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Abstract—With the advent of new flash-based memory tech-
nologies with ultra-low latency, directly applying inline data
deduplication in flash-based storage devices can degrade the
system performance since key deduplication operations lie on
the shortened critical write path of such devices. To address
the problem, we propose a Content-Aware Garbage Collection
scheme (CAGC), which embeds the data deduplication into
the data movement workflow of the Garbage Collection (GC)
process in ultra-low latency flash-based SSDs. By parallelizing
the operations of valid data pages migration, hash computing
and flash block erase, the deduplication-induced performance
overhead is alleviated and redundant page writes during the
GC period are eliminated. To further reduce data writes and
write amplification during GC, CAGC separates and stores data
pages in different regions based on their reference counts. The
performance evaluation of our CAGC prototype implemented in
FlashSim shows that CAGC significantly reduces the number of
flash blocks erased and data pages migrated during GC, leading
to improved user I/O performance and reliability of ultra-low
latency flash-based SSDs.

Index Terms—Ultra-Low Latency Flash-based SSDs, Garbage
Collection, Data Deduplication, Reference Count, Data Placement

I. INTRODUCTION

Flash memory technology is disrupting the storage media
market, leading to a significant evolutionary investment and
innovation in the storage systems market [7]. Flash-based
Solid State Disks (SSDs) have emerged as attractive alterna-
tives to Hard Disk Drives (HDDs), increasingly replacing or
coexisting with HDDs in smartphones, personal laptops, enter-
prise storage systems and large-scale data centers [14], [28].
However, due to the unique features of flash memory, such
as asymmetric read-write performance, limited erase cycles,
and garbage collection, data writing has an important impact
on the performance and reliability of flash-based SSDs [1],
[27], [30], [31]. Due to its ability to identify and reduce the
writing of redundant data pages, the inline data deduplication
technology can obviously improve the storage efficiency and
reliability of flash-based memory systems, attracting extensive
attention from both academia and industry [2], [11]. While
inline data deduplication effectively reduces the amount of
redundant write data to a flash storage device, it also increases
the write response times due to the additional and expensive
overhead of fingerprint calculations and lookup operations on
the critical write path [37].

In order to address the aforementioned problems, re-
searchers have proposed to use hardware coprocessors and
sampling techniques to reduce the latency overhead caused by
hash fingerprint calculations. For example, both CA-SSD [11]
and paper [18] use on-chip hash calculation coprocessors to
speed up the hash fingerprint calculation. CA-FTL [2] uses
sampling and pre-hash techniques to reduce the number of
data blocks that need expensive fingerprint calculation, thus
reducing the latency overhead of fingerprint processing. How-
ever, the hash-coprocessor schemes introduce extra hardware
overhead, and the sampling technique also needs to perform
the hash fingerprint calculation on other data blocks. None
of them can eliminate the latency overhead caused by the
fingerprint calculation and lookup operations along the write
I/O path.

With the rapid development and application of new flash
storage technologies, such as Z-NAND and XL-Flash [4],
[42], the performance of solid-state disks based on these flash
medias has been improved so vastly that they are now referred
to as ultra-low latency flash-based SSDs [13], [21]. However,
directly applying the inline data deduplication technology
to ultra-low latency flash-based SSDs will notably increase
the response latency of user requests because the ultra-low
latency on the critical path makes the deduplication-induced
latency overhead much more pronounced, thus reducing the
performance of deduplication-based flash storage devices. Pre-
liminary experimental results show that a direct application of
the inline data deduplication technology on Samsung Z-NAND
SSDs increases the response latency by up to 71.9%, with an
average increase of 43.1%.

In addition to the user’s read and write requests, the flash-
based SSDs also need to perform GC operations to reclaim
the invalid data pages, and perform block erase operations to
free up space for subsequent new user write data. Generally
speaking, the GC procedure includes selecting the victim flash
block, migrating the valid data pages in the victim flash block
to other free flash blocks, erasing the victim flash block and
marking it as free. The basic unit of erase operation is a flash
block consisting multiple (hundreds of) pages, while the basic
unit of a read and write request is a page. The latency of a
block erase operation is an order of magnitude higher than that
of a read or write request [1]. Thus, GC operations are very
time-consuming background tasks inside flash-based SSDs
that directly affect the foreground user read and write requests,
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which significantly increases the user request response times
and causes serious performance variability.

In view of the above challenges facing the direct application
of the data deduplication technology in ultra-low latency flash-
based SSDs, this paper proposes a two-pronged approach
called Content-Aware Garbage Collection scheme (CAGC).
On one hand, CAGC embeds the data deduplication technol-
ogy into the GC process, which not only hides the overhead of
fingerprint calculation, but also eliminates the write operations
of redundant data pages. On the other hand, by exploiting the
reference count feature of the data deduplication technology
and grouping flash blocks into hot and cold regions, data pages
with similar reference counts (larger than a threshold) are
stored together in flash blocks of the cold region, and data
pages with reference count of exactly 1 are stored together
in flash blocks of the hot region. The overhead of moving
data pages with high reference counts during GC is reduced
because these data pages with high reference counts are
usually much less likely to become invalid (as elaborated in
Section III-C), which further improves the GC efficiency of
ultra-low latency flash-based SSDs. The performance results
show that the CAGC scheme significantly reduces the number
of flash blocks erased and data pages migrated during GC,
thus improving the performance and reliability of ultra-low
latency flash-based SSDs. This paper makes the following
contributions:

(1) From our preliminary experiments, we find that inline
data deduplication significantly degrades the perfor-
mance of ultra-low latency flash-based SSDs.

(2) To address the above challenge when directly apply-
ing data deduplication for ultra-low latency SSDs, we
propose a content-aware GC scheme by exploiting the
features of both GC and data deduplication.

(3) We conduct extensive experiments on a lightweight
CAGC prototype and the evaluation results show that
CAGC significantly improves the GC efficiency for
ultra-low latency SSDs.

The rest of this paper is organized as follows. Background
and motivation are presented in Section II. We describe
the design details of the Content-Aware Garbage Collection
scheme in Section III. The performance evaluation is presented
in Section IV. The related work is presented in Section V. We
conclude this paper in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we first describe the development of ultra-
low latency flash-based SSDs. Then we elaborate on why
inline data deduplication is not suitable for ultra-low la-
tency flash-based SSDs. Finally, we present the GC workflow
in flash-based SSDs to motivate our new Content-Aware
Garbage Collection optimization for ultra-low latency flash-
based SSDs.

A. Ultra-low latency flash-based SSDs

With the advent of Samsung’s Z-NAND and Toshiba’s XL-
Flash technologies, the I/O latency of Ultra-Low Latency
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Fig. 1. An example of how data deduplication works.

(ULL) SSDs can be up to 10 times shorter than that of a
high-performance NVMe SSD [13], [21], [42]. For example,
Samsung’s Z-NAND completes a 4KB-sized read service
within 3us [4] while a general high-performance NVMe SSD
completes an I/O service within 47-52us, including data trans-
fer and FTL execution latencies [42]. In addition, other flash
memory vendors also develop and promote low-latency flash
memory chips, such as Toshiba’s XL-Flash technology [42].

Although ultra-low latency SSDs have low read and write
latency, they are very sensitive to the amount of write data due
to the asymmetric read and write performance and the limited
endurance (erase cycles) of flash memory. The amount of data
written to the flash memory directly affects the performance
and reliability of flash-based SSDs. Therefore, reducing the
amount of write data helps improve the performance and
reliability of flash-based SSDs and extend their life.

B. Inline data deduplication for flash storage

Inline data deduplication means that data deduplication
process is performed on the user write path before the data
is written to the storage devices. Data deduplication is a
specific type of data compression. It splits files into multiple
data chunks that are uniquely identified by a fingerprint
(i.e., a hash signature) of each individual data chunk. The
redundant data chunks in a file are replaced by pointers to
their stored unique copies. Figure 1 shows an example of how
data deduplication works. The data deduplication technology
has been demonstrated to be very effective in shortening the
backup window and saving the network bandwidth and storage
space in cloud backup, archiving and primary storage systems
(e.g. flash-based storage systems).

Recent studies have shown that the ability of data dedu-
plication to reduce the write traffic can significantly improve
the performance and reliability of the flash storage systems. In
fact, inline data deduplication has become a commodity feature
in flash-based storage products for many leading companies,
such as HPE Nimble Storage [34] and Pure Storage [5], [6],
for the purpose of enhancing system performance, reliability
and space efficiency.

However, despite of its great benefits, data deduplication has
two important drawbacks, namely, expensive calculation and
memory overheads on the critical I/O path, which adversely
affects the performance of systems, especially for ultra-low
latency flash-based SSDs. With the Z-NAND and XL-Flash
technologies, the I/O latency of next-generation flash storage is
significantly lower than earlier generations. On the other hand,
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Fig. 2. The performance results of an ultra-low latency flash-based SSD with
(Inline-Dedup) and without (Baseline) inline data deduplication, normalized
to Baseline.

the hash computing latencies of SHA-1/256 in deduplication-
based systems remain largely unchanged, especially for the
limited computing capability in flash-based SSDs. As a result,
the performance bottleneck has been shifted from the flash
storage to the deduplication process in such ultra-low latency
flash storage systems [37].

Figure 2 shows the normalized performance results of an
ultra-low latency flash-based SSD with and without inline data
deduplication, driven by three FIU workloads [9]. We can see
that inline data deduplication degrades the system performance
for all the three workloads, even for the Mail workload with
a 93% deduplication ratio. The reason is that all the incoming
data blocks must go through the expensive hash computing
and search processes whose latency is much larger than the
I/O latency of the ultra-low latency flash storage.

C. Garbage collection and motivation

Due to the unique physical features of NAND flash, write
requests are serviced out-of-place rather than in-place. In flash-
based SSDs, data can only be written to erased pages (a.k.a.,
free pages), where the in-place (before-write) pages become
invalid (stale) after out-of-place write operations. After that,
the invalid pages in a block, called a victim flash block,
must be freed by copying (reads followed by writes) the
data of the valid pages in the victim block into a free block
before the victim block is erased, which makes free block
available for subsequent write data. This process is known as
garbage collection process that significantly affects the user
I/O performance of SSD-based storage systems [15], [23],
[39].

Reclaiming space used by invalid data without losing valid
data is a major performance bottleneck in GC for flash storage
devices. Thus, a typical victim flash block selection algorithm
usually chooses the flash blocks that contain the maximum
invalid data pages while simultaneously considering the block
erase count and age information [33], [17], [10]. There are
three main approaches that existing victim-block selection
algorithms taking for garbage collection in flash-based SSDs.
The first one, referred to as random approach, randomly
selects the victim blocks with invalid pages for erasing, for
ease of wear leveling and low selection overhead [29]. The
second one selects the victim blocks with the most invalid
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Fig. 3. 3 steps of a typical garbage collection process in SSDs.

pages, thus called greedy approach [10]. However, since the
cold data pages of the CAGC system are stored together and
the cold data pages are less likely to be invalidated, the use
of greedy algorithms may lead to an uneven wear-leveling
problem. To address this problem, a third approach, cost-
benefit approach, is proposed to comprehensively consider
both the number of invalid pages in the victim flash block
and the erasing history of the flash block to decide which
flash block is selected to be erased [16].

Equally important, since each memory cell in a flash block
has a limited number of erase cycles (before the cell becomes
unusable), GC also significantly affects the reliability (i.e.,
endurance) of SSD-based storage systems. Therefore, how to
address the performance and reliability issues caused by GC
of SSDs has become a critically important challenge when
deploying flash-based SSDs in HPC and enterprise storage
systems [19], [41].

Figure 3 shows the 3 steps of a typical GC process in SSDs,
that is: (1) select the victim flash block to be erased; (2) read
the valid data pages in the victim flash block and write them
to other free flash blocks; (3) erase the victim flash block to
mark it a free and available one for subsequent write data.
Among the 3 steps, the erase latency of the flash block is the
largest, usually at the ms level, which is much greater than
the read and write latency of the flash page, usually at the us
level.

With the development and application of the ultra-low
latency Z-NAND and XL-Flash technologies that greatly am-
plifies the hash compute latency of the data deduplication
process as it lies on the write critical path, it is no longer
advisable to directly apply data deduplication to flash-based
SSDs based on such technologies. To address the problem,
we propose a Content-Aware Garbage Collection scheme,
called CAGC, to embed the data deduplication into the data
movement workflow of the GC process in ultra-low latency
flash-based SSDs. The main idea behind CAGC is to hide
the hash compute overhead by computing hash values of data
chunks in parallel with the relatively long-latency operations
of valid-page copying and flash block erase, thus alleviat-
ing the performance degradation induced by the inline data
deduplication operations. To further reduce data writes, CAGC
divides and writes data pages into hot or cold region based on
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their reference counts, which improves the GC efficiency and
reduces the write amplification.

III. DESIGN OF CAGC

In this section, we first present a system overview of the pro-
posed Content-Aware Garbage Collection (CAGC), followed
by a description of workflow in CAGC. The reference count-
based data page placement strategy of CAGC is illustrated at
the end of this section.

A. System overview

The main idea behind the CAGC scheme is to remove
the data deduplication operation from the foreground critical
I/O path and embed it into the background GC process in
ultra-low latency flash-based SSDs. CAGC not only hides the
entire deduplication-induced overheads, but also avoids the
negative impact of inline data deduplication on the user I/O
performance. Meanwhile, CAGC leverages the characteristics
of data page reference counts to separate the data pages with
different reference counts into cold or hot region, which further
reduces the number of valid data pages copied and the number
of flash blocks erased during the GC period, thus improving
both the performance and reliability of ultra-low latency flash-
based SSDs.

Figure 4 shows the system architecture overview of CAGC,
which mainly consists of three modules, i.e., Garbage Collec-
tion module, Data Deduplication module and Page Placement
module. The Garbage Collection module is mainly responsible
for selecting the victim flash blocks to be freed, migrating the
valid data pages in the victim flash blocks, and then erasing
these victim flash blocks. The Data Deduplication module is
mainly responsible for conducting data deduplication and the
valid data page migrations during the GC period to eliminate
the write operations of redundant data pages, and passing the
reference count information of the data pages to the Page
Placement module. The Page Placement module is responsible
for organizing and managing the data pages in the flash blocks
according to the reference count. As shown in Figure 4, CAGC
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is located in the Flash Translation Layer (FTL) of SSDs.
Although CAGC takes garbage collection as the one of its
central component, it does not change the internal SSD GC
workflow and algorithm. Therefore, CAGC is orthogonal to
and easily incorporated with any existing GC algorithms, to
further improve the GC efficiency.

As shown in Figure 4, the Hot Region refers to the group
of flash blocks whose data pages are frequently updated to
become invalid, and the Cold Region refers to the group of
flash blocks whose data pages are rarely updated or deleted.
When a file is deleted, the reference count of the pages
related the file will only be decremented by 1 from its current
reference counts. A page becomes invalid only when its
reference count is reduced to 0, meaning that a data page with
a high reference count will not likely be invalidated. Therefore,
as shown in Figure 4, those data pages with a reference count
of 1 are stored in the Hot Region, and those data pages with
a higher reference count are stored in the Cold Region.

B. Workflow of content-aware garbage collection

In addition to serving user read and write requests, flash-
based SSDs also need to conduct GC internally to release those
flash blocks occupied by invalid data pages, so that those flash
blocks can be reused for subsequent write data. Generally,
flash-based SSDs utilize the system idle periods to conduct
GC in the background to reclaim invalid data pages to obtain
free space. However, when the free space in the SSD is lower
than a preset threshold, the GC process is triggered to select
the victim flash blocks that meet certain conditions specified
by a given GC algorithm.

Figure 5 shows the workflow of content-aware garbage
collection. When a victim flash block to be erased is selected,
the valid data pages are read and the hash fingerprints of these
data pages are calculated. Then CAGC searches the fingerprint
in the fingerprint index to determine whether it is redundant
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(hit/matched) or not (missed/unmatched). If the data page is
not redundant, CAGC writes the data page into the hot region
and updates the fingerprint index. Otherwise, CAGC does not
write the data page but simply updates the corresponding
metadata, including increasing the reference count.

At the same time, when the reference count of the redundant
data page is equal to the preset threshold, the data page will
be migrated to the Cold Region before the victim flash block
is erased. After all valid pages in the victim flash block have
been migrated, the victim flash block is erased.

The flash-block erase time is generally at the millisecond
level, which is much higher than the microsecond-level calcu-
lation and search overhead of the hash fingerprint. This indi-
cates that embedding the data deduplication process into the
GC process does not cause significant performance overhead.
On the contrary, by using the CAGC scheme, redundant data
pages will not be repeatedly written, thus improving the GC
efficiency for ultra-low latency flash-based SSDs.

C. Reference count-based data page placement

The reference count of a given data page in data dedupli-
cation indicates how many different files share this data page.
Intuitively, the higher the reference count for a page is, the
smaller the possibility of this data page being deleted (i.e.,
that of all files sharing this page being deleted). It will also
be verified empirically next.

Figure 6 shows the distribution of invalid data pages gen-
erated from pages of different reference count for the three
FIU traces. More than 80% of invalid data pages come from
flash pages with a reference count of 1, while the percentage
of invalid data pages from a reference count of 3 or more is
less than 1%. The analysis on these workloads shows that data
pages with higher reference count have a much longer lifetime
than data pages with lower reference count, and are less likely
to become invalid. Therefore, data pages with high reference
counts can be considered as cold data pages and stored in
the Cold Region. In addition, the data pages with a reference
count equal to or lower than a preset threshold (e.g., 1) can
be considered as hot data pages and stored in the Hot Region.

The data pages in the Hot Region have higher update
frequency and higher probability of being invalid than those in
the Cold Region. Therefore, the flash blocks in the Hot Region
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Fig. 7. An example of reference count-based data page placement.

are desirable candidates for victim blocks since they are likely
to contain very few valid pages that need to be migrated.
Besides, each deletion or update operation on a flash data
page in the Cold Region will only cause its reference count
to be decremented by 1, rather than invalidating the page,
meaning that the corresponding flash block will not likely have
any invalid data pages. Thus, CAGC can reduce the number
of valid data pages migrated and the number of flash blocks
erased during GC.

Figure 7 shows an example of reference count-based data
page placement, and the Set refers to an area composed of
multiple flash blocks. In the traditional deduplication-based
flash storage, data pages with different reference count are
mixed and stored together. CAGC embeds the reference count-
based data page placement along with the migration process
of valid data pages during the GC period, thus eliminating
the additional data page read and write operations from flash
storage.

As shown in Figure 7, the reference count information of
each data page can be obtained from the fingerprint index in
deduplication-based storage systems. Then the reference count
will be compared with a preset reference count threshold (e.g.,
1). If it is larger than the threshold, the data page will be
stored in the Cold Region. Otherwise, it will be stored in the
Hot Region. By exploiting the reference count feature of data
deduplication to guide the data page placement and leveraging
the capacity optimization advantages of the data deduplication
technology, the performance and reliability of the ultra-low
latency flash-based SSDs can be further improved.

Figure 8 shows an example of the comparison between the
traditional GC scheme and the CAGC scheme of writing 4 files
and then deleting 2 of them. In the traditional SSD GC scheme,
since the content redundancy of data pages is not known, data
pages with the same content are redundantly stored. After
some files are deleted or updated, invalid data pages appear
in many different flash blocks. Therefore, it needs to migrate
many more valid data pages and erase many more flash blocks
than CAGC during the GC period.

As shown in Figure 8(a), the traditional GC process requires
12 valid data page write operations and 2 flash block erase
operations, but only 6 flash data pages are freed. By contrast,
CAGC can conduct data deduplication for the migrated data
pages during the GC period, thus eliminating redundant flash
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TABLE I
THE CONFIGURATION OF SSD

Type Value Type Value

Page Size 4KB Read 12us

Block Size 256KB Write 16us

OP Space 7% Erase Delay 1.5ms

Capacity 80GB Hash 14us

Workloads FIU [9] GC Watermark 20%

page write operations. As shown in Figure 8(b), CAGC only
needs 7 valid data page write operations and 1 flash block erase
operation in the GC process, and 11 flash data pages can be
freed. Compared with the traditional SSD garbage collection
scheme, CAGC can significantly improve the GC efficiency.

IV. PERFORMANCE EVALUATIONS

In this section, we first describe the experimental setup and
methodology. Then we evaluate the performance and effective-
ness of our proposed CAGC scheme driven by deduplicating
workloads (i.e., workload traces collected from real production
systems but instrumented to enable content identification as
explained later), including the comparison in the number of
flash blocks erased and the number of pages written during
GC. We present the testing and analysis of sensitivity study at
the end of this section.

A. Experimental setup and methodology

We implement a prototype system of CAGC, which is
extended on the basis of an event-driven simulator for flash-
based SSDs, FlashSim [20]. It has built in various FTL
management strategies and can generate response time, num-
ber of flash blocks erased and many additional performance
statistics. Based on the performance parameters of Samsung’s
commercially available Z-NAND flash memory, the specific
parameter settings of the ultra-low latency flash-based SSD in
the experiment are shown in Table I.

We replay the deduplicating workloads to evaluate the
performance of the CAGC prototype system. In the trace-
driven experiments, the three traces were obtained from the

TABLE II
THE WORKLOAD CHARACTERISTICS

Traces Write Ratio Dedup. Ratio Aver. Req. Size

Mail 69.8% 89.3% 14.8KB

Homes 80.5% 30.0% 13.1KB

Web-vm 78.5% 49.3% 40.8KB

SyLab of FIU [22] and cover a duration of three weeks.
They were collected from a virtual machine running a file
server (Homes), two web-servers (Web-vm) and an email
server (Mail), respectively. Each request in the traces includes
the hash value of the requested data. The characteristics of
the three traces are shown in Table II [9], [22]. The FIU
workloads with fingerprints have been widely used in the
storage community to study the performance of deduplication-
based storage systems.

In the experiments, we compare CAGC with the ultra-low
latency flash-based SSDs without embedding the inline data
deduplication during the GC process (Baseline), and the ultra-
low latency flash-based SSDs with inline data deduplication
embedded on the foreground user write path (Inline-Dedupe).
By default, almost all the experiments in this paper are based
on the greedy algorithm to select the victim flash block for
all the schemes. The sensitivity study on different victim
flash block selecting algorithms is presented and analyzed in
Section IV-C.

B. Performance result and analysis

Figure 9 compares CAGC with the Baseline system in terms
of the number of flash blocks erased, driven by the three
deduplicating workloads. CAGC erases significantly smaller
numbers of flash blocks than the non-deduplication Baseline
system, by 23.3%, 48.3%, and 86.6%, under the Homes, Web-
vm, and Mail workloads, respectively. CAGC performs data
deduplication during the data page migration process of the
SSD GC periods, which reduces the writing of redundant data
pages and further reduces the number of erased flash blocks.
For the Mail workload with highest deduplication ratio, CAGC
reduces the largest number of erased flash blocks.
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Fig. 10. The number of data pages migrated during GC.

Moreover, CAGC separates the flash data pages based on
different reference counts and stores them in different regions,
i.e., hot region and cold region. The greedy algorithm always
selects the victim flash block that contains the most invalid
data pages, thus CAGC further reduces the number of valid
data page migrations during GC periods and greatly reduces
the number of erased flash blocks.

CAGC reduces the number of flash blocks erased during GC
because of the following two reasons. First, CAGC is based
on data deduplication that significantly reduces the redundant
data page write operations during GC periods. Figure 10
shows a comparison of the number of data pages migrated
during GC periods driven by the three workloads. As shown
in Figure 10, compared with the Baseline system, CAGC
reduces the number of data pages migrated by 35.1%, 47.9%,
and 85.9%, under the Homes, Web-vm, and Mail workloads,
respectively. Figure 10 shows that for the Mail workload,
CAGC greatly reduces the number of data pages migrated.
The reason is that the data deduplication ratio of the Mail
workload is over 90%, which indicates that CAGC can avoid
a large number of data pages migrated during GC.

Second, the reference count-based data page placement in
CAGC can effectively separate the hot and cold data pages
and store them in different flash regions, thus significantly
reducing the number of data pages migrated and the number
of flash blocks erased during GC periods.

It is worth noting that CAGC’s notable improvement on
the GC efficiency, by reducing the numbers of blocks erased

0

0.5

1

1.5

2

Homes Web-vm Mail

N
or

m
al

zi
ed

 R
es

po
ns

e 
T

im
es Inline-Dedupe Baseline CAGC

Fig. 11. A comparison of the normalized average response times.

and data pages migrated, can greatly minimize GC’s negative
impact to application’s request response time [38]. This is
because GC operations in flash-based SSDs, including flash
blocks erase and migration of valid pages, are very time-
consuming background tasks that content for SSD internal
bandwidth and directly interfere with the foreground user I/O
requests.

In order to study the performance impact of different GC
schemes on the average response times, Figure 11 shows a
comparison of the normalized average response times during
the SSD GC periods driven by the three deduplicating work-
loads. Compared with the Baseline system, CAGC reduces
the average user response times during GC periods by 33.6%,
29.6%, and 70.1%, under the Homes, Web-vm, and Mail
workload, respectively.

The main reasons are twofold. First, CAGC improves the
GC efficiency by applying data deduplication during the
migration of valid data pages to eliminate the write operations
of redundant data pages. Thus, fewer but invalid-page-filled
flash blocks are erased, meaning that the same amount of
free space is claimed by a smaller number of erased blocks.
Moreover, resource contention among user requests is also
alleviated. User read and write requests can occupy more SSD
internal resources (bandwidth). Therefore, CAGC effectively
reduces the performance impact of GC operations on user read
and write requests during GC periods.

Second, by improving the GC efficiency, CAGC also sig-
nificantly shortens the GC duration. Since the migration of
valid data pages and the erasing of flash blocks take a long
time during GC periods, user read and write requests are
significantly affected by the GC operations. By using data
deduplication technology and reference count-based data page
placement, CAGC significantly reduces the number of data
pages migrated and flash blocks erased, thus speeding up
the GC process. Meanwhile, CAGC also reduces the time
length when user performance is degraded. In general, by both
reducing the user request response time during GC periods and
shortening the GC duration, CAGC significantly improves the
user performance.

As shown in Figure 11, for the Mail workload, CAGC
has the lowest user response time. Figure 11 also shows that
inline data deduplication degrades the user performance for
ultra-low latency flash-based SSDs. Especially for the Homes
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Fig. 12. Cumulative distribution function (CDF) of the response times for the Baseline system and CAGC schemes driven by the three deduplicating workloads,
where the X-axis indicates the request response time and the Y-axis indicates the sum of the distribution up to a given corresponding value on the X-axis.

and Web-vm workloads with moderate data redundancy, the
response times have increased by more than 50%. Ultra-low
latency flash-based SSDs are generally used in primary storage
systems, such as the enterprise-level and data center servers
where the data deduplication ratio is moderate.

Therefore, although applying inline data deduplication on
these ultra-low latency flash-based SSDs can save storage
capacity and reduce the write traffic, it also significantly
increases the user response time and thus reducing the storage
system performance. This is counter to the purpose of using
ultra-low latency flash-based SSDs in these environments, and
users cannot tolerate it. Different from inline data deduplica-
tion, CAGC applies data deduplication in the GC process for
ultra-low latency flash-based SSDs, which can not only reduce
the impact of data deduplication on the SSD performance, but
also improve the GC efficiency and storage efficiency.

In modern large-scale storage systems, such as Google,
Facebook and Amazon, the long tails of the service latency
have received particular attention [8]. With the wide deploy-
ment of flash-based storage devices in large-scale storage
systems, the tail latency of flash-based SSDs caused by GC
operations ought to be a very important consideration for the
design of flash-based storage systems [12], [39].

To investigate the impact of CAGC on tail latency under
different workloads, we plot the Cumulative distribution func-
tion (CDF) of the response times for the Baseline system and
CAGC scheme in Figure 12 driven by the three workloads.
CAGC consistently and significantly outperforms the Baseline
system in terms of the tail latency performance. Especially,
the response time efficiency under the mail workload is signif-
icantly higher than the other two workloads. The main reason
is that under the other two workloads, the number of data
pages migrated and blocks erased are relatively small and the
difference is not much, leading the improvement of GC per-
formance weak comparing the mail workloads. For example,
Figure 12(c) shows that CAGC completes 80% user requests
within 0.02us, while the Baseline system completes 80% user
requests between 0.08us to 0.1us. Meanwhile, Since the tail
latency is mainly caused by the GC operations of flash-based
storage devices [39], improving the GC efficiency directly
reduces the tail latency. By embedding the data deduplication
process into the GC process, CAGC not only reduces flash

block erase count during GC periods, but also significantly
reduces the GC length, which directly alleviates the user
I/O performance degradations. As a result, CAGC reduces
the percentage of requests with long latency, especially for
deduplicating workloads with high data deduplication ratios,
such as the Mail workload.

C. Sensitivity testing and analysis

The performance of CAGC will be affected by several
design parameters, such as the selection algorithm (i.e., Ran-
dom, Greedy, and Cost-Benefit algorithm) for victim flash
blocks. Figure 13 shows a comparison of CAGC’s optimization
results under different victim flash block selection algorithms
in terms of number of flash blocks erase count, number of
pages migrated during GC, and the average response time.

Compared with the Baseline system, under all the three
flash block selection algorithms, CAGC effectively reduces
the number of flash blocks erased and the number of valid
data pages migrated during GC period. At the same time,
CAGC effectively reduces the average user response time.
The reason is that CAGC uses data deduplication to exploit
data redundancy in primary storage systems, and uses the data
reference count characteristics to effectively separate the hot
and cold flash data pages, which greatly improves the GC
efficiency of ultra-low latency flash-based SSDs. Moreover,
CAGC can be easily applied to different SSD GC algorithms,
such as different selection algorithms for victim flash blocks.

V. RELATED WORK

GC is very time-consuming and thus a key performance
bottleneck of flash-based SSDs. For traditional flash mem-
ory to flash-based SSDs, many studies have been conducted
to optimize the GC efficiency or alleviate the GC-induced
performance degradation [3], [19], [24], [31], [36], [38],
[39], [41]. Generally speaking, existing studies addressing the
GC-induced problems in flash-based SSDs can be classified
into three categories, namely, optimizing the GC algorithms,
optimizing the GC workflow and reducing the write traffic to
flash.

First, optimizing the GC algorithms can directly improve the
GC efficiency of flash memory. These optimizations usually
focus on different steps of GC algorithms [10], [40]: when to
trigger the GC process, which flash block is selected to be
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Fig. 13. A comparison of the optimization results under different victim flash block selection algorithms in terms of the number of flash blocks erased, the
number of data pages migrated during GC, and the average response times.

erased, and how to merge the valid data pages, etc. Among
these proposed schemes, how to identify and store the hot
and cold data pages in different flash blocks is the key to
improve the GC efficiency. Different from the previous studies
that exploit the spatial locality based on logic block addresses,
CAGC exploits the content locality, expressed by the reference
counts in deduplicaiton-based memory systems, to identify the
hot and cold data pages. Thus, CAGC effectively reduces the
number of valid data pages migrated, which directly improves
the GC efficiency [24].

Second, due to the long tail latencies of GC operations,
user read and write requests are significantly affected by
the on-going flash block erase operations. To alleviate the
GC-induced user performance degradation, schemes such as
semi-preemption GC [23], erase suspension [35] and partial-
erase [24] are proposed to give higher priority to serve user
I/O requests. By suspending the on-going flash block erase
operations, internal flash resources can be allocated to serve
user I/O requests much more efficiently. However, all these
schemes only change the GC workflow to alleviate the user
performance degradation but do not improve the GC efficiency.

Third, GC operations are also affected by the write data
volume. Reducing the write data can directly reduce GC op-
erations. Thus, schemes such as write buffer with hard drive or
non-volatile memory [32], [36], inline data compression [25]
and inline data deduplication [2], [11], [26] are applied to
reduce the write traffic of flash-based SSDs. However, with
the emergence of ultra-low latency flash-based SSDs, inline
data reduction with its operations lying on the critical I/O path
will introduce significant performance overhead for ultra-low
latency flash-based SSDs. By contrast, CAGC embeds the data
deduplication into the GC process to hide the deduplication-
induced performance overhead by exploiting parallelism, while
reaping the benefits of deduplication-introduced data reduc-
tion.

VI. CONCLUSION

With the advent of Samsung’s Z-NAND and Toshiba’s
XL-Flash technologies, directly applying inline data dedu-
plication in these ultra-low latency flash-based SSDs can
degrade the storage performance. To address the problem,
this paper proposes a Content-Aware Garbage Collection tech-
nology (CAGC) that embeds the data deduplication into the

GC process to hide the performance overhead. Meanwhile,
CAGC uses the reference count-based data page placement to
exploit the reference count feature in deduplicating storage
systems, which effectively separates the hot and cold data
pages. Thus, CAGC can further reduce the number of data
page write operations and the block erase count during the
SSD garbage collection period. The performance results on a
CAGC prototype implemented in FlashSim show that CAGC
effectively reduces the numbers of flash blocks erased and
valid pages migrated during the SSD GC period, thus further
improving the user I/O performance and reliability for ultra-
low latency flash-based SSDs.
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