngo@*))) =o(z"). =
j=1 i=1

t—o00

4.4. Convergence results. In this subsection, we show the convergence of the sequence
{Z"} en generated by the PARM algorithm.

Equipped with conditions (H1)-(H3), we can show that any limit point of {Z*}cy is a
critical point of ® in the following theorem.

Theorem 4.12. Suppose that the objective function ® of model (8) satisfies assumptions
(A1)~(A3). Let {Z*}1en be the sequence generated by the PARM algorithm provided that
assumption (A4) holds. Let S denote the set of all limit points of the sequence {Z*}ren, and
let crit(®) denote the set of all critical points of the function ®. Then () # S C crit(®); that
is, any limit point of {Z*}ren is a critical point of ®.

Proof. Let Z* be in S # (), and let {Z**};cy be a subsequence of {Z¥},cy such that
lim; oo Z* = Z*. Then by Proposition 4.11, lim; o, ®(Z*) = ®(Z*). Also, it follows from
Proposition 4.9 and Corollary 4.10 that A € 9®(Z%) and A¥ — 0 as t — co. Thus, by the
definition of subdifferential in Definition 3.1, we have 0 € 9®(Z*). [ |

In addition to holding for conditions (H1)—-(H3), if ® is a KL function, then a stronger
convergence result can be achieved for the sequence {Z*}rcn. That is, we can prove that the
sequence {Z"}cn itself converges to a critical point of ® using the KL theory. For example,
® in model (8) with f defined as in (5) and g as in (7) for multiplicative noise removal is a
KL function, and then the sequence {Z*},en converges as shown in the following theorem.

Theorem 4.13. Suppose that the objective function ® of model (8) satisfies assumptions
(A1)-(A3). Let {Z*}ren be the sequence generated by the PARM algorithm provided that
assumption (A4) holds. If ® is a KL function, then the following assertions hold:

(a) The sequence {Z*Yen has finite length, that is,

o0
D2 = ZF) < oo
k=0

(b) the sequence {Z*}ren converges to a critical point of ®.

Proof. Tt follows from Propositions 4.3, 4.9, and 4.11 that the sequence {Z*},cy satisfies
conditions (H1)-(H3), respectively. Then the assertions (a) and (b) follow from
Theorem 4.2. |

5. Numerical results. In this section, we first describe a practical version of Algorithm 1
and then test the proposed algorithms to solve the proposed nonlocal low-rank model for
multiplicative noise removal. We compare our proposed method with six existing methods:
the DZ method [10], the HNW method [18], the I-DIV method [33], the TwL-mV method [20],
the learned dictionary (Dict) method [17], and the SAR-BM3D method [28]. These methods
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are compared in terms of the visual quality and of the PSNR and SSIM values of the denoised
images. Numerical results show superior performance of the proposed method over existing
ones.

The experiments were implemented in MATLAB 2016b running a 64-bit Ubuntu 18.04
system and executed on an eight-core Intel Xeon E5-2640v3 128GB CPU at 2.6 GHz, with four
NVIDIA Tesla P100 16GB GPUs. The proposed algorithms were accelerated using graphics
processing units (GPUs), as the estimation of each patch matrix can be computed in parallel.

5.1. Practical version of PARM algorithm. The PARM algorithm presented in Algo-
rithm 1 converges theoretically, as shown in section 4, if the patch extraction operator R; is
assumed to be fixed. The extraction operator R; plays an important role in improving the
denoising performance because a better initialization of R; can yield a better denoised image.
In the case in which the optimal R; is not available, it is empirically challenging to find an
appropriate choice of R; when only a noisy image given.

Algorithm 2. Practical version of the PARM algorithm.

1: Set parameters p;, Aj, and B

2: Initialize ° and wg-)

3: Set k=0

4: repeat

5: Set extraction R;“ by block matching
6 Compute matrix wk

7: for j from 1 to J do
8

URLSE VA = SVD (R?(mk)) > SVD
0: S5 = S5 0 (B5) > WSVT
10: ij+1 _ U;cHE?H(ijH)T > Update ij+1
11: (wf“)i = g’((Z;?H)ii) > Update 'w;?“
12: end for
13: xhtl ¢ prox‘;%f (ack + ﬂk1+1 (23]1 ujWkilféfT(ijH) - mk>> > Update x#+!

14: k<—k+1
15: until stopping criterion is satisfied

Here, we provide a practical version of the PARM algorithm with a dynamically updated
patch extraction operator, denoted as R;‘?. The operator R;‘? is recomputed at the kth step

by block matching based on the estimated image e“’k, and the weighted counts matrix, now
denoted as W¥, is recomputed based on the updated R;-“. As a result of this dynamically
updating scheme, the extraction operator Rgf becomes more efficient at collecting patches

with similar textures, and this further helps improve the estimated image x*.

In this practical version of the PARM algorithm, we set Y}kﬂ as updated without using
the previous update ij and its parameter ajg. This is because ij'H is associated with

]%f (x), while ij is associated with Rf_l(wk_l) using a different extraction operator. The
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patch matrices ij'H and Y;k may not refer to the same patch group.
The overall procedure of a practical version of the PARM algorithm for multiplicative
noise removal is summarized as Algorithm 2.

5.2. Parameter settings. First, we utilize block matching and normalization with mean
zero to extract patch matrices using the following parameter settings for block matching. In
Algorithm 1, the fixed extraction R; is initialized via block matching based on the estimated
image from the SAR-BM3D method; in Algorithm 2, the dynamically updated extraction ﬁf

is computed at each step via block matching based on the update of e Additionally, both
algorithms share the same parameter settings for block matching, including the search window,
the patch size, and the number of patches in each patch group, as presented in Table 2.

Table 2
Settings for block matching.

L Search window Patch size Patch number

1 50 10 x 10 150
3 50 9x9 120
5 50 8 x 8 100

Second, we manually set the model parameters and algorithm parameters for Algorithm 1
and Algorithm 2, respectively. The model parameters 7, Aj, i;, p, 7, and € depend on the
noise level. The algorithm parameters (o and) Sy influence the computational speed. The
settings of the above parameters are presented in Tables 3 and 4.

Table 3
Parameter settings for Algorithm 1.

I Standard images Remote images Common parameters

T Aj T Aj i P € Ak B
1 (Be+1)/50 1.8 (B +1)/100 1 1 001l 4 10 0.000 0.001
3 (Bk+1)/150 1 (Bx +1)/150  0.45 1 15 1.9 107 0.001 0.001
5 (Br+1)/250 0.6 (Br +1)/200 0.15 1 2 1.3 107 o0.001 0.001

Table 4
Parameter settings for Algorithm 2.

I Standard images Remote images Common parameters

T Aj T Aj Bi P £ Bre
1 (Bx+1)/50 1.8 (Br +1)/50 1.7 1 001 4 107 o0.001
3 (Be+1)/150 1 (Br +1)/150 0.8 1 15 19 107 o0.001
5  (Bx+1)/250 0.6 (B +1)/250 0.5 12 13 107 0.001

Third, the initialization settings and the stopping criteria are set differently for Algorithm 1
and Algorithm 2. For the case where an estimated clean image is available, Algorithm 1 is
initialized using the estimated image from the SAR-BM3D method and is terminated if the
relative error reaches a tolerance threshold €, e.g., 1073, or 50% of the initial relative error

as follows: N . 0
A N e
|z*|lw

Hwk+1 _
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For the case where an estimated clean image is not available, Algorithm 2 is initialized using
the given noisy image and terminated if the relative error reaches a tolerance threshold e,
e.g., 1073, namely

k+1 _ wkHW

l* [l

“m <€
tol-

Finally, the restored image is estimated by @ = e®, where & is the log-transformed image
obtained from the proposed algorithms.

5.3. Numerical results tested on standard test images. In this experiment, we use stan-
dard test images “Monarch,” “Starfish,” and “House,” all of size 256 x 256, as shown in Fig-
ure 1. To generate the observed images, we degrade the original test images by multiplicative
Gamma noise at L =1, L = 3, and L = 5.

(a) Monarch (b) Starfish (c) House

Figure 1. Standard test images.

The evaluation of the image quality is measured in the intensity format between the
original image w € RY and the estimated image @ € RY using the peak-signal-to-noise ratio
(PSNR) defined as ,

255°N
PSNR = 10log, <Hu — ﬁ”%)
and the structural similarity index measure (SSIM) [40].

Table 5 reports the PSNR and SSIM values of the denoised images tested on three standard
test images. The best results for each case are marked in bold, and the second-best results are
underlined. Both Algorithm 1 and Algorithm 2 outperform all of the other methods in terms
of PSNR and SSIM values. Compared with the benchmark SAR-BM3D method, Algorithm 1
achieves 0.27-0.59dB, 0.14-0.66dB, and 0.16-0.68dB improvements in PSNR when L = 1,
L =3, and L = 5, respectively. Algorithm 2 with updated patch extraction also surpasses the
SAR-BM3D method and even surpasses Algorithm 1 in some of the cases, especially in terms
of SSIM values.

Figures 2—4 present the denoised images tested on “Monarch” at noise level L = 1,
“Starfish” at L = 3, and “House” at L. = 5. In terms of the visual quality, Algorithms 1
and 2 perform better than other methods, because they reconstruct more details and more
smooth textures but less noise and fewer artifacts. For example, compared to the DZ, HNW,
I-DIV, TwL-mV, and learned dictionary methods, the proposed algorithms preserve more de-
tails of the rays of “Starfish” and generate more smooth textures on the wings of “Monarch”
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Table 5
Numerical results tested on standard test images at different noise levels by different methods.

Image L Meas. Alg. 1 Alg. 2 SAR- Dz HNW  I-DIV  TwL- Dict.
BM3D v

Monarch 1 PSNR  21.94 21.64 21.36 19.38 19.73 1991 19.26 19.50
SSIM  0.6926 0.7013 0.6404 0.5758 0.5523 0.5883 0.5848 0.5726

3 PSNR 24.90 24.58 24.48 22.66 22.55 22.69 22.43 23.02

SSIM  0.8051 0.8072 0.7693 0.7156 0.7049 0.7244 0.7096 0.7449

5 PSNR 26.31 26.24 25.78 24.04 23.88 23.98 23.74 24.38

SSIM  0.8524 0.8533 0.8232 0.7648 0.7588 0.7723 0.7621 0.7740

Starfish 1 PSNR 20.83 20.69 20.56 19.35 20.36 20.01 19.89 20.18
SSIM  0.5583 0.5627 0.5421 0.5051 0.5049 0.5028 0.4916 0.5192

3 PSNR 22.95 22.86 22.81 21.88 22.01 21.67 21.85 21.77

SSIM  0.6748 0.6700 0.6662 0.6095 0.6075 0.5922 0.5981 0.6051

5 PSNR 23.94 23.92 23.78 22.87 22.80 22.56 22.67 22.57

SSIM  0.7176 0.7162 0.7084 0.6623 0.6498 0.6415 0.6438 0.6499

House 1 PSNR  23.42 24.10 22.83 21.52 21.57 21.99 21.72 21.70
SSIM  0.6726 0.7222 0.5916 0.6119 0.4925 0.5860 0.6017 0.5801

3 PSNR  27.20 27.27 26.54 24.16 24.26 24.51 24.25 23.84

SSIM  0.7823  0.7725 0.7139 0.6806 0.6365 0.6938 0.6597 0.6602

5 PSNR  29.04 29.13 28.36 25.70 25.73 25.84 25.79 24.56

SSIM  0.8115 0.8155 0.7641 0.7339 0.6995 0.7291 0.7197 0.6474

(a) Noisy image (L=1)  (b) Ground truth

(f) DZ (2) HN\-N (h) I-DIV (i) TwL-4V G) Dictior.lary

Figure 2. Comparison of denoised images restored from “Monarch” at noise level L = 1 by different
methods. The (PSNR, SSIM) values for each denoised image: (c) Alg 1 (21.94dB, 0.6926); (d) Alg 2 (21.64dB,
0.7013); (e) SAR-BM3D (21.36dB, 0.6404); (f) DZ (19.38dB, 0.5758); (g) HNW (19.73dB, 0.5523); (h) I-DIV
(19.91dB, 0.5883); (i) TwL-4V (19.26dB, 0.5848); (j) dictionary (19.50dB, 0.5726).
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(a) Noisy image (L=3)  (b) Ground truth

(g) HNW (h) I-DIV (i) TwL-4V (j) Dictionary

Figure 3. Comparison of denoised images restored from “Starfish” at noise level L = 3 by different methods.
The (PSNR, SSIM) values for each denoised image: (c) Alg. 1 (22.95dB, 0.6748); (d) Alg. 2 (22.86dB, 0.6700);
(e) SAR-BM3D (22.81dB, 0.6662); (f) DZ (21.88dB, 0.6095); (g) HNW (22.01dB, 0.6075); (h) I-DIV (21.67dB,
0.5922); (i) TwL-4V (21.85dB, 0.5981); (j) dictionary (21.77dB, 0.6051).

(h) I-DIV (j) Dictionary

Figure 4. Comparison of denoised images restored from “House” at noise level L = 5 by different methods.
The (PSNR, SSIM) values for each denoised image: (c) Alg. 1 (29.04dB, 0.8115); (d) Alg. 2 (29.13dB,
0.8155); (e) SAR-BM3D (28.36dB, 0.7641); (f) DZ (25.70dB, 0.7339); (g) HNW (25.73dB, 0.6995); (h)
I-DIV (25.84dB, 0.7291); (i) TwL-4V (25.79dB, 0.7197); (j) dictionary (24.56dB, 0.6474).
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and the sky of “House.” Compared to the benchmark SAR-BM3D method, the proposed
algorithms generate fewer artifacts, resulting in better images in terms of PSNR and SSIM
values.

5.4. Numerical results tested on remote sensing images. In this experiment, we use
remote sensing images “Remote 1”7 and “Remote 2,” both of size 512 x 512, and “Remote
3”7 of size 540 x 632 as shown in Figure 5. To generate the observed images, we degrade the
original test images by multiplicative Gamma noise at L = 1, L = 3, and L = 5. The image
quality is evaluated using PSNR and SSIM values.

(a) Remote 1 (b) Remote 2 (c) Remote 3

Figure 5. Remote sensing images.

Table 6
Numerical results tested on remote sensing images at different noise levels by different methods.
Image L Meas. Alg. 1 Alg. 2 SAR- DZ HNW I-DIV  TwL- Dict.
BM3D 4V

Remote 1 1 PSNR  21.23 21.15 21.12 20.47 20.24 20.03 20.07 20.44
SSIM  0.5459 0.5474 0.5393 0.4950 0.4551 0.4709 0.4934 0.4867

3 PSNR 23.45 23.38 23.39 22.51 21.96 22.05 22.38 20.52

SSIM  0.6730 0.6736 0.6716 0.6199 0.5686 0.5935 0.6268 0.4953

5 PSNR 2455 24.62 24.49 23.69 22.90 23.17 23.55 20.93

SSIM  0.7283 0.7336 0.7261 0.6800 0.6274 0.6595 0.6824 0.5350

Remote2 1 PSNR 21.91 21.90 21.68 20.37 20.89 20.58 20.51 20.40
SSIM  0.5461 0.5486 0.5334 0.4827 0.4783 0.4791 0.4789 0.4665

3 PSNR 24.13 24.05 24.03 22.76 22.71 22.49 22.66 22.34

SSIM  0.6471 0.6504 0.6449 0.5758 0.5805 0.5744 0.5845 0.5592

5 PSNR  25.32 25.36 25.21 23.98 23.79 23.59 23.81 23.67

SSIM  0.6964 0.6988 0.6939 0.6302 0.6294 0.6265 0.6364 0.6179

Remote3 1 PSNR  22.16 22.22 21.88 20.93 20.89 20.81 20.79 20.59
SSIM  0.5895 0.5970 0.5565 0.5292 0.4916 0.5131 0.5182 0.4955

3 PSNR 24.66 24.51 24.47 23.34 22.81 23.02 23.18 22.14

SSIM  0.7002 0.6989 0.6811 0.6236 0.6077 0.6250 0.6218 0.5545

5 PSNR  25.80 25.82 25.65 24.45 23.79 24.10 24.30 22.70

SSIM  0.7427 0.7464 0.7316 0.6745 0.6562 0.6713 0.6737 0.5736

Table 6 reports the PSNR and SSIM values of the denoised images tested on three remote
sensing images. Algorithms 1 and 2 achieve great performance in PSNR and SSIM values over
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other methods. For example, Algorithm 1 outperforms the benchmark SAR-BM3D method
by 0.11-0.28dB, 0.06-0.19dB, and 0.06-0.15dB in PSNR when L = 1, L = 3, and L = 5,
respectively, and it outperforms the other traditional methods by 0.76-1.57dB, 0.94-2.93dB,
and 0.86-3.62dB in PSNR when L = 1, L = 3, and L = 5, respectively. Algorithm 2 is also
comparable to Algorithm 1 and the SAR-BM3D method.

Figures 6-8 present the denoised images by different methods tested on “Remote 1”7 at
noise level L = 1, “Remote 2”7 at L = 3, and “Remote 3” at L = 5. Algorithm 1, Algorithm 2,
and the benchmark SAR-BM3D method achieve significantly better visual quality over other
methods. For example, they reconstruct buildings, roads, and patterns with fine edges and
textures.

5.5. Numerical results tested on real SAR images. In this experiment, we use real SAR
images “SAR 1”7 of size 370 x 370 and “SAR 2” of size 350 x 350 as shown in Figures 9(a)
and 10(a), respectively.

(a) Noisy image (L=1)  (b) Ground truth

(h) I-DIV (i) TwL-4V (j) Dictionary

Figure 6. Comparison of denoised images restored from “Remote 1” at noise level L = 1 by different
methods. The (PSNR, SSIM) values for each denoised image: (c) Alg. 1 (21.23dB, 0.5459); (d) Alg. 2
(21.15dB, 0.5474); () SAR-BM3D (21.12dB, 0.5393); (f) DZ (20.47dB, 0.4950); (g) HNW (20.24dB, 0.4551);
(h) I-DIV (20.03dB, 0.4709); (i) TwL-4V (20.07dB, 0.4934); (j) dictionary (20.44dB, 0.4867).

Figures 9 and 10 demonstrate that Algorithms 1 and 2 achieve better denoising perfor-
mance than other methods. For example, they reconstruct more local structures and smooth
textures than the DZ, HNW, I-DIV, Twl-4V, and learned dictionary methods, and they
remove more noise and generate fewer artifacts than the benchmark SAR-BM3D method.

In addition to the visual quality comparison on the denoised images, we can also receive
guidance by computing the equivalent number of looks (ENL) and analyzing the ratio images
for different methods.

The ENL of an estimated image % € RY measures the multiplicative noise reduction in
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(h) I-DIV (i) TwL-4V (j) Dictionary

Figure 7. Comparison of denoised images restored from “Remote 2” at noise level L = 3 by different
methods. The (PSNR, SSIM) values for each denoised image: (c) Alg. 1 (24.13dB, 0.6471); (d) Alg. 2
(24.05dB, 0.6504); (e) SAR-BM3D (24.03dB, 0.6449); (f) DZ (22.76dB, 0.5758); (g) HNW (22.71dB, 0.5805);
(h) I-DIV (22.49dB, 0.5744); (i) TwL-4V (22.66dB, 0.5845); (j) dictionary (22.34dB, 0.5592).

(h) I-DIV (i) TwL-4V (j) Dictionary

Figure 8. Comparison of denoised images restored from “Remote 37 at moise level L = 5 by different
methods. The (PSNR, SSIM) values for each denoised image: (c) Alg. 1 (25.80dB, 0.7427); (d) Alg. 2
(25.82dB, 0.7464); () SAR-BM3D (25.65dB, 0.7316); (f) DZ (24.45dB, 0.6745); (g) HNW (23.79dB, 0.6562);
(h) I-DIV (24.10dB, 0.6713); (i) TwL-4V (24.30dB, 0.6737); (j) dictionary (22.70dB, 0.5736).

homogeneous regions and is defined as

S

ENL =

Y
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(f) HNW (g) I-DIV (h) TwL-4V (i) Dictionary

Figure 9. Comparison of denoised images restored from “SAR 1” by different methods.

(f) HNW (g) I-DIV (i) Dictionary

Figure 10. Comparison of denoised images restored from “SAR 27 by different methods.

where ug is the average intensity of the selected area and 0121 is its variance.

For computing the ENL values, two homogeneous regions are, respectively, selected from
“SAR 17 and “SAR 2”7 as indicated by the white boxes in Figures 11(a) and 12(a). Table 7
presents the ENL values for different methods. The SAR-BM3D method has the lowest ENL
values compared to other methods, which indicates that either the multiplicative noise is not
effectively reduced or there exist some artifacts in the estimated image. The other methods
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(a) SAR 1 b) Alg. 1 c) Alg. 2 (d) SAR-BM3D
(f) HNW (g) I-DIV ) TwL-4V (i) Dictionary

Figure 11. Comparison of the ratio images between “SAR 1” and the estimated images by different methods.

(a) SAR 2 b) Alg. 1 c) Alg. 2 (d) SAR-BM3D
(f) HNW (g) I-DIV ) TwL-4V (i) Dictionary

Figure 12. Comparison of the ratio images between “SAR 2” and the estimated images by different methods.

have relatively large ENL values, which indicates that either the multiplicative noise is well
removed or the estimated image is oversmooth.

The pointwise ratio between the real SAR image u € RY and the estimated image & € RY
simulates the multiplicative noise that has been removed by the given method and is defined
as

. u
Ratio = —
u
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Table 7
ENL values of denoised images restored from real SAR images by different methods.

Image Region Noisy Algl Alg?2 SAR- DZ HNwW [-DIV  TwL- Dict
BM3D 4V
SAR 1 Left 9.46 63.09  332.55 42.84 745.14  521.24 306.90 117.48 183.57
Right  10.65 82.59 230.13 57.36 333.18 360.12 276.04 144.54 175.49

SAR 2 Left 22.64 97.02 393.72 9192 1008.50 816.97 501.22 579.26 336.58
Right 21.91 96.58 395.04 91.03 985.64  740.27 566.30 724.76 444.01

The ratio images for different methods are presented in Figures 11 and 12. The ratio images for
Algorithm 1, Algorithm, 2 and the SAR-BM3D method present almost random speckle, which
matches the expected statistics. On the contrary, the ratio images for the other methods still
contain some geometric structures, such as edges and details correlated to the real SAR images,
which indicates that those methods have removed some valuable information in addition to
noise.

6. Conclusions. We have proposed an effective method for multiplicative noise removal.
The proposed method consists of a nonlocal low-rank model, which exploits the low-rank
prior of nonlocal similar patch matrices, and the PARM iterative algorithm, which solves the
nonconvex nonsmooth optimization problem resulting from the proposed model. We have
established the global convergence of the sequence generated by the PARM algorithm to a
critical point of the nonconvex nonsmooth objective function of the resulting optimization
problem. Numerical results have demonstrated that the proposed method with a theoretical
convergence guarantee outperforms several existing methods, including the state-of-the-art
SAR-BM3D method.

REFERENCES

[1] H. ArTtoucH, J. BoLTE, P. REDONT, AND A. SOUBEYRAN, Prozimal alternating minimization and
projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality,
Math. Oper. Res., 35 (2010), pp. 438-457.

[2] H. ArTOUCH, J. BOLTE, AND F. B. SVAITER, Convergence of descent methods for semi-algebraic and tame
problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods,
Math. Program., 137 (2013), pp. 91-129.

[3] G. AUBERT AND J.-F. AuJoL, A wvariational approach to removing multiplicative noise, SITAM J. Appl.
Math., 68 (2008), pp. 925-946, https://doi.org/10.1137/060671814.

[4] J. BOLTE, S. SABACH, AND M. TEBOULLE, Prozimal alternating linearized minimization for nonconvex
and nonsmooth problems, Math. Program., 146 (2014), pp. 459-494.

[5] A. BuaDpks, B. CoLL, AND J.-M. MOREL, A non-local algorithm for image denoising, in Proceedings
of the 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego,
CA, Vol. 2, 2005, pp. 60-65.

[6] R. CHAN, H. YANG, AND T. ZENG, A two-stage image segmentation method for blurry images with
Poisson or multiplicative gamma noise, STAM J. Imaging Sci., 7 (2014), pp. 98-127, https://doi.org/
10.1137/130920241.

[7] K. CHEN, H. DoNG, AND K.-S. CHAN, Reduced rank regression via adaptive nuclear norm penalization,
Biometrika, 100 (2013), pp. 901-920.

[8] K. DaBov, A. For, V. KATKOVNIK, AND K. EGIAZARIAN, Image denoising by sparse 3-D transform-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/060671814
https://doi.org/10.1137/130920241
https://doi.org/10.1137/130920241

Downloaded 02/16/21 to 68.131.72.92. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1628 X. LIU, J. LU, L. SHEN, C. XU, AND Y. XU

[9]
(10]
(11]
(12]
(13]
(14]
(15]

(16]

(17]
(18]
(19]
20]
(21]
(22]
23]

(24]

(25]
[26]
27]

(28]

29]

(30]
(31]
32]

33]

domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), pp. 2080-2095.

W. Dong, G. SHi, X. L1, Y. Ma, aND F. HuaNG, Compressive sensing via nonlocal low-rank regular-
ization, IEEE Trans. Image Process., 23 (2014), pp. 3618-3632.

Y. DoNG AND T. ZENG, A convex variational model for restoring blurred images with multiplicative noise,
SIAM J. Imaging Sci., 6 (2013), pp. 1598-1625, https://doi.org/10.1137/120870621.

W. FENG, H. LEL, AND Y. GAO, Speckle reduction via higher order total variation approach, IEEE Trans.
Image Process., 23 (2014), pp. 1831-1843.

M. A. T. FIGUEIREDO AND J. M. BIoUuCAs-DIAS, Restoration of Poissonian images using alternating
direction optimization, IEEE Trans. Image Process., 19 (2010), pp. 3133-3145.

J. W. GOODMAN, Some fundamental properties of speckle, J. Opt. Soc. Amer., 66 (1976), pp. 1145-1150.

S. Gu, L. ZHANG, W. Zuo, AND X. FENG, Weighted nuclear norm minimization with application to image
denoising, in Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, 2014, pp. 2862-2869.

R. A. HOrRN AND C. R. JOHNSON, Topics in Matriz Analysis, Cambridge University Press, Cambridge,
UK, 1994.

T. Huang, W. DonNG, X. XIE, G. SHI, AND X. BAI, Mized noise removal via Laplacian scale mixture
modeling and nonlocal low-rank approzimation, IEEE Trans. Image Process., 26 (2017), pp. 3171-
3186.

Y.-M. Huang, L. Moisan, M. K. Na, AND T. ZENG, Multiplicative noise removal via a learned diction-
ary, IEEE Trans. Image Process., 21 (2012), pp. 4534-4543.

Y.-M. Huang, M. K. NG, AND Y.-W. WEN, A new total variation method for multiplicative noise
removal, SIAM J. Imaging Sci., 2 (2009), pp. 20-40, https://doi.org/10.1137/080712593.

Y.-M. Huang, H.-Y. YAN, Y.-W. WEN, AND X. YANG, Rank minimization with applications to image
noise removal, Inform. Sci., 429 (2018), pp. 147-163.

M. KANG, S. YUN, AND H. Woo0, Two-level convez relaxed variational model for multiplicative denoising,
SIAM J. Imaging Sci., 6 (2013), pp. 875-903, https://doi.org/10.1137/11086077X.

A. S. LEwis AND H. S. SENDOV, Nonsmooth analysis of singular values, part I: Theory, Set-Valued Anal.,
13 (2005), pp. 213-241.

A. S. LEwis AND H. S. SENDOV, Nonsmooth analysis of singular values, part 11: Applications, Set-Valued
Anal., 13 (2005), pp. 243-264.

Y. Lou, X. ZHANG, S. OSHER, AND A. BERTOZZI, Image recovery via nonlocal operators, J. Sci. Comput.,
42 (2010), pp. 185-197.

C. Lu, J. TANG, S. YAN, AND Z. LIN, Generalized nonconver nonsmooth low-rank minimization, in
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus,
OH, 2014, pp. 4130-4137.

J. Lu, L. SHEN, C. XU, AND Y. XU, Multiplicative noise removal in imaging: An exp-model and its
fized-point prozimity algorithm, Appl. Comput. Harmon. Anal., 41 (2016), pp. 518-539.

X. NIE, X. HUANG, AND W. FENG, A new nonlocal T'V-based variational model for SAR image despeckling
based on the G° distribution, Digital Signal Process., 68 (2017), pp. 44-56.

C. J. OLIVER AND S. QUEGAN, Understanding Synthetic Aperture Radar Images, SciTech Publishing,
Inc., Raleigh, NC, 2004.

S. PARRILLI, M. PoDERICO, C. V. ANGELINO, AND L. VERDOLIVA, A nonlocal SAR image denoising
algorithm based on LLMMSE wavelet shrinkage, IEEE Trans. Geosci. Remote Sensing, 50 (2011),
pp. 606-616.

B. RECHT, M. FAZEL, AND P. A. PARRILO, Guaranteed minimum-rank solutions of linear matriz equa-
tions via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471-501, https://doi.org/10.1137/
070697835.

J. M. ScaMmITT, S. XIANG, AND K. M. YUNG, Speckle in optical coherence tomography, J. Biomed. Opt.,
4 (1999), pp. 95-105.

S. SETZER, G. STEIDL, AND T. TEUBER, Deblurring Poissonian images by split Bregman techniques, J.
Vis. Comm. Image Represent., 21 (2010), pp. 193-199.

J. SHI AND S. OSHER, A nonlinear inverse scale space method for a convexr multiplicative noise model,
SIAM J. Imaging Sci., 1 (2008), pp. 294-321, https://doi.org/10.1137/070689954.

G. STEIDL AND T. TEUBER, Removing multiplicative noise by Douglas-Rachford splitting methods, J.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/120870621
https://doi.org/10.1137/080712593
https://doi.org/10.1137/11086077X
https://doi.org/10.1137/070697835
https://doi.org/10.1137/070697835
https://doi.org/10.1137/070689954

Downloaded 02/16/21 to 68.131.72.92. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

MULTIPLICATIVE NOISE REMOVAL 1629

Math. Imaging Vis., 36 (2010), pp. 168-184.

[34] T. Sun, H. JIANG, AND L. CHENG, Convergence of prozimal iteratively reweighted nuclear norm algorithm
for image processing, IEEE Trans. Image Process., 26 (2017), pp. 5632-5644.

[35] R. F. WAGNER, S. W. SMITH, J. M. SANDRIK, AND H. LOPEZ, Statistics of speckle in ultrasound B-scans,
IEEE Trans. Sonics Ultrasonics, 30 (1983), pp. 156-163.

[36] J. WEL, Y. HuaNG, L. KE, AND L. WANG, Nonlocal low-rank-based compressed sensing for remote sensing
image reconstruction, IEEE Geosci. Remote Sensing Lett., 13 (2017), pp. 1557-1561.

[37] Y. Wu, Speckle noise removal via nonlocal low-rank regularization, J. Vis. Comm. Image Represent., 39
(2016), pp. 172-180.

[38] W. Yu, W. YIN, AND J. ZENG, Global convergence of ADMM in nonconvex nonsmooth optimization, J.
Sci. Comput., 78 (2018), pp. 1-35.

[39] S. YuN AND H. W00, A new multiplicative denoising variational model based on mth root transformation,
IEEE Trans. Image Process., 21 (2012), pp. 2523-2533.

[40] W. ZHOou, A. C. Bovik, H. R. SHEIKH, AND E. P. SIMONCELLI, Image quality assessment: From error
vistbility to structural similarity, IEEE Trans. Image Process., 13 (2004), pp. 600-612.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



	Introduction
	Nonlocal low-rank model for multiplicative noise removal
	Proximal alternating reweighted minimization algorithm
	Preliminaries on subdifferentials and proximity operators
	Patch matrix estimation via a reweighted scheme
	Image restoration via W-weighted proximal regularization
	The PARM algorithm for multiplicative noise removal

	Convergence analysis
	Sufficient descent condition
	Relative error condition
	Continuity condition
	Convergence results

	Numerical results
	Practical version of PARM algorithm
	Parameter settings
	Numerical results tested on standard test images
	Numerical results tested on remote sensing images
	Numerical results tested on real SAR images

	Conclusions

