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We consider the minimum norm interpolation problem in the £1(N) space, aiming at
constructing asparse interpolation solution. T'he original problem is reformulated in the
pre-dual space, thereby inducing a norm in a related finitedimensional Euclidean space.
The dual problem ts then transformed into a linear programming problem, which can
be solved by existing methods. With that done, the original intetrpolation problem is
reduced by solving an elementary finite-dimensional linear algebra equation. A specific
example is presented to illustrate the proposad method, in which a sparse solution in the
£1(N) space is compared to the dense solution in the £2(N) space. This example shows
that a solution of the minimum norm interpolation problem in the £1(N) space is indeed
sparse, while that of the minimum norm interpolation problem in the £2(N) space is not.
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1. Introduction

Minimum norm interpolation in a Hilbert space is a classical research topic (8,
13]. In particular, minimum norm interpolation in the £2(N) space produces good
results in the sense of approximation. However, due to the roundness of the unit
ball of a Hilbert space such as £3(N), the resulting minimum norm interpolation
solution is normally represented by a dense vector, in the sense that a majority
of its components are nonzero. Dense vectors are less computationally efficient for
high dimensional problems. Thus for potential use in treating big data sets, we
prefer a sparse vector, in the sense that a majority of its components are zero, for
representing a minimum norm interpolation solution. For this purpose, we consider
minimum norm interpolation in the £;(N) space.

The choice of the £; space is also motivated by recent exciting progress in signal
processing and machine learning. Compressed sensing [4, 9] based on the ¢; norm
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has attracted much attention in recent application areas such as signal processing
and image processing. The use of the £y norm in compressed sensing gives rise to
desirable sparsity in the resulting solutions [1]. Seeking sparse solutions in machine
learning leads to the introduction of reproducing kernel Banach spaces [22]. For
recent developments in reproducing kernel Banach spaces, the readers are referred
to (15, 16, 21]. Representer theorems for the solution of ill-posed linear inverse
problems are provided in (18], comparing the effects of £; and £ regularization. In
(17] a representer theorem is obtained in the general Banach space setting. Such
representer theorems enable a dramatic reduction in the dimension of the space
from which a data fitting solution needs to be sought.

The contribution of this paper is to furnish a method for solving the mini-
mum norm interpolation problem in £; that determines a sparse solution. In this
method, we transform the minimum norm interpolation problem into two related
finite-dimensional problems, for which established solution methods exist. We first
reformulate the proposed minimum norm interpolation problem using a duality
argument. This process introduces a norm in a related finite-dimensional Euclidian
space. The associated dual extremal problem then takes the form of a basic linear
programming problem, namely, optimizing a linear function on a convex polytope.
There is a substantial literature on optimizing a linear function on a convex polytope
(see, for example, (12, 19]). Finally, a solution of the linear programming problem
enables the original interpolation problem to be reduced to an elementary equation
in finite-dimensional linear algebra. Again, this equation yields to well established
methods.

We organize this paper in five sections. In Sec. 2, we describe the minimum norm
interpolation problem in the £;(N) space, and show that it has a solution. We then
reformulateit via a Banach space duality argument in Sec. 3. We introduce in Sec. 4
a norm in a related finite-dimensional Euclidean space, and further reformulate the
dual problem as an equivalent linear programming problem. In Sec. 5, we leverage
the solution of the linear programming problem into a solution of the original
interpolation problem. Finally, in Sec. 6, we present an examnple of solving the
problem completely by using the proposed approach, and compare it to the Hilbert
space approach.

2. The ¢; Interpolation Problem

In this section, we present the minimum £; norm interpolation problem, which is the
principal subject of this paper. To frame it properly we review the classical Banach
spaces £; and co. We then argue that the interpolation problem has a solution under
natural conditions, to close the section.

We now introduce the main problem under investigation. By £, := £;(N) we
mean the Banach space of real sequences x := (z), Za,...) such that

o
[|x]]y := Z |zx| < oo.

k=1
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The space cp is the set of real sequences that are convergent to zero. Thus, for
a € cg, we can write

a:= (a1.a9,...)
and by definition

lim a; = 0.
— 00

The set cp is clearly a linear space, and in fact it is a Banach space under the
supremum norm. That is, for a := (e, @, . ..) € cp, we define

llalleo := sup{|ax| : & € N}.

The scalar field is R. We observe that for an a € cp, it bolds that ||a] , < +ce. For
any X € £1 and a € ¢y, let us write

=)
(a, x) = Z arTh.
k=1

Clearly, we have that
oo

l(a,x)] € larzel < lalloollZllr < +oo-
k=1
In other words, for any x € €; and a € cg, the quantity (a,x) is well-defined.

We recall the notion of a continuous (or bounded) linear functional on ¢g. A
continuous linear functional on a Banach space Z is a linear function A : Z — R
that is continuous with respect to the metric topologies on Z and R. The dual of
a Banach space Z is the set of continuous linear functionals on that space. The
dual space, given the symbol 2, is a Banach space in its own right, endowed with

the norm
A
A 2 = sup{illY(Ir—i! X # o}.

For any x € £y, the mapping
aw— (a,x) (2.1)

induces a bounded linear functional on cg. More will be said about this situation
in the next section.

We now describe the minimum ¢; norm interpolation problem. Let S :=
{a1,82,...,3,} be a set of given sequences from cg, and let {y1,y2,...,ym} be
a set of real numbers. Consider the problem of finding x € £; such that the infi-
mum

ms := inf{||x||y : (a5, x) = yy, forall 1 <j < m}) (2.2)

is achieved. Of course the existence of such a vector needs to be established, and
we address this matter below.

We first consider the linear independence assumption on the vectors of S. To
this end, we introduce an mth order semi-infinite matrix A whose rows are the
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members of S. The system of equations
(a5,x) =y;, 1<j<m (2.3)
can be equivalently expressed in a matrix form as
Ax =y, (2.4)

where X is an infinite column vector representing an element of £1, and y is an
m-dimensional column vector. By elementary matrix algebra, there exist an mx m
permutation matrix P and an m x m lower triangular matrix L such that

PA =LU,

and U is in reduced echelon form. We may insist that L bas unit entries along
the main diagonal, since it is a product of elementary matrices and a permutation
matrix. Then the system (2.4) can be transformed to

Ux =L~ 'Py.

If the vectors of S are linearly dependent, then the system could be inconsistent
(depending on the numbers y;), in which case there is no solution. In this situation,
there would be rows of all zeros in U, corresponding to nonzero entries in the
column matrix L~!Py. On the other hand, if the system is consistent, then by
discarding any rows of zeros in U, as well as the corresponding zero components
of the column vector L~!Py, we obtain an equivalent system where the rows of
the truncated U are linearly independent. We may therefore assume at the outset
that any superfluous vectors from S have been discarded, and thus S is linearly
independent and the system is consistent. This ensures that the infimum in (2.2)
is over a nonempty set. To rule out further trivialities, let us also assume that the
infimum in (2.2) is positive. This is to say that ¥y is not the zero vector.

For convenience, let % denote the collection of vectors x in £, satisfying the
system (2.3). Thus the extremal problem (2.2) could be written as

inf{|| x|, : x € 5#}.
We write 7 for the closed linear span in ¢g of the vectors of S. Let us show that
under the conditions described earlier, the infimum in (2.2) must be attained. A
proof of this result could be fashioned using the Banach-Alaoglu theorem. However,
since cg is separable, the following elementary argument is made possible. It essen-

tially re-proves the Banach-Alaoglu theorem in the special case that the pre-dual
is separable.

Proposition 2.1. Let m be a positive integer. Suppose that S := {a;,a2,...,am}
is a linearly independent set of sequences from cp, and {y1,y2,...,Ym} is a set of
real numbers, not all zero. If the system (2.3) is consistent, then there ecists Xo € &
satisfying

Ixolls = ms, (2.5)
where mg is defined by (2.2).
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Proof. We prove the claim by a “minimizing sequence” argument. Suppose that
{x(M}3%, is a sequence of vectors in £; satisfying the system (2.3) such that

Jim [x™||y = ms. (2.6)

The proof will be completed by first constructing the limit xg of a subsequence of
the given minimizing sequence, showing that it is in £y, then verifying it satisfies
the system (2.3), and finally proving that x¢ satisfies (2.5).

We first construct the element Xo. By (2.6) the sequence {||x(™|{}, is
convergent, hence bounded, and let C be its supremum. We use the notation
x™ = (I(ln),:zg‘), ...) for the components of x(™). Then the real sequence (:1:(1") ) ol
is bounded; by the Bolzano-Weierstrass theorem, there is a convergent subsequence.
Let this subsequence arise from the indices (n;4)J2,, and let the z; be the limit
of zgn"j ) as 7 tends to infinity. Having defined ), z3,...,xZx, and having selected
the indices (nr )52 for a subsequence of {x(™}22,, we observe that (:1;{.'_:"{’))}21
is a bounded real sequence. Hence this subsequence has a further subsequence,
with indices (nx+1,);2,, convergent to a limit zy4+y. In this manner, a vector
Xo := (z1,Z2,...) is specified.

We next verify that Xg is in €. To this end, for any N € N, we can choose v(N)

sufficiently large such that ny ,v) > ny_1,uv-1), for all N 2 2, and

(Mrueny)

1
lzy] <z |+ foralll<j<N.

Summing both sides of the above inequality leads to

N N 4

eyl S XNy + 3

J—1 7=1
This implies that

[Ixolly £ C + 1. (2.7)

That is, xg € €.
We now show that X satisfies the system (2.3). To accomplish this, we establish
the weak® convergence of x(®~,v(")) to x. That is, for any a € ¢p

lim (a,x{™¥.«t™)) = (a,Xg). 2.8)
N —o00

For this purpose, we let e denote the vector in £; whose Ath component is equal
to 1 and all other components are zero. By the construction of xg, for each k& we
have that

lim (e, x™™vM)) = 4 = (e, Xo).
N—o0
The continuity of (-,-) then allows for

K K
k=1

k=1
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for any linear combination 2}5—1 arey. Now, suppose that limg o, Zf:l aep =a
in the norm topology of cg. Let € > 0 be chosen. There exists an index K sufficiently
large such that

(2.9)

Z are;.

With K fixed, there exists an index n sufﬁcnently large such that whenever N > =,

K
<Z agep, X(PNw(n) — >

k=1

—220+1)

<

Mlﬁ

Then, we observe that

[(a,xMret) — xq)|

K
<"’ - Z agey, XV ) — xO>

k=1

<

K
+ <Z akek’x(nNu'(N)) — x0> 3

k=1

The second term on the right-hand side of the inequality above is bounded by
5 and using (2.7) the first term on the right-hand side is bounded by "a -
Z:;l akek"m(QC + 1), which is also bounded by 5 by employing (2.9). There-
fore, we have established (2.8). By choosing a := a; in (2.8) and noticing that
vectors X(®~. =) for all N satisfy the system (2.3), we see that Xp must satisfy the
system (2.3).

Finally, we establish that X satisfies (2.5). To this end, we consider vector b of
the form

b Sign(zj)a 1 SJ < Al-
77 o, i>M,

which have the unit norm in cg. For any € > 0 we can find M sufficiently large such
that

| %oll1 — € <D lzs] = (b, xo)|
=1
— 1 (nn,.(N)) L (Nx,.(N))
lim_|(b,x )| < lim inf |x ll11[bl]eo-
Since ||b||e; = 1, this demonstrates that

[I%olly < nrg{.\. [ ™. "("))lll +¢€, for every e > 0.

Equality must hold (since xp € .%). Furthermore, noticing x(™(¥) is a subse-
quence of the minimizing sequence, we observe that

lim [|x("Me)| | = ms.
N—o

Thus, the infimum in (2.5) is attained by Xg. U
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Proposition 2.1 ensures that the main problem expressed in (2.2) has a solution
under very broad conditions. We emphasize that the infimum of (2.2) need not be
uniguely attained, since the ball in £; fails to be strictly convex.

We close this section by noting that the infimum problem (2.2) is closely related
to the “regularized” problem of minimizing the quantity

m

> Itag, %) — gyl + &(lIx]l4), (2.10)

F=1
where ¢ is a monotone increasing function on the positive real axis, as X varies
through £'. That is, we are willing to trade o ff the exact equality of each (35,X%) = yy,
in return for keeping the down the value of the norm | x|[;. Indeed, this second
term in (2.10) is intended to penalize “overfitting” of the data. Regularization
problems for machine learning in reproducing kernel Hilbert spaces have been well-
studied in {7, 10]. For learning a matrix by regularization, see {2|. Moreover, for
regularization problems in functional reproducing kernel Hilbert spaces, see [20],
and in reproducing kernel Banach spaces, see 15, 21, 22|. The regularized problem
related to (2.10) is studied from a function-theoretic approach in a forthcoming

paper.

3. Dual Extremal Problem

In this section, we reformulate the infimum problem (2.2) as a dual extremal prob-
lem. This duality argument is a well established tool in convex analysis. In its
general form can be found in any standard text in functional analysis, for example,
[6]. A particular application of duality to machine learning appears in (2, Sec. 3|,
to solve the problem of learning a matrix based on a set of linear measurements.
It results in a significant reduction in the number of free paraineters, and hence on
the computational burden. We shall see that a similar reduction is enabled in the
present paper.

The duality argument applied here is made possible by the following relationship
between the spaces g and €. For a derivation of this well-known result, see [14,

pp. 73-74|.
Proposition 3.1. The dual space of cg is €y; that is, ¢ = £1.

Let us note that the set of vectors . over which the infimum is being taken is
a certain hyperplane in £;. To this end, we define a subspace of £; by letting

M= {z €t :(a;,z)=0, foralll <j<m]}. (3.1)
Lemma 3.2. Ifx’' € 9 is any particular solution to the system (2.3), then
inf{||x" +2||,:2z € #}=ms. (3:2)

This lemma says that % = x’ + #. That is, the set .% over which the infi-
mum (2.2) is taken is a translation of the subspace # of £,. The proof is elementary
and hence omitted.
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The following proposition enables us to reformulate the extremal problem by
means of classical Banach space duality. The result follows from a basic theorem
from functional analysis, namely, if o is a subspace of a Banach space 2, then
the dual of & is isometrically isomorphic to the quotient space 2 */#/*. where

wt ={AeZ*:)\a)=0, for all a € o7}
is the annihilator of . For this we refer the reader to [6, Theorem 2.3].

Proposition 3.3. If X’ € &%, then

m
1 1 C
inf{|[x' +z| :z €4} = sup 2_1_1 1Y

. (3.3)
(c1,c2,...,.cm)ER™ ” ZT:) cJaJ"oo

Proof. Here is an elementary proof of [6, Theorem 2.3| for the present setting,
where & = c¢p, and & is the closed linear span in ¢y of 2,,29....,3,. (Note
that # = /' here.) Let us regard the given vector X’ € £1 as a bounded linear
functional restricted to 4. By the Hahn Banach Theorem, there exists a bounded
linear functional on all of cg, represented by some x € £;, such that x agrees with
x’ on .¢/, and

Ix cup (X1 €127, X)
1= —m————-
(€1,€2,..-sCon JER™ " Z;L Cjajlloo

That 1s, the norm of X equals the norm of the restriction of X’ to &'. Direct com-
putation on the right-hand side of the above equation leads to

m
2 7=1€1Y1
lIx|ls = sup

3.4
-
B A PO |, ST (3.4)

Since X and X’ are equal when restricted to <, their difference z := x — x’ belongs
to .#. Thus, we have that

inf{||x' + 2zl : 2 € &} = [x]]1.
This combined with Eq. (3.4) leads the desired result (3.3). D

According to Lemma 3.2 and Proposition 3.3, solving the original minimum
norm interpolation problem is equivalent by solving the dual extremal problem

m
2 1-1€1Ys
sup

=l I (3.5)
(er,ca,emer™ | 25m1 €535 llo

Problem (3.5) has only finitely many real parameters, and therefore this step is a
beneficial reduction.

We next consider the existence of a solution of the dual extremal problem (3.5).
To this end, we identify a norm that arises naturally from (3.5). The following
lemma can be verified by inspection.
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Lemma 3.4. Let m be a positive integer. If ay,a2,...,am are linearly independent
vectors in cp, then the mapping

m
c:=(c1,02,...,&m) Zc_,a_-, (3.6)
1=1
00
#s a norm on R™.
In the remaining part of this paper, we shall always assume that a4,29,...,am

are fired linearly independent vectors in ¢y without further mentioning. Let us give
the associated norm the name

m
lelle == <y
g1=1 -

We prove in the next proposition the existence of a solution of the extremal
problem (3.5).

Proposition 3.5. The supremum in (3.5) is attained by some choice of
(c1,€9,...,cm) € R™.

Proof. The mapping

m
(Cl,027' v ’cﬂl) — zcjy]
7=1

is a continuous function from R™ to R. In (3.5) we are taking an extreme value of
this function over a compact set, namely the unit sphere in R™ in the | - ||, norm
(recall that all norms on R™ give rise to equivalent topologies, and hence this set
is compact under both the Euclidean topology and the || - ||, topology). Thus the
supremum of this function is attained. O

We emphasize that the extremal vector ¢ for (3.5) need not be unique.

4. A Linear Programming Problem

The dual extremal problem described in the last section turns out to be equiva-
lent to a linear programming problem. This section is devoted to establishing this
equivalence.

We first recall some necessary notions from convex analysis. A conver polytope
in R™ is a bounded region of R™ that is the intersection of finitely many halfspaces.
It i1s equal to the convex hull of its vertices. An m-dimensional polytope is bounded
by finitely many (m — 1)-dimensional facets, each of which is a polytope in a lower
dimensional space. Thus the notion of polytope generalizes that of a polyhedron to
arbitrarily many finite dimensions. (Our source on this subject is [11].)
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Presently we will see that the unit sphere in R™ under the || - ||, norm must be
the surface of a convex polytope. This reduces the dual extremal problem to one of
standard linear programming.

Proposition 4.1. The closed unit ball B, in R™ under the || - ||, norm is a conver
polytope.

Proof. We show this result by proving that B, is the intersection of finitely many
halfspaces. For each k = 1,2,..., let Uy denote the regionin R™ given by

Ug:=¢X€ER™: -1< zya4p <1, (4.1)
]:l

Each such region is the gap enclosed between two hyperplanes. Then the closed
unit ball B, in R™ under |- ||, is given by

(o)
B, = ﬂ Us.
k=1

We claim that in fact B, is the intersection of finitely many of the regions
Ui. To see this, we consider again the m X co matrix A from (2.4) with entries
[a5,k)1<s<m, k>1. We denote by A¥, k € N, the columns of A. By assumption the m
rows are linearly independent vectors a;, 3 =1,2,...,m, in ¢5. Hence, there exist
m linearly independent columns A* of A, k € Ny, := {n1,n9,...,7m} C N, that
span the space R™,

With that noted, it must be that

B := ﬂ Us

k€N,

is a bounded subset of R™. For if not, then by symmetry of the regions U and the
definition of B’ it must contain a line

L:={aweR™:acR}, (4.2)

where W is some fixed nonzero vector in R™. To see why this is the case, we point
out that B’ must be convex, being the intersection of halfspaces; furthermore, it is
symmetric about the origin, since that is true of each pair of bounding hyperplanes.
Thus for any point lying in B’, the entire segment connecting the point and its
reflection about the origin must be contained in B’ as well. Next, unboundeness
would imply the existence of points Wi, Wa, W3, ... belonging to B’ with ||wy||g~ >
k (where || - |g~ is the usual Euclidean norm). Then by compactness of the unit
sphere of R™ there must be some subsequence of points wy,_/||W_||[r~ converging
to a point w. The closedness of B’ then ensures that the entire line L defined
by (4.2) is contained in B’. Further from the definition of B’, the line L must
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be parallel to all of the hyperplanes bounding Ui, k € Nm. This is equivalent
to saying

m
ZwJaJ,k = 0, fOl' all k E Nm
=1

But since these m columns of A span R™, this forces w = 0, a contradiction. This
contradiction rules out the possibility that B’ is unbounded.

Let p > 0 be sufficiently large that B’ is contained in the (Euclidean) ball of
radius p. Now, the Euclidean distance between the two hyperplanes bounding Uy
is given by

2

L-
(Z;T:l.a?,k) !

Since each sequence a; converges to zero for all 1 € j < m, it follows that di

dy :=

diverges to infinity as the index k increases without bound. That is, there is an
index kg sufficiently large that
1
ﬁdk > p, whenever k 2 ko. (4.3)
For such k, we have B’ C Uy, and these U} contribute nothing to the intersec-
tion defining B’. Because B, C B’, it must be that B, can be expressed as the
intersection of only finitely many of the U.

Finally, the convexity of B, follows from it being the intersection of halfspaces
m R™ which are themselves convex. g

An upper bound for the number of regions Uy contributing to the determination
of B is ko. Therefore an upper bound for the number of faces of the ball B, is 2kq.
Determining the vertioces of B, given its bounding hyperplanes is the “Vertex Enu-
meration Problem.” The computational complexity of this problem is the subject
of ongoing research in computer science and graph theory. For example, see [3|.

We can arrive at a very crude bound for the number of vertices of B, in the
following manner. Let 2J points in R™ be given, where J > m. It takes m points
to determine a hyperplane in R. This is because the system

m
Zﬂj_k:rk =¢, foralll<j<m
k=1

where ¢ = 0 or ¢ = 1, will determine at most one solution (z1, z2,...,Tm), given
the m points (8y,1,83,2,-...85m) € R™, for 1 € j < m. (This is analogous to saying
that three points determine at most one plane in R3.) Therefore the set of 2J given
points can give rise to at most

N = <2J) = @
m (m!)(2J — m)!

faces. The ball B, is dual (in the graph-theoretic sense) to a polytope arising in
this fashion. Accordingly, the number of vertices of B, cannot exceed \N.
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In any case, the extreme values in (3.3) must be attained somewhere on the
finitely many vertices of the convex polytope B.. This effectively reduces the dual
extremal problem to one in linear programming. To see this, we begin with an
obvious observation.

Lemma 4.2. Let d be a positive integer. Suppose that f is a linear fenction of d
real variables, i.e.,

d
f(zla I2,... 1Id) =co + ZCJIJ'l
=1
for some co,cy,...,cq4 € R. If L is any line segment in R®, then f achieves its

marimum over the points of L at an endpoint of L.

Applied repeatedly, this gives rise to an important fact about linear
optimization.

Proposition 4.3. Let m be a positive integer. If f is a linear function defined on
a polytope A € R™, then f attains its marimum value at a vertez of A.

Proof. Suppose that L is any line segment passing through A. By Lemma 4.2, the
maximum value of f along L must be attained at an endpoint of L. This shows
that the maximum of f over all of the polytope A cannot be achieved at an interior
point of A.

The boundary of A is made up of (m — 1)-dimensional facets. For each such
facet T, Lemma 4.2 again shows that the maximum of f over T must be attained
at a boundary point of 7. Continuing on in this fashion, we see that the maximum
of f along all of A must be achieved at an edge point of A. Apply Lemma 4.2 one
more time to conclude that such a maximum occurs at an endpoint of an edge.
These endpoints are the vertices of A. D

With the subsets Uy defined as in (4.1), and the index ko given by (4.3), we
have therefore reformulated the dual extremal problem in the following terms.

Theorem 4.4. The dual extremal problemn (3.5) is equivalent to mazimizing the
linear function

m
f(I[,Ig,. . ,Im) = ZijJ

]=1
where (z1,Ta,...,Tm) varies over the polytope
ko
A= ﬂ Us.
k=1

Furthermore, a solution of the dual extremal problem (3.5) is attained at one of the
vertices of the polytope A.
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Proof. Clearly, the dual extremal problem (3.5) is equivalent to

m

sup{ ) "y €i=(c1,,.. -, cm) €RT, e, =1). (4.4)
]:l

By Proposition 4.3, a solution of the extremal problem (4.4) is one of the vertices
of the unit ball {c € R™ : ||c||, < 1}, which is identified as the polytope A by
Proposition 4.1. a

We have therefore shown that the dual extremal problem is equivalent to a
standard problem in linear programming. The complexity of this linear program-
ming problem depends on the parameter kg associated with the given set of vectors
aj, as,...,an, in co.

5. Solution to the £; Interpolation Problem

From here our final objective is to leverage the solution to the dual extremal problem
into a solution of the original problem (2.2). Thus far, we have found a solution to
the dual extremal problem, and calculated the value of the infimum mg in (2.2). It
remains to identify vectors X € £; for which this extreme value arises.

Our strategy will be to use the concept of norming functional to identify can-
didate vectors in €; for the solution, based on a solution to the dual problem.
These candidates for the solution will turn out to constitute a finite-dimensional
convex subset of the sphere in £; with radius mgs. To find the actual solutions, it
remains to re-impose the linear system (2.3). When this is done, we are left with
a finite.dimensional linear algebra equation, which can be solved with well-known
techniques. Solving this linear algebra equation leads to the solution of original
problem (2.2).

We begin by giving the name a’ := Z;‘__l c’ja, to a vector in the sequence space
co for which the dual extremal problem is attained:

m m
ZJ=1 "ijJ Zj=l €1Y;
Il ZT:I CljaJ”m (c1,c2,...,cm)ER™ I Z;:l c]aJ”oo

We will now utilize the notion of a norming functional for a vector in a Banach
space. Given a nonzero vector X € %', a norming functional for X is a bounded
linear functional A € 2°* satisfying |[A|| 2~ =1 and

A(x) = [[x]| .

The existence of a norming functional for any nonzero vector is assured by the
Hahn-Banach Theorem; however, such a norming functional is generally not unique.
For example, the vector a = (1,1,0,0,0,...) € cg is normed by both (1,0,0,0,...)
and (0,1,0,0,0,...) in £, as well as any convex combination of these two vectors.
A norming functional of X, multiplied by the length of X, is called a “conjugate”
of X in some texts, such as [17]. The collection of norming functionals of some
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nonzero vector X is sometimes known in the literature as the “peak set” for X; see,
for example, (2, p. 939].

The following lemma relates the solutions of the original extremal problem to
those of its dual, and thus enables us to drastically narrow our search for the
solution set.

Lemma 5.1. If xo is a solution to the extremal problem (2.2), then Xof||Xol|; is a
norming functional for any solution a' of the dual problem.

Proof. Plainly Xo/||Xo||1 has unit norm. By hypothesis and by Proposition 3.3,

m m
: —1 1Y —1 €1y
olls = inf{llxo +2lly :2 € A} = sup ALY L=t Y
e1,Capntm | 209=1 Gllee 1| 20521 Cga_‘l"c-o

Hence, we have that

(', xo0/|[%oll1) = (Z c&aj,ma> lIxollx

1=1

= i C;yj ” Z;l:?‘i c_"fa."”ao

1=1 EJ:I c.’?yj

m
S da =[]
=1

o0

According to the definition of the norming functional, we conclude that Xg/||Xol|1
is a norming functional for a’. D

Notice that because of Lemma 5.1, it is not necessary to find all of the solutions
to the dual problem; having one dual solution a’ will suffice for solving the original
problem (2.2).

We next describe the norming functionals of a vector in cg explicitly. Since
the components of a in cp converge to zero, ||a||.e = supy |ax| must be attained
on a finite set of indices. An index set .4 is called the extremal index set for
a € oo if ||a]lce = supy |ax| is attained on A" and A is the largest set having this
property.

Lemma 5.2. If a nonzero sequence 2 € co has its ertremal inder set given by
N = {n1,ns,...,ny}, then the set of norming functionals for a consists ezactly
of the conver combinations of vectors of the form

Vo = sign(ay)ey, (5.1)

where j € A .
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Proof. For each j € ., the vector v, is a unit vector of £; such that
(a,va) = |ag| = ||al|oo;

that is, v4 1s a norming functional for a. In fact, any convex combination of such
vectors is also norming for a.

Conversely, suppose that v € £1 is a norming functional for a and we shall show
that v must be a convex combination of vectors of the form (5.1). By definition, we
first observe that ||v||; = 1 and (a, V) = | a|jce. Furthermore, we find that

[~ 2]
(a,v) = Za,v, = Z ajv; + Z ajvy. (5-2)
1=1 1€ 18N

For the first term of the right-hand side in Eq. (5.2), a direct computation leads to
D (sign(as)as)(sign(as)sy) = D [[allosign(as)2;.
1eN 1€Ns
That is,
> ayvy =lallo Y sign(ay)v;. (53)
Jens Jes

Our next goal is to show that v, = 0 whenever j ¢ A". To accomplish this we
note that a, as a real sequence, converges to zero and thus to no other point; in
particular, it cannot be that any subsequence converges to || «. Consequently, we
must have

a:=sup{lasl:j ¢ A} <|alleo-
Suppose now for the sake of argument that
c:= Z [vg] < 1.
jeN

Notice that ||v||; = 1. It would follow

Y lyl=1-c<1.

18N
This together with (5.3) would imply that

[+ 2]

laleo =Y aju; € D ayuy|+ | apy < aflec+a(l —c) < |a] e,
1=1 1€EN JgN

an absurdity. This proves that
D gl =1 =Vl (5.4)
jeN

and consequently v, = 0 whenever j ¢ A”. Returning to (5.2) and (5.3), we see
that the second summation vanishes, and it must be that

Z sign(ay vy = 1.

€N
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Combining the equation above with (5.4) yields

> (Ivy| — signlay)vy) = 0.
1€N
This implies that
|vg| = sign(ay)vy, forall je.4.

Namely, for all j € .47, the terms sign(a;)v; are nonnegative. From this, it follows
that

V= Z ey = z [sign(a;)vysign(ay)e,. (5.5)
JjeN jeN
That is, v must be a convex combination of vectors of the form (5.1). D

Observe that the collection of norming functionals for a given a € g constitutes
a finite-dimensional “face” or “edge” of a sphere in £}, as expected. Thus our search
for the solution to the original extremal problem is thereby narrowed from the
hyperplane %% to those vectors belonging to .’ that are supported on the finite
extremal index set 4, and which take the form (5.5). This is a significant reduction
in the scope of the search. It remains to find the coefficients in this representation
such that v is a solution.

Remark 5.3. The formula (5.5) could be viewed as a kind of Representer Theorem,
in which the solution to the £; interpolation problem is expressed as certain a finite-
dimensional linear combination.

Among the vectors satisfying (5.5) there are some that also satisfy the
system (2.3). To find them, associated with the extremal index set 4 :=
{r1,n9,...,ny} for a dual solution a’ € cp as described in Lemma 5.2, we first
define an infinite permutation matrix Q (it is the infinite identity matrix with
finitely many of the columns permutated) that, when acting on a column vector,
interchanges the nith row with the kth row, for k =1,2,...,N, and affects N such
pairs of rows.

Using the permutation matrix Q, the original system (2.4) can then be reex-
pressed in matrix form as

(AQ)(Qx) =y

where A is again the m X co matrix with rows being the a; sequences; x is a
oo-dimensional column vector; and y is an m-dimensional column vector.

Let % be the N-dimensional column vector consisting of the first N entries of Qx
(by choice its remaining entries are all zeros), and let B be the m X N rectangular
matrix consisting of the N leftmost columns of AQ. It is elementary to solve the
system

BX—y (5.6)
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for the IV-dimensional vector &. This isa finite matrix algebra problem, and numer-
ous techniques exist for computing the solution. A solution for R exists; this is
because if infinitely many zeros are appended to & to make it an infinite column
vector, then some Q& must be a solution to (2.3). Let .?¥ be the solution set for
the finite-dimensional system (5.6) and let

hY
& =0 (wy,wy,...,wy) ERY : Z[w,l =mg
j:l
In fact for (w1, ws,...,wy) € &£, we must have that
N N
> lwyl =ms =3 sign(an,)uwy,
J=1 1=1

in relation to the notation of (5.5). We are in effect narrowing the search further
from a finite-dimensional subset of the hyperplane .% to its intersection with the
sphere in £; with radius mg. This intersection is necessarily confined to a “face”
or “edge” of this sphere, reflecting the form of (5.7). Every vector belonging to the
set Q. is a solution Xp to the infimum problem (2.2). Each such solution vector is
supported on a finite collection of indices; that is, it is a sparse vector.

The above discussion establishes the following theorem.

Theorem 5.4. Let a’ € co be a solution of the dual problem (3.5), Q the permuta-
tion matriz associated with the ertremal indez set for a', and B the mx N maltriz, as
defined above. Then solutions to the minimum norm £, interpolation problem (2.2)
consist of those vectors QX, where [QX||; = mg, the vector consisting of the first
N components of x solves the finife-dimensional matric equation (5.6), and the
remaining entries of X are zero.

Let us summarize the final stage of this solution method as follows.

Step 1: For a given solution 2’ € cp of the dual problem (3.5), construct the
extremal index set A ;= {ny,na,...,ny} for 2/, necessarily a finite set.

Step 2: Based on the extremal index set £, define the infinite permutation matrix
Q that interchanges the kth row with the nith row, for every nx € A

Step 3: Solve the finite-dimensional linear algebra equation (5.6), thus obtaining
a set .9¥ of N-dimensional vectors.

Step 4: Among the vectors in 9%, identify those of length mg, the extremal value
previously obtained in Sec. 4. This effort involves solving a single equation in at
most N variables, and results in a bounded, convex subset & of RV .

Step 5: Re-embedding of the members of .# back into ¢; using Q yields the com-
plete set of solution vectors to the minimum norm interpolation problem (2.2).
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We have thus shown that the original interpolation problem in ) is equivalent
to solving a linear programming problem derived from a duality argument, followed
by solving a finite-dimensional linear matrix equation, resulting in a sparse solution.

Remark 5.5. This paper sets forth a conceptual road map for solving the £,
minimum norm interpolation problem (2.2). In practice, consideration must be
given to the computational complexity and stability of the solution method. For
example, computational complexity will increase with the parameter m, the number
of given vectors in the subset S of cp; the number of vertices of the polytope A
arising in the associated linear programming problem; the parameter N, the number
of dimensions of the edge or face of the sphere in £; in the final reduction. Concern
for the stability of the solution arises in connection with solving the dual extremal
problem, identifying the extremal index set, and solving the finite-dimensional linear
algebra equation, and imposing the minimum length condition on the resulting
vectors. These issues relating to the implementation of the solution method will be
addressed in forthcoming research.

6. Example

We now illustrate the method developed in this paper by solving a simple but
nontrivial example.
The number of constraints in the initial interpolation problem will be m = 2.

Fix
(6.1)

) - (%):1 (6.2)

= (b A A ) = () "

ne=|

We consider the problem of finding xg € €1 such that
lI%ollr = inf{l|x|ls : (2, x) =y,,i = 1,2).

This is the main interpolation problem in £, from (2.2).
The corresponding dual extremal problem (3.5) is to find ¢ € R? which attains
c1y1 + c2y2 ciy1 + C2y2
s sup .
ac a1 + @Al a.o Ienc)ls

To solve the dual extremal problem we must look at the closed unit ball in R? in
the | - ||, norm. This unit ball consists of the intersection of infinite strips

“ 2

ot <1

Ui :=(c cR?: -1 Scaarx t+cazp <1} = {c cR?:-1<



Minimum norm interpolation in the £1(N) space 39

over all k =1,2,.... To find Uy N Uy, we solve the system
Ccy - 1+C?'1= :hl,

1 1
cl-§+c2-(—§) =+l

for all choices of sign. We thereby obtain the convex polytope (in this case, a
polygon) with vertices at

(4D G-)G-D-(3)

In this example, the intersection over all the Uy turns out to be equal to UynUs =
A. To see this, first note that each vertex of Uy N Us lies at a distance

1\* /3\* 1
= -] =[=)Vv10~1.581
(?) i (2) (?)
from the origin. On the other band, the strip U3 lies at a distance

—2;—= =2.4>1.581

V@ + (3’

from 0. That is, Uz encloses Uy N Us completely, and so Uz N (Uy NUsz) = Uy N Vs
The strips Uy, for j > 3, are even wider still, and therefore do not contribute to
defining A further. This verfies that Uy N U5 = A. Thus to solve the dual extremal
problem, we are finding the maximum of a linear funection of ¢; and ¢, confined
to the boundary of the rectangle A. We know from Theorem 4.4 that it suffices to
plug in the vertices (c1,c2) of A into the function

f(z1,22) :=3z1 +4x2, (T1,12) € A,

and compare. The maximum value occurs at the vertex (—{; , g), with the maximum

13 9
"‘S=f(‘§’§>=§-

Our next step is to identify the (necessarily finitely many) indices for which the
sequence

value being

. 1 3
a = —Qa] + §a'2
attains its supremum norm. By direct computation we find that

1 3 1 3
[ - === 4= = 1’

2(1],1 +2a2,] 2 2‘

1 3 1 3
“pmetaens =g g = h

1 3 1 . )
—§al,k+§az,k = —224- (—5)*’ <1, forall £>2.
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This tells us that the extremal index set 4" we are seeking is {1,2}. The solution
of the original extremal problem must be supported on these two indices. Since
they already correspond to the two leftmost components of a vector in cg, the
permutation matrix Q occurring in this example is simply the identity. We also
infer from the above computation that

13
a’ = (l’_l’_ﬂ’”')'

We may therefore truncate the system Ax =y to get

-

corresponding to Eq. (5.6). We have thereby reduced the original infinite-

1 -

[T T

dimensional interpolation problem to a routine linear algebra problem.

The system (6.4) has the solution set & = {[Z,—1|T}. Since the solution set is
a single vector ® = [,—;, —l]T in this example, our search is complete. We re-embed
this vector R into £, and obtain the following solution to the original extremal
problem:

Xg = (g,—l,0,0,0,.‘.).

Notice that for the extreme value we get ||[Xp|l; = mg = g) in agreement with
the dual problem as expected. Furthermore, we can confirm by inspection that
Xo/||%o]1 is norming for a’, also as expected.

For the sake of comparison, here is the solution to the same example, except we
are using the norm of €. With y,, ys, a1 and a2 defined as in (6.1)-(6.3), we are
seeking the Xg € €2 for which

Xoll2 = inf{||x|l2 : {a¢> x) = 3y, i = 1,2).

Here, the notation (-, -) denotes the usual inner product in the Hilbert space 2. If
X' is any particular vector satisfying {(a¢,x’) = y,, ¢ = 1,2, then equivalently we are
secking to minimize ||x’ + 2|2 over all z lying in the subspace of £2 annihilated by
a; and az. This exactly describes the orthogonal projection of X’ onto the span of
a; and a2 in £2. Thus if uy and U2 constitute an orthonormal basis for the subspace
spanned by a; and as, then we have

xo = (X', up)uy + (', us)us.
The choice
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will suffice, and yields the #2 solution

Xo & (0.4924584) (i) - (2.7004714) ((_ Q%R_l )m
n=1

~ (3.1929568, —1.1039930,0.8392707, —0.2144443, . ..).

n=1

This solution is certainly not a spaise vector.

This example shows that the minimum norm interpolation problem in the £y(N)

space indeed produces a sparse solution, while that in the £5(N) space does not.
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