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We consider the minimum norm interpolation problem in the ti (N) space, aiming at
constructing a sparse interpolation solution. The original problem is reformulated in the
pnHlual space, thereby inducing a norm in a. r-elated finikKlimensional Eudidean space. 
The dual problem is then transformed into a linear programming problem, which can 
be solved by existing met-hods. With that done, the original interpolation problem is

reduced by solving an elementary finikKlimensional linear algebra. equation. A specific 
example is presented to ilJustrate the proposed! method, in which a sparse solution in the 
l1(N) space is compared to the don.se solution in the l2(N) space. This example sh""•

that a solution of the minimum norm interpolation problem in t-he ti (N) space is indeed 
sparse, while that of the minimum norm interpolation problem in the l2(N) space is not. 
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1. Introduction

Minimum norm interpolation in a Hilbert space is a classical research topic [8,
13]. In particular, minimum norm interpolation in the l2(N) space produces good
results in the sense of approximation. However, due to the roundness of the unit
ball of a Hilbert space such as l2(N), the resulting minimum norm interpolation
solution is normally represented by a dense vector, in the sense that a majority 
of its components a.re nonzero. Dense vectors are less computationally efficient for 
high dimensional problems. Thus for potential use in treating big data sets, we 
prefer a sparse vector, in the sense that a majority of its components a.re zero, for
representing a minimum norm interpolation solution. For this purpose, we consider
minimum norm interpolation in the £, (N) space. 

The choice of the £, space is also motivated by recent e.xciting progress in signal 
processing and machine learning. Compressed sensing [4, 9] based on the£, norm 
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bas attracted much attention in recent application areas such as signal processing 
and image processing. The use of the l 1 norm in compressed sensing gives rise to 
desirable sparsity in the resulting solutions [l]. Seeking sparse solutions in machine 
learning leads to the introduction of reproducing kernel Banach spaces [22]. For 
recent developments in reproducing kernel Banach spaces, the readers are referred 
to [15, 16, 21]. Representer theorems for the solution of ill-posed linear inverse 
problems are provided in [18], comparing the effects of £1 and £2 regularization. In 
[17] a representer theorem is obtained in the general Banach space setting. Such
representer theorems enable a drama.tic reduction in the dimension of the space
from which a data fitting solution needs to be sought.

The contribution of this pa.per is to furnish a method for solving the mini­
mum norm interpolation problem in £1 that determines a sparse solution. In this 
method, we transform the minimum norm interpolation problem into two related 
finite-dimensional problems, for which established solution methods e.xist. We first 
reformulate the proposed minimum norm interpolation problem using a duality 
argument. This process introduces a norm in a related finite-dimensional Eucliclian 
space. The associated dual extremal problem then takes the form of a basic linear 
programming problem, namely, optimizing a linear function on a convex polytope. 
There is a substantial literature on optimizing a linear function on a. conve.x polytope 
(see, for example, (12, 19]). Finally, a solution of the linear programming problem 
enables the original interpolation problem to be reduced to an elementary equation 
in finite-dimensional linear algebra. Again, this equation yields to well established 
methods. 

We organize this pa.per in five sections. In Sec. 2, we describe the minimum norm 
interpolation problem in the l 1 (N) space, and show that it has a. solution. We then 
reformulate it via a. Banach space duality argument in Sec. 3. We introduce in Sec. 4 
a norm in a related finite-dimensional Euclidean space, and further reformulate the 
dual problem as an equivalent linear programming problem. In Sec. 5, we leverage 
the solution of the linear programming problem into a solution of the original 
interpolation problem. Finally, in Sec. 6, we present an e.xa.mple of solving the 
problem completely by using the proposed approach, and compare it to the Hilbert 
space approach. 

2. The l1 Interpolation Problem

In this section, we present the minimum l I norm interpolation problem, which is the 
principal subject of this paper. Tu frame it properly we review the classical Banach 
spaces t, and co. We then argue that the interpolation problem has a solution under 
natural oonditions, to close the section. 

We now introduce the ma.in problem under investigation. By t, := t,(N) we 
mean the Banach space of real sequences x := (x,,x2, .. . ) such that 

00 

llxll, := L lxkl < oo. 
k=l 
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The space co is the set of real sequences that are convergent to zero. Thus, for 
a E co, we can write 

and by definition 

Jim Ok= 0. k-oo 

The set co is clearly a linear spa.ce, and in fact it is a Banach space under the 
supremum norm. That is, for a:= (01, 02, ... ) E co, we define 

llalloo := sup{Ja.1:J : k E N}. 

The scalar field is JR. We observe that for run a E co, it bolds that llalJ oo < +oo. For 
any x E £1 and a E co, let us write 

00 

(a,x) := L akxk. 
k=1 

Clearly, we have that 
00 

J(a,x)J :5 L Jakxkl :5 llall oollxll, < +oo.
J..-=1 

In other words, for any x E t, and a E co, the quantity (a, x) is well-defined. 
We recall the notion of a continuous (or bounded) linear functional on co. A 

continuous linear functional on a Banach space � is a linear function A : � ,__ JR 
that is continuous with respect to the metric topologies on � and JR. The dual of 
a Banach spa.ce � is the set of continuous linear functionals on that space. The 
dual space, given the symbol �•, is a Banach space in its own right, endowed with 
the norm 

IJAIJ.,,-. = sup { /�\�� : x f O }· 

For any x E t 1, the mapping 

a>-> {a,x) (2.1) 

induces a bounded linear functional on co. More will be said about this situation 
in the next section. 

We now describe the minimum i1 norm interpolation problem. Let S := 
{ ai, a2, ... , am} be a set of given sequences from co, and let {y1, y2, ... , Ym} be 
a set of real numbers. Consider the problem of finding x E t I such that the infi­
mum 

ms:= inf{llxlJ,: (a1,x) = Y1, for all 1 :5 j :5 m} (2.2) 

is achieved. Of course the existence of such a vector needs to be established, and 
we address this matter below. 

We first consider the linear independence assumption on the vectors of S. To 
this end, we introduce an mth order semi-infinite matrix A whose rows are the 
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members of S. The system of equations 

{a1,x} =y1, 1 :,j :,m 

can be equivalently expressed in a matrix form as 

Ax=y, 

(2.3) 

(2.4) 

where X is an infinite column vector representing an element of £1, and y is an 
m-dimensional column vector. By elementary matrix algebra., there exist an m X m
permutation matrix P and an m X m lower triangular matrix L such that

PA=LU, 

and U is in reduced echelon form. We may insist that L bas unit entries along 
the ma.in diagonal, sinre it is a product of elementary matrices and a permutation 
matrix. Then the system (2.4) can be transformed to 

Ux = L- 1Py. 

If the vectors of S are linearly dependent, then the system could be inconsistent 
( depending on the numbers y1 ), in which case there is no solution. In this situation, 
there would be rows of all zeros in U, corresponding to nonzero entries in the 
column matrix L-1Py. On the other hand, if the system is consistent, then by
discarding any rows of zeros in U, M well as the oorresponding zero components 
of the column vector L-1Py, we obtain an equivalent system where the rows of
the truncated U are linearly independent. We may therefore assume at the outset 
that any superfluous vectors from S have been discarded, and thus S is linearly 
independent and the system is consistent. This ensures that the infimum in (2.2) 
is over a nonempty set. To rule out further trivialities, let us also assume that the 
infimum in (2.2) is positive. This is to say that y is not the zero vector. 

For convenience, let Y denote the collection of vectors X in £ 1 satisfying the 
system (2.3). Thus the extremal problem ('2.2) could be written as 

inf{llxll,: x E Y}. 

We write .fJf' for the closed linear span in co of the vectors of S. Let us show that 
under the conditions described earlier, the infimum in (2.2) must be attained. A 
proof of this result could be fashioned using: the Banach-Ala.oglu theorem. However, 
since co is separable, the following elementary argument is made possible. It essen­
tially r<>-proves the Banach-Ala.oglu theorem in the special case that the pre-dual 
is separable. 

Proposition 2.1. Let m be a pos-itive integer. Suppose that S := { a,, a2, ... , am}
is a linearly independent set of sequences frr,m CO, and. {y1, Y2, ... , Ym} is a set of 
real numbers, not all zero. If the system (2.3) i s  consistent, then there exists Xo E .9'
satisfying 

(2.5) 

where ms is defined by (2.2). 
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Proof. We prove the claim by a. "minimizing sequence" argument. Suppose that 
{x<nl};=:"=1 is a sequence of vectors int, satislying the system (2.3) such that 

lim llx<n> lln = ms. (2.6) 
...... oo 

The proof will be completed by first constructing the limit Xo of a. subsequence of 
the given minimizing sequence, showing that it is in l 1, then verilying it satisfies 
the system (2.3), and finally proving that Xo satisfies (2.5). 

We first construct the element X(). By (2.6) the sequence {llx<n> ll,}::"=t is
convergent, hence bounded, and let C be its supremum. We use the notation 
x<n) := (x\n), x�n), .. . ) for the components of x<n). Then the real sequence (x\n

l )::"= t
is bounded; by the Bolzano-Weierstrass theorem, there is a. convergent subsequence. 
Let this subsequence arise from the indices (n1,1)�1, and let the x, be the limit 

of x\
n

,,;) as j tends to infinity. Having defined xi, x2, ... ,xk, and having selected 
the indices (nk,1)�1 for a. subsequence of {x<nl};';"=l> we observe that (xl�i;l)� 1 

is a. bounded real sequence. Hence this subsequence has a further subsequence, 
with indices (nk+1,1)�1, oonvergent to a limit Xk+l· In this manner, a vector
Xo := (x,,x2, ... ) is specified. 

We next verify that Xo is in t,. To this end, for any N E N, we can choose v(N) 

sufficiently large such that nN,v(N) > nN-l,v(N-1), for all N ::C: 2, and

lx1I :5 lxt'•"1">>1 + ;
1

, for all 1 :5 j :5 N.

Summing both sides of the above inequality leads to 

This implies that 

That is, Xo Et,. 

N N l
L lx1I :5 llx(nN,,<NJ)ll1 + L 21-
J=I J=l 

IIXoll, :5 C + L (2.7) 

We now show that Xo satisfies the system (2.3). Tu accomplish this, we establish 
the weak• convergence of x<n,..,,(NJ) to X. That is, for any a Eco 

lim (a, X(n,..,,(N�l) = (a,Xo). (2.8)N-oo 

For this purpose, we let ek denote the vector in i1 whose kth component is equal 
to 1 and all other components are zero. By the construction of Xo, for each k we 
have that 

lim (ek,x<nN, v(N)l) = Xk = (ek,Xo).N-oo 

The continuity of ( ·, •) then allows for 

N10'oo / t akek,x(n,.., •CN)l) = /-f, akek,Xo)
\k=l \k=l 
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for any linear combination E[=1 akek. Now, suppose that limK-oo "E�, akek = a
in the norm topology of co. Let , > 0 be chosen. There exists an inde.x K sufficiently 
large such that 

(2.9) 

With K fixed, there exists an index n sufficiently large such that whenever N 2:: n, 

l(takek,x(nN,,<NJ) -Xo )I� f
Then, we obsenre that 

l(a,xlnN,,(N)l -Xo)I

� I( a-t akek, x(nN,•<"l) -Xo )I+ l(t akek,x(nN,,<N)) -Xo )I· 
The second term on the right-hand side ,of the inequality above is bounded by 
! and using (2. 7) the first term on the right-hand side is bounded by Ila -
'E�, akekll

00
(2C + 1), which is also bounded by � by employing (2.9). There­

fore, we have established (2.8). By choosing a := a1 in (2.8) and noticing that 
vectors x<nN, •<NJ) for all N satisfy the system (2.3), we see that Xo must satisfy the
system (2.3). 

Finally, we establish that Xo satisfies (2.5). Tu this end, we consider vector b of 
the form 

b1 = {
sign(x1 ), 1 � j � M, 

0, j >M, 

which have the unit norm in co. For any, > 0 we can find M sufficiently large such 
that 

II
Xoll1 -• � L lx1I = l(b,Xo)I

j=I 

= n
� l(b,x(nN,,<NJl)I � lim 

n�oo llx
(n

,..,,,NJlllil lbllco ­

Since llbllco = 1, this demonstrates that 

IIXoll 1 � � llx(n,..,-<N>lll, + ,, for every,> 0.

Equality must hold (since Xo E .9'). Furthermore, noticing x<n,..,.,,,1) is a sul,se. 
quenre of the minimizing sequence, we obsenre that 

lim 11x<nN,,<NJ)ll1 = ms.
n-oo 

Thus, the infimum in (2.5) is attained by Xo- □
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Proposition 2.1 ensures that the main problem e.xpressed in (2.2) has a solution 
under very broad conditions. We emphasize that the infimum of (2.2) need not be 
uniquely attained, since the ball in t, fails to be strictly convex. 

We close this section by noting that the infimum problem (2.2) is closely related 
to the "regularized" problem of minimizing the quantity 

m 

L l{a1,x) -Y1I + <l>(llxllt), (2.10) 
J=l 

where 4> is a monotone increasing function on the positive real axis, as X varies 
through l1 . That is, we are willing to trade off the exact equality of ea.ch {a1, x) = y1,

in return for keeping the down the value of the norm llxll1- Indeed, this second 
term in (2.10) is intended to penalize "overfitting" of the data. Regularization 
problems for machine learning in reproducing kernel Hilbert spaces have been well­
studied in [7, 10]. For learning a matrix by regularization, see [2]. Moreover, for 
regularization problems in functional reproducing kernel Hilbert spaces, see [20], 
and in reproducing kernel Banach spaces, see [15, 21, 22]. The regularized problem 
related to (2.10) is studied from a function-theoretic approach in a forthcoming 
pa.per. 

3. Dual Extremal Problem

1n this section, we reformulate the infimum problem (2.2) as a dual extremal prob­
lem. This duality argument is a well established tool in conve.x analysis. In its 
general form can be found in any standard ite.,'t in functional analysis, for example, 
(6]. A particular application of duality to ma.chine learning appears in [2, Sec. 3], 
to solve the problem of learning a matrix based on a set of linear measurements. 
It results in a significant reduction in the number of free para.meters, and hence on 
the computational burden. We shall see that a similar reduction is enabled in the 
present paper. 

The duality argument applied here is made possible by the following relationship 
between the spaces co and t,. For a derivation of this well-known result, see [14, 
pp. 73-74]. 

Proposition 3.1. The dual space of co is £1; that is, c; = t1 • 

Let us note that the set of vectors Y over which the infimum is being taken is 
a certain hyperplane in l I• To this end, we define a subspace of l I by letting 

A:= {z Et, : {a1, z) = 0, for all 1 :,; j :,; m}.

Lemma 3.2. If x' E Y is any particular solution to the system (2.3), then

inf{llx' +zl l,: z EA}= ms. 

(3.1) 

(3.2) 

This lemma says that Y = x' + A. That is, the set Y over which the infi­
mum (2.2) is taken is a translation of the subspace A oft,. The proof is elementary 
and hence omitted. 
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The following proposition enables us to reformulate the e.,-tremal problem by 
means of classical Banach space duality. The result follows from a basic theorem 
from functional analysis, namely, if Pl is a subspace of a Banach space !fl:, then 
the dual of Pl is isometrically isomorphic to the quotient space !fl:• /Jlll. , where 

PIJ. := {.XE !fl:•: .X(a) = 0, for all a E Pl} 

is the annihilator of Pl. For this we refer the reader to [6, Theorem 2.3].

Proposition 3.3. If x' E .9', then.

inf{llx' + z11,: z EA}= sup E.z�. CJYJ .
(c,,c:,, ... ,c_)ER- 11 °EJ=I c,a,lloo 

(3.3) 

Proof. Here is an elementary proof of [6,, Theorem 2.3] for the present setting, 
where !fl: = co, and Pl is the closed linear span in co of a,,a2, ... , am. (Note 
that A = Pl J. here.) Let us regard the given vector x' E l I as a bounded linear

functional restricted to Pl. By the Hahn-Banach Theorem, there e.xists a bounded 
linear functional on all of co, represented by some X E l 1, such that X agrees with 
x' on .d, and 

1lxll1 = 
('E�, c,aJ, x') 

(c,,.,.,,��f-)eR- II E;, c1a11loo · 

That is, the norm of x equals the norm of the remriction of x' to .Pf'. Direct oom­
putation on the right-hand side of the above equation leads to 

(3.4) 

Since x and x' are equal when restricted to Pl, their difference z := x -x' belongs 
to A. Thus, we have that 

inf{llx' +zl11: z EA}= llxll,­

This combined with Eq. (3.4) leads the desired result (3.3). D 

According to Lemma 3.2 and Proposition 3.3, solving the original minimum 
norm interpolation problem is equivalent by solving the dual extremal problem 

''C"'
m 

L.,J=I C1Y1 (3.5) 

Problem (3.5) has only finitely many real parameters, and therefore this step is a 
beneficial reduction. 

We next consider the e.xistence of a solution of the dual extremal problem (3.5). 
To this end, we identify a norm that arises naturally from (3.5). The following 
lemma can be verified by inspection. 
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Lemma 3.4. Let m be a positive integer. If a,,a2, ... ,am are linearly independent

vectcrs in co, then the mapping

(3.6) 
00 

is a norm on Rm. 

In the remaining part of this paper, we shall always assume that a,, a2, ... , am 

are fixed linearly independent vectors in co without further mentioning. Let us give 
the associated norm the name 

m 

llcll, := :r:C,a, 
J=l 

00 

We prove in the next proposition the e.xistence of a solution of the e.,-tremal 
problem (3.5). 

Proposition 3.5. Tiu, supremum in (3.5) is attained by s<>me choice of

(c1,"2,···,Cm) E Rm.

Proof. The mapping 
m 

(c1,"2,···,Cm)~ L"1YJ 
J=I 

is a continuous function from Rm to R. In {3.5) we are taking an e.,-treme value of 
this function over a compact set, namely the unit sphere in Rm in the II • II, norm 
(recall that all norms on Rm give rise to equivalent topologies, and hence this set 
is compact under both the Euclidean topology and the II· II, topology). Thus the 
supremum of this function is attained. D 

We emphasize that the extremal vector c for (3.5) need not be unique. 

4. A Linear Programming Problem

The dual extremal problem described in the la.st section turns out to be equi""" 
lent to a linear programming problem. This section is devoted to establishing this 
equivalence. 

We first recall some necessary notions &om convex analysis. A convex polytcpe

in Rm is a bounded region of Rm that is the intersection of finitely many halfspa.ces. 
It is equal to the convex hull of its vertices. An m-dimensional polytope is bounded 
by finitely many (m - !)-dimensional facets, each of which is a polytope in a lower 
dimensional space. Thus the notion of polytope generalizes that of a polyhedron to 
arbitrarily many finite dimensions. (Our source on this subject is [11].) 
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Presently we will see that the unit sphere in Rm under the II • II, norm must be 
the surface of a convex polytope. This reduces the dual extremal problem to one of 
standard linear programming. 

Proposition 4.1. The c/.osed unit ball B, in Rm under the II · II, norm is a convex

polytope. 

Proof. We show this result by proving that B, is the intersection of finitely many 
halfspaces. For each k = 1, 2, ... , let Uk denote the region in Rm given by 

(4.1) 

Each such region is the gap enclooed between two hyperplanes. Then the clooed 
unit ball B, in Rm under II • II, is given by 

<» 

B, == n uk.
k=l 

We claim that in fact B, is the intersection of finitely many of the regions 
Uk. To see this, we consider again the m X oo matrix A from (2.4) with entries 
(a1,khS1Sm, k2,1· We denote by Ak , k E N, the columns of A. By assumption them 
rows are linearly independent vectors!½, j = 1, 2, ... , m, in co. Hence, there exist 
m linearly independent columns Ak of A, k E Nm:= {n1,ft2, ... ,nm} C N, that 
span the space Rm . 

With that noted, it must be that 

is a bounded subset of Rm . For if not, then by symmetry of the regions Uk and the 
definition of B', it must contain a line 

(4.2) 

where w is some fixed nonzero vector in Rm. To see why this is the case, we point 
out that B' must be conve.x, being the intersection of halfspaces; furthermore, it is 
symmetric about the origin, since that is true of each pair of bounding hyperplanes. 
Thus for any point lying in B', the entire segment connecting the point and its 
reflection about the origin must be contained in B' as well. Next, unboundeness 
would imply the e.xistence of points Wt, W2, W3, ... belonging to B' with llwkllR- > 
k (where II • ll11- is the usual Euclidean norm). Then by compactness of the unit 
sphere of Rm there must be some subsequence of points wk. /llwk. llR- converging 
to a point w. The closedness of B' then ensures that the entire line L defined 
by (4.2) is contained in B'. Further from the definition of B', the line L must 
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be parallel to all of the hyperplanes bounding Uk , k E Nm. This is equivalent 
to saying 

m 

L w1a1,k = 0, for all k E Nm. 
J=l 

But since these m oolumns of A span IRm, this forces w = 0, a oontradiction. This 
oontracliction rules out the possibility that B' is unbounded. 

Let p > 0 be sufficiently large that B' is oontained in the (Euclidean) ball of 
radius p. Now, the Euclidean distance between the two hyperplanes bounding Uk 

is given by 
2 

dk:= i· 
( E7=n °lk)' 

Since each sequence a1 converges to zero for all 1 :'., j '.'., m, it follows that dk

diverges to infinity as the index k increases without bound. That is, there is an 
inde.x ko sufficiently large that 

1 

2 
dk > p, whenever k ;?: ko. ( 4.3)

For such k, we have B' � Uk , and these Uk oontribute nothing to the intersec­
tion defining B'. Because B, � B', it must be that B, can be e.xpressed as the 
intersection of only finitely many of the Uk .

Finally, the oonvexity of B, follows from it being the intersection of halfspaces 
in JRffl, which are themselves convex. D 

An upper bound for the number of regions Uk oontributing to the determination 
of B is ko. Therefore an upper bound for the number of faces of the ball B, is 2ko. 
Determining the vertices of B, given its bounding hyperplanes is the "Verte.x Enu­
meration Problem." The computational complexity of this problem is the subject 
of ongoing research in oomputer science and graph theory. For example, see (3]. 

\Ve can arrive at a very crude bound for the number of vertices of B, in the 
following manner. Let 2J points in ]Rm be given, where J ;?: m. It takes m points 
to determine a hyperplane in R. This is be<:ause the system 

m 

LP1,kXk = c, for all 1 :'., j '.'., m 
k=l 

where c = 0 or c = 1, will determine at most one solution (x1,x2, ... ,Xm), given
them points (P1,1,P1,2, ... ,P1,m) E Rm, for 1 :'., j '.'., m. (This is analogous to saying
that three points determine at most one plane in R3.) Therefore the set of 2J given 
points can give rise to at most 

(
2J

) 
(2J)! 

N := 

m 

= 

(m!)(2J -m)! 

faces. The ball B, is dual (in the graph-theoretic sense) to a polytope arising in 
this fashion. Accordingly, the number of vertices of B, cannot e.xceed N.
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In any case, the extreme values in (3.3) must be attained somewhere on the 

finitely many vertices of the convex polytope B,. This effectively reduces the dual 
e.,-tremal problem to one in linear programming. To see this, we begin with an 

obvious observation. 

Lemma 4.2. Let d be a positive integer. Suppose that f is a linear fu.ndwn of d 

real variables, i.e., 

d 

f(x1,x2, ... ,xd) := co+ L"1X1, 
J=I 

for s<>me co, c,, ... , Cd E R. If L is any line segment in fftd, then f achieves its 

maximum c,ver the points of L at an endpoint of L. 

Applied repeatedly, this gives rise to an important fact about linear 

optimization. 

Proposition 4.3. Let m be a pos-itive integer. If f is a linear function defined on 

a polytope !:J. E Rm, then f attains its maximum value at a vertex of !:J.. 

Proof. Suppose that L is any line segment passing through ti.. By Lemma 4.2, the 

maximum value of f along L must be attained a.t an endpoint of L. This shows 

that the maximum off over all of the polytope !:J. cannot be achieved at an interior 

point of ti..

The boundary of ti. is ma.de up of ( m - 1 )-dimensional fa.oets. For ea.ch such 

facet T, Lemma. 4.2 a.gain shows that the maximum off over T must be attained 

at a. boundary point ofT. Continuing on in this fashion, we see that the maximum 

off along all of !:J. must be achieved at an edge point of !:J.. Apply Lemma. 4.2 one 

more time to conclude that such a maximum occurs at an endpoint of an edge. 
These endpoints are the vertices of !:J.. D 

With the subsets Uk defined a.s in (4.n), and the inde.x ko given by (4.3), we
have therefore reformulated the dual extremal problem in the following terms. 

Theorem 4.4. The dual extremal prob/.em (3.5) is equivalent to maximizing the 
linear functwn 

m 

f(x1,x2, ... ,xm) := LX1Y1 
J=I 

where (x1,x2, ... ,xm) varies over the polytope 

ko 

!:J.:= n Uk, 
J..-=l 

Furthermore, a solution of the dual extremal problem (3.5) is attained at one of the 

vertices of the polytope ti..
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Proof. Clearly, the dual e.,-tremal problem (3.5) is equivalent to 

sup{f "1Y1 :c:= (c1,0<J, .. . ,Cm) E Rm,llcll, = 1}.
j=I 

(4.4) 

By Propooition 4.3, a solution of the extremal problem (4.4) is one of the vertices 
of the unit ball {c E ntm : llcll, :'., 1}, which is identified as the polytope /). by 
Propooition 4.1. D 

We have therefore shown that the dual e.,-tremal problem is equivalent to a 
standard problem in linear programming. The comple.xity of this linear program­
ming problem depends on the parameter ko associated with the given set of vectors 
a1> a2, ... >am in co.

5. Solution to the l1 Interpolation Problem

From here our final objective is to leverage the solution to the dual extremal problem 
into a solution of the original problem (2.2). Thus far, we have found a solution to 
the dual extremal problem, and calculated the value of the infimum ms in (2.2). It 
remains to identify vectors X E l I for which this extreme value arises. 

Our strategy will be to use the concept of norming functional to identify can­
didate vectors in £, for the solution, based on a solution to the dual problem. 
These candidates for the solution will turn out to constitute a finit�climensional 
oonvex subset of the sphere in t I with radius ms. To find the actual solutions, it 
remains to r�impose the linear system (2.3). When this is done, we are left with 
a finite.dimensional linear algebra equation, which can be solved with well-known 
techniques. Solving this linear algebra equation leads to the solution of original 
problem (2.2). 

We begin by giving the name a' := E7=• sa1 to a vector in the sequence space 
co for which the dual e.,-tremal problem is attained: 

E�. SY1 E�, "1Y1 

II"
"' 

, II 
su

p II"
"'

II . LJ1=1 c1a1 oo (c1,c-,, ... ,c.,..)ER... L..JJ=l c,a1 oo 

We will now utilize the notion of a norming functional for a vector in a Banach 
space. Given a nonzero vector X E Ir, a ncrrming functional for X is a bounded 
linear functional .XE fr• satisfying l!Allx• = 1 and 

.X(x) = llxllx-

The e.xistence of a norming functional for any nonzero vector is assured by the 
Hahn-Banach Theorem; however, such a norming functional is generally not unique. 
For example, the vector a= (1, 1, 0, 0, 0, .. -) E co is normed by both (1, 0, 0, 0, .. . ) 
and (0, 1,0,0,0, ... ) in £1, as well as any oonve.x combination of these two vectors. 
A norming functional of x, multiplied by the length of x, is called a "conjugate" 
of x in some te.,-ts, such as [17]. The collection of norming functionals of some 
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nonzero vector x is sometimes known in the literature as the "peak set" for x; see, 
for e.xample, [2, p. 939]. 

The following lemma relates the solutions of the original e.,-tremal problem to 
those of its dual, and thus eoables us to drastically narrow our search for the 
solution set. 

Lemma 5.1. lfXo is a solutwn to the extremal problem (2.2), then Xo/llXoll t is a

norming fu.nctwnal for any solution a' of the dual problem.

Proof. Plainly Xo/llXoll 1 has unit norm. By hypothesis and by Proposition 3.3, 

Heoce, we have that 

= lla'lloo , 
00 

According to the definition of the norming functional, we conclude that Xo/llXo II 1 
is a norming functional for a'. D 

Notice that because of Lemma. 5.1, it is not necessary to find all of the solutions 
to the dual problem; having one dual solution a' will suffice for solving the original 
problem (2.2). 

We next describe the norming functionals of a vector in co explicitly. Since 
the componeots of a in co converge to zero, llalloo = supk lakl must be attained 
on a finite set of indices. An index set .A' is called the e.,'tremal index set for 
a Eco if llalloo = supk lakl is attained on JY and A' is the largest set having this 
property. 

Lemma 5.2. If a rumzero sequence a E co has its extremal index set given by

A' := {n1,n2, ... , nN }, then the set of norming fu.nctwnals for a consists exactly

of the convex combinati<>ns of vectors of the form 

Va:= sign(a1)e1, (5.1) 

where j E A'. 
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Proof. For each j E .A', the vector v O is a unit vector oft 1 such that 

that is, VO is a norming functional for a. In fact, any convex oombination of such 
vectors is also norming for a. 

Conversely, suppose that v E £1 is a. norming functional for a and we shall show 
that v must be a convex combination of vectors of the form (5.1). By definition, we 
first observe that l lvll, = 1 and (a, v) = llall00• Furthermore, we find that 

00 

(a, v) = L CljVJ = L a1v1 + L CljVJ· (5.2) 
j=I jE.h' n.K 

For the first term of the right-hand side in Eq. (5.2), a. direct computation leads to 

L (sign(o1)"1)(sign(a1)v,) = L llalloosign(a,)v,. 
JE.K jE.K 

That is, 

L a1v1 = llalloo L sign(Ctj)v,. (5.3) 
jE.K jE.K 

Our ne.,-t goal is to show that v1 = 0 whenever j ¢ .A'. 'lb accomplish this we 
note that a., as a real sequence, oonverges to zero a.nd thus to no other point; in 
particular, i t  cannot be that any subsequence converges to llalloo• Consequently, we 
must have 

or:= sup{l"11: j ¢ .A'}< llalloo •

Suppose now for the sake of argument that 

c:= L lv,1 < 1.
JE.A' 

Notice that llvll 1 = 1. It would follow 

L lv1 l=l-c�l. 
n-K 

This together with (5.3) would imply that 

00 

llalloo = L CljV1 � L CljV1 + 

1=1 JE.K

an absurdity. This proves that 

� llallooc + a(l - c) < llalloo, 

L lv1I = 1 = l lvll,, 
jE.K 

(5.4) 

and consequently v
1 

= 0 whenever j ¢ .A". Returning to (5.2) and (5.3), we see 
that the second summation vanishes, and it must be that 

L sign('½ )v
1 = 1. 

JE.A' 
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Combining the equation above with (5.4) yields 

This implies that 

L (lv1I - sign(o1)v1) = 0. 
JE.K 

lv,1 = sign(o1)v1, for all j E .,,V.

Namely, for all j E .,,V, the terms sign(o1)v1 are nonnegative. From this, it follows 
that 

v = L v1e1 = L [sign(a,)v,Jsign(a,)e1. (5.5) 
JE.A' JE.K 

That is, v must be a convex combination of vectors of the form (5.1). D 

Observe that the collection of norming functionals for a given a E co constitutes 
a finite.dimensional "fuce" or "edge" of a sphere in£,, as e.xpected. Thus our search 
for the solution to the original extremal problem is thereby narrowed from the 
hyperplane Y to those vectors belonging to .9' that are supported on the finite 
e.,-tremal index set .,,V, and which take the form (5.5). This is a significant reduction 
in the scope of the search. It remains to find the coefficients in this representation 
such that v is a solution. 

Remark 5.3. The formula (5.5) could be viewed as a kind of Representer Theorem, 
in which the solution to the l I interpolation problem is expressed as certain a finite. 
dimensional linear combination. 

Among the vectors satisfying (5.5) there are some that also satisfy the 
system (2.3). Tu find them, associated with the e.,-tremal index set .,,V := 
{n,, 1'2, ... , nN} for a dual solution a' E •CO as described in Lemma 5.2, we first 
define an infinite permutation matrix Q (it is the infinite identity matrix with 
finitely many of the columns permutated) that, when acting on a column vector, 
interchanges the nkth row with the kth row, fork= 1, 2, ... , N, and affects N such 
pairs of rows. 

Using the permutation matrix Q, the original system (2.4) can then be ree.x­
pressed in ma.tri.x form as 

(AQ)(Qx) =Y 

where A is again the m X oo matrix with rows being the a1 sequences; X is a 
�dimensional column vector; and y is an m-dimensiona.1 column vector. 

Let Jt be the N -dimensional column veclior consisting of the first N entries of Qx 
(by choice its remaining entries are all zeros), and let B be the m x N rectangular 
matri.x consisting of the N leftmost columns of AQ. It is elementary to solve the 
system 

BJt 
= y (5.6) 
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for the N-climensional vector :9:. This is a finite matrix algebra problem, and numer­
ous techniques exist for computing the solution. A solution for :9: exists; this is
because if infinitely many zeros are appended to :9: to make it an infinite column
vector, then some Q:9: must be a solution to (2.3). Let .Jff be the solution set for
the finite-climensional system (5.6) and let

J := .Jff n {cw,, "'2, ... ,WN } E RN : f_1w1I = ms}-
1=1 

In fact for (w1, "'2, ... , WN) E J, we must have that

N ,v 
L lw1I = ms = L sign(Cln; )w1,
j=I j=l 

in relation to the notation of (5.5). We are in effect narrowing the search further
from a finite-dimensional subset of the hyperplane .5i' to its intersection with the
sphere in t 1 with radius ms. This intersection is necessarily confined to a "face"
or "edge" of this sphere, refiecting the form of (5.7). Every vector belonging to the
set QJ is a solution Xo to the infimum problem (2.2). Each such solution vector is
supported on a finite collection of indices; that is, it is a sparse vector.

The above discussion establishes the foUowing theorem.

Theorem 5.4. Let :it E Co be 11 solutit>n of the du11l problem (3.5), Q the pernu.1.u,,.

lion matrix associated. with the extremal irnlex set for a', and B the m x N matrix, as 
tkfined. above. Then solutions to the minimum norm t I interpolation problem (2.2)
consist of those vectors Qx, where II Qxll 1 = ms, the vector consisting of the first
N components of x solves the finite-dimensfonal matrix equation (5.6), and the

remaining entries of X are zero. 

Let us summarize the final stage of this solution method as follows.

Step 1: For a given solution a' E co of the dual problem (3.5), construct the
extremal index set A':= {n1, Tl2, ... , nN} for a', neressarily a finite set.

Step 2: Based on the extremal inde.x set .% , define the infinite permutation matrix
Q that interchanges the kth row with the nkth row, for every nk E JY. 

Step 3: Solve the finite-dimensional linear algebra equation (5.6), thus obtaining
a set .Jff of N -climensional vectors.

Step 4: Among the vectors in .Jff, identify those of length ms, the extremal value
previously obtained in Sec. 4. This effort involves solving a single equation in at
most N variables, and results in a bounded, convex subset J of RN . 

Step 5: Re-embedding of the members of J back into t, using Q yields the com­
plete set of solution vectors to the minimum norm interpolation problem (2.2).
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We have thus shown that the original interpolation problem in £1 is equivalent 
to solving a linear programming problem derived &om a. duality argument, followed 
by solving a. finite-dimensional linear matrix equation, resulting in a. sparse solution. 

Remark 5.5. This paper sets forth a. conceptual road map for solving the t,
minimum norm interpolation problem (2.2). In practice, consideration must be 
given to the computational comple.xity and stability of the solution method. For 
e.xrunple, computational complexity will increase with the parameter m, the number 
of given vectors in the subset S of co; the number of vertices of the polytope /).
arising in the associated linear programming problem; the parameter N, the number 
of dimensions of the edge or fu.ce of the sphere in t, in the final reduction. Concern 
for the stability of the solution arises in connection with solving the dual extremal 
problem, identifying the e.'<1:remal index set, and solving the finite-dimensional linear 
algebra equation, and imposing the minimum length condition on the resulting 
vectors. These issues relating to the implementation of the solution method will be 
addressed in forthcoming research. 

6. Example

We now illustrate the method developed in this paper by solving a simple but 
nontrivial e.xample. 

The number of constraints in  the initial interpolation problem will be  m = 2. 
Fix 

YI = 3, Y2 = 4,

a1 = (1,�>�>�, ... ) =(�)�=I,
a2 = (1,-�, �' -�,. · -) = C-2�n-1) �=I· 

We consider the problem of finding Xo E ln such that 

IIXoll, = inf{llxll,: (a,,x) = y,,i = 1,2}. 

This is the ma.in interpolation problem in i1 from (2.2).

(6.1) 

(6.2) 

(6.3) 

The corresponding dual e.'<1:remal problem (3.5) is to find c E R2 which attains 

c,y, + C2!/'2 c,y, + C2Y2 sup = sup ( . 
ci,c, llc,a, + C2a2lloo c,,.,., II c1,C2)II, 

To solve the dual extremal problem we must look at the closed unit ball in R2 in 
the II • II, norm. This unit ball consists of the intersection of infinite strips

{ 2 } { 2 c, C2 
}Uk := c E R : -1 :, c, a1,k + C202,k $ 1 = c E R : -1 $ k + ( _ 2Jk-l 

$ 1 
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over all k = 1, 2, .... Tu find U, n U2, we solve the system

Ct • 1 + C2 · 1 = ±1, 

c, • � +c2• (-�) = ±1

for all choices of sign. We thereby obtain the conve.x polytope (in this case, a 
polygon) with vertices at 

In tbis e.xample, the intersection over all the Uk turns out to be equal to U,nU2 =
ti.. Tu see this, first note that each verte.x c,f U, n U2 lies at a distance

(i)2 + (�)2 = (i) Jw�l.581

from the origin. On the other band, the strip U3 lies at a distance 
1 

-;,==== = 2.4 > 1.581✓
<½

)2 
+ (¼

)2 

from 0. That is, U3 encloses U, n U2 oompletely, and so U3 n (U1 n U2) = U, n U2.
The strips U1, for j > 3, are even wider still, and therefore do not contribute to
defining ti. further. This verfies that U, n U2 = ti.. Thus to solve the dual e.,-tremal
problem, we are finding the maximum of a. linear function of c, and C:l, oonfined
to the boundary of the rectangle !:J.. We know from Theorem 4.4 that it suffices to 
plug in the vertices (c1,C2) of !:J. into the function 

f(x,,x2) := 3x, + 4x2, (x1,x2) E ti.,

and oompare. The maximum value occurs at the vertex ( -J, � ), with the ma.ximum 
value being 

ms
= 1(-�, �) = �-

Our next step is to identify the (necessarily finitely many) indices for which the 
sequence 

, 1 3 
a= -2a, + 2a2

attains its supremum norm. By direct oomputation we find that 

1-!a, 1 + �a2 ,I= I-!+ �1 = 12 ' 2 ' 2 2 ' 

l-!a12+ �a22I = I-! - �1 = 1 
2 ' 2 ' 4 4 '

1-�ai,k + �02,k l = 1- 2� + (-�)k I< 1, for all k > 2.
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This tells us that the extremal index set A' we are seeking is {1,2}. The solution 
of the original e.,-trema.l problem must be supported on these two indices. Since 
they already correspond to the two leftmost components of a vector in co, the 
permutation matrix Q occurring in this e.xrunple is simply the identity. We also 
infer from the above computation that 

a'= ( 1,-1,-!!, ... )-

We may therefore truncate the system Ax = y to get 

1
(6.4) 

1 

corresponding to Eq. (5.6). We have thereby reduced the original infinite­
dimensional interpolation problem to a routine linear algebra problem. 

The system (6.4) has the solution set Ye'= {(½, -l]T}. Since the solution set is 
a single vector Jt = [ ½, -1 ]T in this e.xrunple, our search is complete. We re-embed 
this vector Jt into l 1, and obtain the following solution to the original extremal 
problem: 

Xo = (i, -l,0,0,0, .. .).
Notice that for the e.,-treme value we get IIXo II 1 = ms = t in agreement with
the dual problem as e.xpected. Furthermore, we can oonfirm by inspection that 
Xo/llXo II 1 is norming for a ', also as expected.

For the sake of comparison, here is the solution to the same example, exrept we 
are using the norm of l2. With Yt, Y2, a, and a2 defined as in (6.1)-(6.3), we are 
seeking the Xo E l2 for which 

IIXoll2 = inf{llxll2 : (a., x) = y,, i = 1, 2}.
Here, the notation (·, •) denotes the usual inner product in the Hilbert space £2. If 
x' is any particular vector satisfying (a., x') = y., i = 1, 2, then equivalently we are 
seeking to minimize l lx' + zll2 over a.JI z lying in the subspace of £2 annihilated by 
a, and a2. This e.xa.ctly describes the orthogonal projection of x' onto the span of 
a, and a2 in £2. Thus if U1 and U2 constitute an orthonormal basis for the subspace 
spanned by a, and a2, then we have 

The choice 

x' = (i,-1,0,o,o, .. -) 
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will suffice, and yields the t2 solution 

Xo ss (0.4924584) (;;)�=I+ (2.7004714) C-2�n-l) :,
ss (3.1929568, -1.1039930, 0.8392707, -0.2144443, ... ).

This solution is certainly not a sparse vector. 
This example shows that the minimum norm interpolation problem in the t 1 (N) 

space indeed produces a sparse solution, while that in the l2(N) space does not.
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