
78

MaxTracker: Continuously Tracking the Maximum

Computation Progress for Energy Harvesting ReRAM-based

CNN Accelerators

KENI QIU, Capital Normal University, China

NICHOLAS JAO, Pennsylvania State University, USA
KUNYU ZHOU, Capital Normal University, China

YONGPAN LIU, Tsinghua University, China
JACK SAMPSON, MAHMUT TAYLAN KANDEMIR, and
VIJAYKRISHNAN NARAYANAN, Pennsylvania State University, USA

There is an ongoing trend to increasingly offload inference tasks, such as CNNs, to edge devices in many IoT

scenarios. As energy harvesting is an attractive IoT power source, recent ReRAM-based CNN accelerators

have been designed for operation on harvested energy.When addressing the instability problems of harvested

energy, prior optimization techniques often assume that the load is fixed, overlooking the close interactions

among input power, computational load, and circuit efficiency, or adapt the dynamic load to match the just-

in-time incoming power under a simple harvesting architecture with no intermediate energy storage.

Targeting a more efficient harvesting architecture equipped with both energy storage and energy delivery

modules, this paper is the first effort to target whole system, end-to-end efficiency for an energy harvesting

ReRAM-based accelerator. First, wemodel the relationships among ReRAM load power, DC-DC converter effi-

ciency, and power failure overhead. Then, a maximum computation progress tracking scheme (MaxTracker) is

proposed to achieve a joint optimization of the whole system by tuning the load power of the ReRAM-based

accelerator. Specifically, MaxTracker accommodates both continuous and intermittent computing schemes

and provides dynamic ReRAM load according to harvesting scenarios.

We evaluate MaxTracker over four input power scenarios, and the experimental results show average

speedups of 38.4%/40.3% (up to 51.3%/84.4%), over a full activation scheme (with energy storage) and order-

of-magnitude speedups over the recently proposed (energy storage-less) ResiRCA technique. Furthermore, we

also explore MaxTracker in combination with the Capybara reconfigurable capacitor approach to offer more

flexible tuners and thus further boost the system performance.
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1 INTRODUCTION

It is increasingly common to see inference tasks, such as convolutional neural networks (CNNs),
processed locally on the edge devices that collect the data [7, 44], rather than being offloaded
to the cloud. ReRAM crossbar-based accelerators with intrinsically high-efficiency Processing-In-
Memory (PIM) capabilities [35] have been proposed to perform the convolutional computations
of the CNNs. In many Internet of Things (IoT) scenarios [7, 14, 15], using ambient energy harvest-
ing (e.g., solar, thermal, RF [11, 28, 29, 36, 41]) as a power source is appealing if the underlying
hardware platform provides support for intermittent computing [3, 4, 6, 8, 24, 26, 27, 30]. Recent
works have examined the intersection of these two trends [16, 37]. For example, the HAWAII run-
time system [16], which uses the concept of inference footprinting, was proposed to preserve the
Deep Neural Network (DNN) accelerator progress across power cycles without requiring access
to the peripheral internal state. Anyhow, the exploration of the design space of energy-harvesting
inference accelerators is still in its infancy nowadays.
In this context, the most commonly deployed model is the “Harvest-Store-Use” paradigm [5, 38]

wherein a storage capacitor is conservatively filled with sufficient harvested energy to power the
sensor node for a design-time specified period of continuous operation prior to the compute phase.
A key challenge in such architectures is the efficient delivery of stored energy to the accelerator.
Although prior works have extensively studied the efficiency issue [9, 40], they often assume that
the electronic load driven by the power delivery components at the sensor node is fixed, which
overlooks potentially important interactions between the load and power delivery/conversion circuit
efficiency. For example, recent work [37] is implemented based on a fixed load of four 32 × 32
ReRAMs but with a varying, unstable solar power source. This has two potential drawbacks: 1)
the power requirement of activating the ReRAM load is high, and 2) the harvesting circuits may
operate at low efficiency most of time due to the fixed load power. On the other hand, although
recent work [32] proposes to offer multiple load granularities by decomposing compute operations
onto subsets of ReRAM arrays, it adopts a simple “Harvest-Direct Use” architecture, and neither
attempts to perform a global end-to-end efficiency optimization, nor considers load granularity
optimization in the presence of a non-trivial energy store, as would be present in a “Harvest-Store-
Use” or hybrid “Store-Use/Direct Use architecture”.
In this work, targeting a “Harvest-Store-Use” architecture, we leverage two key observations to

perform end-to-end efficiency optimization: Load at sensor/compute node greatly impacts DC-DC
converter efficiency ηDC−DC , and, even with a modest energy store, the granularity of work sched-
uling can be used to exert substantial control over both sensor/compute load and storage voltage.
To incorporate these observations, this paper proposes a novel strategy, MaxTracker, that tracks
themaximum computation progress through dynamically tuning the load at ReRAM compute core.
To this end,MaxTracker performs tracking at two layers. First,MaxTracker evaluates two schemes
for computing with harvested energy (intermittent computing and continuous computing) and
selects the compute scheme suitable for specific power harvesting scenario. Second, specific to
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each computing scheme, MaxTracker always captures the operation status, leading to the highest
throughput through tuning the ReRAM activation size. This two-layer strategy achieves a good
balance of the trade-offs among the key factors of harvested power, ReRAM computations, DC-
DC converter efficiency, and power failure overhead of the whole system. Experimental results
across four power sources and four CNN networks show that MaxTracker’s joint optimization
achieves average speedups of 38.4%/40.3% (up to 51.3%/84.4%) compared to a fixed load baseline
without the dynamic tracking technique, and order-of-magnitude speedups over the recent energy
storage-less ResiRCA technique [32]. Furthermore, we also have explored combining MaxTracker
with the Capybara reconfigurable capacitor approach [5] to offer more flexible tuners to further
boost the system performance.
In summary, this work makes the following contributions:
• This is the first work to tune a ReRAM-based convolution accelerator in an energy harvesting
scenario to account for the end-to-end energy delivery efficiency. We perform full system through-
put and energy efficiency modeling of all key factors of the computation progress, including power
failure and power leakage overhead.
•We propose the MaxTracker framework, consisting of a design-time tool and an online schedul-
ing mechanism that respectively model and calculate the efficiency-preferred activation configura-
tions corresponding to specific incoming (harvested) power levels and load conditions andmanage
the dynamic transitions among them. TheMaxTracker approach is shown to significantly enhance
themaximum computation progress over four energy harvesting scenarios by accommodating two
computing schemes and performing dynamic ReRAM activation size tuning.
• We build a CNN computing simulator to mimic the operations of CNN inference with various
power traces. The circuit parameters of the “Harvest-Store-Use” architecture and the MaxTracker
strategy are modeled in our simulator.
The rest of this paper is organized as follows. Section 2 introduces the energy harvesting ar-

chitecture,energy delivery of the key DC-DC converter components and a review of ReRAM load
tuning of the most related state-of-art work. Section 3 describes the mechanisms employed by
MaxTracker to apply two computing schemes across three power harvesting scenarios. Section 4
gives the evaluation results. Section 5 reviews the recent related studies. Finally, we conclude the
paper in Section 6.

2 BACKGROUND INFORMATION

Energy Harvesting Architectures: Energy harvesting architectures can be broadly divided into
two categories: “Harvest-Direct Use” and “Harvest-Store-Use” [38]. In the first architecture, energy
is harvested just-in-time for use without conservatively guaranteeing the presence of sufficient
energy to complete a task prior to initialization, whereas, in the latter architecture, energy is har-
vested, stored in a capacitor for future use, and expended only when sufficient energy exists to
complete a scheduled task. The advantages of the “Harvest-Store-Use” architecture span three as-
pects. First, it allows the continued operation from stored energy during periods where incoming
power alone is insufficient to sustain computation. Second, when there is incoming power, but that
power is insufficient to support any useful computation, the energy can be stored until enough is ac-
cumulated to complete a meaningful unit of work (with the caveat that the average power income
must still exceed the average energy storage leakage during such an accumulation period). Third,
by only attempting to operate when energy reserves are within well-defined bounds, the “Harvest-
Store-Use” architecture can provide a more predictable voltage range during active periods than a
“Harvest-Direct Use” architecture, which offers a better circuit design target for optimization.

The Harvest-Store-Use architecture has several interacting components. Figure 1 shows the ar-
chitectural block diagram consisting of an energy harvesting (EH) module, power booster with
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Fig. 1. The “Harvest-Direct Use” architecture under study, showcasing circuit topology of the configurable
DC-DC converter from [2].

maximum power point tracking (MPPT) booster, energy storage, DC-DC converter, and sensor
node. The EH module converts the ambient energy into electrical energy and the MPPT booster
maximizes the power extraction of the EH module under varying conditions. For the energy stor-
age component, the voltage across the storage capacitor is proportional to the charge stored. Lastly,
the DC-DC converter supplies the proper operating voltage to the sensor node. In the scope of this
work, as indicated in the red dash box in Figure 1, we study the interactions between the energy
storage, DC-DC converter and the sensor node components to establish a hardware-aware compu-
tation scheduling to optimize upon the trade-offs and operating conditions of the different energy
harvesting components during run-time.
DC-DC Energy Delivery: In an energy harvesting architecture, the most important concern

is how to transform the harvested energy into as much forward progress as possible in the sensor
node. While the MPPT booster draws the maximum power from the harvester to the energy stor-
age [42], the DC-DC converter’s primary function is to regulate a constant voltage output even
when input voltage from energy storage and the output current to the sensor node is changing.
In practice, non-ideal converters consume stored energy to maintain its voltage regulation func-
tion in addition to the energy delivered to the load. Hence, we identify that the DC-DC converter
efficiency ηDC−DC is the key metric in how much available energy at the energy storage is spent
on meaningful computation in the sensor node.
From an energy harvesting system-on-chip standpoint, the switched converter is the most suit-

able voltage regulator for our application due to its low-cost integration on-chip and capability
to achieve high-efficiency at low output voltage [17, 34]. There are two major sources of power
losses in a switch-capacitor (SC) DC-DC converter: conduction loss and switching loss [18]. Con-
duction loss arises from the power dissipated across parasitic resistances and dominates when the
power supplied to the load is small. Switching loss comes from the dynamic power consumed by
the converter at high frequencies and the main source of loss when the power delivered to the
sensor node is large.
In summary, the efficiency of DC-DC converters changes with the computational intensity of

sensor node (output power) and the available energy in the storage capacitor (input voltage). In
the context of deploying a ReRAM accelerator at the sensor node, it is critical to take into account
the hardware-level relationships to maximize the forward progress when the available energy is
limited.
Review: Resilient Computation on ReRAMAccelerators: ReRAM crossbar-based accelera-

tor enables a new paradigm to offload neural network (NN) tasks on IoT nodes under a bandwidth-
constrained circumstance [37]. ReRAM crossbars can use the resistance values stored in the cells
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Fig. 2. Example of ReRAM tiling [32].

and the NN weights to execute multiply-accumulate (MAC) operations with high parallelism and
low power.
Matching execution to available energy helps avoid power failures. For sensor nodes using a

ReRAM-based accelerator, recent work [32] proposes partitioning a ReRAM crossbar into smaller
tiles suitable for executing a loop-tiled decomposition of CNN operations as sets of partial ReRAM
activations. As an example, Figure 2 shows that a large m×n ReRAM crossbar can be partitioned
into 2 × 2-size tiles, and then can be activated one tile at a time. Eventually, all the MAC operations
on the entire ReRAM can be completed after merging the partial results. ReRAM duplication by
a factor of d can also be integrated with loop tiling to achieve extensive resiliency of computing.
With ReRAM duplication, activation tiles from multiple ReRAMs can be implemented in parallel.
This activation solution can be represented as 〈m, n, d〉.

The tiled computing scheme grants resiliency to the ReRAM accelerator so that the ReRAM
load can be finely tuned to fit the incoming power, thereby avoiding some power emergencies
altogether in a Harvest-Direct Use architecture. The low-power ReRAM architecture, ReRAM tiling
and duplication along with the convolution layer scheduling algorithm are all combined into the
ResiRCA technique [32]. Since the CNN convolutions can be decomposed in a variety of ways in
terms of both the size of partial activation and the degree of duplication, the ResiRCA technique
provides a load tuning knob that can cause ReRAM load to vary across a wide range.

However, the ResiRCA technique targets a “Harvest-Direct Use” architecture, unaware of energy
store and energy delivery components as well as their complex interaction. In this work, we target
the commonly deployed “Harvest-Store-Use” architecture for energy harvesting systems. Although
we are alsomotivated to exploit the ReRAM load tuning knob to achieve high performance, the load
tuning strategy is very different from ResiRCA because our tuning strategy should be able to build
the most efficient interaction among the key components of energy storage, DC-DC converter and
the sensor node, and thus achieving high performance at the sensor node.

3 MAXIMUM COMPUTATION PROGRESS TRACKING

3.1 Architecture and Software Overview

As discussed above, the load plays a significant role in overall system efficiency. By exploiting the
decomposability of parallel convolution operations on ReRAMs to tune the load power, the best
operation state of the whole system can be ensured by a dedicated “load tuner”.

In this work, we introduce MaxTracker, a tracking scheme that captures the income-load-
progress dynamics. Based on exploring different computing schemes (Section 3.2) and the through-
put and energy efficiency models of the whole system (Section 3.3), MaxTracker adopts two
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Fig. 3. Overview of the ReRAM sensor architecture andMaxTracker framework.

different execution schemes for three energy harvesting cases, to capture the best operating
strategy (Section 3.4), so as to achieve the highest throughput, that is, the maximum computing
progress.
MaxTracker primarily consists of two main components: 1) Offline-MaxTracker determines the

computing scheme as well as ReRAM activation solution for each convolution layer under different
operating environments taking into account of the interaction among energy store, DC-DC con-
verter and ReRAM load, and 2) Runtime-MaxTracker uses the Offline ReRAM activation solutions
to guide CNN execution as the operating state varies at run-time. Figure 3 illustrates the ReRAM
sensor node architecture and the software and hardware overview of our proposed MaxTracker.

3.2 Computing Progress Modeling

As a bridge connecting the energy store and energy consumer, DC-DC converter efficiency is sen-
sitive to both the input voltage and the load. Therefore, even with a fixed load, the input voltage
VDC−DC−in keeps changing as the capacitor charge QCap is continuously consumed. This, in turn,
impacts the energy conversion efficiency ηDC−DC .MaxTracker can capture these changes and then
dynamically tune the load to achieve the optimal operating status. This calibration process is di-
rected by the evaluation metric of throughput that also corresponds to the computing progress
of the ReRAM accelerator. Thus, the primary work is to model the relationship between the key
metrics of throughput and energy efficiency as they interact with the key factors of the circuits
and ReRAM load with different computing schemes.
To provide clarity in our discussion of the ReRAM computing process, we first define the fol-

lowing terms, which are also labeled in Figure 4.
Working Cycle (WC): A working cycle denotes a purely charging period, followed by a con-

secutive working period.
The purely charging period (with no operations) and the consecutive working period are de-

noted as Tidle and Top , respectively. Charging can happen all the time while discharging only
happens during the Top period. At the end of each working cycle, it is necessary to back up the
status data into the nonvolatile ReRAMmemory. Correspondingly, at the beginning of each work-
ing cycle, the stored status data should be written back to the volatile registers or memory. Each
power cycle usually holds more than one WC.
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Fig. 4. Two computing schemes and key terms.

Operating Cycle (OC): The consecutive working period consists of a series of operation cycles,
each denoting one particular operation style with a specific tile activation on ReRAMs.
Figure 4 presents an example of two typical computing schemes in power cycles (PC) i and i + 1.

PC-i consists of three WCs. For the first two WCs, each has three OCs corresponding to different
ReRAM activation styles. The third WC only has an idle period for charging. However, PC-i+1
only consists of one WC with one OC, which implies a continuous execution scheme. Note that
each operation period ends when the discharging voltage drops to a specified threshold Vth (e.g.
0.24v) in order to avoid the cold boot overhead of the capacitor [5].

In general, there are two types of ReRAM computing schemes: intermittent computing and con-
tinuous computing. The intermittent computing scheme occurs when the scheduled load power
will drain storage faster than incoming power can refill it. The continuous computing scheme
occurs when scheduled load power is less than the delivered power i.e. the power supply is suf-
ficient to support a continuous computing at the load side. In Figure 4, the computation in PC-i
is intermittent, whereas that in PC-i+1 is continuous. Since the ReRAM load is decomposable and
can be activated with different tile sizes, the execution style in each power cycle is controllable
accordingly.
The intermittent computing style can work under different intermittent patterns in a power

cycle. An intermittent pattern means a series of activation solutions with different ReRAM tiling
strategies, that consists of the purely capacitor charging timeTidle and a series of OCs in a working
cycle. The intermittent pattern can be controlled by the charged voltageVtop and discharged volt-
age Vbottom . Since this work focuses on the effectiveness of the two computing schemes, and as a
result, we do not explore different patterns of intermittent computing. Instead, we just choose one
intermittent degree, wherewe always charge the storage capacitor toVtop and then run the ReRAM
accelerator until the discharging voltage drops toVbottom . Note that the discharging voltage of the
storage capacitor is the input voltage V DC−DC−in to the DC-DC converter. As V DC−DC−in drops
during ReRAM computing, we iteratively choose the ReRAM tile size 〈m, n, d〉interm with the
highest throughput in terms of one WC under different values of V DC−DC−in . When V DC−DC−in

decreases to Vbottom , the accelerator enters a power failure status, indicated as Tidle period.
With the continuous computing style for a power cycle as shown in Figure 4, we just choose one

ReRAM tiling strategy that matches the harvested power so that computation can be continuous
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Table 1. Parameters of the Energy Delivery and Performance Models

Component Parameter Description

Capacitor side
QCap , ECap Charge and energy of the storage capacitor
SizeCap storage capacitor size
Qharv Harvested charge at the capacitor input side

ReRAM load side

m, n, d
ReRAM activation tile for one convolution layer:
m: row size, n: column size; d: duplication factor

QReRAM ,
EReRAM ,
PReRAM

Charge, consumed energy and power by ReRAM

Qloss Leakage charge of the storage capacitor
PReRAM ReRAM load power
VReRAM ReRAM input voltage

DC-DC side
VDC−DC−in DC-DC converter input voltage
ηDC−DC DC-DC converter efficiency

OC-level

Eovh Energy consumed on status backup and recovery upon a power failure

tovh Time consumed on status backup and recovery upon a power failure
tOC Time length of operating cycle OCi
QOC0 Capacitor charge at the beginning of the current operating cycle
TPC Time length of power cycle

throughout the whole power cycle. This also implies that if the input power at the load side is less
than the minimum requirement to activate the ReRAMs, it is regarded as power failure.
Although intermittent computing and continuous computing can be determined by tuning the

load power, both have their own favorable working zones, considering the trade-offs among com-
putation progress, idle overhead and data backup & recovery overhead. The selection of the com-
puting scheme will be further described in Section 3.4.

3.3 Energy Delivery and Performance Modeling

The most efficient computing scheme under different incoming power levels can be determined
based on the energy delivery and performance models of the whole system. For each OC, we can
model the relationship among the key components of ReRAM load, DC-DC converter, and capaci-
tor storage. The relevant parameters are described in Table 1. Note that the two functions PReRAM

= Func(〈m, n, d〉) andηDC−DC = Func(V DC−DC−in , PReRAM ) are formulated by HSpice, takingQ loss

into account. The details of how power is extracted are further elaborated in Section 4.1.
By analyzing the relationship between the key components of storage capacitor, DC-DC con-

verter and ReRAM load, we can derive the following equations which are the basis of system-level
modeling.
• At the capacitor side:

⎧⎪⎪⎨⎪⎪⎩

QCap
= Q

Cap

OC0 + dQ
harv × tOC − (dQReRAM

+ dQ loss ) × tOC
ECap = QCap ×V DC−DC−in

∆V DC−DC−in
= ∆QCap/SizeCap

(1)

Equation 1 finds the stored charge at the storage node which is received from the harvester and
delivered to the load during every operating cycle. Based on the voltage of the storage capacitor,
we can find the energy storage at any given point in time.
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• At the ReRAM load side:

⎧⎪⎪⎨⎪⎪⎩

EReRAM = PReRAM × (tOC − tovh ) + E
ovh

PReRAM = Func (〈m, n, d〉)

dQReRAM
= PReRAM/V ReRAM

(2)

Equation 2 calculates the total energy consumed during each operating cycle, which includes
the status backup overhead on top of the static power dissipation of the analog compute.
• At the DC-DC converter side:

{

ECap = EReRAM/ηDC−DC
ηDC−DC = Func (V DC−DC−in , PReRAM )

(3)

Lastly, Equation 3 calculates the total energy delivered by the storage node to the ReRAM ac-
celerator which includes the energy wasted at the DC-DC converter. The efficiency of the DC-DC
converted is the ratio of the power consumed at the input to the power delivered at the output.
Varying from design to design, the DC-DC converter’s peak efficiency depends on the input volt-
age range and the output load power.
On top of the above modeling, scrutinizing the energy delivery relationship from the storage

capacitor side to the ReRAM load side through the DC-DC converter yields the following insights:
• ηDC−DC is dynamically changing with V DC−DC−in and ReRAM load.
• ReRAM load can be exploited as an energy delivery tuner of the whole system. These models

provide quantitative foundations for the reconfiguration of ReRAM load tuner to impact the whole
system.
By putting the above models into a working cycle, we can measure the performance and energy

efficiency. Since the objective of this work is to make as much forward progress as possible in a
limited energy environment, both throughput and energy efficiency are key evaluation metrics.
Equation 4 models the throughput measured by MAC operations per time unit for a working cycle
(WCj) including i OCs.

ThrWCj
=
�
�

OCi
∑

OC1

MACs�
	
/TWCj =

�
�

OCi
∑

OC1

(〈m, n, d〉)t ile−OCi · (tOCi/(#cyc · f req))�
	
/TWCj (4)

On the other hand, for a power cycle (PCk) including j WCs, the throughput can be modeled as
in Equation 5. The measurement unit for throughput is MACs/second.

ThrPCk =
�

�

WCj
∑

WC1

OCi
∑

OC1

(〈m, n, d〉)t ile−OCi · (tOCi/(#cyc · f req))
��
	
/TPCk (5)

Similarly, the energy efficiency for PCk is modeled by Equation 6. The measurement unit for
throughput is Joules/inference.

E f f PCk = (Pharv ·TPCk )/
�

�

WCj
∑

WC1

OCi
∑

OC1

(〈m, n, d〉)t ile−OCi · (tOCi/(#cyc · f req))/#MAC per inf
��
	
(6)

3.4 MaxTracker Algorithm

It is known that the DC-DC converter efficiency keeps changing during the charging and dis-
charging processes. In this work, the proposedMaxTracker is capable of selecting the best ReRAM
activation tile under different operating states.
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3.4.1 Harvesting Case Study. Taking into account the relationship of the power levels at the
capacitor output side and ReRAM input side, there exist three cases. For each case, MaxTracker
can provide the best computing scheme and ReRAM tiling solution to achieve high performance.
Case 1: Pharv > (PReRAM/ηDC−DC )

max

Here, the harvested power is sufficient to meet the requirement of continuous computing with
the largest ReRAM activation size even under the smallest DC-DC converter efficiency. In this
case, we do not care about energy delivery efficiency any more. To achieve the largest throughput,
the best solution is to always choose the ReRAM activation with the full size for each convolution
layer and adopt the continuous computing scheme.
Case 2: (PReRAM/ηDC−DC )

min ≤ Pharv ≤ (PReRAM/ηDC−DC )
max

Alternatively, the harvested power could be between the maximum and minimum required
power at the ReRAM side. In this case, if we choose large activation sizes that will deplete capacitor
charge faster than it can be refilled, it implies an intermittent computing style that incurs extra
overhead of state backup/recovery. In contrast, if we utilize small activation sizes with which the
capacitor charge is increasing, it implies that the incoming power is sufficient to support a contin-
uous computing style. Since the intermittent computing and the continuous computing have their
own favorable activation solutions for ReRAMs, we select the one by comparing the statically
estimated throughput according to Equation 5. An offline throughput lookup table provides the
throughput (computation progress) that is built considering the key variables of incoming power
level, capacitor size, and activation factor 〈m, n, d〉 as shown in Figure 3.
Case 3: Pharv < (PReRAM/ηDC−DC )

min

In this scenario, the harvested power is weak and cannot even support the minimum required
power for ReRAM activation. In this case, it is not possible for the harvested power to support
the continuous computing even with the smallest tile size activation under the highest ηDC−DC .
It implies an intermittent computing with appropriate tile size activation. Since energy delivery
efficiency is the most critical factor in this case, we first start with the activation strategy with the
highest ηDC−DC . Then our algorithm, iteratively tracks and selects the best tile activation strategy
for the operating cycles of each working cycle.
Our proposed offline-MaxTracker strategy, by recognizing different operating states, determines

the best combination of computing scheme and the ReRAM activation strategy. This idea is also
abstracted at a software-level of offline-MaxTracker in Figure 3.

3.4.2 MaxTracker Algorithm. For the different cases discussed above, we can determine the best
activation tile for different operating states offline. Then, at runtime, we implement the solution
to perform the computations based on the current operating state. The runtime MaxTracker al-
gorithm is given in Algorithm 3. The two procedures Thr-INTERM and Thr-CONTI estimated the
throughput for the concerned working cycle with the intermittent computing scheme and contin-
uous computing scheme, respectively, given the operating state and the circuit-level lookup table.
This lookup table is derived from circuit-level simulation where the relationship between the load
power, capacitor discharging voltage and DC-DC conversion efficiency is quantitatively revealed.
The main program MaxTracker first judges the use case and calls the two functions to determine
and implement the computing scheme and ReRAM activation solutions. The links of the two of-
fline procedures (Algorithm 1 and Algorithm 2) and the online tracking strategy (Algorithm 3) are
depicted in Figure 5.

4 EXPERIMENTS

In this section, we first introduce the circuit setup and simulation methodology and then present
the collected results, observations, and insights. Note that all the experiment sources will be made
available for others to replicate after blind review.
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ALGORITHM 1: Thr_INTERM (offline)

Require: the parameters listed in Table 1;

the lookup table derived from circuit-level simulation;

TWC : the total time length of the concerned working cycle;

Top : the time length of the current operating cycles regarding the concerned working cycle;

WC : the concerned working cycle;

Ensure: the estimated throughput along with ReRAM activation solution with the intermittent computing scheme of a

working cycle;

1: procedure Thr_INTERM TWC=0; Top=0;

2: Calculate the instantaneous throughput for each possible operating state tuple 〈V DC−DC−in ,QCap , Power level,

ηDC−DC 〉 with each 〈m, n, d〉 solution;

3: Select 〈m, n, d〉OC1 activation solution with which the maximum throughput can be obtained for OC1 of the

concerned WC from the lookup table;

4: Step 1: Charge under the current power level until V top is reached with charging time of Tidle ;

TWC=TWC+Tidle ;

5: Step a: Calculate the operating time Toc with 〈m, n, d〉OC1 until ∆V DC−DC−in ≥ ∆Vϵ (e.g. Vϵ=0.05V);

6: Step b: Update operating state tuple 〈 V DC−DC−in , QCap , Power level, ηDC−DC 〉;

7: Step 2: Search activation solution 〈m, n, d〉max−OC2 with which the maximum throughput can be obtained

under current operating state from the lookup table;

8: Step c: Top=Top+Toc ; TWC=TWC+Top ;

9: Step 3: Repeat Step a-c until QCap cannot support the operating with the smallest activation tile size

〈m, n, d〉min any more;

10: Record the OC activation solution sequences 〈m, n, d〉interm : 〈 〈m, n, d〉OC1, 〈m, n, d〉OC2 ...〉

11: Calculate the throughput Thr interm according to Equation 4;

12: Return Thr interm along with 〈m, n, d〉interm ;

13: end procedure

ALGORITHM 2: Thr_CONTI (offline)

Require: the parameters listed in Table 1;

the lookup table derived from circuit-level simulation;

TWC= TPC ; //In the continuous computing scheme, thw working cycle time is equal to the power cycle time

Ensure: the estimated throughput along with ReRAM activation solution with the continuous computing scheme;

1: procedure Thr_CONTI

2: Calculate the instantaneous throughput for each possible operating state tuple 〈V DC−DC−in ,QCap , Power level,

ηDC−DC 〉 with each 〈m, n, d〉 solution;

3: Select the largest activation solution 〈m, n, d〉conti with which PReRAM /ηDC−DC across all operating states is

less than the power level during the current power cycle;

4: Calculate the throughput Thr conti at this power level according to Equation 4;

5: Return Thr conti along with 〈m, n, d〉conti ;

6: end procedure

4.1 Circuit Setup

To evaluate the benefits of our scheduling technique on non-ideal real world systems with unstable
incoming power, we choose an on-chip, low voltage rating storage capacitor array powered by
piezoelectric, thermal, WiFi or RF harvesters. Unlike off-chip super-capacitors, on-chip energy
storage has lower charge capacity but is faster to charge. In our experimental set-up, the default
storage capacitor sizes under study are 1 nF for piezoelectric andWiFi harvesters, 4.7 nF for thermal
harvesters and 22 nF for TV-RF harvesters. The optimal storage capacitor size is chosen specific
to each power source to such that the storage node does not frequently overflow or enter power
failure, which can affect the overall throughput during run-time. We further analyze the impact of
the storage capacitor size on the system-level performance in Section 4.5.
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Fig. 5. The algorithm structure of MaxTracker.

ALGORITHM 3:MaxTracker (runtime)

Require: the parameters listed in Table 1; TPC−t ime ; TWC−count ; TOC−count ;

Ensure: computing scheme and activation tile 〈m, n, d〉 for each convolution layer for the first OC of a WC given an

operating state;

1: for each WC do

2: switch Pharv do

3: case Pharv > (PReRAM /ηDC−DC )max

4: Computing scheme = continuous;

5: ReRAM activation solution = full-activation tile 〈m, n, d〉 for each layer;

6: break ;

7: case (PReRAM /ηDC−DC )min ≤ Pharv ≤ (PReRAM /ηDC−DC )max

8: if Thr interm ≥ Thr conti then

9: Computing scheme = intermittent;

10: ReRAM activation solution = 〈m, n, d〉interm ;

11: else

12: Computing scheme = continuous;

13: ReRAM activation solution = 〈m, n, d〉conti ;

14: end if

15: break ;

16: case Pharv < (PReRAM /ηDC−DC )min

17: Computing scheme = intermittent;

18: ReRAM activation solution = 〈m, n, d〉interm ;

19: break ;

20: end for

When the supply voltage is too low to operate the sensor node, the deployed system enters
power failure and will need to wait until the energy storage is sufficiently charged to resume
computation. To reduce the frequency of such failures, we consider step-up DC-DC converters to
allow low voltages at the storage capacitor to supply the ReRAM accelerator.
We choose an appropriate state-of-the-art step up DC-DC converter [2] and extract the effi-

ciency, ηDC−DC , as a function of input voltage and output load current. The chosen converter
design features configurable conversion ratios of 2:3, 1:2 and 2:5 modes. Previous studies have
shown that this multi-ratio DC-DC converter can be leveraged for a system to operate efficiently
at various storage capacitor voltages [1, 31, 33]. Lastly, we resize the reactive components, transis-
tor switches and gate-drive circuits of the design to calibrate the DC-DC converter to support the
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Fig. 6. A reconfigurable DC-DC Converter Efficiency.

Table 2. ReRAM Accelerator Components

Single Tile Breakdown
Component Quantity Active Size ON Power (μW) OFF Power (μW)

ReRAM Crossbar 256 × 256
25 × 1 14.4

0.032
150 × 16 253.4

1-bit DAC 256
25 46.5

0.811
150 272.4

4-bit ADC 16
1 1.06

0.043
16 21.8

Shift & Add 16
1 0.302

0.046
16 4.10

Tile Total 64 Kb
25 × 1 62.2

0.932
150 × 16 551.8

ReRAM PIM Core Breakdown
Component Quantity Active Size ON Power (mW) OFF Power (mW)

ReRAM Tile 4
25 × 1 × 1 0.062

0.0037
150 × 16 × 4 2.21

Global Control 1 1 0.013 0.005

Core Total 256 Kb
25 × 1 × 1 0.075

0.0087
150 × 16 × 4 2.22

System Parameters
Module Parameter Specification

ReRAM PIM Core
Supply Voltage 0.6 V
Clock Frequency 200 MHz

Energy Storage Storage Capacitor Size 0.47 - 47 nF

DC-DC Converter
Conversion Ratio(s) 2:3, 1:2, 2:5
Peak Efficiency 88%

ReRAM Memory (256 KB)
Max Bandwidth 1.7 GB/s

Read Latency/Energy 1.6 ns/2.22 pJ
Write Latency/Energy 100 ns/88.2 pJ

entire load current range of the ReRAM accelerator. Figure 6 shows the comparison of the three
single ratio DC-DC converters and the multi-ratio DC-DC converter. In our design, the step up
ratios for the DC-DC converter input voltage zones of 0.24V-0.31V, 0.31V-0.42V and 0.42V-0.48V
are 2:5, 1:2 and 2:3, respectively.
Table 2 summarizes the hardware component details and circuit-level parameters used in our

evaluations. For the ReRAM-based sensor node, we conduct HSPICE circuit simulation to char-
acterize the average power, leakage power and charge consumed by different ReRAM tile sizes.
The ReRAM peripheral circuit components are implemented using Predicted Technology Model
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(PTM) [43] in 22nm CMOS and the ReRAM devices are calibrated to [19]. Table 2 also shows a de-
tailed breakdown of the power consumed by the smallest and the largest activation sizes supported
within a single 256 KB ReRAM Core.

At every row of the crossbar, the 1-bit digital-analog converter (DAC) component consists of a
simple two-level voltage driver circuit which serially passes the input activations one bit at a time.
Pitch-matched across 16 columns, the 4-bit analog-digital converter (ADC) consists of a multi-
reference current sense amplifier [39] connected to 4 latches and a simple control logic which
successively finds the output 1 bit per clock cycle. Lastly, the shift and add unit consists of a low
power accumulator register to calculate the final output of the convolution. Because the latches
and registers consume a significant amount of leakage power, we optimize the volatile data buffers
to shut off during lower activation sizes.
The ReRAM memory unit contains both the back-up data and the activation solution look-up

table as further elaborated in Section 4.2. The latency and energy overheads of the ReRAMmemory
are evaluated using NVsim [10] configured with low power routing strategy. During OCs, the non-
volatile memory is primarily used as a table look-up to select the activation solution 〈m, n, d〉,
represented by a 3-tuple of 8-bit unsigned integers.

4.2 System Simulation

ReRAM activation solutions (Thr_INTERM and Thr_CONTI ) are precomputed. They determine the
ReRAM activation solution 〈m, n, d〉 for each operating environment on top of their own com-
puting scheme. At runtime, we simulate CNN computations using Runtime-MaxTracker algorithm
in a cycle-accurate fashion, where the tables generated by Offline-MaxTracker are looked up to
dynamically adapt to status changes of the whole circuit systems. Specifically, the lookup table
stores the information of ReRAM tiling solutions, capacitor discharging voltage, harvested power
levels and DC-DC conversion efficiency. In our evaluation, the table size ranges from 231 × 58
to 871 × 58. The energy overhead of the ReRAM look-up table is 2.22 pJ per 24-bit read as re-
ported in Table 2. The activation solution 〈m, n, d〉 stored in each entry is represented by 3 bytes
〈8-bit , 8-bit , 8-bit to represent the different configuration sizes. Including routing and data buffers,
the look-up energy accounts for 20% of the total energy consumed by the maximal tile activation
where 〈m, n, d〉 = 〈150, 16, 4〉.

The time required to prepare the offline lookup table depends on the power level number and
discharging voltage granularity. For the lookup table with 10 power levels and discharging volt-
age ranging from 0.24V to 0.48V with a granularity of 0.1V, the preparation time is 99.7s with
our PC (2.3GHz CPU and 24GB main memory). The time to look up the offline table is decided
by multiple factors such as power levels, discharging voltage granularity and the searching ap-
proach. Take LeNet for example, it was observed that the average table lookup time is 8μs on our
PC under different power sources. For the power cycle with continuous computing mode, only
once table lookup is needed. For the power cycle with intermittent computing mode, the lookup
number varies from several to thousands per power cycle, depending on power inputs. In terms of
the overall execution, the ratio of the table lookup time to the entire execution time can be negligi-
ble (mostly less than 1%). Note that the lookup time overhead has been counted in the performance
and energy efficiency evaluations.
The entire system runs on a 200MHz clock. The basic MCU is an Ultra-Low-Power (ULP) com-

ponent with fixed power consumption of 10μW. To record the runtime status, twenty registers are
needed. During backup and recovery upon a power failure, the ReRAM memory is also used to
backup system status and store intermediate MAC results between convolution layers. ∼90% of
the computations performed on the ReRAM accelerators are MAC operations which are simulated
at an execution cycle level [45]. Other functional units (e.g., Pooling, FC, Sigmoid) of the CNNs are
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Table 3. IoT-Practical CNN Workloads

CNN Layer Kernel ReRAM Size Cycles Acti. power Input

PV

Input 1@50 × 50
Conv1 8@6 × 6 × 1 36 × 8 8 242.9μW 8@45 × 45
Conv2 12@3 × 3 × 8 72 × 12 12 356.9μW 12@20 × 20
Conv3 16@3 × 3 × 12 108 × 16 12 425.8μW 16@8 × 8
Conv4 10@3 × 3 × 16 144 × 10 16 460.6μW 10@6 × 6
Conv5 6@3 × 3 × 10 90 × 6 12 253.6 μW 6@4 × 4

FR
Input 1@32 × 32
Conv1 4@5 × 5 × 1 25 × 4 4 122.8μW 4@28 × 28
Conv2 16@4 × 4 × 4 64 × 16 12 425.8 μW 16@10 × 10

LeNet
Input 1@32 × 32
Conv1 6@5 × 5 × 1 25 × 6 4 154.1μW 6@28 × 28
Conv2 16@5 × 5 × 6 150 × 16 16 565.3μW 16@10 × 10

HG
Input 1@28 × 28
Conv1 6@5 × 5 × 1 25 × 6 4 154.1μW 6@24 × 24
Conv2 12@4 × 4 × 6 96 × 12 12 356.9μW 12@8 × 8

Fig. 7. blue Four harvesting power sources.

assigned a fixed latency and power. Four lightweight CNNs listed in Table 3 are evaluated on five
power traces depicted in Figure 7.
Four approaches are evaluated: a traditional pure circuit optimizer (Fixed-Full), a typical domain-

specific pure circuit optimizer (Fixed-Tiling), a coarse-grained dynamic tiling optimizer Coarse
Dynamic Tiling and the proposed MaxTracker. In the Fixed-Full version, the ReRAM load is fixed
as the largest activation ReRAM size for each layer. In the Fixed-Tiling version, on the other hand,
the ReRAM load is fixed to the activation ReRAM tiling size which is favorable to the most typ-
ical power level of each source. In the Coarse Dynamic Tiling optimizer, the ReRAM load varies
depending on the energy delivery efficiency at runtime. There are only three granularities for the
ReRAM tuner. In Load Level 1, the ReRAMs are fully activated for each convolutional layer which
is the same as the Fixed-Full version. In Load Level 2, the activation size is a half of that in Load
Level 1. Similarly, the activation size in Load Level 3 is a half of that in Load Level 2. In this way,
the accelerator runs under only four power levels with the three load levels. Finally, our proposed
MaxTracker takes into account the interaction among ReRAM activation size tuning, capacitor
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Fig. 8. Throughput of four CNNs across four power sources.

voltage changing, and DC-DC converter efficiency, and select the most appropriate find-grained
ReRAM tile to fit the runtime system condition.
We evaluate performance, energy efficiency, sensitivity to capacitor size. We compare as well as

combine our proposed method with recent state-of-the-art techniques. Note that the cases where
the power inputs are too weak to support meaningful ReRAM activations are removed from our
statistics, to avoid bias to our results. However, those extremely large or small results are retained
and marked in the figures.

4.3 Performance

For each CNN on each power trace, we report throughput and normalized performance as shown
in Figure 8. The following observations are made from the results:
• Overall, MaxTracker always achieves the best throughput over pure circuit optimizers with

fixed full ReRAM activation, Full Activation and fixed tile-size activation on ReRAMs, Fixed Tiling
across all the CNNs and all the power sources. An average speedup of 38.4% (up to 51.3% ) over the
Full Activation scheme, 40.3% (up to 84.8%) over the Fixed Tiling scheme, and 41.8% (up to 100.2%)
over the Coarse Dynamic Tiling are observed. These results are compelling evidence of the benefits
of the proposed adaptation strategy for end-to-end efficiency optimization. The underlying reason
can lie in the aspect that MaxTracker is capable to dynamically decide the best ReRAM activation
tiles to accommodate the changing system status.
• Comparing between the two fixed baseline strategies, we observe Full activation slightly out-

performs Fixed tiling approach for LeNet, HG and PV networks with the TV-RF power source.
The use of a fixed ReRAM activation size suitable for the most common power level degrades the
throughput, when the incoming power varies frequently. In the case of the TV-RF power profile, a
Full activation approach utilizes the ReRAM acceleratormore effectively when the incoming power
is higher than the typical power level.
• Comparing Coarse Dynamic Tiling to the two fixed baseline strategies, we observe that the

former does not always outperform the latter two. For the cases of Thermal andWiFi-Home power
sources, because only one power level is dominant, the fixed strategies can already provide the
favorable load for it. The simple Coarse Dynamic Tiling, however, cannot select an appropriate
load from the three options for this dominant power level. This is why Coarse Dynamic Tiling
sometimes delivers worse performance than the fixed strategies.
• The Full activation approach for PV suffers extremely low throughput for Piezo and WiFi-

Home harvesters because the signal from the power sources are too weak to support five-layer full

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 78. Publication date: September 2021.



MaxTracker: Continuously Tracking the Maximum Computation Progress 78:17

Fig. 9. Energy efficiency of four CNNs networks across four power sources.

activation of PV. Consequently, this result in our performance evaluation is an anomaly and is not
factored into the average speed-up reported of MaxTracker over Full Activation.
• The absolute throughput numbers are directly correlated with the signal strength of power

sources. Piezo is the weakest, leading to the smallest throughput, while the strongest TV-RF leads
to the largest throughput.

4.4 Energy Efficiency

We evaluate energy efficiency by measuring nanojoules per inference, as shown in Figure 9. The
smaller value means higher energy efficiency. In other words, this metric quantifies the relative
energy saved per inference by MaxTracker as compared to the other three approaches. At ReRAM
load side, besides the MAC computations, the energy overheads such as data movements and other
functional units are all included. Figure 9 also shows the energy breakdown between ReRAMMAC
and DC-DC converter.
• Overall, the MaxTracker approach achieves an average of 39.8%, 43.6% and 35.6% energy sav-

ings over Full Activation, Fixed Tiling, and Coarse Dynamic Tiling respectively. Our evaluation
also shows that the highest energy efficiency gains of MaxTracker reaches 71.0% against all the
baselines.
•Consistent with the performance observations, the Fixed Tiling strategy competes with the Full

Activation strategy for several scenarios. This is determined by how frequently the most common
power level occurs in the power profiles. Again, Coarse Dynamic Tiling does not always compete
with the fixed tiling strategies. This is because the Coarse Dynamic Tiling only provides three tiling
solutions which may mismatch the dominant power levels.
• Except for the extremely weak energy harvesting scenarios, the maximal energy saving per-

centages of MaxTracker vs. Full Activation and MaxTracker vs. Fixed Tiling are similar. This is be-
cause the maximum results occur at the cases with PV&Thermal where the Full Activation scheme
chooses the same activation solution as that of the Fixed Tiling scheme.
• The energy breakdown between ReRAMMAC and DC-DC converter shows that theMAC part

consumes the larger portion (68.7% on average) of the energy for all strategies and all scenarios.
This is partially due to the multi-ratio DC-DC converter design which can guarantee a rather high
energy delivery. And it is further observed that the portion of MAC for the MaxTracker is much
larger than the others. This further validates that theMaxTracker scheme can better deliver energy
to the ReRAM load than the fixed tiling and coarse dynamic tiling schemes. For the PV CNN, it
is found that the energy percentage of DC-DC converter is larger than that of other CNNs. This
is possibly caused by the low energy efficiency of PV execution, which leading to a high energy
portion consumed by DC-DC converter.
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Fig. 10. Sensitivity study of storage capacitor size on performance. (a) Throughput with piezo, and
(b) Throughput with TV-RF.

4.5 Sensitivity Study of Storage Capacitor Size

Figure 10 presents the throughput and normalized throughput so as to compare across different
CNN networks and capacitor sizes with the two power sources, Piezo and TV-RF, as case studies.
Among the four power traces in Figure 7, the Piezo and TV-RF harvests the weakest and strongest
signal respectively. Therefore, the analysis in Figure 10 highlights the cases of lowest and highest
incoming power of how the storage size affects the overall throughput. Regarding 2.2nF vs. 1nF
withMaxTracker, average speedups of 5.7% (up to 7.52%) with Piezo. Regarding 47nF vs. 22nF with
MaxTracker, average speedups of 20.9% (up to 28.2%) with TV-RF can be observed.
While our technique provides consistent performance benefits, the magnitude of improvement

does not exhibit a trend with varying capacitor sizes. The three schemes exhibit somewhat differ-
ent improvements on performance as capacitor size grows, leading to different efficiency factors
dominating different points in the design space.
The results demonstrate the degree of sensitivity to the size of storage capacitor SizeCap for

different schemes. For each scenario corresponding to each “Power&CNN” pair, the largest sized
storage capacitor can lead to the best results on performance for most cases. Although the larger
capacitor can deliver the best performance for most cases, it does not mean that the largest capac-
itor is always the optimal deployment. This is due to two reasons. One is that larger capacitors
also imply larger leakage power. There exists an optimal point by trading off both the benefits
and leakage power of a storage capacitor. The other reason is that a larger capacitor often means
a bigger physical form factor, which may not be appropriate for tiny devices. In our future work,
we will explore quantitative approaches to determine the optimal storage capacitor for a system,
given an expected workload and input power distribution.
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Fig. 11. Throughput comparison with ResiRCA [32].

4.6 Comparison with ResiRCA approach [32]

Figure 11 shows the throughput comparisonwith ResiRCA technique. To simulate the ResiRCA [32],
we just schedule the ReRAM load to match the power level for each power cycle of a power pro-
file, since there is no energy store and DC-DC converter with ResiRCA. It is assumed that the
uncompleted results will be discarded if an inference cannot be finished in one power cycle.
The results show that MaxTracker outperforms ResiRCA significantly for all scenarios. By ex-

amining the simulation logs, we found that the primary reason for this is that the “Harvest-Store-
Use” architecture supports energy accumulation to perform computing, thereby MaxTracker can
achieve better performance. However, ResiRCA can only use the just-in-time power for computa-
tions. Hence, incoming power less than the minimum or more than the maximum requirements
of ReRAM load is wasted.
A typical example is with the power Piezo, where MaxTracker outcompetes ResiRCA by

hundred× and larger speedups. The reason is that Piezo is both extremely weak and strongly fluc-
tuating, such that most power cycles cannot accommodate even the smallest ReRAM tile. This
explains the abnormally large speedup with the largest five-layer network PV, because the tiny
power input cannot support even one inference in a power cycle, without energy accumulation
across cycles.

4.7 Comparison and Combination of Capybara Approach [5]

From the perspective of a co-designed hardware and software system with a reconfigurable power
system, A. Colin et al. proposed Capybara [5], which supports declarative specification of tasks’
energy demands or mixed demands with a reconfigurable storage capacity mechanism. With this
capacitor reconfiguration ability, the system can flexiblymeet the demands of capacity-constrained
tasks and temporally-constrained tasks.
Different from the Capybara approach where the capacitor size is reconfigured to fit task reac-

tivity, our proposedMaxTracker approach schedules the ReRAM activation to accommodate to the
best operating state of the whole system. Actually these two techniques focus on different compo-
nents of the system, and they can be combined to offer a further improvement based on their own.
Figure 12 presents the comparison and combination ofMaxTracker and Capybara regarding the

throughput with the power inputs of Piezo and TV-RF. In the experimental settings, the ReRAM
load is fixed as a full activation size of Traditional style for Capybara, while for MaxTracker, the
storage capacitor size is fixed as 2/3 full size of that in Capybara. Figure 12 shows thatMaxTracker
is competitive with Capybara with a speedup of around 13.6%.

MaxTracker and Capybara can also be combined to cooperate in a more flexible style. That is,
both the ReRAM activation solution and the storage capacitor can be reconfigured at runtime
to well exploit the harvested energy and boost the performance. The combination results show
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Fig. 12. Comparison and combination of Capybara approach.

that the hybrid MaxTracker and Capybara can provide further speedup. Their hybrid can offer an
average of 17.0% (up to 32.7%) speedup on top ofMaxTracker, and an average of 33.0% (up to 54.0%)
speedup on top of Capybara. This significant improvement results from their two-fold benefits: (i)
the reconfiguring capacitor efficiently extracts and accumulates the harvested energy; and (ii) the
reconfiguring ReRAM load efficiently utilizes the stored energy.

5 RELATEDWORK

Recent studies about how system firmware fits the fluctuating power supply can be categorized
into the following three classes.

5.1 Hardware Reconfiguration

A. Colin et al. proposed Capybara [5], which supports declarative specification of tasks’ energy
demands ormixed demandswith a reconfigurable storage capacitymechanism.With this capacitor
reconfiguration ability, the system can flexiblymeet the demands of capacity-constrained tasks and
temporally-constrained tasks. Ma et al. propose a machine learning-based integrated architecture
of NVP [22] on the basis of architecture exploration in [24]. The architecture integrates threemicro-
architectures of NP, NSP and OoO with different power requirements. In [22], energy-dependent
data are fed into a lightweight neural network for (NN) future power level prediction, and then
the most appropriate architecture which maximizes progress of an application for the next power
level can be chosen.
Expanding the above idea further, two techniques are combined to improve energy effi-

ciency [23]. One is resource scaling, which manages bottleneck resources in a reconfigurable OoO
processor targeting lower energy per instruction (EPI). The other is dynamic frequency scaling,
which aggressively leverages harvested energy. Both approaches are directed by a lightweight
machine learning algorithm.
Aside from NN-based resource scaling techniques, a novel idea has been explored from the

viewpoint of opportunistic responsiveness [20, 21]. The approach begins with the observation that
the quality of older computations targeted for incidental computing can be gradually improved
iteratively, if picked up over multiple incidental computing passes. The ultimate optimization of
energy efficiency is achieved through a well matched retention time.

5.2 Dynamic Task Schedule

Besides allocating adaptive hardware resources to match the power input, there are works explor-
ing finer-grained strategies to accommodate the changing harvesting power through adaptive task
scheduling. Majid et al. proposed Coala [27], an adaptive task-based execution model. By means of
task coalescing and splitting, Coala allows efficient execution on a sub-task scale so as to preserve
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computation progress. The challenging issues of task transition and task termination are also well
handled by Coala.
As the power requirement of the modern practical NN inference tasks such as DNN are several

orders-of-magnitude greater than the current energy-harvesting systems, DNN inferences in in-
termittent computing are limited to extremely short bursts. To address this issue, Gobieski et al.
proposed an intermittent DNN inference framework, SONIC [12, 13], to flexibly size tasks to grow
or shrink to fit the energy budget. SONIC also uses Alpaca [25] tasks to avoid checkpointing and
thus imposing very low overheads.
The most related technique to this work, ResiRCA, is able to dynamically activate differ-

ent scaled ReRAM tiles [32] as described in Section 2. However, our targeted basic “Harvest-
Store-Use”architecture is much more complex than the “Harvest-Use” architecture considered in
ResiRCA. The results in Section 4.6 show that our proposedMaxTracker can provide better perfor-
mance due to its capability to exploit energy accumulation.

5.3 Energy Efficiency Optimization

Prior work [42] avoids the efficiency loss and integration overheads of DC-DC converters by
proposing a converter-less MPPT architecture. By matching the current-voltage characteristics
of the photovoltaic cell to the sensor node, the sensor node directly draws the maximum energy
efficiency from the harvester. Subsequently, [40] improves the system-level energy efficiency for
converter-less architectures by tuning the clock frequency of the sensor node based on the voltage
supplied by the harvester.
Our work differs from prior works in the fact that our algorithm considers the energy efficiency

of on-chip DC-DC converters to maximize forward progress of the sensor node in a conventional
energy harvesting with an on-chip energy storage component.

6 CONCLUSION

Targeting energy harvesting ReRAM-based CNN accelerators running on the edge, this paper pro-
poses and evaluates a novel strategy, called MaxTracker, that tracks the maximum computation
progress through dynamically tuning the ReRAM load power. MaxTracker can consistently max-
imize computation progress by tuning both computing schemes and activation tiling sizes of the
ReRAM load to best match just-in-time operating states. Experimental results under various en-
ergy harvesting scenarios demonstrate the high efficacy of the MaxTracker strategy over a range
of harvesting scenarios and CNN workloads. Furthermore, it is found that MaxTracker incorpo-
rated with the capacitor reconfiguring technique, Capybara, can further enhance the tunability
and boost system performance.
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