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Integrated Optimization of Appointment Allocation and Access 

Prioritization in Patient-Centred Outpatient Scheduling 

Abstract 

Walk-in patients can take a large portion of outpatient visits in comprehensive 

hospitals. In current common practice, an even number of appointments is assigned 

to each slot and patients with appointment are given a strictly higher priority than 

walk-in patients. As a result, walk-in patients usually wait longer and incur 

noticeable dissatisfaction. To improve their satisfaction, we propose an integrated 

optimization approach for patient-centred outpatient scheduling. This approach 

aims to allocate appointments in line with the temporal variation of patient walk-

ins, and further develop a time-invariant threshold-based prioritization scheme to 

balance the service priorities between the two types of patients in real time. To 

substantiate this approach, we develop a prospect theory-based model to quantify 

each patient’s real-time satisfaction. We apply discrete-event simulation-based 

optimization to maximize the average patient satisfaction over the two types of 

patients.  To verify our integrated optimization approach, we conduct a pilot in the 

endocrine department of Shanghai Sixth People’s Hospital. Our results suggest that 

our approach substantially decreases the waiting time of walk-in patients without 

much compromise on the satisfaction of patients who made advance appointment. 

Keywords:  application in healthcare system; resource allocation; real-time 

scheduling; customer behaviour 
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1. Introduction   

Due to growing demand on outpatient appointment and severe shortage on 

medical personnel, outpatient scheduling has received great attention in many countries, 

including China. Large state-owned comprehensive hospitals (typically in large cities) 

accept walk-in patient visits for same-day consultation in addition to patients with 

consultation appointments made in advance. To many Chinese comprehensive hospitals, 

walk-in patients constitute as high as three quarters of the outpatient visitation volume 

(Jiang, 2010). There are two sources of walk-in patients. One is local residents. While 

advance appointment scheduling has been implemented for decades (Chinese Ministry of 

Health, 2009), the majority of local patients still prefer to visit hospital directly without 

an appointment. The other source of walk-in patients are non-local patients. Given 

significant geographic imbalance of medical providers, it is common for patients residing 

in suburban and rural areas to seek quality medical care in large cities. Many such patients 

have their first visit. Note that only those who have visited the hospital previously and 

have their personal information verified have the right to make appointment. Thus, non-

local patients also become a source of walk-ins. The phenomenon of many walk-ins is 

not unique to China. For example, in a state-owned hospital in Turkey, walk-in visits take 

up more than 70% of total outpatient visits (Cayirli and Gunes, 2014). Hence, the resultant 

patient arrival process, while ensuring some level of equity among all patients, is much 

less manageable and presents a significant burden on the use of already deprived medical 

resource. It becomes important to incorporate the need from sizable walk-in visits and 

improve the satisfaction of the overall patient population. For exposition simplicity, we 

refer to outpatient visits of the former category as appointment patient (AP) visits and the 

latter as walk-in patient (WP) visits. 
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We next describe the common practice of outpatient scheduling as follows. An 

outpatient consultation session is divided into a number of slots with equal length (e.g. an 

hour); multiple AP visits are scheduled in each slot in advance; and WPs are seen only if 

all AP visits scheduled in that slot have been seen or there are no AP visits scheduled in 

that slot at the first place. As a result, a WP may have to wait long to be seen. Further, to 

ensure fairness, patients from the same category are scheduled with a first-come-first-

service (FCFS) principle. 

Now that WPs can account for a large proportion of outpatient visits, it is 

important to ensure their satisfaction without making much compromise on APs’ 

satisfaction. For example, for a WP who has waited long, right before seen by a doctor, a 

batch of AP visits scheduled in the same slot are inserted before him. Thus, the WP may 

feel extremely unsatisfied. We find in Shanghai Sixth People's Hospital, our partnering 

hospital in China, arguments often take place at the beginning of each slot when WPs 

complain they have waited long but are not sure how much longer they need to wait. On 

the other hand, they witness lots of APs who have appointments at the slot just arrived 

and can be seen right away. Further, it is evident that the frustration becomes more 

noticeable when some WP waits longer than his/her expected waiting time. In this paper, 

our objective is to maximize average waiting-time-dependent satisfaction1. From the 

phenomenon above, we conclude that waiting-time-dependent satisfaction of a patient (a 

more meaningful objective) does not necessarily diminish linearly with respect to the 

increase in his/her waiting time, which is commonly modelled in the literature (e.g., 

                                                 
1 We can extend our objective to a more general notion of utility. In the outpatient scheduling 
literature, utility is often defined as the gain generated from service completion and the loss 
incurred by waiting. For same-day consultation scheduling, the gain is insensitive when the 
service is completed during the day. This is why in many papers, the objective to optimize is the 
waiting time. However, in the following, we argue maximization of waiting-time-dependent 
satisfaction is not equivalent to minimization of waiting time. 
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Robinson and Chen, 2003; Koeleman and Koole, 2012; Chen and Robinson, 2014). 

Hence, we use so-called prospect theory (Kahneman and Tversky, 1979) to characterize 

the waiting-time-dependent satisfaction. An S-shaped function is constructed, which 

captures reference point, loss aversion and nonlinear relationship between waiting time 

and satisfaction. For simplicity, we use utility to refer to the waiting-time-dependent 

patient satisfaction in the reminder of the paper.   

To maximize the average utility, the existing literature has studied real-time 

access control strategies that adjust awaiting patient priorities to balance WPs and APs 

(e.g., Song et al., 2017). Meanwhile, studies on optimizing the number of appointments 

have appeared in the literature (e.g., Wang, Liu, and Wan, 2018) to improve WPs’ 

satisfaction in congested slots and streamline the overall outpatient service process. In 

this paper, we propose a strategy to integrate the two aspects above. That is, the strategy 

is not only intended to control patient access at each single slot to balance AP and WP 

visits in real time, but also allocate different numbers of appointments at different slots 

to alleviate the impact of slot-wise variation of WP visits (clearly seen at our partnering 

hospital; see Fig. 1) on the access congestion and patient utility. 

 

Fig. 1. An illustration of the temporal pattern of WP visits2 

                                                 
2 Data comes from Shanghai Sixth People’s Hospital. The figure reports the average hourly 
arrival rate of WP visits at the hospital’s endocrine department on Mondays from 2013 - 2017. 
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More specifically, we determine the number of appointments to be assigned in 

each slot a priori. Taking an integrated approach, we further apply real-time access 

prioritization to balance AP and WP visits. Different from previous literature on making 

real-time access decisions based on patient’s utility (e.g., Green, Savin, and Wang, 2006; 

Qu et al., 2015), we consider easing the difficulty of practical implementation through a 

time-invariant threshold-based prioritization scheme. Based on our prioritization scheme, 

whenever a patient has been seen and leaves the process, the system updates the status of 

the awaiting AP and WP at the beginning of their respective queue based on their utility 

at that moment. Based on respective thresholds (one determining whether the AP is 

satisfied or not; the other one determining whether the WP is satisfied or not), the two 

patients will be labelled as either unsatisfied AP or satisfied AP, and either unsatisfied 

WP or satisfied WP. Then the access decision following a time-invariant rule that assigns 

priorities to unsatisfied APs, then unsatisfied WPs, then satisfied APs and finally satisfied 

WPs. To efficiently solve the resultant integrated optimization problem on the number of 

appointments in each slot and time-invariant utility thresholds, we apply a simulation 

optimization approach that embeds the Optimal Computing Budget Allocation (OCBA) 

algorithm into a Particle Swarm Optimization (PSO) engine. 

We conduct a proof-of-concept case study based on the real data collected at the 

endocrine department of Shanghai Sixth People's Hospital. In addition to numerically 

justifying the viability of our integrated optimization approach in the baseline case, our 

ensuring sensitivity analysis identifies the proportions of AP and WP arrival rates under 

which the proposed approach remains to be effective. We also find that our approach 

remains effective even if the waiting behaviour of patients varies noticeably. These 

results suggest our approach can be promoted in different real-world settings.  
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Further, we conduct a pilot study with an implementation based on the integrated 

optimization approach. Encouragingly, fewer patient complaints occur during the pilot 

study than before. In addition, we observe that the integrated approach decreases WPs’ 

average waiting time and variance significantly, whereas APs’ average waiting time 

almost stays the same and their variance is only slightly increased. With these promising 

results, the partnering hospital has considered promoting our integrated optimization 

approach to other departments. 

This paper makes the following contributions. First, we construct a utility function 

based on the prospect theory to quantify patient’s waiting-time-dependent satisfaction. In 

addition, we conduct a field experiment to validate the utility function and extract the 

model parameters. We justify that the prospect theory can provide a viable supplement to 

patient-centred outpatient scheduling. Second, we propose an integrated optimization 

approach that combines slot-based appointment allocation and real-time priority-based 

access control. The former makes resource commitment more balanced between the two 

types of patients and the later further helps schedule patients based on real-time utility 

assessment. Third, we pilot our scheduling strategy at a top-ranked Chinese hospital in 

Shanghai. The pilot confirms that our approach improves patients’ average satisfaction 

effectively.  

The remainder of this paper is organized as follows. We review relevant literature 

in Section 2. In Section 3, we overview the integrated optimization approach, specify the 

prioritization scheme, and formulate the optimization problem. In section 4, we provide 

details of our methodology, including the utility function modelling and simulation 

optimization algorithm design. In section 5, we describe our pilot study and report results. 

Finally, we draw conclusions and outline future work in Section 6. 
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2. Literature review 

Outpatient scheduling has been a research area for a long time with numerous 

studies in the literature. Cayirli and Veral (2003), Gupta and Denton (2008), Ahmadi-

Javid, Jalali, and Klassen (2017) have provided comprehensive reviews. This paper 

focuses on appointment scheduling and patients’ access control.  

There are two types of appointment scheduling problems: individual appointment 

scheduling and block appointment scheduling (Ho and Lau, 1992). With the former type, 

the scheduler divides each consultation session into small slots and schedules each patient 

at an individual slot (Denton and Gupta, 2003; Kong et al., 2013; Chen and Robinson, 

2014). With the latter type, the scheduler divides a consultation session into several 

relative long slots and each slot allows multiple patients to make appointments (Yan, 

Tang, and Jiang, 2014; Song, Qiu, and Liu, 2017; Wang, Liu, and Wan, 2018). For 

outpatient scheduling of the latter type, almost all work studies a system that only 

involves APs. The common objective is to allocate appointments optimally to reduce the 

negative effect of APs’ no-show or unpunctuality (LaGanga and Lawrence, 2012; Kong 

et al., 2013; Zacharias and Pinedo, 2014). Few studies have considered a system involving 

both APs and WPs. The objective is usually to decrease two types of patient’s average 

waiting time. Some literature (Koeleman and Koole, 2012; Cayirli and Gunes, 2014) 

assumes that only one type of patients will be served in a single slot, and determines 

which particular slots open to WPs. Some other work considers the situation where two 

types of patients can be served in one slot (usually with a relatively large slot length) and 

determines the number of appointments for APs in each slot. For example, Yan, Tang, 

and Jiang (2014) studied a sequential appointment scheduling problem to determine the 

optimal capacity of APs and the optimal appointment time for each AP; Wang, Liu, and 

Wan (2018) optimized the total number of appointments for each day as well as allocation 
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in each slot of a day considering WPs. Our paper studied the scenario where two types of 

patients can be served in a same slot, and except considering how to allocate appointments 

in each slot, we considered integrating a real-time access control to balance AP and WP 

visits. 

In the outpatient access control literature, most studies focus on the real-time decision 

of admitting a sequence of patients of multiple types for services. For example, Gocgun 

et al. (2011) dynamically scheduled four types of patients with different degrees of 

urgency to maximize the total expected net revenue. Qu et al. (2015) proposed an 

admission policy depending on the number of remaining slots and the expected total APs 

to decide whether to admit a WP and when a WP should be seen. Geng and Xie (2016) 

considered two types of patients with different waiting time targets and different rewards 

by switching curves to maximize the expected total number of APs seen at a diagnostic 

facility. Like above studies, we also considered a system with two types of patients and 

that APs have higher priority than WPs. However, we directly investigated the use of a 

time-invariant threshold-based prioritization scheme, which is believed to be easier to 

implement in practice. This differs from the existing literature, much of which, as 

described earlier, formulated stochastic dynamic programming models with intention of 

deriving optimal admission policies based on the current system state, including waiting 

time and service utilization. Nevertheless, those stochastic dynamic programming models 

face serious computational challenges due to the large state space associated with the 

complex service system. So often, the authors sought heuristic policies with proven 

performance guarantees.   

Another significant difference of our work with the previous literature is that we 

developed a new type of utility function for estimating patients’ utility. Among literature 

considers the relationship of utility with waiting time, most of the work assume the utility 
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changes linearly with time. For example, Gocgun et al. (2011), Koeleman and Koole 

(2012) and Qu et al. (2015) all treated waiting time cost per unit as a constant. Few other 

work study the nonlinear relationship of patient’s utility and waiting time. Robinson and 

Chen (2003) considered summing several linear functions for patient waiting cost with 

respect to the average queue length and occupation rate. Ge et al. (2014) used piecewise 

linear functions to model the waiting cost with the assumption that the appointment time 

and processing time are both integers. Kemper, Klaassen, and Mandjes (2014) modeled 

the waiting cost with quadratic functions based on the Von Neumann-Morgenstern 

expected utility. Song et al. (2017) constructed an exponential disutility function to 

express the waiting cost. While the latest work has attempted to incorporate some realism 

in the modelling of patient utility, the stochastic dynamic programming models presented 

in the above papers and the desire of seeking implementable policies based on the models 

may have hindered the authors from taking a data-driven approach to develop accurate 

waiting-time-dependent utility (or cost) functions. For example, patients usually have an 

expected waiting time as a reference point, then their perception on the waiting is usually 

different before and after reaching the expectation.  After waiting time exceed the 

expectation, the patients will typically be more impatient; implying the loss aversion 

property inherent to patients. We argue that the key phenomena reflecting the relationship 

between patient waiting and utility can be better captured by the so-called prospect theory 

(Kahneman and Tversky, 1979). Therefore, in our study, we elected to develop a 

prospect-theory-based utility function. 

The prospect theory is an economics theory proposed by Kahneman and Tversky in 

1979. The theory earned Daniel Kahneman the Nobel Memorial Prize in Economics in 

2002 for it describing the utility perception behavior along with reference point, loss 

aversion and risk aversion. Several studies have applied the theory to estimate awaiting 
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people’s utility in other areas. For example, Avineri (2004) used it to describe how 

passengers perceived their utility while waiting for a bus. However, to the best of our 

knowledge, there is no study applying the prospect study in the area of outpatient waiting.  

3. Research methodology framework 

For this research project, we went through three phases: (1) field observation; (2) 

approach development; (3) pilot study. We summarize the project procedure in Fig. 2.   

 

Fig. 2. An illustration of the project procedure 

With a field study at our partnering hospital in Shanghai, we acquired information 

for modelling the patient flows of the hospital.  Let M be the total number of patients 

(both APs and WPs) over the entire consultation session and q be the proportion of APs. 

The entire consultation session is divided into N slots, each of equal time length. Based 

on our observations, we assume that WPs’ arrival for each slot follow a time-varying 

Poisson process with iw  being the mean arrival rate in the ith slot. We also assume that the 

proportions of early arrival APs and late arrival APs are given, denoted by 1p and 2p , 

respectively. We next assume that the waiting of early arrival APs (i.e., arriving before 

the start of the booked slot) only occurs at the beginning of each slot. On the other hand, 

late APs (i.e., arriving after the end of booked slot) are punished by being treated as WPs. 

As a result, a late AP enters the WP queue and takes the last spot of the queue.   
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Our integrated optimization approach consists of two aspects. First, we determine 

the number of appointments to each slot based on the average temporal pattern of WP 

arrivals over the consultant session. We use { }1 2= , ,..., Na a aπ  to denote the number of 

appointments scheduled in each of the N slots. The intent is to complement temporal 

pattern of appointments made to anticipate temporal pattern of WP arrivals so that we get 

similar numbers of patient visits (both AP and WP) at different slots. As a result, such 

streamlining of the service process can lead to reduced waiting. Note that the daily arrival 

pattern may differ in different days of the week and different months of the year. We keep 

that in mind when deriving the WP daily patterns based on real-world data.   

In the second aspect of our integrated optimization approach, we intend to 

improve the balance of AP and WP visits further, through making real-time control on 

their access by comparing the waiting-time-dependent utility, whenever a physician 

becomes available. To ensure successful implementation, we consider a time-invariant 

threshold-based prioritization scheme to identify the patient to be seen immediately next.  

We describe the prioritization scheme in detail (see Fig. 3). Whenever a patient 

has been seen and leaves the process, we make real-time evaluation on the first AP and 

the first WP in the respective queue based on the prospect-theory-based utility function 

that characterizes either patient’s utility (details in section 4.1).We first label the selected 

AP (WP) with two options by comparing the his/her utility with the threshold APV% ( WPV% ). 

An AP whose utility is below APV% is labelled as a UAP (an unsatisfied AP), otherwise 

labelled as an SAP (a satisfied AP). A WP whose utility is below WPV%  is labelled as a 

UWP (an unsatisfied WP), otherwise labelled as an SWP (a satisfied WP). We then 

prioritize the two patients based on the following agreement UAP > UWP > SAP > SWP, 

i.e., the AP always is always seen first unless s/he is labelled as an SAP and the 

corresponding WP is labelled as an UWP.  
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Fig. 3. Illustration of the outpatient scheduling process. 

Based on the above descriptions, it is clear that { }1 2= , ,..., Na a aπ  and   APV% , WPV%

all influence our objective, i.e., the average patient utility. As { }1 2= , ,..., Na a aπ affect the 

number of APs to be seen in each slot, APV% , WPV%  should be adjusted accordingly to ensure 

the overall patient utility. We next formalize these implications as  
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where k  is a weighting coefficient of AP waiting-related utility as opposed to that for the 

WPs. We use APAV  and WPAV  to denote the average utilities of APs and WPs, 

respectively. We use A  to specify the maximum number of appointments that can be 

made in each slot. To solve the above problem, we resort to simulation optimization. 

Section 4.2 provides more information about the algorithm design.  

 Finally, in the third phase of the research project, we ran a pilot in our partnering 

hospital to assess the performance of the integrated optimization approach. The pilot 

results suggest slightly increased waiting time average and variability for APs in return 

for much reduced waiting time average and variability for WPs. The pilot demonstrates 

the viability of our approach.  
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4. Methodology specifics 

We first describe the process of developing the utility function to model either 

patient’s utility. Then we present the simulation optimization algorithm that jointly 

searches the optimal number of appointments in each slot and the pair of access control 

thresholds.  

4.1. The prospect theory-based utility function 

The utility function describes the relationship between patients’ utility V and 

actual waiting time WT in real time. We apply prospect theory so-called S-shape value 

function, which captures reference point, loss aversion and nonlinear relationship 

between waiting time and satisfaction. Reference point means the utility is affected by 

the comparison with current state and reference point, e.g., the expectation. The utility 

function has a kink at the reference point. Loss aversion means people are more sensitive 

to loss than gain, where loss and gain are defined by the reference point. Nonlinear 

relationship between waiting time and satisfaction means along with the waiting time 

departure from the reference point, the utility increases or decreases in a nonlinear way. 

The utility function could be expressed as 

 ( ) ( ){ }+( ) +c [ ,0 ] [ ,0 ]ETV WT V ET WT WT ET += − − −α βλ  (4) 

where ET , ETV , c ,α , β and λ  are positive constants. The patient’s expected waiting 

time ET and its corresponding utility ETV is the reference point. The gain region is where 

0 WT ET≤ <  and ETV V> , while loss region is where WT ET≥  and ETV V≤ . c can be 

interpreted as the measurement of a patient’s value of waiting time. α , β describe the 

nonlinear relationship between waiting time and satisfaction for gain and loss, 

respectively. λ describes the degree of loss aversion.  
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Assuming that the reference point of APs and WPs are equal, we could construct 

utility function of m th AP and n th WP as following to satisfy the assumptions. 

 ( ) ( ){ }+
( ) +c [ ,0 ] [ ,0 ]

AP APAP AP AP AP AP AP
AP m ET m mV WT V ET WT WT ET

+
= − − −α βλ  (5) 

 ( ) ( ){ }+
( ) +c [ ,0 ] [ ,0 ]

WP WPWP WP WP WP WP WP
WP n ET n nV WT V ET WT WT ET

+
= − − −α βλ  (6) 

where APET and WPET denote the expected waiting time of APs and WPs which are 

predetermined by patients.  

Then, we conduct an experiment to provide field evidence and evaluate fitness of 

the utility function. We first design a questionnaire and recruit a cohort of respondents. 

With the questionnaire, we collect individual basic information from each respondent to 

specify his/her patient type to be either AP or WP. Then we randomly assigned to the 

respondent two hypothetical scenarios of waiting in the outpatient clinic. In the first 

scenario, each respondent is assumed to wait several minutes longer than the expected 

waiting time. Inversely, in another scenario, each respondent is assumed to wait shorter 

than expected. The patients’ expected waiting time is given. The specific over-time and 

reduce-time are randomly assigned to the respondent within a feasible range. Each 

respondent is asked to evaluate his/her wait time satisfaction with a score from 0 to 100. 

The details of the survey is presented in the appendix.  

As a result, we collected 141 questionnaires after filtering 16 invalid samples, 

obtaining 67 and 74 questionnaires of APs and WPs, respectively. We obtain the 

relationship between patients’ utility and waiting time by gathering each respondent’s 

score under different scenarios. Then we perform a nonlinear regression, which indicates 

the R-square of Eqs. (5) and (6) achieve 0.7039 and 0.8078, respectively. We also try to 

apply exponential function (Song et al., 2017) to express utility by using the same data of 
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the questionnaires. The nonlinear regression shows R-square achieve 0.5533 and 0.6003 

for APs’ and WPs’ utility function, respectively, which do not match the practical data as 

well as our model. Therefore Eqs. (5) and (6) are better to express patients’ utility. 

Remark. The time-invariant threshold-based prioritization scheme decreases the 

variance of WPs’ waiting time. For a verification of the remark, please see Appendix A. 

As stated that some WPs who encounter the plugging in of batch of APs may have 

quite longer waiting time than others, even if they arrive hospital at similar time. 

Decreasing the variability of waiting time of WPs indicates that time-invariant threshold-

based prioritization scheme could improve the system’s fairness and decrease WPs’ 

dissatisfaction. 

4.2. The simulation optimization algorithm 

We build a model to simulate the scheduling process in outpatient clinic in 

Microsoft Visual Studio 2012. Then, a heuristic simulation optimization algorithm is 

proposed to help us search the best results. The algorithm combines PSO and OCBA, 

where PSO provides a general framework to search optimal solutions and OCBA 

considers eliminating the effect of simulation randomness. 

Following the PSO framework, the feasible search area is divided into R same size 

regions and each region is allocated several particles as initial solutions. Then, the 

algorithm will search recursively to find a better solution. In this paper, the fitness value 

of each particle is the patients’ weighed average utility, which can be achieved from Eq. 

(1). The particle has +2N dimensions including the number of appointments in each slot 

and a pair of control thresholds, defining as 1 2( , ,..., , , )AP WP
i NX a a a V V= % % . We propose 

the method to update the particles in each iteration through an integration. In each 

iteration, the particle updates itself twice. The first update is based on the OCBA (Chen 
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et al., 2000), which considers the allocation of limited simulation budget based on 

stochastic simulation output to optimize the probability of correct selection. It determines 

optimal numbers of particles in each region. The second update is based on the PSO (Zhou 

et al., 2018), which mimics the predation behavior of a flock of birds to search for the 

optimal solution. It guides particles towards the best particle of their own region at a given 

speed. 

In the first updating process, we calculate the mean rf  and standard deviation rσ  

of the fitness value of the particles which belong to their own region r according to Eq. 

(7) and Eq. (8).  

 ,

,1
r tc

r rj r tj
f f c

=
=∑  (7) 

 , 2
,1

( ) ( 1), 1, 2,..., ; ( ) arg minr tc
r rj r r t rj r

f f c r R find k fσ
=

= − − = =∑  (8) 

where t is the current iteration step. ,r tc is the number of particles in region r .Then the 

new numbers of particles in each region, 1, 1 2, 1 , 1, , ,t t R tc c c+ + +K , are calculated according to 

Eq. (9) and Eq. (10), which helps to get more particles from the region that may contains 

better results. 
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, 1
, 1 21,

R l t
k t k l l k

l

c
c σ

σ
+

+ = ≠
= ∑   (10) 

According to the new numbers of particles allocation, the specific-number 

locations of particles in each region are randomly created. These current locations are 

randomly assigned to each particle as its first update (t 1)ioX + .  
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In the second updating process, particles adjust their speed (t 1)iV + and position 

(t 1)iX +  by the following Eq. (11) and (12).  

 (t 1) ( (t 1))i rBest ioV cm X X+ = − +  (11) 

 (t 1) (t 1) (t 1)i io iX X V+ = + + +  (12) 

where c  is the cognitive parameter and m  is a random number. rB stX e  is the position of 

the best particle in region r ,which have a highest fitness rB stf e . Those formulas guide a 

particle to search a better solution. 

The best solution is obtained by repeatedly updating the solution according to the 

method above. If the iteration of the optimization algorithm meets the maximum number 

of iterations, this algorithm will end, obtaining the optimal solution, 

*
1 2( , ,..., , , )AP WP

i NX a a a V V=  and return the corresponding objective value *
if . 

Otherwise, it will continue. 

The steps of the algorithm are summarized as follows. 

Step 1. Divide feasible solution space into R  regions and original particles iX are 

generated uniformly and randomly in the R  regions. 

Step 2. Execute the simulation model and calculate the weighted average utility of 

patients’ satisfaction if . 

Step 3. Partition particle swarm according to the positions of R  regions 

If  riX region∈ , , , , and = +1, 1,2,...,rj i r t r t r tf f c c j c= =  

Step 4. Update the region-best in region r  according to: 

If rj rBestf f< , rBest rjf f= , =rB st rjX Xe . 
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Step 5. Calculate the mean of particles rf , and standard deviation rσ according to Eq. (7) 

and Eq. (8)  

Step 6. Calculate the new number allocation of particles in each region, 

1, 1 2, 1 , 1, , ,t t R tc c c+ + +K  according to Eq. (9) and Eq. (10). Then, generate certain 

numbers of particles uniformly and randomly in the R regions, and assign current 

locations randomly to each particle. 

Step 7. Adjust the location and speed for each particle according to Eq. (11) and (12) . 

Step 8. Terminating condition. 

If t < max iteration, return step 2, else go to step 9. 

Step 9. Obtain the *
1 2( , ,..., , , )AP WP

NX a a a V V=  and *
1 2max{ , ,..., }rf f f f= . The 

algorithm ends. 

5. Research results 

In this section, we first present proof-of-concept computational experiments based 

on real hospital data to verify the efficiency of our integrated optimization-based 

scheduling approach. We then examine how several system performance measures with 

the optimal strategy behave with respect to varied environmental and behavioural factors. 

Finally, we report a pilot study we conducted at our partnering hospital to demonstrate 

the practical benefit of our integrated optimization approach. 

5.1. Computational experiments at the baseline  

We conduct a case study based on the outpatient scheduling operations of 

Shanghai Sixth People's Hospital, a comprehensive hospital, which has 33 clinical 

departments and 9 technical departments. The endocrine department, as a key department 

to the hospital, allows both APs and WPs to be seen outpatient. From our field 
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investigation, the hospital uses a myopic appointment scheduling strategy in their 

practice. That is, allocating an even number of appointments in each slot and assigning 

APs higher priority than WPs when both types of patients wait in the queue. We refer to 

this strategy as EA-APF (i.e., Even appointment Allocation with Appointment Patient 

First). The hospital practitioners voice their concern on low satisfaction of the WPs which 

are the majority of the outpatients. Motivated by the practical concern, we evaluate our 

optimization-based strategy (Optimal appointment Allocation with Real-Time 

Prioritization, OA-RTP) with a case study based on realistic hospital data. Through this 

study, we find that our approach could result in noticeable improvement on WP 

satisfaction while not compromising much on AP satisfaction, compared to EA-APF.  

 We generated numerous computational scenarios based on the historic data to 

examine how the proposed OA-RTP strategy performs in general. First, to model WP 

arrivals, we extracted records of outpatient visits from 2013 to 2017 and filtered out 

invalid and irrational records. The data showed that daily WP arrivals fluctuated on a 

weekly basis. We thus divided WP arrivals according to the time of the day and day of a 

week, and computed a point estimate for each time-dependent arrival rate and its 95% 

confidence interval. For each scenario, we sampled uniformly the arrival rate for each 

slot-day combination from the corresponding range. To model AP arrivals, we first 

specified the total number of APs based on the realistic percentage of AP volume to the 

total outpatients. This total number varied by the day of the week. Meanwhile, we 

constructed day-of-the-week specific ranges on the proportions of early and late arriving 

APs to the total APs. For each scenario, we sampled uniformly the numbers of early and 

late arriving APs from their respective ranges for each slot. For the service time of each 

outpatient, we found that a normal distribution would be a good fit to this random quantity 

and sampled the service time from the distribution. To sample the number of doctors, we 
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first set the lower and upper bounds of the outpatient service system utilization to be 0.7 

and 0.9, respectively. Then we specified a range on the number of doctors accordingly 

and drew a uniform sample from the range. 

Patient satisfaction is set by the utility function. Given ETV is a constant and has 

no influence on patient utility with respect to the waiting time, we let =2000, c=300ETV  

to avoid negative utility. We interviewed some patients and doctors about the expected 

waiting time in queue and determined ETAP = 20 min and ETWP = 40 min. For other 

parameters, we conduct a field experiment by the methodology we proposed in section 

4.1 and through regression analysis, we obtain = 0.31AP APα β = , = 0.28WP WPα β = , 

1.81APλ =  , =1.51WPλ . 

We show in Table 1 the comparisons of average performance measures over the 

scenarios between our proposed strategy (i.e., OA-RTP) and the hospital implemented 

myopic strategy (i.e., EA-APF). In the table, the value of k in each column under OA-

RTP represents the relative weight of AP satisfaction to WP satisfaction. We report the 

scenario-average of the coefficient of variation (CV) on the number of patients seen in 

each slot, i.e., CV = �
1
𝑁𝑁∑ [𝑎𝑎𝑖𝑖+𝑤𝑤𝑖𝑖−(𝑎𝑎+𝑤𝑤)]2𝑁𝑁

𝑖𝑖=1

(𝑎𝑎+𝑤𝑤)
 , where

1

1( ) ( )
N

i i
i

a w a w
N =

+ = +∑ , to quantify the 

effect of changing the appointment slot-assignment of APs (i.e., actionable decision in 

this paper) on the arrivals of all outpatients. In addition, we report the percentage of 

priority improved WPs (PIWP), i.e., the percentage of WPs in the queue are adjusted to 

see doctors earlier than awaiting APs over time. Finally, we repot the sample mean and 

variance of AP and WP waiting times over both patients and scenarios.  

Table 1. Average performance comparison between OA-RTP and EA-APF over scenario 

Average performance  
measures 

EA-
APF 

OA-RTP  

=0.5k  =1k  =1.5k  =2k  =2.5k  =3k  =3.5k  =4k  
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CV 0.63  0.52  0.55  0.57  0.58  0.59  0.60  0.61  0.61  

PIWP (%) 0 26.76 
 

21.62 
 

19.19 
 

17.57 
 

10.81 
 

5.95 
 

4.59 
 

4.05 
 Avg. WT of AP (min) 18.98 28.72 24.43 22.77 20.29 19.49 18.50 17.56 17.38 

Avg. WT of WP (min) 54.66 25.95 27.64 29.02 31.25 39.63 44.60 48.92 51.61 

Var. WT of AP (min2) 19.09 55.42 49.78 44.25 30.59 27.05 24.51 22.54 21.26 

Var. WT of WP (min2) 656.62 60.73 65.86 67.12 70.4 129.51 171.08 203.83 232.96 

With a large weighting coefficient, e.g., k = 4, the average CV only decreases 

slightly. Since WP satisfaction is not cared much, WP scheduling priority does not change 

much in real time (i.e., average PIWP is only about 4%). Thus, our OA-RTP based 

scheduling strategy does not lead to sufficient reduction in the WP waiting time. With a 

small coefficient, e.g., k = 0.5, the average CV result suggests that OA-RTP can 

noticeably improve the balance between AP and WP arrivals through improved AP 

appointment scheduling (i.e., the average CV decreases by 20%). However, since WP 

satisfaction is cared too much, more than a quarter of WPs are adjusted to be seen earlier 

than SAPs. It makes the AP waiting time increases significantly. As a result, we conclude 

that WP satisfaction is overly compensated. When we disseminated the research findings 

to the hospital administrators, they concluded that setting k = 2 can effectively reduce the 

WP waiting time without making much a compromise on AP satisfaction.  

Next, we compare our OA-RTP strategy with two strategies that are not of two 

phases but not optimization based in both phases. The two strategies are Even 

appointment Allocation with Real-Time Prioritization (EA-RTP) and Optimal 

appointment Allocation with Appointment Patient First (OA-APF). EA-RTP implies 

assigning an even number of appointments to each slot and applying real-time 

prioritization similar to that in OA-RTP. OA-APF implies optimizing appointment 

allocation at each slot but always giving APs higher priority than WPs. We show the 

average performance results over scenarios in Table 2.  
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Table 2.  The average performance comparison of the four strategies 

Policy EA-APF EA-RTP OA-APF OA-RTP 

Object Function 4465.39 7843.24 6149.88 8019.9 

Avg. WT of AP (min) 18.98 20.83 21.03 20.29 

Avg. WT of WP (min) 54.66 34.83 41.63 31.25 

Var. WT of AP (min2) 19.09 45.10 38.66 30.59 

Var. WT of WP (min2) 656.62 109.09 95.32 70.4 
We find that according to the objective function, the average utility of patients, 

the OA-RTP performs best among most scenarios, followed by the EA-RTP, and then the 

OA-APF. The current policy EA-APF performs the worst. In other words, either applying 

optimal number of appointments in each slot or time-invariant threshold-based 

prioritization scheme is effective to improve patients’ satisfaction, while the integrated 

optimization achieves the most improvement. Furthermore, it is noted that when the value 

of objective function is best, the average and variance of patient’s waiting time also 

performs well. As shown in Table 2, three optimization polices decrease WPs’ average 

waiting time significantly while increase AP’s slightly. OA-RTP makes WPs wait the 

shortest and prolongs APs the least. The variance of patient’s waiting time is the smallest 

under OA-RTP, which indicates it most effectively improves system’s fairness and WPs’ 

satisfaction. It justifies that the objective function based on the prospect theory can 

provide a viable supplement to patient-centred outpatient scheduling. 

5.2 Sensitivity analysis 

We next varying the environment factors and behaviour factors to assess the 

integrated scheduling optimization approach performs as opposed to comparative 

strategies. 

5.2.1. With respect to environment factors 

Our partnering hospital aims to promote appointment making among patients 
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rather than walk-in with no appointment. This aim will lead to a reduced proportion of 

WPs. Hence, we are interested whether the proportion reduction will greatly influence the 

efficiency of our approach and under which scenarios the approach will be invalid. As 

shown in Fig. 4, with the AP proportion changing from 10% to 85%, the optimization 

based scheduling strategy we proposed has a up to 20% improvement in patient utility. 

However, when AP proportion is too low or too high, one of the two patient types will 

occupy the majority of outpatients, leaving little space for time-invariant threshold-based 

prioritization scheme to work. For the studied department, we estimate that the 

satisfaction improvement is most significant when APs take up around 70% of patients. 

 
Fig. 4. The objective value comparison under different AP proportions  

5.2.2. With respect to behaviour factors 

The optimization results of our approach are also influenced by behaviour factors 

such as WPET APET , APα WPα , APβ WPβ APλ WPλ

study 

find that when WPET is 

smaller, as shown in Fig. 5, the optimization effect of OA-RTP is more obvious. Because 

in this case, WPs are easier to become unsatisfied, then have more chance to be scheduled 

before APs and help the system works better. Similar conclusions can be obtained when 
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APET  increases. Additionally, we observe that OA-RTP could effectively improve 

patients’ utility with different values of APα , WPα , APβ , WPβ , APλ and WPλ . Figure 6 reports 

the objective function values when we vary the loss aversion parameters APλ and WPλ  

simultaneously. From the figure, we observe that when patients were more sensitive to 

long waiting time (i.e., more likely to have aversion behavior), the patient satisfaction 

under EA-APF would decrease greatly. However, through adjusting the service priority 

of unsatisfied WPs by OA-RTP, we can achieve a similar system-wide satisfaction within 

a reasonable range of the loss aversion parameter. It suggests that our integrated 

optimization based scheduling approach could take more advantage of patients with 

increased loss aversion behaviour.  

 
Fig. 5. The objective value comparison under different WPET  

 

 
Fig. 6. The objective value comparison under different APλ and WPλ  
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5.3  Real-world pilot study 

We have presented our previous results of computational experiments to the 

Shanghai Sixth People's Hospital, and they agreed to conduct the pilot study in the 

hospital. We first analyze patients’ daily visits and achieve the average arrival pattern for 

each weekday. Thus, according to the real-world case, we design different appointment 

allocation and corresponding thresholds for each weekday. We began our pilot first in the 

endocrine department in early 2018. 

With one year’s pilot, we evaluated the effects of the practice.  As seen in Table 

4, we compared the current results with the performance history of 2017 when the 

department was managed under EA-APF. We find that our proposed strategy decreases 

WP’s average waiting time by 22.76% while causes no significant increase to AP’s 

average waiting time despite the fact that the number of total patient visits increases by 

1.57%. The variance of WPs’ waiting time is decreased by 89.48% with APs’ increases 

by 9.28%. The managers of the hospital also informed of us that patients reacted well to 

the new policy and complained less than before. The positive results show the method’s 

efficiency and the hospital is considering extending our method into other departments. 

Table 4.  The performance comparison of Shanghai Sixth People's Hospital 

Year Number of 
patient visits 

Avg. WT of 
AP (min) 

Var. WT of 
AP (min2) 

Avg. WT of 
WP (min) 

Var. WT of 
WP (min2) 

2017 201319 19.25 39.44 96.08 547.89  
2018 204480 19.78 43.10 74.21 57.62 

 

6. Conclusions and future research 

This paper investigates outpatient scheduling in the situation where WPs account 

for a large proportion of patients. Considering slot-wise WP arrival pattern and 

incorporating patient waiting behaviour, we propose an integrated optimization method 
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for the number of appointments in each slot and time-invariant threshold-based 

prioritization scheme to maximize patients’ average utility. The utility function, based on 

the prospect theory, measures patient’s real-time satisfaction. An experiment validates 

the expression and extracts practical parameters. The simulation model based on the 

algorithm, combining PSO and OCBA, helps us search the optimal solution. Finally, we 

conduct a pilot study in the endocrine department of Shanghai Sixth People’s Hospital. 

The study demonstrates that our method has important practical value, decreasing 

patients’ average waiting time as well as variability among WPs. Since our method was 

shown in the pilot study to work under different scenarios, it has been implemented in 

many departments of Shanghai Sixth People’s Hospital.  

Future research could be extended in several directions. One direction is to 

investigate the decision of optimal length of each slot to improve satisfaction of both APs 

and WPs. Another direction is to study how the length of slot affects AP’s arrival 

behaviour. Though most literature assumes appointment patients’ arrival is independent 

of appointment slot, we have data showing that for systems with both WPs and APs, the 

slot length does, indeed, influence the patient’s arrival. The third direction is to consider 

heterogeneous patients, e.g., patients with different expected waiting time and waiting 

behaviour.  
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Appendix 

A. A Verification of the Remark on Page 15 

The real-time service prioritization in our integrated optimization based 

scheduling approach applies a prioritization rule that specifies UAP > UWP > SAP > 

SWP. For SWPs whose satisfaction is higher than the threshold, their priority will not 

change, so that their waiting time remains the same, compared to the system where APs 

always have a higher service priority. On the other hand, for UWPs, their waiting time 
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will become long. In contrast, with a prioritization rule that specifies UWP > SAP, UWPs’ 

waiting time is reduced as they are scheduled to be served earlier than SAP. Overall, for 

all WPs, the waiting time distribution tends to have lower average and reduced variance.  

Let us take a numerical example to further illustrate our remark. We assume APs 

and WPs follow a Poisson process with mean arrival rate 0.08 and 0.07, respectively. 

Their service time is modelled identical with normal distribution 6 0.4N（ ， ）. If APs always 

have a higher priority than WPs, the arrival and departure times of each patient in the first 

slot (8:00~9:00) are shown as follows. 

Time

1 2 4 5 83 6 9

1 4 6 5

7

7 89

8:00 9:00

Appointment patient
Walk-in patient

Patient arrival
Patient depature

2 3  

Fig.7 Arrivals and departures under the current prioritization rule 

The sequence of patient service is: 1→2→3→4→6→7→5→9→8. The waiting 

time of each patient is reported in Table 5. 

Table 5 Waiting time under the current prioritization rule 

Patient index 1 2 3 4 5 6 7 8 9 

Waiting time/min 0 3 3 2 18 2 1 10 0 
Avg. of WPs’ waiting time/min 8.25 
Var. of WPs’ waiting time /min2 41.19 

Let = (8)WP
WPV V , = (5)AP

APV V . Then under the time-invariant threshold-based 

prioritization scheme, patients are scheduled as follows. 
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Time

1 2 4 5 83 6 9

1 4

7

8:00 9:00

Appointment patient
Walk-in patient

Patient arrival
Patient depature

2 3 75 6 9 8  

Fig.8 Arrivals and departures under our prioritization rule 

The sequence of patient service is: 1→2→3→4→5→6→7→9→8. The waiting time of 

each patient is reported in Table 6. 

Table 6 Waiting time under our prioritization rule 

Patient index 1 2 3 4 5 6 7 8 9 

Waiting time/min 0 3 3 2 10 12 12 10 0 
Avg. of WPs’ waiting time/min 6.25 

Var. of WPs’ waiting time /min2 23.6875 
We observe from Table 6 that the WP indexed 5 is scheduled to receive service 

before the AP indexed 6 because his/her utility is lower than the threshold but AP is not. 

The waiting time of this WP indexed is thus decreased from 18 minutes to 10 minutes. 

As for other WPs (indexed 2, 4 and 8), their waiting times are unchanged. As a result, the 

variance of WP waiting time is decreased by 42.49%.  

B. The outpatients’ waiting time sensitivity questionnaire 

In this appendix, we provide the questionnaire we used to survey online 

respondents and measure parameters in utility function based on the prospect theory. The 

original questionnaire was written in Chinese. We provide a English translation here. 

Introduction 

          You are being invited to take part in a research study about waiting time sensitivity. 

Please note that there are no right or wrong answers to any questions in this questionnaire. 
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We are only interested in your opinions and feedback. Your kind and valid response will 

help the Sixth People Hospital in Shanghai devise better appointment policy and will help 

make you feel more satisfied about waiting for medical service in the future. This 

questionnaire should take approximately 1-3 minutes to complete. The information will 

be kept confidential and will not be linked to any personal identifiable information. Thank 

you for your participation and cooperation! 

1) Do you make an appointment in advance before going to the clinic? 

a) Yes                                                    b) No 

In the following, we will present two fictitious scenarios where we would like to 

measure your sensitivity about waiting time. Please note that there are no correct or 

incorrect responses, and your choice should be based on your own preferences, 

experiences, and specific needs.  

Suppose you are currently queuing in a general outpatient clinic of an innovative 

medical institution. You have made an appointment before visiting hospital3. Assume that 

the institution has told you are expected to wait for 20 minutes4, however you are now 

waiting for 5 minutes5 more than expected. What would you score to reasonably express 

your satisfaction with this hospital? 

2) Please enter the score.(Suppose 60 represent the score to express your satisfaction 

when you wait as long as expect.) 

____.6 

                                                 
3 The situation is consistent with respondent’s actual patient type. If the respondent choose b) in 

question 1), then this sentence is replaced with “You have not made an appointment before 
visiting hospital” 

4 The expect waiting time is rely on respondent’s actual patient type. Appointment patient’s 
expect waiting time is 20 minutes and walk-in patient’s is 40 minutes. 

5 The overtime is randomly assigned to the respondent with some specific range. 
6 It is a scroll-down selection box, which include the integer number from 0 to 100. 
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If you are now waiting for 10 minutes7 less than expected. What would you score 

to reasonably express your satisfaction with this hospital now? 

3) Please enter the score. Suppose 60 represent the score to express your satisfaction 

when you wait as long as expected. 

            ____.8 

 

                                                 
7 The reduce-time is randomly assigned to the respondent with some specific range. 
8  It is a scroll-down selection box, which include the integer number from 0 to 100. 
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