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Highlights 

 

• MRI-derived electric field characteristics predict tDCS treatment responses 

• Current intensity and direction play significant roles in tDCS treatment response 

• Support vector machine learning algorithm predicts patients' allocation to 

responders vs. non-responders at 86% accuracy 

• Current intensity yields best overall machine learning classifier of tDCS response 

• Precision dosing accounting for individual anatomy is promising for optimizing 

tDCS 
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ABSTRACT 

Background: Transcranial direct current stimulation (tDCS) is widely investigated as a 

therapeutic tool to enhance cognitive function in older adults with and without 

neurodegenerative disease. Prior research demonstrates that electric current delivery to 

the brain can vary significantly across individuals. Quantification of this variability could 

enable person-specific optimization of tDCS outcomes. This pilot study used machine 

learning and MRI-derived electric field models to predict working memory 

improvements as a proof of concept for precision cognitive intervention.   

Methods: Fourteen healthy older adults received 20 min of 2 mA tDCS stimulation 

(F3/F4) during a two-week cognitive training intervention. Participants performed an N-

back working memory task pre-/post-intervention. MRI-derived current models were 

passed through a linear Support Vector Machine (SVM) learning algorithm to 

characterize crucial tDCS current components (intensity and direction) that induced 

working memory improvements in tDCS responders versus non-responders.  

Main results: SVM models of tDCS current components had 86% overall accuracy in 

classifying treatment responders vs. non-responders, with current intensity producing the 

best overall model differentiating changes in working memory performance. Median 

current intensity and direction in brain regions near the electrodes were positively related 

to intervention responses (𝑟 =  0.811, 𝑝 < 0.001 and 𝑟 = 0.774, 𝑝 = 0.001). 

Conclusions: This study provides the first evidence that pattern recognition analyses of 

MRI-derived tDCS current models can provide individual prognostic classification of 

tDCS treatment response with 86% accuracy. Individual differences in current intensity 

and direction play important roles in determining treatment response to tDCS. These 
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findings provide important insights into mechanisms of tDCS response as well as proof 

of concept for future precision dosing models of tDCS intervention. 

KEYWORDS: transcranial direct current stimulation; tDCS; cognitive aging; finite 

element modeling; machine learning; treatment response 
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INTRODUCTION  

For almost two decades, transcranial direct current stimulation (tDCS) has been 

instrumental in advancing the knowledge of human brain function by altering neural 

activity in the brain [1–3]. tDCS has been suggested to alter resting membrane 

potentials (i.e., modulate or attenuate), influencing neuronal excitability across the local 

field of stimulation [1–5]. With this, tDCS has shown great promise as a therapeutic 

intervention in various neurological and psychiatric disorders [6–9]. While the number 

of tDCS applications within the literature has grown exponentially [1–5], the optimal 

dosing parameters (e.g., applied current, electrode placement, etc.) that underlie the 

positive effect of tDCS remain unclear. 

Prior research shows that increasing or decreasing the intensity of applied 

stimulation to the scalp results in corresponding changes in the electric field within the 

brain [10]. In vitro studies have shown that the intensity component of tDCS current 

can modulate cortical excitability [11,12]. Experimental and theoretical studies have 

indicated that tDCS-related electric field intensity is essential for altering neuron 

resting membrane potentials and modification of synaptic strength (i.e., LTP/LTD)[13–

17]. Studies show that increased applied current intensity is associated with increased 

amplitude of motor evoked potentials (MEPs), suggesting neuronal sensitization of the 

motor cortex [8,18–20]. Therefore, varying levels of applied current intensity in tDCS 

may lead to changes in behavioral outcomes.  

Furthermore, electrode placements during tDCS can greatly affect the 

distribution and direction of electric current throughout the brain [21,22]. Whole-cell 

recordings have demonstrated that electric field orientation is essential to the likelihood 
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of neuronal firing [23]. Neuronal bodies in parallel with the direction of applied electric 

fields are more susceptible to stimulation responses. Human studies have also 

highlighted the importance of tDCS current direction for modulating cortical excitability 

[24,25]. Rawji et al. (2018) evaluated individual effects of tDCS montages that produced 

electric fields oriented orthogonal or parallel to the motor cortex on the modulation of 

MEPs. The orthogonal montage was observed to have greater current flow normal to the 

cortical surface (i.e., current flow in parallel with the dendritic axis of cortical neurons). 

These authors reported significant alterations in MEPs with this montage compared to 

sham [25]. These data suggest that the direction of current flow in the tDCS electric field 

may be strongly correlated with behavioral outcomes of tDCS.  

Conventional tDCS typically employs a fixed applied current (e.g., 2 mA) and 

electrode placement (e.g., F3/F4) across participants [26]. However, the orientation and 

intensity of the generated electric field within cortical tissue can be dramatically altered 

by inter-individual anatomical differences. For instance, brain atrophy can reduce the 

level of current reaching the brain due to an increase in current shunting within 

cerebrospinal fluid (CSF) [27,28].  Individual skull thickness and subcutaneous adipose 

tissue volume can also alter voltage delivery due to differences in tissue conductivity 

[29–32].  

MRI-derived finite element models (FEM) can be used to estimate 

individualized electric field induced by tDCS. Advancements in tissue segmentation 

tools and automated modeling pipelines [33,34] have enabled more efficient generation 

of large and complex FEM that would normally require extensive computing power and 

time. These models have recently been compared to experimental results obtained via a 
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novel in-vivo magnetic resonance electrical impedance tomography technique [35,36] 

and intracranial recordings [22,37]. While the experimental results showed a strong 

correlation with computational model outcomes, a large variation across individuals 

was observed. Therefore, investigating the nuance of electrical distribution in 

individualized models may provide more insight into inter-individual variability seen 

with tDCS. However, the size (i.e., millions of voxels across multiple dimensions) and 

complexity of generated electric fields has made interpretation of the essential current 

characteristics (i.e., current direction, intensity, etc.) challenging.  

Few studies have attempted to systematically investigate these estimates of 

electric field distributions as a predictor of responses to tDCS [38–40]. All three prior 

studies reported increases in current intensity associated with increases in the target 

behavioral response (e.g., self-reported and physiological measures) [38–40]. Antonenko 

et al. also reported a positive relationship between the current direction normal to the 

cortical surface and sensorimotor network strength [40]. These studies employed 

univariate approaches that treat each voxel or region of interest within the brain as an 

independent predictor of treatment response. At present, no studies have employed 

multivariate approaches to investigate patterns within the current distribution as a 

predictor of treatment response. 

Supervised machine learning methods (e.g., support vector machines; SVM) 

constitute a novel approach in neuroimaging to investigate large and complex datasets 

[41–44]. SVM uses Mercer’s Theorem [45], which allows the representation of high 

dimensional feature space in a low-dimensional Gram matrix (Equation 4) – also 

known as the “kernel trick” [46]. SVM performs multivariate analyses across many 
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voxels to classify patterns of information [41] that can be used to identify individual 

contributions of current intensity and direction towards behavioral responses. 

Multivariate classifiers are iteratively trained to search for patterns within the data that 

best predict a specified prognostic label, such as behavioral response. This is usually 

achieved within a cross-validation procedure, withholding a different partition of data 

for each iteration of training. This is a standard approach within the statistical literature 

and a widely used technique to provide unbiased generalizability to new data samples 

[42–44,47]. One study used machine-learning of clinical data to predict treatment 

responses [48]; however, there are currently no studies that utilize machine learning on 

FEM to investigate the critical components of dosing parameters in tDCS.  

Previous work from our research group demonstrated working memory 

improvements in older adults following tDCS paired with cognitive training [49]. The 

objective of this study was to apply machine learning and FEM in the same dataset and 

identify the central determinants of treatment response. Specifically, the present study 

applied an SVM machine-learning algorithm to investigate the contributions of current 

intensity and direction, as well as their interaction, for predicting working memory 

improvements in older adults. Our primary hypothesis is that SVM applied to 

individualized tDCS current models are capable of classifying tDCS responders and 

non-responders above chance (i.e., area under the curve > 0.5). In addition, we 

hypothesized that the interaction of direction and intensity is the most essential dosing 

feature for predicting behavioral response. These data will provide critical insight to 

inform tDCS mechanism theory and provide a potential foundation for methods to 

increase the effectiveness of tDCS applications.  



 9 

METHODS  

Structural imaging and behavioral data were sourced from a phase-II pilot clinical 

trial that employed a randomized, triple-blinded (assessor, interventionist, participant) 

design (NCT02137122). This approach enabled examination of the combined effects of 

tDCS with cognitive training on working memory function in healthy older adults [49]. 

Participants  

Fourteen healthy older adults receiving active-tDCS stimulation were selected for 

further analysis by the current study [mean (sd) age = 73.57 (7.84), mean MoCA = 27.85 

(1.79), 7F:7M]. All participants were screened for eligibility based on study inclusion 

criteria detailed in the prior manuscript [47]. The study protocol was in accordance with 

the Declaration of Helsinki and approved by the University of Florida’s Institutional 

Review Board. Informed written consent was obtained from participants prior to study 

procedures. 

tDCS Protocol and Application 

Conventional 1x1 tDCS (Soterix Medical, tDCS-CT for clinical trials) was 

applied using two 5x7cm2 pad electrodes presoaked with 2 mL of 0.9% NaCl and 4mL  

added per side (10mL total per sponge) at F3 (cathode) and F4 (anode) location. 

Participants underwent head measurements using the International 10-20 system to locate 

F3-F4 locations at each session. Participants were stimulated at 2 mA intensity for 20-

minutes with a 30-second current ramp up and down, with a total of 10 stimulation 

sessions over 14-days. Each session included 40-minutes computerized cognitive training 

for working memory with stimulation delivered during the first 20-minutes. Details of the 

computerized training tasks are described in the previous publication [49]. No significant 
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effects of unblinding or differences in sensation were found for active vs. sham 

participants in the parent study [49]. 

Behavioral Tasks 

Participants’ working memory was assessed with an in-scanner N-back task only 

given at baseline and post-intervention. The task paradigm for each run consisted of four 

blocks of two-back and four blocks of zero-back presented in a randomized order with 

20-seconds of rest between blocks. During the two-back, participants viewed uppercase 

letters, one at a time. A screen with a central crosshair (+) was presented during the inter-

trial interval (Figure 1). The stimuli appeared for 1-second, followed by a crosshair for 3-

second, providing a 4-second window to make a response. Details of the N-back task 

procedure are outlined in the prior paper [49]. Participants performed practice on the N-

back task (two- and zero-back) outside of the scanner to ensure understanding of the task 

at both baseline and post-intervention visits.  Two-back performance change (i.e., pre-

/post-intervention) was analyzed as a composite percent improvement score for accuracy 

and reaction time (
∆𝐴𝐶𝐶+ ∆𝑅𝑇

2
).  

Figure 1  

Imaging Sequences and Parameters 

Structural T1-weighted MRI scans were obtained using a 32-channel, receive-

only head coil from a 3-tesla Siemens MAGNETOM Prisma MRI scanner. MPRAGE 

sequence parameters included: repetition time (TR) = 1800ms; echo time (TE) = 2.26ms; 

flip angle = 8°; field of view (FOV) = 256×256×176 mm; voxel size = 1 mm3.  



 11 

Computational Model Construction 

Individual T1-weighted images were converted from DICOM to NIfTI using 

dcm2niix [50] and resampled with the FreeSurfer v6.0.0 image analysis suite 

(http://surfer.nmr.mgh.harvard.edu/) into a 256mm3 field of view (RAS orientation), 1 

mm3 voxel size. The computational models of current density were computed using the 

Realistic vOlumetric-Approach to Simulate Transcranial Electric Stimulation (ROAST; 

https://www.parralab.org/roast/) toolbox [33] with parallel processing on a high 

performance cluster with 50 CPU cores and 175GB of RAM provided by the Research 

Computing at the University of Florida (HiPerGator). The resampled T1 images 

(256×256x256, 1mm3) were individually processed in parallel using ROAST. The 

segmentation process was carried out in FreeSurfer to classify tissue types into gray and 

white matter FreeSurfer segmentations were visually inspected and manually corrected 

for errors before reprocessing through FreeSurfer – a procedure that has been validated 

against manual segmentation [51] and histological measures [52]. Segmentations from 

FreeSurfer were then combined with segmented CSF, bone, skin, and air from ROAST 

(See Supplemental Figure 1). Combined segmented tissues were visually inspected for 

unassigned voxels to ensure every voxel within the head volume was assigned to one of 

the six tissue types by overlaying individual segmented volumes with their respective T1 

images. Default isotropic conductivity values (gray matter: 0.276 S/m; white matter: 

0.126 S/m; CSF: 1.65 S/m; bone: 0.01 S/m; and skin: 0.465 S/m) were assigned to each 

tissue in ROAST [33]. Volumetric meshes of each tissue type were generated using 

iso2mesh [53]. Boundary conditions were assigned within ROAST and a finite element 

solver, getDP [54], was used to compute voltage solutions to the Laplace equation, in the 
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meshed models, where 𝑉 is the electric potential within the volume and 𝜎 is the tissue 

conductivity. Additional MATLAB routines to compute current density (𝐽) from electric 

field (𝐸) and tissue conductivity (𝜎) were added in accordance with Ohm’s law: 𝐽 =  𝜎𝐸. 

Current density (𝐽) is a useful metric for determining the dosage of current (A/m2) 

induced in the brain from electrical stimulation. Current density also represents a unit of 

current directly adjustable through alteration of applied stimulation intensity (e.g., 2mA 

vs. 2.3mA) for the purposes of individualized dosing calculations. 

The intensity of current at each voxel was calculated with the function: 

 
‖𝐽‖ =  √𝐽𝑥

2 + 𝐽𝑦
2 + 𝐽𝑧

2                             (1) 

Direction of current density in each coordinate plane was separated from intensity by 

deriving the zenith angle, 𝜃 between 𝐽 and the z-axis, and the azimuthal angle, 𝜑 between 

the projection of 𝐽 onto the xy-plane, 𝐽′ and the x-axis: 

 
𝜃 =  cos−1

𝐽𝑧

√𝐽𝑥
2 + 𝐽𝑦

2 + 𝐽𝑧
2

 
                            (2) 

 
𝜑 =  tan−1

𝐽𝑦

𝐽𝑥
 

                            (3) 

Figure 2  

Electrode Placements 

 Conventional electrodes (5x7 cm2) were constructed from 3D captured electrode 

models as reported in our previous publication [26] and added to the segmented models 

in ROAST. Individual electrode placement variability per session for each participant can 

be found in supplemental figure 2. Default conductivity values of 5.9x107 S/m and 0.3 

S/m were assigned to the electrode and gel layers, respectively [55]. A +2 mA voltage 
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boundary condition was assigned to the anode electrode at the F4 location, while a -2 mA 

voltage boundary condition was assigned to the cathode electrode at the F3 location 

(Figure 2). Precise electrode locations were recorded for each session with a 3D scanner 

mounted to an iPad. 3D images were converted to a surface mesh via TechMed3D’s 

MSoft software [TechMed 3D, Quebec City]. More details of this procedure can be found 

in a previous publication [26]. Electrode information from each session was added to 

individual segmented tissue volumes prior to creating volume meshes and solving finite 

element models, totaling 10 unique head models per individual. Individual, as well as 

grouped, average and variance maps of current density per electrode placement can be 

found in supplemental figure 4-7. Electrode displacement was computed as the 3D 

Euclidean distance between modeled electrodes and the ideal location of F3-F4, derived 

from ROAST [55].  

Supervised Machine-Learning 

Current density values were computed in native space and masked using 

individual participants’ white and gray matter voxels to restrict current values within 

brain region only and reduce the number of features submitted into the classifier. Masked 

values were then transformed with the UFAB-587 tissue probability map [28] into MNI 

space using SPM’s normalise function [56]. Median values of ‖𝐽‖ before and after the 

transformation were computed as a quality check for transformation errors (𝑟 = 0.998). 

Participant classes were determined by separating participants into binary groups based 

on pre-/post-intervention performance changes on the two-back working memory task 

above or below the median. The tDCS responder class (𝑛 = 7) had an average 

performance increase of 22%, whereas, the tDCS non-responder class (𝑛 = 7) was found 
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to have an average 9% increase in two-back performance (𝐹(1) = 21.02, 𝑝 < 0.001). No 

significant differences in age (𝑝 = 0.89), sex (𝑝 = 0.66), education (𝑝 = 0.53),  cortical 

atrophy (𝑝 = 0.22), or any normalized tissue volume (See Supplemental Figures 1 and 9) 

between these groups were observed.  

Due to the high dimensionality of MRI data, feature selection was performed on 

the training data to further reduce the number of trained features. One popular method of 

feature selection is to filter the features via voxel wise t-tests between classes to select 

current elements with a significant group-level difference (𝑝 <  0.01) as features for the 

subsequent prediction step [42,57,58]. To classify responders from non-responders, we 

used Support Vector Machine (SVM), a machine learning algorithm to search for the 

optimal hyperplane that separates two classes with maximal margin under the assumption 

of independently and identically distributed (iid) data [59], which is satisfied in this 

study. Specifically, LIBSVM [41] was used to optimize the objective function: 

 

min
𝑤,𝑏

1

2
𝑤𝑇𝑤 + 𝐶 ∑ max (1 − 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏),0)2

𝑙

𝑖=1

       (3) 

where 𝐶 ≥ 0 is a penalty parameter on the training error. A linear kernel 𝐾 was generated 

with the function:  

 𝐾(𝑥𝑖 , 𝑥𝑗) =  𝑥𝑖
𝑇𝑥𝑗                             (4) 

Model performance was evaluated across ten permutations of two-level nested 

stratified cross-validation [60–62]. To elaborate, we began by splitting the data into K-

folds (here K=7) and performed an outer cross-validation loop consisting of K iterations. 

In each iteration, K-1 folds were used as training data with a single fold left out as test 

data. A second, inner cross-validation loop was then performed on the training data, 
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providing us with optimal hyper-parameter C. Following training, predictions of held out 

test data 𝑥 were performed with the decision function: 

 𝑓(𝑥) =  𝑠𝑔𝑛(𝑤𝑇𝑥 + 𝑏)                             (5) 

After all K iterations in the outer cross-validation loop were performed, predicted labels 

of all subjects were compared against ground truth labels to calculate performance 

metrics. A receiver operating characteristic (ROC) curve of true positive rate against false 

positive rate was plotted to demonstrate the separability of classes within each model by 

calculating the area under the ROC curve (AUC). To assess the stability of feature 

weights, the standard deviation of feature weights across folds were plotted (see 

Supplemental Figure 8). For feature weight generation and deployment, a final model 

was trained on all fourteen current density maps to derive overall classification weights, 

𝑤 (i.e., the model parameters learned by the optimization function during the training 

phase, cf. Equation 3). These weights can be applied to independent data from a new 

subject to predict their tDCS response classification associated with specific observed J-

map features in test data. The feature weights at each voxel, representing the relative 

contribution of each voxel to the classification, were separated by positive and negative 

weights that predict responders and non-responders, respectively [63]. Positive and 

negative weights were divided by their respective sum of weights to compute the percent 

contribution of each voxel toward either positive or negative predictions. To demonstrate 

specific brain regions that predict working memory improvements, regions of interest 

(ROIs) were defined using the Harvard-Oxford atlas [64] and ranked based on their 

average voxel percent contribution. 

Statistical Analyses  
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SPSS Statistics 25 (https://www.ibm.com/analytics/spss-statistics-software) and 

the Statistics and Machine Learning toolbox in MATLAB 2019b [65] were used to carry 

out statistical analyses. One-way ANOVA was used to assess mean difference in model 

performance between the three data types (direction, intensity, direction x intensity). A 

secondary set of analyses was aimed at determining the characteristics of current within 

the voxels determined to be essential for treatment response. Within these regions, 

Pearson’s correlation analyses were used to assess the relationship of behavioral response 

with field characteristics. Linear regression analyses were used to fit lines of least square 

residuals. Hedge’s g was computed to define effect sizes of mean differences, corrected 

for small sample bias [66]. Since all fourteen participants in our study were individuals 

with no familial relationship and each participant’s data were collected under the same 

condition, these data points met the statistical assumptions of independently and 

identically distributed (iid) data. To determine the normality of each variable, we tested 

the null hypothesis that each data vector comes from a standard normal distribution, 

against the alternative that it does not come from such a distribution, using the one-

sample Kolmogorov-Smirnov test [67,68]. The null hypothesis of a normal distribution 

was not rejected by the Kolmogorov-Smirnov test for all variables analyzed. 

To quantify the required input current for converting non-responders into the 

responder range, the formula: 

 
𝐼̂ = 𝐼𝑜(1 +

𝐽̅ − 𝑥

𝑥
)                             (6) 

  

where 𝑥 represents a non-responder mean current value, 𝐽̅ represents the target current 

values (i.e., average values computed in the responder group), 𝐼𝑜 represents the original 
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injected current (e.g., 2 mA), and 
𝐽̅−𝑥

𝑥
 represents the percent difference.  The optimal 

electrode displacement was defined as the mean responder displacement minus the non-

responder displacement. 

 

RESULTS  

Machine Learning Predictions of tDCS Intervention Efficacy 

Computational models of current intensity, current direction, and their interaction, 

all demonstrated above chance performance for classifying treatment responders (i.e., 

AUC>50%). The AUC revealed that the probability of current intensity will rank a 

randomly chosen responders higher than a randomly chosen non-responders was 80.6% 

(Figure 3A) [69]. Classification of the direction alone and combined models of direction 

and intensity produced AUCs of 77.6% and 74.9%, respectively. A summary of model 

performances can be found in Table 1. Computational models of current intensity alone 

marginally outperformed current direction and the combination of current direction with 

intensity in the classification problem (Figure 3B). However, a one-way ANOVA 

between the AUC of each current characteristic (𝐹(2) = 1.31, 𝑝 = 0.288) revealed a 

non-significant difference between the three variables. The support vector machine 

classification of all three models correctly differentiated tDCS responders from non-

responders with averaged overall accuracy of 86.43%. The 95% confidence interval of 

classification accuracy for these models was between [CI: 85.03 – 87.83%].     

Table 1  

Figure 3  

Figure 4  
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Field Characteristics within Voxels Predictive of Treatment Responders   

 Within the voxels that discriminate tDCS responders from non-responders (Figure 

4), responders were found to have greater current intensity within these regions (Figure 

5A-5B), with greater median (𝑟 =  0.811, 𝑝 < 0.001) and mean current intensity (𝑟 =

 0.720, 𝑝 = 0.004) correlated with treatment response (Figure 5C). Responders produced 

an effect size of 5.63 (Hedges’ g; Figure 5D) with a 95% confidence interval between 

[CI: 3.82– 7.94] and a significant two-sided permutation t-test (𝑝 < 0.001, 5000 

permutations). Behavior change was also related to the azimuthal angle, the angle of the 

current vector in the axial plane between the electrodes, 𝜑 (𝑟 = 0.774, 𝑝 = 0.001) and 

the x-magnitude of the current vector, 𝐽𝑥  (𝑟 = 0.832, 𝑝 < 0.001). Behavior change was 

not related to zenith angle, 𝜃 (𝑟 = 0.289, 𝑝 = 0.32; see Supplemental Figure 3), y-

magnitude of the current vector, 𝐽𝑦 (𝑟 = 0.222, 𝑝 = 0.45), or the z-magnitude of the 

current vector, 𝐽𝑧 (𝑟 = 0.281, 𝑝 = 0.33). Thus, current angled toward the cathode related 

to positive outcomes (see Figure 6A-C for representative model). On average, the current 

direction computed within the xy-plane, 𝜑, showed greater percentages of positive angles 

in responders, whereas non-responders demonstrated greater percentages of negative 

angles. Thus, an enhanced convergence of current direction toward the cathode was 

found within responders (Figure 6D). Shifts in electrode location inversely correlated to 

behavior change (anode: 𝑟 = −0.732, 𝑝 = 0.003, cathode: 𝑟 = −0.775, 𝑝 = 0.001), as 

well as changes in median current intensity (anode: 𝑟 = −0.523, 𝑝 = 0.06, cathode: 𝑟 =

−0.632, 𝑝 = 0.02) and azimuthal angle (anode: 𝑟 = −0.579, 𝑝 = 0.03, cathode: 𝑟 =

−0.794, 𝑝 < 0.001) within these voxels.   

Evaluation of simplified SVM models. 
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 To determine whether the complexity of the original model presented in the 

current paper is required to achieve sufficient model performance, we assessed a set of 

simplified SVM models. As electrode displacement was strongly associated with 

behavior change, we trained an SVM to classify responder and non-responders based on 

only electrode displacement. In addition, prior research argues that tDCS primarily 

impacts only gray matter regions. As such, we trained an SVM to classify reponders and 

non-responders using only current characteristics from gray matter regions. These models 

did not outperform the original model (see Supplemental Table 1 and Supplemental Table 

2; respectively).  

Figure 5  

Figure 6  

Regional Contributions Toward Predictions of tDCS Response 

Figure 7A-B illustrates the top ten ranked ROIs based on the mean percent 

contribution per voxel within each region. See Figure 7C for the distribution of percent 

contribution across Harvard-Oxford ROIs. The top ten ROIs predicted working memory 

improvements and were largely located in the frontal region underneath and between the 

electrodes (Figure 7A). These ROIs were labelled as the: 1) Right Superior Frontal 

Gyrus, 2) Left Superior Frontal Gyrus, 3) Left Caudate, 4) Right Caudate, 5) Left Middle 

Frontal Gyrus, 6) Right Middle Frontal Gyrus, 7) Left Middle Temporal Gyrus, posterior 

division, 8) Left Heschl’s Gyrus, 9) Right Postcentral Gyrus, 10) Right Supramarginal 

Gyrus, posterior division (Figure 7B). 

Figure 7  

Dosing Charactersitics in Responders and Non-Responders 
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Equation 6 was used to determine the optimal dosing parameters that are likely to 

convert non-responders into responders. To match the mean profile of current 

characteristics demonstrated in responders, non-responders would require an average 

increase of applied current intensity to 4.3 mA [range(sd): 3.19–5.37 (0.71) mA] and shift 

in the cathode location 1.25cm [range(sd): 0.52–2.22 (0.59) cm] closer to the ideal 10-20 

location. Figure 8A and 8B demonstrate the relationship between differences in electrode 

placement and behavioral response. Figure 8C and D demonstrate the required shifts in 

intensity (8C) and electrode placement (8D) to match the mean profile of responders.  

Figure 8  

DISCUSSION  

The present study investigated the essential characteristics of tDCS current (i.e., 

current intensity, current direction, etc.) by using a machine learning algorithm to predict 

tDCS effects on measured behavioral outcomes. Overall, both current direction and 

intensity are demonstrated to be critical components of stimulation response. Consistent 

with our primary hypothesis, the electric field components produced predictions of tDCS 

response classification beyond chance (i.e., AUC > 50%). While current intensity did 

marginally outperform other variables, this difference was not statistically significant. 

Contrary to our second hypothesis, all tested variables were comparable in classifying 

responders and non-responders. Considering each of these datatypes are derived from the 

same data vector, it is likely that the interaction of direction and intensity does not 

provide sufficient new information to outperform intensity alone. Since the SVM relies 

on pattern similarities between observations to make predictions, the interaction term of 

direction and intensity did not explain a significant level of new variance that was not 
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already explained by the separate main effects of intensity and direction. Using a small 

clinical trial dataset, the machine-learning algorithm presented in this paper provides 

proof of concept that an SVM was able to classify tDCS responders and non-responders 

with 86% accuracy based on patterns of current characteristics. 

Characteristics of Current 

The weights produced by the SVM algorithm revealed the brain regions that 

contributed most to predictions of treatment response category. Within these regions, 

median and mean current intensity were found to positively relate to behavioral response, 

suggesting greater current intensity may produce greater behavioral response. Since tDCS 

is typically applied at a fixed dose across individuals, individual differences in anatomy 

are likely to cause varying amounts of current intensity within these essential brain 

regions.  For instance, those with greater degrees of brain atrophy would have a 

decreased level of current intensity within stimulated brain tissues and thus may 

experience reduced efficacy from fixed dose tDCS. It is important to note that while our 

data demonstrate an association between delivery larger amounts of current intensity and 

better behavioral responses, this does not necessarily mean that “more is better” 

universally. For instance, Samani et al. previously reported that applied current intensity 

beyond 2 mA demonstrates nonlinear alterations in neuronal excitability [70]. Thus, 

within the range of current intensities inducible in the brains of older adults receiving 

fixed 2 mA dose, increased current intensity appears beneficial for treatment response. 

Intensities beyond this range require further research. Electrode orientation and location 

during tDCS can also dictate the shape and location of stimulation contact area, altering 

the pattern of current flow within the brain [22]. Both anode and cathode displacement 
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were found to negatively affect intensity and direction of current within the brain as well 

as behavioral response. Minor electrode shifts (i.e., ≥ 1 cm) have been previously 

demonstrated to dramatically alter the current intensity by up to 38% [21,71]. Therefore, 

monitoring and increasing electrode placement accuracy via 3D capture techniques [26] 

may improve individual treatment response. 

Regions of Importance 

The top ten ROIs that predict working memory improvements included the 

dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), basal 

ganglia, and cingulo-opercular network regions [72]. The DLPFC and VLPFC are 

critically involved in monitoring, maintaining, and manipulating task-relevant 

information. These processes are vital for working memory function [73–75]. Recent 

studies have reported increased functional connectivity within these regions paired with 

improvements in working memory performance following applications of tDCS [49,76].  

The basal ganglia also play an important role in learning and memory [77]. 

Specifically, the basal ganglia have been suggested to work conjunctively with the 

middle frontal gyrus to select information to be stored in working memory [78]. In 

addition, increased functional connectivity of the cingulo-opercular network (also 

referred to as the ventral attention/salience network) is associated with better 

performance on measures of fluid cognition (e.g., executive function) in older adults [79]. 

The SVM identified critical current features in brain regions previously associated with 

working memory performance and age-related cognitive decline, serving as an additional 

proof of principle for this approach. 

Future Directions 
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The generated SVM model was highly accurate at classifying treatment 

responders in older adults, based only on the distributed patterns of electric current. 

Using these methods, precision tDCS dosing tailored to each individual can be generated 

to efficiently deliver equivalent current intensity within cortical regions that are essential 

for producing improvements in working memory. With optimization, application of these 

presented methods could potentially be expanded to improve tDCS efficiency in not only 

older adults but also various mental health [7,80,81] and brain-based pathologies [8,9]. 

Study Limitations  

The limited number of data points (n=14) in the current study may affect the 

generalizability of the model. Thus in our future work, we will use a larger and more 

heterogeneous tDCS clinical trial dataset (n=160) [82] (NCT02851511) which is near 

completion. To maximize the use of available data points and avoid overfitting in this 

study, we used two-level nested cross-validation to increase the number independent test 

samples and used 10 permutations to assess the retest reliability of these models. Average 

accuracy and confidence intervals across these permutations were used to estimate model 

performance on novel datasets. Our results show a 95% confidence interval of [85.03 – 

87.83%] when the average accuracy is 86.42%, which demonstrates robust performance 

and small standard deviation of the classification performance. However, cross-validated 

analyses could lead to overoptimistic results. While efforts have been made to avoid 

over-estimating the performance due to “double-dipping” in the choice of model 

hyperparameters [83] through nested cross-validation, results should be validated on an 

independent, larger cohort.  
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For simplicity of interpretation, we used a binary SVM to distinguish discrete 

classes: responders and non-responders. However, it is also feasible to utilize machine-

learning algorithms to make continuous predictions (i.e., magnitude of improvement). It 

should also be noted that misclassification of tissue continues to be a challenge for 

automated segmentation routines [84] which can influence subsequent FEM results since 

current density estimation is directly related to tissue organization and their assigned 

conductivity values. For instance, both bone and CSF compartments appear dark in T1-

weighted images and thus bone tissue might be misclassified as CSF, or vice versa. This 

type of tissue misclassification can alter the amount of current entering the skull cavity 

[85] and thus affecting the estimated current found in the brain that was used for SVM 

classification. Therefore, the findings of the present study are limited by segmentation 

inaccuracy produced from the automated segmentation routines. Future studies are 

warranted to implement manual corrections to automated tissue segmentation and further 

analyze SVM results for automated versus manual segmentation process. The present 

study serves as a proof of concept study for classification of tDCS responders and non-

responders by utilizing features submitted to the classifier from the computational FEM. 

Introducing additional neuroimaging modalities and clinical data into the model may 

further enhance performance and predictive value of machine-learning based approaches 

for understanding tDCS treatment response.  

Conclusion 

Clinical applications of tDCS have grown exponentially, yet reproducibility of 

these studies remains a challenge. At present, the optimal stimulation parameters remain 

unknown, making it difficult to ensure optimal treatment response on an individual basis. 



 25 

In this study, we proposed novel methods using FEM and SVM algorithms to detect the 

critical features of tDCS current, and identify stimulated cortical structures implicated in 

producing intended functional outcomes. We tested our methods in fourteen tDCS 

participants that underwent multiple days of stimulation at the F3-F4 locations. Our 

results demonstrated that current intensity has the strongest predictive value for treatment 

responders, with the performance of current direction only slightly inferior. These data 

suggest that reducing electrode displacement and delivering greater current intensity to 

essential brain regions implicated in treatment response are important for producing 

positive alterations in working memory performance. Future studies may include a larger 

cohort to generate more generalizable predictive models. Findings from this study could 

be coupled with customized electrode montages and dosing parameters to potentially 

enhance functional gains from tDCS treatment on an individual basis for a variety of 

therapeutic applications.  
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Table 1. A summary of whole brain SVM model performance for each of the three data types. 

Intensity Direction Direction x Intensity 

ACC AUC F1 MCC ACC AUC F1 MCC ACC AUC F1 MCC 

86.46  
[85.03 – 

87.83] 

0.806 0.86 0.73 86.46  
[85.03 – 

87.83] 

0.776 0.86 0.73 86.46  
[85.03 – 

87.83] 

0.749 0.86 0.73 
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Figure Captions. 

Figure 1. An example of the stimulus presentation in the two-back variant of the N-back 

task. 

Figure 2. A) The F3-F4 electrode montage with the F3 electrode as the cathode (blue) 

and the F4 electrode as the anode (red). B) A representative image of actual anode (red) 

and cathode (blue) placements for a single subject across ten sessions. The mean 

displacement for this participant of the anode and cathode was 1.9 cm (-0.2 St. Dev.) and 

1.7 cm (-0.45 St. Dev.), respectively.  

Figure 3. A) Areas under the ROC curve across ten iterations of three data types: 

direction, intensity, and combined. Mean AUC plotted as bars. No significant difference 

was observed. B) The mean ROC curve of each model across ten iterations with shaded 

area conveying 95% confidence interval. 

Figure 4. Discrimination maps of regions that predict working memory improvements 

with the percent contribution of each voxel to the SVM decision function, superimposed 

onto a representative T1 image for visualization. 

Figure 5. Plots to demonstrate the current density characteristics within regions 

predictive of tDCS responders. A) Histogram of current intensity (bin width of 0.0013 

Am-2) with the y-axis representing the number of observations in each bin divided by the 

total number of observations, where the sum of all bar heights is equal to 1. B) 

Cumulative histogram of current intensity with the height of each step equal to the 

cumulative number of observations in the bin over the total number of observations in 

each bin and all previous bins where the height of the last bar is equal to 1. C) Scatter plot 

of behavior change (post – pre intervention working memory performance) vs. median 
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current intensity. D) The Hedges' g between responders and non-responders is shown in a 

Gardner-Altman estimation plot. The mean difference is plotted on a floating axis as a 

bootstrap sampling distribution. The mean difference is depicted as a dot; the 95% 

confidence interval is indicated by the ends of the vertical error bar. 

Figure 6. Single representative participant A) Coronal, B) Sagittal, and C) Axial image 

of current intensity represented by the color of the images, and current direction 

represented by the arrows within the images. The color bar represents electric field in 

volts per meter (𝑽/𝒎). D) Histogram of azimuthal angle 𝝋 with the height of each bar 

representing the number of observations in each bin divided by the total number of 

observations, where the sum of all bar heights is equal to 1. 

Figure 7. A) Visualization of the top 10 regions of interest from the Harvard-Oxford atlas 

ranked based on their contribution toward predictions of treatment response. B) Rank, 

label, and mean percent contribution per voxel of the top ten regions of interest. C) a bar 

graph to represent the average percent contribution per voxel within each ROI of 

Harvard-Oxford atlas with the top 10 regions of interest highlighted in red. 

Figure 8. A) Anode and B) Cathode displacement between responders and non-

responders, with means plotted as bars. Non-responders were found to have greater 

displacement of both electrodes (anode: 𝐹(2) = 6.73, 𝑝 = 0.023, cathode: 𝐹(2) =

19.39, 𝑝 < 0.001) from their ideal placement compared to responders. Linear regression 

of C) current intensity and D) current direction, based on the percent difference of 

average current intensity and cathode displacement versus behavioral change. The 

optimal stimulation parameters are represented by the diamond in the figure (i.e., the 

mean within the responder group). * represents 𝑝 < 0.05 and *** represents 𝑝 < 0.001). 
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