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Abstract— For a class of Cyber-Physical Systems (CPSs), we
address the problem of performing computations over the cloud
without revealing private information about the structure and
operation of the system. We model CPSs as a collection of
input-output dynamical systems (the system operation modes).
Depending on the mode the system is operating on, the output
trajectory is generated by one of these systems in response
to driving inputs. Output measurements and driving inputs
are sent to the cloud for processing purposes. We capture
this “processing” through some function (of the input-output
trajectory) that we require the cloud to compute accurately
– referred here as the trajectory utility. However, for privacy
reasons, we would like to keep the mode private, i.e., we do
not want the cloud to correctly identify what mode of the CPS
produced a given trajectory. To this end, we distort trajectories
before transmission and send the corrupted data to the cloud.
We provide mathematical tools (based on output-regulation
techniques) to properly design distorting mechanisms so that:
1) the original and distorted trajectories lead to the same utility;
and the distorted data leads the cloud to misclassify the mode.

I. INTRODUCTION

Scientific and technological advances have led to
an overwhelming amount of user data being collected
and processed by hundreds of companies over the
cloud. Companies mine and classify this data to provide
personalized services and advertising. However, these new
technologies have also led to an alarming widespread loss of
privacy in society. Depending on the adversaries’ resources,
they may infer sensitive (private) information about the
operation of systems from public data available on the
internet and unsecured/public servers and communication
networks. A motivating example of this privacy loss is the
data collection, classification, and sharing by the Internet-of-
Things (IoT) [1], which is, most of the time, done without
the user’s informed consent. Another example of privacy
loss is the potential use of data from smart electrical meters
by criminals, advertising agencies, and governments, for
monitoring the presence and activities of occupants, [2]-[3].
These privacy concerns show that there is an acute need
for privacy preserving mechanisms capable of handling the
new privacy challenges induced by a hyperconnected world.
That is why researchers from different fields (e.g., computer
science, information theory, and control theory) have been
attracted to the broad research area of privacy and security
of Cyber-Physical Systems (CPSs), see, e.g., [4]-[28].
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In this manuscript, for a class of Cyber-Physical Systems
(CPSs), we address the problem of performing computations
over the cloud without revealing private information about
the structure and operation of the system. That is, the
objective is to have the cloud provide a service by processing
system data while preventing it from learning private infor-
mation. The setting that we consider is the following. The
underlying physical part of the system (the system dynamics)
consists of a finite collection of N input-output dynamical
systems, Σi, i ∈ {1, . . . , N}. Depending on the mode the
system is operating on, sensor measurements are generated
by one of these dynamical systems in response to driving
inputs. Each subsystem characterizes an operation mode of
the CPS. For instance, the operation of fitness trackers is
based on different modes (i.e., different dynamical systems)
indicating our activity level, e.g., depending whether we
are walking, running, or resting, sensors/actuators embed-
ded in the device would provide different data and this
data would be consistent with the corresponding dynamical
system. That is, we have a dynamical system explaining
the data for walking, one for running, and one for resting.
Under normal operating conditions, sensor measurements
and driving inputs are sent to the cloud for monitoring or
processing purposes. However, for privacy reasons, we would
like to keep the mode private. To accomplish this, we use
knowledge of the system dynamics to appropriately modify
sensor measurements and driving inputs generated by/for
system Σi so that the distorted data appears to have been
generated by a different target system, Σj , j 6= i, within
the operation modes of the CPS, and we send the distorted
data to the cloud. The idea is that if the target system is
sufficiently different (in some appropriate sense) from the
mode that generated the data, the cloud would incorrectly
classify the mode.

Note, however, that we do not want to overly distort the
data. The main reason for sharing system data is to have the
cloud provide a service by processing it. Usually, there is
some function of the sensor data that we would like the cloud
to compute accurately–referred here as the utility function.
The utility function imposes a constraint on the class of
systems that we can use as target systems. Concretely, we
aim at modifying input-output data so that: (1) the utility
function evaluated at the distorted data equals its value on
the original data; and (2) the output trajectory seems to have
been generated by the target system in response to driving
inputs, i.e., the provided input-output data is consistent with
the target system dynamics. We remark that we do not make
any assumption on the classification algorithm employed
by the cloud. It is unrealistic to assume we know how
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data is being classified. However, if one is only concerned
about misclassifying specific modes of the system dynamics,
arguably, mapping output trajectories and driving inputs to
a different mode would lead to incorrect classification if the
model of the modes that we use to design the distorting
mechanism is accurate enough to capture the true dynamic
behavior of the system.

Most of the work related to privacy of dynamical systems
deals with keeping the system state private when output mea-
surements and the system model are disclosed for processing
purposes, see, e.g., [21]-[27]. All these manuscripts fol-
low stochastic formulations where the objective is twofold:
1) To quantify the potential information leakage given a
privacy metric (e.g., based on differential privacy [29] or
information-theoretic [30]); and 2) To design randomizing
mechanisms to distort data so that the distorted disclosed data
provides prescribed privacy guarantees. In this manuscript,
we address a fundamentally different problem. First, we con-
sider fully deterministic systems and thus stochastic privacy
metrics do not make sense in our setting. Secondly, we are
not concerned with privacy of the system state per se, but it
is the mode the system is operating on what we want to keep
private. Because we consider LTI dynamics for each mode,
all the input-output data that a mode can generate forms a
linear subspace (referred here as the mode behaviour). So,
instead of looking for the probability distribution of the noise
to inject (as it is usually done in stochastic formulations), we
seek distorting mechanisms, based on system-theoretic tools
(output regulation), that maps data from the actual mode
behaviour into the behaviour of a different target mode, while
maintaining its utility invariant.

Notation: The notation col(x1, . . . , xn) stands for the
column vector composed of the elements x1, . . . , xn. This
notation is also used in case the components xi are vectors.
The n × n identity matrix is denoted by In or simply I
if n is clear from the context. Similarly, n × m matrices
composed of only ones and only zeros are denoted by 1n×m
and 0n×m, respectively, or simply 1 and 0 when their
dimensions are clear. Finite sequences of vectors are written
as xN := (x(1)>, . . . , x(N)>)> ∈ RNn with x(i) ∈ Rn,
and n,N ∈ N. We denote powers of matrices as (A)K =
A · · ·A (K times) for K > 0, (A)0 = I , and (A)K = 0 for
K < 0. Matrix Q+ ∈ Rm×n denotes the Moore–Penrose
inverse of Q ∈ Rn×m.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

We consider a class of cyber-physical systems whose
physical part can be modeled by switching discrete-time
linear systems of the form:

Σρ :=


xρ(k + 1) = Aρxρ(k) +Bρu(k),

yρ(k) = Cρxρ(k),

ρ ∈ N := {1, 2, . . . , N},
(1a)

y(k) = yρ(k), (1b)
with time index k ∈ N, state xρ ∈ Rnρ , nρ ∈ N, output
y ∈ Rm, m ∈ N, input u ∈ Rl, l ∈ N, and matrices
Aρ ∈ Rnρ×nρ , Bρ ∈ Rnρ×l, and Cρ ∈ Rm×nρ . It is

assumed that, for all ρ ∈ N , Aρ, Cρ, and Bρ are known,
(Aρ, Cρ) is observable, (Aρ, Bρ) is controllable, Im[Cρ] =
Rm, and Ker[Bρ] = {0}. Depending on the operation mode
of the system, output data is generated by one of the N
subsystems in (1), i.e., the output of the system at time
k, y(k) ∈ Rm, is given by y(k) = yρ(k) if the ρ-th
mode (system Σρ) is active, ρ ∈ N . Although y(k) might
switch among different modes, we assume (for trajectory
classification to actually make sense) that during a window of
observations, k ∈ K := {1, 2, . . . ,K}, K ∈ N, the trajectory
Y K = col[y(1), y(2), . . . , y(K)] ∈ RKm is generated by
a single mode, i.e., Y K = col[yρ(1), yρ(2), . . . , yρ(K)],
for some ρ ∈ N , in response to some driving sequence
UK−1 = col[u(1), u(2), . . . , u(K − 1)] ∈ R(K−1)l. With
slight abuse of notation, we often write Y K as Y Kρ to remark
that the trajectory has been generated by subsystem Σρ.

Each operation mode ρ ∈ N characterizes a behaviour
of the system. For instance, in smart devices, we may
have modes indicating our activity level. Depending whether
we are walking, running, or idle, sensors embedded in
the device provide different output trajectories Y Kρ . Each
trajectory would be consistent with the dynamical system
Σρ that produced it. That is, we have a dynamical system
Σρ explaining the data for walking, one for running, and one
for idle. Thus, when we say that an input-output trajectory
(UK−1, Y K) is being classified into a mode ρ ∈ N , we
refer to identifying which system Σρ in (1) produced it. To
classify the mode, we characterize the set of all input-output
trajectories that Σρ could produce, over all possible initial
conditions xρ(1) ∈ Rρ, and then we test if (UK−1, Y K)
belongs to this set – if so, we say that (UK−1, Y K) is
classified into mode ρ. We refer to this set of input-output
trajectories as the behaviour of mode ρ.

Definition 1 (Behaviour) The behaviour Bρ ⊆ RKm of
system Σρ, over k ∈ K = {1, . . . ,K}, is the set of all
input-output trajectories (UK−1, Y K) satisfying (1a) over
all possible initial conditions xρ(1) ∈ Rnρ .

Hence, classification could be accomplished by identifying
to which behaviour Bρ, ρ ∈ N , the trajectory (UK−1, Y K)
belongs. Note, however, that if Bρ∩Bρ′ 6= ∅, for some ρ, ρ′ ∈
N , ρ 6= ρ′, trajectories might belong to multiple behaviours,
i.e., trajectories in the intersection are not classifiable. This
limitation is inherent to the system dynamics and cannot
be surpassed by any classifier. In this manuscript, we are
interested in forcing the cloud to misclassify trajectories. To
induce this, we modify the input-output data that we provide
to the cloud so that it appears to have been generated by a
different mode. Concretely, given (UK−1, Y K) generated by
some mode ρ ∈ N , and a behaviour Bρ′ , ρ′ ∈ N , ρ 6= ρ′, we
seek a map, gρ,ρ′ : Bρ → Bρ′ , referred here as a distorting
map. That is, the map (UK−1, Y K) 7→ gρ,ρ′(U

K−1, Y K)
takes trajectories from Bρ and maps them into Bρ′ . By
passing (UK−1, Y K) through gρ,ρ′(·) before transmission,
we are forcing the cloud to classify gρ,ρ′(U

K−1, Y K) and
since gρ,ρ′(U

K−1, Y K) ∈ Bρ′ , the cloud would (ideally)
classify the mode as ρ′.
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Definition 2 (Distorting Map and Target Mode) Given
two behaviours, Bρ and Bρ′ , ρ, ρ′ ∈ N , ρ 6= ρ′, we say that
a function gρ,ρ′(·) is a distorting map if gρ,ρ′ : Bρ → Bρ′ .
We refer to ρ′ as the target mode.

Note that, because the dynamics of the modes in (1)
is linear, each behaviour Bρ is an linear subspace. The
latter implies that there might exist distorting maps that
make the Euclidian distance between (UK−1, Y K) and
gρ,ρ′(U

K−1, Y K) arbitrarily large. We do not want to overly
distort trajectories. Usually, there is some sensitive informa-
tion (function of the input-output trajectory (UK−1, Y K))
that we would like the cloud to compute accurately. For
instance, in intelligent transportation systems, we might want
the cloud to accurately compute the average speed of vehicles
so that it can send the highway capacity or the shortest
route to a destination back to us. To this end, we introduce
the notions of utility and utility function of the trajectory
(UK−1, Y K).

Definition 3 (Utility and Utility Function) The utility of a
trajectory (UK−1, Y K) refers to some sensitive information,
denoted as z(UK−1, Y K) ∈ Rq , q ∈ N, z : R(K−1)l ×
RKm → Rq , the cloud must compute accurately. We refer
to the function z(·) as the utility function.

Then, to maintain the utility of the trajectory after distor-
tion, we require that the utility function evaluated at the dis-
torted data equals the utility of the trajectory (UK−1, Y K).
This imposes a constraint on the modes that we can select as
target systems and the class of distorting functions that we
can use. Concretely, we seek distorting mechanisms, gρ,ρ′(·),
that satisfy z ◦ gρ,ρ′(UK−1, Y K) = z(UK−1, Y K) and map
the input-output trajectory (UK−1, Y Kρ ) into the behaviour
Bρ′ – leading to incorrect classification.

In some applications, it might not be realistic to assume
that we know the utility function exactly. If z(·) is completely
unknown, we would not know how to select gρ,ρ′(·) to
avoid overly distorting the trajectory. So, in the problem
formulation introduced above, we are implicitly assuming
that z(·) is known. To relax this, we work with utility
functions that can be written as the composition of two
other functions, an unknown function h : Rr → Rq and
a known function f : R(K−1)l × RKm → Rr, r ∈ N, i.e.,
z(·) = h ◦ f(·). We formulate the problem in terms of the
known part of z(·), the function f(·). This is without loss
of generality as if the complete z(·) is known, z(·) = f(·)
and h(·) = id(·), where id(·) denotes the identity map.
From a different perspective, some utility functions, even
if they are fully known, might be too complicated to work
with. Then, factorising z(·) as h ◦ f(·) and working with
a lower complexity function f(·) might make the problem
more tractable. Then, if z(·) = h ◦ f(·), for some lower (or
equal) complexity known function f(·), the aforementioned
utility constraint, z ◦ gρ,ρ′(UK−1, Y K) = z(UK−1, Y K),
takes the form h◦f ◦gρ,ρ′(UK−1, Y K) = h◦f(UK−1, Y K),
which is satisfied if (and only if when h(·) is an injection)
f ◦ gρ,ρ′(UK−1, Y K) = f(UK−1, Y K).

Next, we formally pose the problem we seek to address.

Problem 1 (Misclassification-Utility Problem) Given an
input-output trajectory (UK−1, Y Kρ ), a target mode ρ′,
ρ, ρ′ ∈ N , ρ 6= ρ′, and a utility function z(·) = h ◦ f(·),
find a distorting map gρ,ρ′ : Bρ → Bρ′ satisfying:
f ◦ gρ,ρ′(UK−1, Y Kρ ) = f(UK−1, Y Kρ ).

Thus, Problem 1 seeks distorting mechanisms for which
the distorted data leads to the same utility as (UK−1, Y Kρ )
– since f ◦ gρ,ρ′(UK−1, Y Kρ ) = f(UK−1, Y Kρ ) implies h ◦
f ◦ gρ,ρ′(UK−1, Y Kρ ) = h ◦ f(UK−1, Y Kρ ) – and that map
the trajectory (UK−1, Y Kρ ) into the behaviour Bρ′ .

In many applications, the known part of z(·), f(·), is
either an average of some sensor measurements or a weighted
sum of them over a period of time, i.e., f(·) is a linear
transformation of the output trajectory Y K . Motivated by
this, we consider affine functions for f(·) that only depend
on output trajectories Y K . Also, because behaviours are
linear subspaces and we consider an affine function f(·),
we consider affine distorting maps gρ,ρ′(·) too.

III. AFFINE DISTORTING MAPS AND UTILITY
FUNCTIONS

Consider gρ,ρ′(·) and f(·) of the form:

gρ,ρ′(Y,U) :=

(
Y + ∆Y

U + ∆U

)
, (2a)

f(Y ) := FY + µ, (2b)
with Y,∆Y ∈ RKm, U,∆U ∈ R(K−1)l, ∆ := col[∆Y ,∆U ],
F ∈ Rq×Km, and µ ∈ Rq . It follows that Problem 1 amounts
to finding ∆ ∈ RK(m+l)−l such that col[UK−1 +∆U , Y

K
ρ +

∆Y ] ∈ Bρ′ , ρ, ρ′ ∈ N , ρ 6= ρ′, for some target mode ρ′, and
F (Y Kρ + ∆Y ) + µ = FY Kρ + µ (i.e., ∆Y ∈ Ker[F ]).

In most real-time applications, input-output data is sent to
the cloud immediately after it is generated. Thus, a realistic
configuration is to modify (u(k), y(k)) recursively and in
real-time so that the modified data, say (ū(k), ȳ(k)), k ∈ K,
satisfies FȲ K = FY K (same utility) and (ŪK−1, Ȳ K) ∈
Bρ′ (belongs to the target mode behaviour), for some tar-
get mode ρ′ ∈ N , Ȳ K = col[ȳ(1), ȳ(2), . . . , ȳ(K)], and
ŪK−1 = col[ū(1), ū(2), . . . , ū(K − 1)].

The target mode dynamics, Σρ′ , is characterized by the
triple (Aρ′ , Bρ′ , Cρ′), ρ′ ∈ N , as introduced in (1). By
Definition 1, any input-output trajectory (ŪK−1, Ȳ K) in Bρ′
satisfies the difference equations:{

x̄(k + 1) = Aρ′ x̄(k) +Bρ′ ū(k),

ȳ(k) = Cρ′ x̄(k),
(3)

for some initial condition x̄(1) ∈ Rnρ′ . Therefore, we can
generate trajectories from Bρ′ by fixing the input sequence
ū(k) ∈ Rl, k ∈ {1, 2, . . . ,K − 1}, and passing it through
(3) for some initial condition, to obtain an output sequence
ȳ(k) ∈ Rm, k ∈ K. By construction, the corresponding
trajectory (ŪK−1, Ȳ K) belongs to Bρ′ . Thus, we can use
(3) to recursively generate trajectories from the target mode
behaviour. The idea is that if we send these trajectories
through the network (instead of the actual (UK−1, Y K)),
the cloud would classify the mode as ρ′. However, we cannot
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just send any trajectory. We need Y K and Ȳ K to lead to the
same utility, i.e., FȲ K = FY K (see (2)). Note that if Ȳ K =
Y K + ∆Y , FȲ K = FY K , if and only if ∆Y ∈ Ker[F ]. Let
∆Y = col[δY (1), . . . , δY (K)], δY (i) ∈ Rm, i ∈ K; then,
Ȳ K = Y K + ∆Y can be written as ȳ(k) = y(k) + δY (k),
k ∈ K. Hence, we can address Problem 1 recursively and
in real-time by designing an artificial input sequence ū(k),
k ∈ {1, 2, . . . ,K − 1}, and an initial condition x̄(1) ∈ Rnρ′

such that ȳ(k) in (3) satisfies ȳ(k) = y(k)+ δY (k) for some
∆Y ∈ Ker[F ].

Let ū(k) = ū1(k) + ū2(k), and write the state, x̄(k),
and output, ȳ(k), of (3) as x̄(k) = x̄1(k) + x̄2(k) and
ȳ(k) = ȳ1(k)+ ȳ2(k), where (x̄1(k), ȳ1(k)) denotes the part
of (x̄(k), ȳ(k)) driven by ū1(k) and (x̄2(k), ȳ2(k)) the part
driven by ū2(k). Using this new notation and superposition
of linear systems, we can write (3) as{

x̄1(k + 1) = Aρ′ x̄
1(k) +Bρ′ ū

1(k),

ȳ1(k) = Cρ′ x̄
1(k),

(4a){
x̄2(k + 1) = Aρ′ x̄

2(k) +Bρ′ ū
2(k),

ȳ2(k) = Cρ′ x̄
2(k),

(4b)

ȳ(k) = ȳ1(k) + ȳ2(k), (4c)
with corresponding initial conditions x̄1(1), x̄2(1) ∈ Rn

satisfying x̄(1) = x̄1(1) + x̄2(1). Then, an approach to
enforce ȳ(k) = y(k) + δY (k), k ∈ K, is to design ū1(k) in
(4a) such that ȳ1(k) = Cρ′ x̄

1(k) = y(k) (output regulation),
k ∈ K, and u2(k) in (4b) to enforce ȳ2(k) = Cρ′ x̄

2(k) =
δY (k) (utility invariance), k ∈ K, and apply the combined
ū(k) = ū1(k) + ū2(k) to the virtual target system (3). By
construction, the resulting ȳ(k) satisfies ȳ(k) = y(k)+δY (k)
and the input-output trajectory (ŪK−1, Ȳ K) belongs to Bρ′ .

Using output-regulation techniques [31]-[32], we design
input ū1(k) and the initial condition x̄1(1) to regulate the
error, r(k) := ȳ1(k) − y(k), given (u(k), y(k)), the true
mode dynamics Σρ, and the target mode ρ′. Input u2(k) is
used to steer ȳ2(k), k ∈ K, to an element, ∆Y , in the kernel
of F . Since we know F a priori (before starting the system
operation), we can design u2(k) off-line, i.e., without using
real-time data (u(k), y(k)). In particular, we lift the target
system dynamics (4b) over k ∈ K and cast the problem of
finding x̄2(1) and ū2(k), k ∈ {1, . . . ,K − 1}, in terms of
the solution of some linear equations.

A. Virtual Output Regulation

Consider the trajectory (UK−1, Y K) generated in real-
time by system Σρ, ρ ∈ N. At every k ∈ K, the input-
output data available to design ū1(k) is (Uk−1, Y k). For ease
of presentation, we assume that the state xρ(k) of system
Σρ is available for feedback. However, when this is not
true, given observability of (Aρ, Cρ), we can recover the
state xρ(k) from (Uk−1, Y k) after n time-steps (note that,
in general, n � K). In this case, we would have to wait
for n time-steps before we start sending the corrupted data
to the cloud. An alternative would be to use internal model
principle techniques to synthesize dynamic regulators [32]
for ū1(k). In this manuscript, however, we assume that xρ(k)

is available at every k ∈ K and work with static regulators
to enforce ȳ1(k) = y(k), k ∈ K.

Consider the following state controller for system (4a):
ū1(k) = Rx̄1(k) + Lxρ(k) + Su(k), (5)

with true system state xρ(k) ∈ Rnρ and input u(k) ∈ Rl

of (1), virtual state x̄1(k) ∈ Rnρ′ of (4a), and matrices R ∈
Rl×nρ′ , L ∈ Rl×nρ , and S ∈ Rl×l. The feedback term,
Rx̄1(k), is used to enforce internal stability of (4a)-(5) only,
i.e., matrix R is selected so that (Aρ′ +Bρ′R) is Schur stable.
Such an R always exists due to controllability of (Aρ′ , Bρ′).
We need internal stability to prevent ū1(k) from growing
unbounded. The remaining terms in (5), Lxρ(k) and Su(k),
are used to enforce r(k) = ȳ1(k)− y(k) = 0, for all u(k) ∈
Rl, xρ(k) ∈ Rnρ , and k ∈ K.

Problem 2 (Virtual Output Regulation) Given input-
output real-time data (u(k), y(k)) generated by mode Σρ,
the target mode dynamics (4a), controller (5), and a matrix
R so that (Aρ′ +Bρ′R) is Schur, find (if possible) matrices
(L, S) in (5) and initial condition x̄1(1) of the virtual
system (4a) such that ȳ1(k) = y(k) for all u(k) ∈ Rl,
xρ(k) ∈ Rnρ , and k ∈ K.

Theorem 1 Problem 2 is solvable if and only if there exist
matrices Π ∈ Rnρ′×nρ , Γ ∈ Rl×nρ , and Θ ∈ Rl×l that are
a solution to the regulator equations: Aρ′Π−ΠAρ +Bρ′Γ = 0,

Cρ′Π− Cρ = 0,
Bρ′Θ−ΠBρ = 0.

(6)

The proof of Theorem 1 is omitted here due to limited space.

Corollary 1 Consider Problem 2 and let Π ∈ Rnρ′×nρ , Γ ∈
Rl×nρ , and Θ ∈ Rl×l solve the regulator equations (6).
Then, L = Γ − RΠ, S = Θ, and x̄1(1) = Πxρ(1) are a
solution to Problem 2.

Theorem 1 provides necessary and sufficient conditions
for Problem 2 to have a solution in terms of the solution of
the regulator equations (6). Once we have a solution (this
solution might not be unique), for given R so that (Aρ′ +
Bρ′R) is Schur, we can compute matrices (L, S) and initial
condition x̄1(1) to realize the controller ū1(k) in (5) using
Corollary 1.

Remark 1 Note that any controller ū1(k) in (5) and initial
condition x̄1(1) of (4a) solving Problem 2 provide already
a solution to Problem 1 (for the class of f(·) and gρ,ρ′(·)
introduced above). That is, these ū1(k) and ȳ1(k), k ∈ K,
belong to Bρ′ and, because ȳ1(k) = y(k), Y K and Ȳ K =
col[ȳ1(1), . . . , ȳ1(k)] have the same utility, i.e., FY K =
FȲ K . However, if we share ū1(k) and ȳ1(k), the cloud
would still get the true output data – with a different input
sequence though. In the next subsection, we provide tools
for properly distorting output data to avoid sharing the true
output sequence with the cloud.

B. Utility Invariance (Batch Approach)

In this subsection, we provide tools for designing ū2(k)
and x̄2(1) in (4b) so that ȳ2(k), k ∈ K, is steered to an
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element, ∆Y 6= 0, in the kernel of F . We use the resulting
ū2(k) and a ū1(k) synthesized using Corollary 1 to construct
the actual input ū(k) = ū1(k) + ū2(k) and initial condition
x̄(1) = x̄1(1) + x̄2(1) for the virtual system (3). Because
we know F a priori (before starting the system operation)
and ū1(k) is already being used to handle real-time data,
we can actually design u2(k) off-line, i.e., independent of
(u(k), y(k)). To do so, we lift the target system dynamics
(4b), over k ∈ K, and cast the problem of finding x̄2(1) and
ū2(k), k ∈ {1, . . . ,K− 1}, in terms of the solution of some
linear equations.

We aim at enforcing that the sequence of virtual outputs
ȳ2(k), k ∈ K, is contained in the kernel of F . If Ker[F ]
is trivial, the only vector to which we can drive ȳ2(k) is
the zero vector. In this case, ū1(k) solving Problem 2 and
ȳ1(k) = y(k) are the only option for solving Problem 1 (see
Remark 1). Therefore, a necessary condition for Problem 1
to have a different solution (ȳ(k) 6= y(k)) is that F has a
nontrivial kernel.

Assumption 1 The kernel of F ∈ Rq×Km is nontrivial.

Consider Ỹ K := col[ȳ2(1), . . . , ȳ2(K)]. The stacked vec-
tor Ỹ K can be written explicitly in terms of x̄2(1) and
ŨK−1 := col[ū2(1), . . . , ū2(K − 1)] as follows

Ỹ K = OK x̄2(1) + TKŨK−1,

TK :=


0 0 · · · 0

Cρ′Bρ′ 0 · · · 0
Cρ′Aρ′Bρ′ Cρ′Bρ′ · · · 0

...
...

. . .
...

Cρ′(Aρ′)
K−2Bρ′ Cρ′(Aρ′)

K−3Bρ′ · · · Cρ′Bρ′

 ,

OK :=


Cρ′

Cρ′Aρ′
...

Cρ′(Aρ′)
K−1

 ,
(7)

Problem 3 (Utility Invariance) Given the utility function
(2b) and the target mode dynamics (4b), find (if possible)
an initial condition x̄2(1) ∈ Rnρ′ of (4b) and a sequence
of inputs ŨK−1 = col[ū2(1), . . . , ū2(K − 1)] such that
OK x̄2(1)+TKŨK−1 ∈ Ker[F ], with OK and TK as defined
in (7).

Lemma 1 Consider the target mode behaviour Bρ′ . Problem
3 is solvable if and only if Bρ′ ∩ Ker[F ] 6= ∅.

The proof of Lemma 1 is omitted here due to limited space.

Theorem 2 Problem 3 is solvable if and only if there exist
vectors x ∈ Rnρ′ , U ∈ R(K−1)l, and θ ∈ RKm solution to
the linear equations:(

OK TK (F+F − IKm)

)xU
θ

 = 0. (8)

The proof of Theorem 2 is omitted here due to limited space.

Corollary 2 Consider Problem 3 and let x ∈ Rnρ′ , U ∈

R(K−1)l, and θ ∈ RKm solve (8). Then, x̄2(1) = x and
ŨK−1 = U are a solution to Problem 3.

Theorem 2 provides necessary and sufficient conditions for
Problem 3 to have a solution in terms of the solution of (8).
If there exists a solution, using Corollary 1, we can compute
the initial condition x̄2(1) and the sequence of controllers
ŨK−1 = col[ū2(1), . . . , ū2(K − 1)] to drive system (4b) so
that Ỹ K ∈ Ker[F ].

Remark 2 For given mode ρ′ ∈ N and utility matrix F ,
there either do not exist solutions to (8) or the solution is
unique or there exist an infinite number of solutions. In the
latter case, the set of solutions form a linear subspace, which
implies that Ỹ K can be chosen arbitrarily large. This is the
most appealing case to us as we can induce arbitrarily large
distortion without affecting the utility of the trajectory.

In the next subsection, we provide a synthesis procedure
to summarize the results presented above.

C. Synthesis Procedure:

Synthesis:
1) Given the mode dynamics Σρ in (1), ρ ∈ N , that will
generate the input-output trajectory, select a target mode Σρ′ ,
ρ′ ∈ N , ρ 6= ρ′.
2) Using the true system matrices (Aρ, Bρ, Cρ) and the target
mode matrices (Aρ′ , Bρ′ , Cρ′), seek a solution Π ∈ Rnρ′×nρ ,
Γ ∈ Rl×nρ , and Θ ∈ Rl×l to the regulator equations (6).
3) Select any matrix R so that (Aρ′ + Bρ′R) is Schur, and
compute matrices (L, S) of controller ū1(k) in (5) and the
initial condition x̄1(1) of (4a) using Corollary 1.
4) Consider the virtual target system (4a), with initial x̄1(1),
and close it with controller ū1(k) in (5).
5) Given the trajectory length K ∈ N and the utility matrix
F in (2b), compute matrices OK and TK in (7) and seek
a solution x ∈ Rnρ′ , U ∈ R(K−1)l, and θ ∈ RKm to the
linear equations (8).
6) Compute the initial condition x̄2(1) of (4b) and the
sequence of controllers {ū2(1), . . . , ū2(K−1)} using Corol-
lary 2.
7) Consider the virtual target system (4b), with initial x̄2(1),
and close it with controller ū2(k), k ∈ K.
8) Compute the combined input ū(k) = ū1(k) + ū2(k) and
corresponding output ȳ(k) = ȳ1(k)+ ȳ2(k) in (4c), and send
(ū(k), ȳ(k)) to the cloud in real-time.

IV. CONCLUSION

We have proposed a new formulation for dealing with
privacy problems in cyber-physical systems. In particular,
for a class of CPSs, we have addressed the problem of
performing computations over the cloud without revealing
private information about the structure and operation of the
system. A distorting mechanism (based on output regulation
techniques) that ensure CPSs data privacy and utility invari-
ance has been proposed.
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