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Synthesis of Mammogram From Digital Breast
Tomosynthesis Using Deep Convolutional

Neural Network With Gradient Guided cGANs
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Abstract— Synthetic digital mammography (SDM), a 2D
image generated from digital breast tomosynthesis (DBT),
is used as a potential substitute for full-field digital mam-
mography (FFDM) in clinic to reduce the radiation dose
for breast cancer screening. Previous studies exploited
projection geometry and fused projection data and DBT
volume, with different post-processing techniques applied
on re-projection data which may generate different image
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appearance compared to FFDM. To alleviate this issue, one
possible solution to generate an SDM image is using a
learning-based method to model the transformation from
the DBT volume to the FFDM image using current DBT/FFDM
combo images. In this study, we proposed to use a deep
convolutional neural network (DCNN) to learn the transfor-
mation to generate SDM using current DBT/FFDM combo
images. Gradient guided conditional generative adversar-
ial networks (GGGAN) objective function was designed to
preserve subtle MCs and the perceptual loss was exploited
to improve the performance of the proposed DCNN on
perceptual quality. We used various image quality criteria
for evaluation, including preserving masses and MCs which
are important in mammogram. Experiment results demon-
strated progressive performance improvement of network
using different objective functions in terms of those image
quality criteria. The methodology we exploited in the SDM
generation task to analyze and progressively improve image
quality by designing objective functions may be helpful to
other image generation tasks.

Index Terms— Breast cancer, digital breast tomosynthe-
sis, image synthesis, deep learning, generative adversarial
networks.

I. INTRODUCTION

MAMMOGRAPHY screening is a cost-efficient tool for
early detection of breast cancer. Full-field digital mam-

mography (FFDM), a two-dimensional digital imaging tech-
nology, has been widely adapted for breast cancer screening.
However, FFDM has limited sensitivity and specificity on
dense breasts due to tissue overlapping, which can create
false negatives when subtle lesions are obscured by complex
fibroglandular tissues. Digital breast tomosynthesis (DBT),
a new 3D imaging technology, is designed to address the tissue
overlapping issue by reconstructing 3D structural information
of the breast. Several large-scale clinical studies indicate that
the false positive rate is lower and the cancer detection rate is
higher for DBT + FFDM, compared to FFDM alone [1]. The
advantage of the 2D view is that it is easier for radiologists
to assess the density symmetry of two breasts, undertake
comparison of priors, and assess the overall breast density,
and it was reported that FFDM appears to be slightly more
sensitive than digital breast tomosynthesis for the detection of
calcification [2].
DBT + FFDM, the so-called “combo-mode,” has gradually

replaced mammography as an early screening tool in devel-
oped countries and can combine the advantages of DBT and
FFDM. However, imaging with DBT+ FFDM nearly doubles
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the radiation dose compared to using FFDM alone [3]. More
radiation exposure may increase the risk of radiation-induced
breast cancer [4]. One of the solutions to reduce the radiation
dose in DBT screening is to synthetically reconstruct a 2D
FFDM-like mammogram, called synthetic digital mammogra-
phy (SDM), from DBT data to replace the FFDM, thereby
reducing the radiation dose while maintaining the detection
performance of DBT to match that of DBT + FFDM [5].
There are several SDM methods in the literature. In [6],

maximum intensity projection (MIP) and average projection
approaches are used to generate thick slices from DBT. The
approaches are only tested on phantom data, and the results
are not comparable to FFDM. Study [7] used a computer-aided
detection (CAD) system to determine relevant points in a
DBT volume and then rendered a mammogram from the
intersection of a surface fitted through these points. This
method heavily relies on a CAD system that requires a
large set of manually annotated data [8], and it may ignore
suspicious microcalcification (MC) clusters and benign lesions
which make it clinically inapplicable. Research [9] regarded
the gradient value of the DBT volume as the degree of
importance in terms of the conspicuity, and selected voxels
with the highest conspicuity in DBT volume to derive SDM,
while [10] used weighted averaging in which the weighting
function was computed by an edge-detection filter to derive
SDM from the DBT volume. Both methods, using only edge
and gradient information in DBT, are very likely to miss
textural abnormalities and unable to correctly assess the overall
breast density. In [11], projection data as an adjunct to DBT
slices were used to construct an SDM with enhanced MCs,
while the conspicuity of masses on SDM was degraded.
There are several vendors with FDA approved SDM

solutions: Hologic, Inc. (C-view and Intelligent 2D, Marl-
borough, MA, USA), Siemens (Insight, Munich, Germany),
Fujifilm Medical Systems USA, Inc. (S-View, Stamford,
CT, USA) and GE Healthcare (V-Preview, Chicago, IL,
USA). The C-view image is created by re-projecting and
filtering central projection data and/or the stack of recon-
structed DBT slices, with calcification-like or lesion-like
characteristics enhanced [12]. Clinical studies have shown
that C-view + DBT have the performance similar to that of
standard FFDM + DBT [13], [14]. Intelligent 2D was newly
developed by Hologic to further improve the performance
of C-view. However, the enhancement may result in false
positives due to pseudocalcifications [15]. Besides, the C-view
image provides poor overall resolution and noise properties
compared to FFDM [16], [17]. More importantly, large-scale
clinical studies reported that more breasts are categorized
as nondense than dense when using C-view + DBT com-
pared to using FFDM + DBT [18], [19], probably due to
inherently different visual appearance between the C-view
image and FFDM. Since breast density has both imaging
and risk implications [20] and is an important component of
mammography reports, the C-view image may result in an
inconsistent mammography report to FFDM and unreliable
risk assessment.
Most existing studies have proposed different post-

processing techniques to enhance structures of interest, such as

MCs, masses and important edges, and some CAD techniques
have been applied to determine specific structure of interest
to be enhanced before post-processing. For some research
groups and companies which have access to projection data,
projection data and DBT volume were fused along the pro-
jection geometry, and post-processing techniques were applied
to re-projection data. Projection data played important role for
SDM generation in our previous study [11]. For most research
groups which have no access to projection data, one possible
solution to generate an SDM image is using a learning-based
method to model the transformation from the DBT volume to
the FFDM image using current DBT/FFDM combo images.
Since the FFDM image is the full-dose central projection
image in the DBT data acquisition, the FFDM image is
essentially identical to the re-projection of the reconstructed
DBT volume, when ignoring artifacts and noise on the DBT
volume (due to incomplete exposure, narrow angle, low-dose
nature, and imperfect reconstruction in DBT acquisition)
and post-processing steps used in FFDM acquisition (for
optimization of image readability/appearance [21]). Besides,
anti-scatter grid is used in FFDM acquisition but not in DBT
acquisition. Thus, we consider the transformation from the
DBT volume to the FFDM image as a four step process:
(1) scatter correction; (2) artifacts reduction and denois-
ing; (3) re-projection of processed DBT volume; (4) post-
processing. Noting that DBT volume data used in this work
are in cone-beam coordinates [22], every slice of reconstructed
DBT is pixel-to-pixel mapped to the central projection image,
i.e., the FFDM image. That is, the re-projection process is
a pixel-wise process and is spatially invariant, and it can
be done by simply taking the average of DBT slices. Thus,
the spatially varying re-projection geometry in DBT data has
already been eliminated, and the learning-based method only
needs to accommodate scatter correction, artifacts reduction,
denoising and post-processing.
An end-to-end deep convolutional neural network (DCNN)

was proposed to learn the transformation from the DBT
volume to the FFDM image using DBT/FFDM combo images.
Multi-scale information and 3D information in DBT images
were integrated into the architecture of the DCNN. In this
work, we mostly focused on progressively improving the per-
formance of the given DCNN by using more complex objective
functions and proposing new objective functions to approach
similar appearance to FFDM and preserve local structures
such as masses and MCs. The mean squared error (MSE)
objective function is the baseline of our study and is feasible to
minimize the difference of intensity distribution between SDM
and FFDM and produce global similar appearance in vision.
However, MSE may produce overly smoothed images [23],
in which edges of local structures such as MCs and masses
may be blurred and some MCs disappeared. To solve blur-
ring issue arising from MSE, a state-of-the-art conditional
generative adversarial networks (cGANs) [24], [25], termed
pix2pixHD [26] was used to preserve edges, in which a dis-
criminator network is trained to differentiate SDM from FFDM
in the form of dissimilar patterns (such as edges) measured
by an adversarial loss. However, experiment results showed
that pix2pixHD was good at preserving edges of masses and
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MC sharpness, but some small-scale structures such as subtle
MCs still disappeared in SDM. On possible reason is that
small-scale structures may have less weights than large-scale
structures in the discriminator network of pix2pixHD, thus
small-scale structures contribute less to the objective function.
To alleviate this problem, we proposed a gradient guided
cGANs (GGGAN) objective function to further enhance weak
edges to preserve small-scale structures such as subtle MCs.
In GGGAN, the gradient maps of SDM/FFDM images are
extracted by the Sobel operators and used as additional input
for the discriminator network, which force the discriminator
to capture gradient features related to subtle edges. Thus,
GGGAN with the gradient guided discriminator is feasible to
generate images preserving subtle edges. However, GGGAN
may over-enhance edges and result in signal distortion which
makes the SDM images visually unpleasant for radiologists.
We proposed to use perceptual loss [27] which correlates
well with human perceptual judgments [28] to decrease signal
distortion and improve perceptual quality of SDM images.
In the perceptual loss, the dissimilarity between SDM and
FFDM is measured in a feature space generated by a VGG-16
network [29] pre-trained on ImageNet [30] which is a very
large natural image dataset. The perceptual loss was used in
our study as an additional regularization term for GGGAN
objective function, termed GGGAN-VGG.
In the experiments, we trained the DCNN with same

architecture by using the four objective functions (i.e., MSE,
pix2pixHD, GGGAN, GGGAN-VGG) separately. Pairwise
comparison was performed among those DCNNs to show
that network performance can be progressively improved from
using MSE to using GGGAN-VGG in terms of some important
image quality criteria. Automatic mass segmentation and MC
detection using in-house CAD software published in our
previous studies on mammogram were used to evaluate the
performance of preserving edges and local structures such as
masses and MCs. The full-width-half-maximum (FWHM) was
measured to quantify MC sharpness. A human observer study
scoring radiologists’ opinion on quality of image characteris-
tics (e.g., skin, glandular tissue, mass, MC) was conducted to
evaluate the perceptual quality of images and consistency of
breast density category.
This work is a further development based on our preliminary

work [31]. The present work adds to the preliminary one in
several ways. Firstly, we improve the GGGAN by introducing
an additional perceptual loss. Secondly, extensive experi-
ments, including the MC detection and mass segmentation on
SDM, human observer study, and a visual comparison with
a commercial SDM solution, are conducted. The statistical
results provide additional support and insight for the proposed
method. Moreover, we present more in-depth discussion and
analysis on the proposed framework.
The rest of this paper is organized as follows. The details

of network structure of the generator DCNN and the objective
functions are described in Section II. The details of the
dataset we used for algorithm development and evaluation are
described in Section III. Quantitative experiments and human
observer study on real patient data were conducted to evaluate
the performance of DCNN with different objective functions,

Fig. 1. Cubes with different colours indicate DBT slices/features of
different groups. In regular 2D convolution, 3D information in input
slices/channels cannot be kept. In group convolution and shared weight
group convolution (SWGC), 3D information in input slices/channels can
be kept. See Appendix F for visual result of comparison between SWGC,
group convolution and regular 2D convolution Best viewed in colour.

shown in Section IV. Finally, limitations of this work and
relevant issues are discussed in Section V and a conclusion is
drawn in Section VI.

II. METHODS

In this section, we firstly give the network architecture of the
proposed generator DCNN, which is identical for the different
objective functions. Then we introduce the objective functions
(i.e., MSE, pix2pixHD, GGGAN, GGGAN-VGG) which were
used to train the generator DCNN in detail.

A. Network Architecture of the Generator DCNN
We present two kinds of information in DBT that are critical

to effectively approaching the target FFDM. Both information
were carefully integrated into the network architecture of the
generator DCNN.

1) Multi-Scale Information: Mammogram imaging has
important multi-scale information. Coarse-scale structures like
masses and glandular tissues as well as fine-scale structures
like MCs and spiculations are all important components of the
image. Thus, multi-scale representation is crucial in bridging
DBT and the target FFDM. This motivates the use of a
U-net [32] like network as the generator DCNN.

2) 3D Information: DBT input used in this work is noisy
due to the incomplete exposure and low-dose nature of DBT
acquisition. To help denoise, 3D context information in DBT
is used in the generator DCNN. In this work, we use group
convolution [33] to explicitly extract 3D structural information
in DBT. In group convolution, input slices/channels are divided
into several groups, and convolutions are applied separately to
each group. Output features are concatenated in original group
order to keep 3D information in input slices/channels (Fig. 1).
We proposed a shared weight group convolution (SWGC)

structure with the assumption that the feature extraction
process of individual groups should be identical. In SWGC,
the weights of convolution kernels of individual groups are
shared (Fig. 1). In this work, we empirically set 3 slices in a
group, and 96 slices of DBT results in 32 groups. We have
also tried group convolution with less or more slices in a group
and found no significant difference. Thus, we empirically set
the number of groups to be 32 in SWGC.
For the proposed generator DCNN, we use a U-net like

network. The diagram of architecture is shown in Fig. 2. The
DCNN is consist of an encoder which extracts multi-scale
features from different scales of input, and a decoder which
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Fig. 2. The diagram of the generator DCNN architecture. In the left-hand
side, DBT is used as 96 channels 2D input and downsampled by a factor
of 2 for five times using average pooling layer. Multi-scale features with
feature size 64, 128, 256, 512, 1024, 1024 are extracted from multi-scale
DBT and fused to derive an SDM output. All convolution layers including
SWGC have a kernel size of 3 and a stride of 1, except that the last 2D
convolution layer has a kernel size of 7. Best viewed in colour.

derive an SDM by fusing multi-scale features. The multi-scale
features are extracted from downsampled DBT using the
proposed SWGC. We use layer normalization [34] instead
of batch normalization, and pixel shuffle [35] layer instead
of transpose convolution for upsampling. Besides, we add
three residual blocks [36] in each scale of decoder to enlarge
network capacity.

B. Mean Squared Error
We denote the training dataset by S = {(xi , yi )|1 ≤ i ≤ M},

where (xi , yi ) is the i th pair of DBT and FFDM in S, and M
is the number of pairs in S. To train the generator DCNN,
denoted by G, the difference between each output ŷi = G(xi )
and the target FFDM yi is measured by an objective function
and used to guide the optimization of G’s parameters.
In the MSE objective function, the ground truth y is directly

used as the regression target. MSE is the pixel-wise average
of the difference between prediction ŷ and target y. The MSE
objective function is given by

LMSE (G) = 1

M

M∑
i=1

∥∥yi − ŷi
∥∥2
2 , (1)

where ‖ · ‖2 is the l2-norm.

C. Pix2pixHD
In cGANs, to preserve edges and alleviate blurring issue

arising from MSE, a discriminator network is trained to differ-
entiate generated images from the ground truth in the form of
dissimilar patterns (such as edges) measured by an adversarial
loss, and the generator is trained to minimize the adversarial
loss. In this work, we used a state-of-the-art cGANs, termed
pix2pixHD [26]. In the pix2pixHD framework, a discriminator
network D is trained to differentiate between prediction ŷi and

Fig. 3. The diagram of the discriminator of pix2pixHD/GGGAN, except
that pix2pixHD don’t have Sobel layer and gradient maps in discriminator.
In the first layer, the features with a channel size of 32 are extracted from
SDM/FFDM and DBT separately and concatenated. The output features
of the next 4 convolution layers have a channel size of 128, 256, 512, 1,
respectively. The first three convolution layers have a kernel size of 4 and
a stride of 2, and the last two convolution layers have a kernel size of 3
and a stride of 1. Best viewed in colour.

the target yi with input xi as a condition. The loss function
used to train D is given by

LPix (D) = 1

M

M∑
i=1

(∥∥1 − D(xi , yi )
∥∥2
2 + ∥∥0 − D(xi , ŷi )

∥∥2
2

)
,

(2)

where 1 = [1, 1, . . . , 1]T and 0 = [0, 0, . . . , 0]T , both has the
same size as D(·).
Given a trained discriminator D, the adversarial loss and

feature matching loss for generator G are given respectively
by

LAdver (G) = 1

M

M∑
i=1

∥∥1 − D(xi , ŷi )
∥∥2
2 , (3)

LFM (G) = 1

MTD

M∑
i=1

TD∑
j=1

1

N j
D

∥∥∥D j (xi , yi ) − D j (xi , ŷi )
∥∥∥
1
,

(4)

where D j (·) is the the feature of j th layers of D(·), TD is
the total number of layers, N j

D is the number of elements of
the feature in the j th layer, and ‖ · ‖1 is the l1-norm. The
pix2pixHD objective function used to train generator G is
given by

LPix (G) = LAdver (G) + λFM LFM (G), (5)

where λFM is a weighting factor to balance between adver-
sarial loss and feature matching loss. The discriminator D
and generator G are trained by minimizing (2) and (5) in an
alternative way. For the hyperparameters of feature matching
loss, we set the number of layers TD = 3, λFM = 10, which
are the same as that in the original pix2pixHD framework.
The diagram of network architecture of the discriminator of

pix2pixHD is shown in Fig. 3 (Sobel layer and gradient maps
are not included). The network architecture is the same as
that in the original pix2pixHD framework [26] except the first
layer is different. In the first layer, the features are extracted
from SDM/FFDM and DBT separately, and are concatenated
before being processed by the second convolution layer.
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Similar to original pix2pixHD, we trained three discrimi-
nators with the identical architecture simultaneously to handle
multi-scale structures in SDM/FFDM. For the first discrimina-
tor, it takes the original SDM/FFDM and DBT as inputs, while
the other two discriminators have downsampled SDM/FFDM
and DBT with a factor of 2 and 4 as input.

D. GGGAN
To further enhance weak edges to preserve small-scale

structures such as subtle MCs, we proposed gradient guided
cGANs (GGGAN) to capture gradient features related to subtle
edges. Gradient type regularization has been studied in our
previous studies and was proven to be useful to preserve
subtle MCs in DBT [11], [37], [38]. In GGGAN, the input
of the discriminator is augmented with the gradient maps of
prediction image ŷ and target image y, denoted by ŷ′ and y′
respectively. The gradient maps ŷ′ and y′ are concatenated
with ŷ and y to form a multichannel image, denoted by [ŷ, ŷ′]
and [y, y′], which together with DBT x form the new input for
the discriminator. The loss function for the new discriminator
D′ is given by

LGrad(D
′) = 1

M

M∑
i=1

(∥∥1 − D′(xi , [yi , y′
i ])

∥∥2
2

+ ∥∥0 − D′(xi , [ŷi , ŷ′
i ])

∥∥2
2

)
. (6)

Given a trained discriminator D′, the adversarial loss and
feature matching loss are given by

LAdver ′ (G) = 1

M

M∑
i=1

∥∥1 − D′(xi , [ŷi , ŷ′
i ])

∥∥2
2 , (7)

LFM ′(G) = 1

MTD′

M∑
i=1

TD′∑
j=1

1

ND′ j

∥∥∥D′ j (xi , [yi , y′
i ])

− D′ j (xi , [ŷi , ŷ′
i ])

∥∥∥
1
. (8)

The GGGAN objective function used to train generator G
is given by

LGGGAN (G) = LAdver ′ (G) + λFM LFM ′(G). (9)

The discriminator D′ and generator G are trained by minimiz-
ing (6) and (9) in an alternative way.
The gradient maps are extracted from SDM/FFDM image

by a fixed convolution layer in which kernels are initialized
by Sobel operators. We use Sobel operators in four directions:
vertical, horizontal, and two diagonal directions. To enlarge
the receptive field of the Sobel convolution layer and capture
bigger edges in the image, two additional dilated convolu-
tion [39] layers with the same Sobel kernels but having a
dilation rate of 3 and 5 are used. Then the three gradient maps
from three different convolution layers, in which each map has
4 channels (one channel for one direction), are concatenated
with SDM/FFDM to be a multichannel image and are used
as the input to the discriminator D′. The diagram of the
discriminator of GGGAN is shown in Fig. 3.

Fig. 4. The diagram of the first 7 convolution layers of VGG-16 network.
The VGG-16 network have 13 convolution layers in total, while the rest
layers are not used in the perceptual loss and are not shown in this
diagram. The output features of the first 7 convolution layers have a
channel size of 64, 64, 128, 128, 256, 256, 256, respectively. Maxpooling
layers with a stride of 2 are used to downsample the features by a factor
of 2. All convolution layers have a kernel size of 3 and a stride of 1. Best
viewed in colour.

E. GGGAN-VGG
To improve perceptual quality of SDM images, we proposed

to use perceptual loss as an additional regularization. In per-
ceptual loss, the dissimilarity between prediction ŷ and target y
is measured in feature space while the features are extracted by
a pre-trained neural network. The commonly used pre-trained
neural network is a VGG-16 network [29], pre-trained on
ImageNet [30] which is a very large natural image dataset.
Given the ImageNet pre-trained VGG-16 network, denoted
by V , the perceptual loss is given by

LV (G) = 1

MTV

M∑
i=1

TV∑
j=1

1

N j
V

∥∥∥V j (yi ) − V j (ŷi )
∥∥∥
1
, (10)

where V j (·) is the feature of j th layers of V (·), TV is the
total number of layers, and N j

V is the number of elements of
the feature in the j th layer. In this work, we empirically set
the number of layers TV = 3.

The diagram of the first 7 convolution layers of VGG-16
network is shown in Fig. 4. We only used the three lower layers
(the 2nd, 4th, and 7th convolution layer) of the pre-trained
VGG-16 network (which have 13 convolution layers in total)
to extract features due to the assumption that natural image
only shares low-level feature space with medical imaging.
In the literature, perceptual loss is usually used as an addi-

tional regularization term [27] to original objective function.
In this work, we also combined perceptual loss (equation (10))
with GGGAN (equation (9)) to stabilize the training. The
combined objective function, denoted by GGGAN-VGG in
this work, is given by

LG−V (G) = LAdver ′ (G) + λFM LFM ′(G) + λV LV (G), (11)

where λV is a weighting factor to balance between adversarial
loss and perceptual loss. We empirically set λV to 10 in this
work.

III. MATERIALS AND TRAINING DETAILS

A. Materials
All the data used in this work were retrospectively collected

from the Hologic Selenia system. For algorithm develop-
ment, we collected 1077 cases each of which has malignant
lesions (mass and/or MC) in one breast and is normal in
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the other breast. We used 977 cases which have both DBT
and FFDM for training. The rest 100 cases were reserved
for validation. During the training, the number of training
iterations is selected to ensure that training loss has con-
verged and the visual appearance of two cases which were
randomly selected from validation dataset have no significant
change.
For testing, we independently collected 122 cases with mass

and 21 cases with MC cluster. We used the 122 cases with
mass (265 masses in all FFDM images, all have manually
annotated masks) for intensity distortion evaluation, mass
segmentation and human observer study. We used the 21 cases
with MC cluster for test on MC cluster and MC morphology
in human observer study. For MC detection and MC sharp-
ness evaluation, since annotation is very time-consuming on
individual MCs, a radiologist selected two cases with different
breast density from the 21 cases with MC cluster, and both
case has many MCs of various sizes. Then the radiologist
manually annotated 128 ground truth MCs on the fatty breast
case and 45 ground truth MCs on the dense breast case,
and the annotation was reviewed by another radiologist. See
Appendix C for the full images and the ROIs of the two
selected cases.

B. Data Preprocessing
Before training and testing, since each DBT has different

number of slices, all DBTs were padded with all zero slices on
one side until each DBT has 96 slices. Similar to deep learning
based image processing works in computer vision, the grey
level range of both input DBTs (10-bit grey level, i.e.0 to 1023)
and ground truth FFDMs (12-bit grey level, i.e.0 to 4095) were
rescaled using linear transform to range from −1 to 1. Then
for training data, the DBTs and corresponding FFDMs were
cut into patches at 512× 512 resolution without overlapping,
and the patches with a high percentage of background were
discarded for better training convergency. This results in a
total of 33,431 patches in the training dataset. Noting that
the generator DCNN is a fully convolutional network. Thus,
the generator DCNN can use full-sized DBT as input and
generates full-sized SDM in the test phase.

C. Training Details
During the training, the Adam [40] solver with a learning

rate of 1 × 10−4, β1 = 0.5, and β2 = 0.9 was used. The
batch size was set to 1 due to the limitations of GPU memory.
Horizontal flip augmentation was used for all patches, and
vertical flip augmentation was used for patches from the
CC-view mammogram. Four DCNNs with the same archi-
tecture were trained using four different objective functions,
i.e., MSE (equation (1)), pix2pixHD (equation (5)), GGGAN
(equation (9)), and GGGAN-VGG (equation (11)) respec-
tively. All DCNNs were trained for 6 epochs (approximately
200,000 iterations). The number of training iterations is large
enough to ensure that training loss has converged and the
visual appearances of images of the validation cases have no
significant change. Training takes about 60 hours for MSE and

TABLE I
PSNR AND SSIM (MEAN ± STANDARD DEVIATION) OF MSE,
PIX2PIXHD, GGGAN, AND GGGAN-VGG. THE RESULT OF

RE-PROJECTION IS USED AS A REFERENCE

about 80 hours for pix2pixHD, GGGAN and GGGAN-VGG
on an NVIDIA TitanX GPU.

IV. EXPERIMENTS

For brevity, we denote the four DCNNs, which have the
same architecture and were trained using the four different
objective functions (i.e., equation (1), (5), (9), and (11)),
by MSE, Pix2pixHD, GGGAN, and GGGAN-VGG respec-
tively in below.
Firstly, we used peak-to-noise ratio (PSNR) and the struc-

tural similarity (SSIM) to measure intensity distortion. Then
we compared pix2pixHD with MSE by using the mass seg-
mentation task to measure ability to preserve mass edges, and
the full-width-half-maximum (FWHM) to quantify MC sharp-
ness. And we compared GGGAN with pix2pixHD by using
the MC detection task to measure ability to preserve MCs.
We compared GGGAN-VGG with GGGAN by conducting a
human observer study to give human opinion scores on quality
of characteristics in images (e.g., skin, glandular tissue, mass,
MC). In addition, we evaluated consistency of breast density
category of different objective functions. For each pairwise
comparison, we also provided the results of other objective
functions as references in case the audiences are interested in
those experiment results.
Since plain re-projection of DBT volume is the simplest

method to derive an SDM image, we provided the result
on re-projection images as a reference for each evaluation.
The re-projection of DBT volume can be derived by simply
taking the average of DBT slices because DBT volume data
used in this work are in cone-beam coordinates [22]. After
averaging, the re-projection image is rectified and rescaled
using a window level of 540 and a window width of 580,
which are provided by Hologic C-view software to make the
image have a similar intensity distribution to FFDM. Then
the re-projection image is rescaled from grey level of DBT
(10-bit, i.e., 0 to 1023) to grey level of FFDM (12-bit, i.e., 0 to
4095). We denote the re-projection method by Re-projection
in below.

A. MSE and Intensity Distortion
We used PSNR and SSIM to measure intensity distortion.

The result is shown in Table I. MSE had a high PSNR and
a high SSIM. While comparing with GAN based objective
functions (i.e., Pix2pixHD, GGGAN, and GGGAN-VGG),
MSE is better at preserving intensity distribution.
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Fig. 5. Representative visual results of mass segmentation on FFDM
or SDMs derived from the five methods. For each result, four images
are shown. Top left: FFDM or SDMs derived from the five methods. Top
right: predicted mask of FFDM or SDMs. Bottom left: false negative (red),
true positive (yellow) and false positive (green) regions of the predicted
mask when taking the manually annotated mask as ground truth. Bottom
right: false negative (red), true positive (yellow) and false positive (green)
regions of the predicted mask when taking the predicted mask of FFDM
as ground truth. Best viewed in colour.

B. Compare MSE With Pix2pixHD
1) Mass Segmentation: To show that Pix2pixHD can allevi-

ate blurring issue arising from MSE and is better at preserving
mass edges than MSE, we performed mass segmentation on
the synthesized images to measure ability to preserve mass
edges. In the mass segmentation task, a U-net was trained
on an independently collected in-house dataset that includes
673 masses and corresponding manually annotated masks
(see Appendix A for more details of U-net training). A repre-
sentative visual result is shown in Fig. 5. In the representative
visual result, the predicted mask of MSE had an irregular
boundary and over-segmentation, while the predicted mask of
Pix2pixHD was much more consistent with the predicted mask
of FFDM.
The mean dice scores of predicted masks of FFDM and

SDMs when taking the manually annotated mask as ground
truth are shown in Table II. Besides, we proposed a semantic
similarity score, which takes the predicted mask of FFDM as
ground truth to calculate a dice score to directly evaluate the
similarity of masses between SDMs and FFDM, also reported
in Table II.
As can be seen, MSE and Pix2pixHD had similar dice score

compared to FFDM (p > 0.05). However, considering the
semantic similarity score, MSE was inferior to Pix2pixHD.
The results indicate that Pix2pixHD is better at preserving
mass edges than MSE.

2) MC Sharpness: To show that Pix2pixHD can alleviate
blurring issue arising from MSE, we compared Pix2pixHD
with MSE in terms of MC sharpness. To quantify sharpness
of MCs, FWHM was used in this work. FWHM is the distance
between points on the line profile at which the signal reaches
half its maximum value. A lower FWHM indicates that the
MC has a lower standard deviation and is sharper. Two MCs

TABLE II
DICE SCORE (MEAN ± STANDARD DEVIATION) OF MSE AND

PIX2PIXHD ON THE MASS SEGMENTATION TASK. SIGNIFICANCE
(P-VALUE) OF DIFFERENCE BETWEEN THE RESULTS OF FFDM

AND SDM ARE LISTED. SEMANTIC SIMILARITY IS THE DICE
SCORE (MEAN ± STANDARD DEVIATION) BETWEEN PREDICTED

MASK OF SDM AND PREDICTED MASK OF FFDM. THE
RESULTS OF GGGAN, GGGAN-VGG, FFDM, AND

RE-PROJECTION ARE USED AS REFERENCES

Fig. 6. Some visual results of MCs on FFDM or SDMs derived from
the five methods. Rectangles outline sharp edges (green) and MCs (red)
missed by Pix2pixHD while maintained in GGGAN. Noting that subtle
calcifications in FFDM (blue rectangle) are missed by all methods (see
Fig. 8 for more details). Best viewed on screen with zoom in.

that appear in SDMs of all methods (pointed by the yellow
arrows in Fig. 6 (g)) were selected to give a representative
result of FWHM (see Appendix B).
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TABLE III
RATIO (MEAN ± STANDARD DEVIATION) OF STANDARD DEVIATION OF

SDM FROM MSE AND PIX2PIXHD, TO STANDARD DEVIATION OF
FFDM. P-VALUE OF T-TEST WITH THE NULL HYPOTHESIS THAT THE

MEAN OF RATIOS IS EQUAL TO 1. THE RESULTS OF GGGAN,
GGGAN-VGG, AND RE-PROJECTION ARE USED AS REFERENCES

We statistically compared the MC sharpness of SDM images
from MSE and Pix2pixHD on the 173 ground truth MCs.
Given an SDM and an MC of gold standard, the line profiles
of the MC on FFDM and the SDM of both the x-direction
and y-direction were fitted by Gaussian curves. Since the
FWHM of Gaussian curve is proportional to the standard
deviation of the Gaussian curve, we measured the sharpness
of the MC of gold standard on FFDM and the SDM by
the standard deviation of Gaussian curve. Thus, the ratio of
standard deviation of the SDM to standard deviation of FFDM
should be close to 1 if the MC of the SDM has a similar
sharpness to the same MC of FFDM. Since the MC sharpness
evaluation can only be performed on the MCs present on both
FFDM image and SDM image, we selected ground truth MCs
that can be detected on both FFDM image and SDM image by
using the same MC detection method as in the MC detection
experiment. The statistical results of the ratio of MSE and
Pix2pixHD are listed in Table III. The results of GGGAN,
GGGAN-VGG, and Re-projection are also listed and used as
references.
As can be seen, MSE had much flatter MCs compared

to FFDM, while Pix2pixHD had comparable MC sharpness
to FFDM. The results indicate that Pix2pixHD can alleviate
blurring issue arising from MSE and preserve MC sharpness.

C. Compare Pix2pixHD With GGGAN
To show that GGGAN is better at preserving MCs than

Pix2pixHD, we compared GGGAN with Pix2pixHD by using
the MC detection task to measure ability to preserve MCs. We
performed MC detection on SDM images and FFDM image
by using a rule-based MC candidate detection method, which
was used in the MC cluster CAD system [41], [42] and our
previous work [43]. For each detected MC candidate in FFDM
and SDMs, if there exists an MC of gold standard within less
than 5 pixels (the radius of the largest MC), it is considered
as a true positive and denoted by T Pdetect . Otherwise, it is
considered as a false positive and denoted by FPdetect . Then,
the precision is calculated as follows:

Precision = T Pdetect
T Pdetect + FPdetect

. (12)

Given an SDM or the FFDM, for each ground truth MC,
if there exists an MC candidate in SDM or FFDM within
5 pixels, it is considered as a true positive and denoted

Fig. 7. A part of candidate detection results. Green points indicate true
positive TPgt and red points indicate false negative FNgt for FFDM and
each SDM. Best viewed in colour.

Fig. 8. FFDM and slices of corresponding DBT which contain subtle
calcifications missed by GGGAN and GGGAN-VGG shown in Fig. 6.
Those subtle calcifications appear on the 35th and 36th slice of DBT.

by T Pgt . Otherwise, it is considered as a false negative and
denoted by FNgt . Then, the sensitivity is calculated as follows:

Sensi tivi ty = T Pgt
T Pgt + FNgt

. (13)

See Fig. 6 for some visual results of preserving MCs and Fig. 7
for some candidate detection results. ROIs in Fig. 6 highlight
the MCs and sharp edges that are missed by Pix2pixHD
while maintained by GGGAN. Noting that GGGAN and
GGGAN-VGG failed to maintain some subtle low-contrast
calcifications as shown in Fig. 6 (i) and (k). This is probably
due to the low-dose nature of DBT acquisition which makes
those subtle low-contrast calcifications too weak in DBT slices
(Fig. 8) to be distinguished from noise and recovered from
DBT in our method.
Table IV lists the precision and sensitivity of SDMs

from Pix2pixHD and GGGAN. The results of FFDM and
SDMs from MSE, GGGAN-VGG, and Re-projection are
also listed as references. GGGAN significantly outper-
formed (p < 0.0001) pix2pixHD, and had a lower precision
(p = 0.241) and a lower sensitivity (p = 0.0017) compared
to FFDM, while Pix2pixHD had a much lower precision
(p < 0.0001) and a much lower sensitivity (p < 0.0001) com-
pared to FFDM, which indicates that the proposed GGGAN
objective function is better at preserving MCs than Pix2pixHD.
We found that GGGAN had similar performance on fatty

breast case to that on dense breast case, and substantially
outperformed Pix2pixHD on both case. While Re-projection
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TABLE IV
PRECISION AND SENSITIVITY OF MC CANDIDATE DETECTION

ON SDMS FROM PIX2PIXHD AND GGGAN. THE RESULTS
OF FFDM AND SDMS FROM MSE, GGGAN-VGG, AND

RE-PROJECTION ARE USED AS REFERENCES

TABLE V
SUBJECTIVE SCORES (MEAN ± STANDARD DEVIATION) OF NORMAL

TISSUE QUALITY, MASS CONSPICUITY, DISTRIBUTION CONSISTENCY,
AND MORPHOLOGY CONSISTENCY FOR GGGAN AND GGGAN-VGG.

THE RESULTS OF MSE, PIX2PIXHD, FFDM, AND RE-PROJECTION
ARE USED AS REFERENCES

had worse performance on dense breast case than that on fatty
breast case, probably because in the fatty breast case, low
density makes it easier for the plain re-projection method to
maintain those high-contrast MCs.

D. Compare GGGAN With GGGAN-VGG
To show that GGGAN-VGG can improve perceptual qual-

ity compared to GGGAN, we conducted a human observer
study to give human opinion scores on quality of character-
istics in images (e.g., skin, glandular tissue, mass, MC) of
GGGAN-VGG and GGGAN. The results of MSE, Pix2pixHD,
FFDM, and Re-projection are also reported as references. In
addition, we evaluated consistency of breast density category
to the show the dependence of breast density category on
objective functions.

1) Normal Tissue: We performed a blind reader study on
122 independently collected cases reported with mass in
terms of normal tissue quality (including quality of glandular
tissue, fatty tissue, lymph node, skin line, nipple, and vessel).
For each case, SDMs derived from the five methods (i.e.,
MSE, Pix2pixHD, GGGAN, GGGAN-VGG, Re-projection)
and FFDM were shown to three radiologists in a random
order. The MLO-view image and CC-view image of two
sides were shown at the same time and the radiologists were
free to zoom-in or zoom-out and change window-width and
window-level. The three radiologists were asked to indepen-
dently score each modality on a five-point scale (5=excellent,
1=unacceptable). The three scores were averaged and assigned
to the modality on that case. The mean and standard deviation
values of the normal tissue quality scores are shown in
Table V. It can be seen that GGGAN-VGG had a higher

TABLE VI
PERCENT AGREEMENT AND COHEN KAPPA COEFFICIENT OF BI-RADS

DENSITY CATEGORY FOR THE FOUR METHODS. THE RESULT OF
RE-PROJECTION IS USED AS A REFERENCE

quality on normal tissue, skin line, nipple and vessel than
GGGAN (p < 0.05).

2) Mass Conspicuity: The blind reader study in terms of
mass conspicuity was conducted on the same data and the
same study protocol as that of evaluating normal tissue quality
(except that for scoring, 5=highly conspicuous and 1=highly
inconspicuous). The mean and standard deviation values of
the mass conspicuity scores are shown in Table V. It can be
seen that GGGAN-VGG had a higher mass conspicuity than
GGGAN (p < 0.05).

3) MC Cluster and MC Morphology: In addition, we inde-
pendently collected 21 cases with MC cluster. For each case,
SDMs derived from the five methods were shown to the
three radiologists in a random order. The three radiologists
were asked to independently score each modality in terms
of consistency of distributional characteristic of MC cluster
and consistency of morphology of MCs when taking the MC
cluster of FFDM as reference on a five-point scale (5=exactly
the same, 1=totally different). The three scores are averaged
and assigned to the modality on that case. The mean and
standard deviation values of the consistency scores are shown
in Table V. It can be seen that GGGAN-VGG is better at
preserving MC morphology than GGGAN (p < 0.05).

4) Breast Density Category: The reader study in terms of
breast density category was conducted on the same data and
the same study protocol as that of evaluating normal tissue
quality. The three radiologists were asked to assign breast
density category to each modality according to the 5th edition
of BI-RADS. If at least two of the three readers agreed on
a density category, the density category is assigned to the
modality. If the three readers assigned three different density
categories, the median density category is assigned to the
modality. The consensus percent agreement and Cohen kappa
coefficient between BI-RADS density categories assigned for
FFDM and SDM derived from each method are listed in
Table VI. In addition to four-category scale, the percent
agreement and Cohen kappa coefficient calculated based on
two-category scale, in which heterogeneous and extremely
dense are combined into a dense category and fatty and scat-
tered breast densities are combined into a nondense category,
are also listed in Table VI. It can be seen that all three GAN
based methods achieve higher agreement with FFDM on breast
density assessment than MSE on both four-category scale and
two-category scale. It may be because GAN based methods are
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better at preserving glandular tissues and can provide a more
accurate glandular tissue percentage assessment, i.e., breast
density category.
In comparison with FFDM in terms of breast density

categories, C-view was reported to have a percent agree-
ment of 80.3% and a Cohen kappa coefficient of 0.73 on
four-category scale, and have a percent agreement of 91.9%
and a Cohen kappa coefficient of 0.83 on two-category
scale [44], which are lower than the results of GGGAN in our
human observer study. A direct comparison between GGGAN
and C-view in terms of breast density consistency is needed
in future study.

V. DISCUSSION

In this work, to achieve better image quality for SDM
images derived from the given DCNN network, we mainly
focused on using more complex objective functions to train the
DCNN network without changing the network architecture. We
used pix2pixHD to alleviate blurring issue arising from MSE
and preserve edges. In the experiment of mass segmentation,
pix2pixHD had an average semantic similarity of 0.9074,
while MSE had an average semantic similarity of 0.8256.
In MC sharpness evaluation, Pix2pixHD had comparable MC
sharpness to FFDM, while MSE had much flatter MCs com-
pared to FFDM. Pix2pixHD can alleviate blurring issue arising
from MSE and is better at preserving edges than MSE. Then
we proposed a GGGAN objective function to preserve MCs
lost by pix2pixHD. In MC detection, GGGAN had a precision
of 44.77% and a sensitivity of 68.21%, while pix2pixHD had a
precision of 27.67% and a sensitivity of 44.51%. The proposed
GGGAN objective function is better at preserving MCs than
pix2pixHD. Then we combined GGGAN with perceptual loss
(i.e., GGGAN-VGG) to improve perceptual quality. In human
observer study, GGGAN-VGG had average human opinion
scores of 3.61, 3.5, 3.51 and 3.21 in terms of normal tissue
quality, mass conspicuity, MC cluster distribution consistency,
and MC morphology respectively, while GGGAN had average
scores of 3.22, 3.13, 3.46, and 2.86. Radiologists prefer
images derived from GGGAN-VGG than GGGAN. GGGAN-
VGG has higher perceptual quality than GGGAN. Besides,
pix2pixHD, GGGAN, and GGGAN-VGG achieved higher
agreement with FFDM on breast density assessment than
MSE. The experiment results showed that the performance
of the DCNN is progressively improved in terms of various
image criteria, especially preserving masses and MCs which
are important in mammogram, from using MSE to using
GGGAN-VGG.
One major limitation in this work is that reader detection

study was not performed. Besides, we used in-house CAD
software published in our previous studies on mammogram
for mass segmentation and MC detection. Since we have no
access to other business CAD software, wide investigation on
various CAD software for evaluation was not conducted in
this study. In MC detection experiment, since annotation is
very time-consuming on individual MCs, we only reported
two typical cases. Another major limitation is that we focused
our evaluation on four objective functions which motivated

our study to achieve clinical requirements on global perceptual
quality and local structures. The performance of the DCNN
using other objective functions, such as other cGANs based
objective functions, is unknown. Besides, in this work, we kept
the architecture of the DCNN network fixed. The dependence
of network performance on other network architectures and
whether the performance gain of using more complex objective
function exists for DCNN network with higher/less complexity
are unknown.
Another major limitation in this work is that statistical

results of comparisons between the proposed method and
C-view/Intelligent 2D, such as a comparison in terms of breast
density consistency, were not provided. Since both C-view and
Intelligent 2D were not approved by FDA of China, we could
only collect a limited number of images from one hospital
which conducted clinical trial for Hologic C-view, and we
can only provide a visual comparison between the proposed
GGGAN-VGG method and C-view on a few representative
images (see Appendix D). The findings in the visual com-
parison are preliminary and the conclusions lack significance
due to insufficient available cases. However, we do think it is
valuable to provide this result in order to make audiences have
enough confidence and interests to try our method if they have
enough data. We will further quantify the performance of the
proposed method compared with commercial SDM solutions
when we collect sufficient data in the future.
Some studies reported that visualization of small MCs using

C-view is challenging [45]. However, we did not evaluate
the detection as a function of MC size in this work. We
think that evaluating MC detection as a function of MC
size is an interesting topic and requires extensive experiments
on additional phantom data or manual annotation which are
beyond the scope of this work. We would like to leave it for
future study.
There are several directions to improve the performance

of the proposed learning-based method. To decrease inten-
sity distortion in GGGAN-VGG, combining MSE with
GGGAN-VGG may achieve a good balance between intensity
distortion and other image quality criteria. It was shown in
this work that using different objective functions to train
the DCNN can preserve different characteristics in images.
Thus, it is possible to design a new objective function to fur-
ther enhance specific characteristics in images. For example,
a network which has been trained on mass/MC detection task
can be used to extract features to compute the loss between
predicted image and ground truth (similar to the perceptual
loss used in this work). By using this objective function,
mass/MC in images may be further enhanced and the SDM
image may be similar to C-view image.
Using higher quality data or additional data may also help

to improve the performance of the proposed learning-based
method, for example, DBT data acquired from Hologic Clarity
HD system (newly developed by Hologic to acquire high
resolution DBT images), wide-angle scan system (such as
Siemens which provides DBT with less artifacts), and other
DBT systems using anti-scatter grids (having less artifacts).
Our algorithm should be re-trained on those high quality
DBT data since those DBT data may have different image
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characteristics compared to DBT from current system. Using
those high quality DBT data as input may make the training
easier and may recover subtle low-contrast MCs (such as MCs
shown in Fig. 8). On the other hand, data are cheaper in our
task than that in medical image detection/diagnosis task since
we don’t need manually annotated label to train the network.
With much more training data available, it is possible to have
a better performance without changing the framework.
In this work, the trained generator DCNN can only be used

for data acquired from Hologic system since it only learned
the transformation from DBT volume to FFDM image of
Hologic system. To investigate the potential capacity of the
proposed method to transfer to an unseen machine system,
we tested the DCNN trained by GGGAN-VGG on a DBT
volume sample acquired from GE system (see Appendix E).
However, the transfer method proposed in the test on GE
system is preliminary, and the findings lack significance due
to insufficient cases being tested. More works are needed in
the future to further quantify the cross-vendor potential of the
proposed method.

VI. CONCLUSION

In this study, we proposed to use a DCNN to learn the
transformation from the DBT volume to the FFDM image to
generate SDM. We proposed a GGGAN objective function
and used the perceptual loss to improve the performance of
the proposed DCNN. We used various image quality criteria
for evaluation, including preserving masses and MCs which
are important in mammogram. We observed progressive per-
formance improvement of network with different objective
functions in terms of those image quality criteria. To our
best knowledge, this is the first work of learning-based SDM
method in the literature. In the future, we will conduct
statistical experiments to compare the proposed method with
commercial SDM solutions and conduct clinical study to
further quantify the potential of the proposed method.
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