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Abstract— There is an increasing demand for performing
machine learning tasks, such as human activity recognition (HAR)
on emerging ultra-low-power internet of things (IoT) platforms.
Recent works show substantial efficiency boosts from performing
inference tasks directly on the IoT nodes rather than merely
transmitting raw sensor data. However, the computation and
power demands of deep neural network (DNN) based inference
pose significant challenges when executed on the nodes of an
energy-harvesting wireless sensor network (EH-WSN). Moreover,
managing inferences requiring responses from multiple energy-
harvesting nodes imposes challenges at the system level in addition
to the constraints at each node.

This paper presents a novel scheduling policy along with
an adaptive ensemble learner to efficiently perform HAR on a
distributed energy-harvesting body area network. Our proposed
policy, Origin, strategically ensures efficient and accurate indi-
vidual inference execution at each sensor node by using a novel
activity-aware scheduling approach. It also leverages the continu-
ous nature of human activity when coordinating and aggregating
results from all the sensor nodes to improve final classification
accuracy. Further, Origin proposes an adaptive ensemble learner
to personalize the optimizations based on each individual user.
Experimental results using two different HAR data-sets show
Origin, while running on harvested energy, to be at least 2.5%
more accurate than a classical battery-powered energy aware
HAR classifier continuously operating at the same average power.

Index Terms—Energy Harvesting, Human Activity Recognition,
DNN, Wireless Senor Network, Ensemble Learning

I. INTRODUCTION

The advent of data driven computing, along with advances

in low-power computing platforms, has given rise to the new

generation of intelligent and connected devices that comprise

the internet of things (IoT). These devices have become an

integral part of our daily lives and, using techniques such

as deep learning, these devices are becoming increasingly

capable of performing complex inference tasks including ma-

chine translation, human activity recognition (HAR), bio-metric

authentication, ECG measurement, fall detection etcetera [1],

[2]. These inference tasks are typically driven by deep neural

networks (DNNs), which are known for being compute heavy

and power hungry [3]. Given the power and compute constraints

of the IoT devices performing sensing, it is difficult to execute

these inference tasks on the sensing device itself, excepting

a few intermittent tasks such as bio-metric authentication.

Instead, to perform complex and continuous inference, such

as HAR, the data is typically offloaded either to the cloud or

to a nearby host device which in turn executes the inference or

further redirects it [4] and, finally, returns the results to the IoT

devices responsible for data display or actuation, dependent on

the inference task.

Recent works [5], [6] suggest that processing data at the

source is more efficient that sending them to the cloud and

getting the results back, owing to the power and latency

overhead of data communication. They propose optimizations

to efficiently execute the DNNs on low power IoT devices [7],

[8]. Other recent works [9], [5], [7], [8] have proposed using

energy harvesting (EH) solutions to provide additional energy

and increase the battery life in IoT devices. These works

provide software, hardware and compiler-level solutions, which

can be applied to build a battery-less system working entirely

on harvested energy. Moreover, in addition to prolonging device

lifetime, energy harvesting can help us reduce the environmen-

tal impact of batteries [10]. However, energy harvesting is no

panacea due to the fickle nature of harvested energy. To tackle

this, recent works [9], [6] use a non-volatile processor (NVP)

to ensure sufficient forward progress in the face of frequent

power emergencies.

The combination of EH, NVPs and other architectural and

compiler optimizations have enabled the use of sensors as smart

inference engines. However, these node-level optimizations are

not entirely sufficient for sensor networks with multiple sensors

collectively working together to achieve a goal, which are very

common. Although fusing sensor data is not uncommon, it

requires one central location where the inference can take place,

requiring the communication of sensed data. In networks of

energy harvested sensors, the power-hungry nature of commu-

nication results in intermittent coordination failures due to one

or more of the sensors, or even the fusing node itself, lacking

sufficient energy at the time that inter-node communication is

required. This work aims to address this limitation by pursuing

answers to the following questions - 1) how do we leverage mul-

tiple available energy harvesting wireless sensors collectively,

and 2) where should each individual sensor perform its own

inference, considering that they collectively perform a single

task?

Our approach to address these questions relies on decen-

tralizing the DNN execution and letting each sensor perform

its own inference. These sensors, each individually working

as a weak classifier, can together form an ensemble learning



environment to achieve better accuracy with lower communi-

cation overhead. For each sensor to perform inference using

the limited and unstable harvested energy poses a scheduling

problem, as non-deterministic time is required for the EH

sensors to accumulate enough energy to perform the inference.

This scheduling is made even more difficult as each sensor can

harvest and consume different amounts of energy depending

upon their location, have different sensor sampling rate, and

require different DNNs to be executed. Further, all sensors

might not be able to participate in the ensemble due to the

fickle nature of harvested energy. This demands the aggregation

process for the ensemble to be robust, yet light weight in order

to perform accurate classification with minimum overhead.

Therefore, this work proposes an intelligent scheduler along

with efficient ensemble learning to enable DNN inference in

a distributed energy harvesting wireless sensor network (EH-

WSN).

This work proposes a novel policy, Origin, which enables

energy harvesting wireless sensors to perform efficient and

accurate DNN inference. Specifically, Origin targets inherent

features of sensor data from distributed body area networks

in human activity recognition (HAR) tasks and leverages non-

volatile processing, intelligent scheduling for energy-harvesting

sensor nodes, and ensemble leaning to classify human activity

with minimum accuracy loss compared to a state-of-the-art

battery powered system. To the best of our knowledge, this

is the first work that tries to enable DNN inference for human

activity recognition in a distributed energy harvesting wireless

sensor network by leveraging ensemble learning. The paper

makes the following key contributions:

1) We design a scheduling policy that chooses the salient

sensor for performing the inference depending on the an-

ticipated activity, i.e. the scheduler is activity aware.

2) We leverage temporal continuity of human activity, and

persist the last successful classification result of a sensor.

We use aggressive recall which reduces the number of total

inferences performed and mitigates the requirement that all

of the sensors be involved in the ensemble process during

each inference.

3) Our proposed policy, Origin, combines an adaptive confi-

dence matrix and the activity aware scheduler to perform

efficient and accurate classification. The adaptive confidence

matrix, which weights the output of each sensor depending

upon the classification result, is updated on each successful

classification.

4) Finally, we provide a detailed evaluation of Origin, and

show that, even when powered by an unreliable EH source,

the efficiency achieved by the this system results in better

accuracy than that of a fully powered system running state

of the art classifiers optimized for energy efficiency. Origin

reaches 83.88% top-1 accuracy compared to the 81.16%

accuracy of the baseline system.

II. MOTIVATION

A major challenge while executing a DNN inference on an

energy harvesting sensor is the power budget. The conventional

method, where the sensors collect the data and send it to the

cloud or any other host device (such as connected mobile

phones) is not an effective option as communicating large

data demands more power, which is both highly variable and

scarce in EH systems. Therefore, the better option, from a

communication cost perspective, is to execute the inferences

on the individual sensors and use an ensemble learning method

(like majority voting) to aggregate these results for the final

classification.
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(a) Inference completion breakdown when three
EH sensors are working together to finish the
incoming inferences. In only 1% of the cases all
of the sensors finished inference, while 9% of
the time at least one of them finished. 90% of
the time the inference could not start because of
lack of energy.
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(b) Inference completion breakdown when three
EH sensors are working in round robin fashion,
where one of the sensors performs inference
while the other two are accumulating energy.
28% of the time the sensors could finish the
inference, while 72% of the time the inference
failed as the sensor could not harvest enough
energy while not performing any inference.

Fig. 1: Fraction of inference completed on
harvested energy using naı̈ve scheduling.

Each of the

sensors in a

multi-device

HAR deployment

receives different

data depending

on its location

and the current

human activity in

progress. Therefore,

different DNNs are

needed to process

data from these

different locations.

Consequently, the

power requirement

and the latency

of these DNNs

may vary and

synchronizing

them for collective

execution would require scheduling that addresses these

differences in resource requirements. Even if we were able to

design a proper scheduling policy, for a conventional ensemble,

all the sensors involved need to finish their computation.

However, our preliminary results using the hardware setup

of [6] and the DNN from [11] on the MHEALTH [12],

[13] dataset suggests that only 10% of inferences could be

completed in a WiFi powered system (Fig.1a). Therefore, we

cannot always expect inference outcomes from all the sensors

while doing HAR on EH-WSN. Clearly, the completion of

the task is power bound: Adopting a wait-compute execution

model, such that we have enough energy to complete some

results, at a lower duty cycle, instead of always trying and

failing would yield benefits. This leaves us with the following

important questions:

• Are continuous inferences essential, or can we leverage the

workload itself to skip some inferences without substantial

accuracy loss, allowing enough energy to be accumulated for

future inferences?

• Since all the sensors cannot be activated together due to the

limited power, how do we effectively perform the ensemble?

III. Origin: AN INTELLIGENT SCHEDULER MEETS A LIGHT

WEIGHT AND ADAPTIVE ENSEMBLE LEARNER

We design a EH-WSN setup for HAR, where the user

has three EH inertial measurement units (IMUs), at the



chest, left ankle and right wrist1. It is obvious that the

raw data sensed by each sensor would be different, even

for the same activity, because of the difference in move-

ment and dynamics. For example, while cycling, the data

sensed by the ankle, chest and wrist sensors would be en-

tirely different because of the nature of the motion. Thus,

the DNN architectures to infer these data are also different.
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Fig. 2: Accuracy of the individual DNNs
and with a majority voting ensemble for
different activities.

To design these

DNNs, we leverage

the work in [11],

[14] and further

apply state of the

art optimizations

given in [3], [15]

to make the DNN

more suitable for

energy-scarce applications. Fig. 2 gives the accuracy of these

DNNs on MHEALTH dataset [12], [13]. A detailed description

of the setup is explained in Section IV. In this section, we

provide an overview of our proposed solution.

A. Preamble to Origin

Human activity has temporal continuity, i.e. most activ-

ities last for some duration (in the range of hundreds of

milliseconds to seconds). Therefore, there is an opportunity

to skip some intermediate inferences over the period of an

activity in order to increase harvesting duration and the prob-

ability that an initiated inference will complete. So long as

the number of skipped inferences is modest, there will still

likely be samples processed before an activity finishes. This

can be extended further adopting a round-robin activation

schedule to both increase harvesting periods per initiated in-

ference on each node while increasing the odds that at least

some node is attempting an inference at any given time.
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Fig. 3: Different flavors of (extended)
round-robin scheduling and their execution
flow. Each policy is named after the num-
ber of nodes the cycle has, i.e. RR3 has 3
nodes with no no-ops and RR6 has 3 nodes
with 3 no-ops.

Even using a round

robin execution,

we observe that

only 28% of the

inferences are

completed (shown in

Fig. 1b). Therefore,

we induce a delay

(no-op cycles in

Fig. 3) between one

sensor finishing an

inference and the

next sensor starting

the next one, so

that each of the

sensors get more

time to accumulate

more energy prior

to attempting an inference. We refer to this policy that

stretches the basic round-robin policy as extended round-robin

(ER-r). Using ER-r, we can complete more total inferences,

1This can also be extended to larger numbers of sensors and modalities

but this design is limited by the accuracy of individual

sensors. Moreover, since all sensors are not equally capable

of classifying each activity with same accuracy (Fig. 2), ER-r

might lead to lower accuracy in many cases.

A better approach is to prioritize performing inferences on

the sensor that has the highest local accuracy for the current

activity. However, this poses a chicken and egg problem –

to know which sensor is the best for classifying an activity

we need to know what activity is going to be performed

beforehand. However, while perfect future knowledge remains

impossible, in the context of HAR, we can anticipate the

next activity from the previous activity with high confidence.

Intuitively, human activities do not usually stop abruptly, i.e.

if a person is walking and has taken a step, there is a high

probability that the person will continue walking rather than

immediately switch to another activity. Therefore, to classify

the next possible activity, we activate the sensor which is most

accurate for classifying the anticipated activity. This motivates

us to develop an activity-aware scheduling (AAS) policy which

aims to activate the best suited sensor for the anticipated

activity.

B. Activity Aware Scheduling

To enable the activity awareness we keep a small lookup

table of accuracy of all the sensors over all the classes.

However, accuracy being a floating point number, is expensive

in terms of energy to store and lookup. To minimize this

overhead, instead of storing the accuracy, we store the rank

of the sensors for individual activities. After a sensor detects

an activity, it anticipates the next activity to be the current

classified activity, looks up for the best sensor, and signals

to activate it for the upcoming inference. However, this leads

to another potential issue - what if the current inference is

running on the best sensor, and the sensor does not have enough

energy to run the next inference? In this case, the current sensor

chooses the next best sensor for the job and signals it. The other

sensor receives this as an external signal and activates itself to

classify the activity. To incorporate the ER-r, we induce delays

between sending the external signal and starting the inference

on the same sensor. This delay depends of the extended round-

robin policy. Combination of ER-r and AAS, results in more

than 70% accuracy for most of the activities (Fig. 4).
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Fig. 4: Accuracy results for AAS combined with ER-r.

Even though AAS provides significantly better results com-

pared to standard round-robin, it is still unable to incorporate

ensemble learning. The major challenge is the inability to

run inferences in all the sensors simultaneously because of

the harvested energy budget. Therefore, we need to find the

classification result for all the sensors without activating them.

Extending our assumption from AAS, we hypothesize that the

most recent classification result of a sensor must be a good



representation of what its inference would be for the current

activity. Hence, by memorizing or recalling the most recent

classification result, we can get the inference result of a sensor

even without activating it. Even though the sensors are running

in the round-robin fashion, the non-participating sensors can

still impact the classification result by virtue of recalling

their most recent classification. Combining the Recall with

AAS (which we term as AASR - Activity Aware Scheduling

with Recall) opens possibilities for getting a more accurate

classification. To minimize the communication overhead, and to

ensure participation of all sensors, we build the recall strategy

into the host device. The host device remembers the most recent

classifications by all of the sensors. After receiving or recalling

prediction from all sensors, the host performs a majority voting

for the final classification.

AASR thus bridges the major gaps in the design that we

intend to achieve. With the addition of recall, we have a

fully functional ensemble learning system on a EH-WSN.

AASR intelligently takes advantage of multiple DNNs (by

bringing in activity aware scheduling), leverages the workload

(by considering the activity continuity via recall and extended

round-robin strategies), and also poses minimal overhead on

the host device for running aggregation. However, as we did

not want to burden the host device with complex computation,

the aggregation task is very naı̈ve in that it just performs recall

and incorporates no intelligence. Hence, there is an opportunity

to also improve the ensemble technique.

C. Designing an Adaptive Ensemble Learner

AASR scheduling solves most of the issues on the sensor

side without burdening host device, yet the host device still per-

forms a naı̈ve majority voting-based ensemble. Designing any

sophisticated ensemble learning technique will either consume

more resources of the host device, or need more information

and computation at the edge, thus making our effort of finishing

the inference at the edge not viable. However, if we can design a

simple, light weight and adaptive ensemble technique, then our

design will be holistic from both the sensor and the host side.

The current scheduler is activity aware, i.e. while performing

an inference it always tries to choose the best available sensor

to perform the task at hand. Furthermore, the AASR poses

negligible overhead both in terms of compute and memory.

Our goal is to develop an activity aware ensemble technique

which can further improve accuracy, when compared to AASR.

The idea of making the ensemble task activity aware has

similarities to weighted majority voting, where we assign

weights to the individual learners participating in the ensemble,

such that a higher accuracy classifier contributes more weight

towards the final result. However, from Fig. 2 it is clear that

not all the sensors are equally good at classifying various ac-

tivities; in fact, this builds the foundation of AASR. Therefore,

assigning a static weight to the output of each classifier will

not reflect that its accuracy is activity-dependent. For example,

the classifier used in the left ankle sensor tends to be more

accurate overall, but for classifying climbing action, it is not

better than the chest sensor. Hence, to give the left ankle more

weight while doing an ensemble for a climbing task makes

the classifier biased. Furthermore, it the relative weight of each

sensor is likely to shift from user to user. A simple solution is

to assign the accuracy of each of the sensors for every class as

its weight. Although accuracy is a close measurement of the

confidence of the classification, it does not truly reflect it.

For example, let us consider two DNN classifiers (C1 and

C2) classifying between 4 different classes (o1, o2, o3, o4).
The final probability vector from the last layer (soft-

max function) VC1
= [0.94, 0.01, 0.02, 0.01], and VC2

=
[0.80, 0.05, 0.08, 0.07]. Both the models have classified the

input to be of class o1. The accuracy of both system might

be identical (over a large number of test sets), yet for the

current test case, both the models are not equally confident

about the classification. The question is, how do we measure

the confidence of the given classification? It is obvious that

the most confident classification for the same class would be

[1, 0, 0, 0], where the model is 100% confident on class o1 and

the most confused prediction would be [0.25, 0.25, 0.25, 0.25],
where the classifier is equally confused between all the classes.

Therefore, a good metric for the confidence would be the vari-

ance of the output probability vector. The higher the variance

the more confident is the classification. Towards this, we build

a lookup table by averaging the variance of output vectors of

multiple test cases. This table, which we call the confidence

matrix, gives us the confidence of each sensor for each class,

and can be used as a weight for majority voting.

The next challenge is to adapt the confidence matrix for

individual users. Each user has unique expressions of behaviour

classes reflected in the sensor data. For example, gaits of two

different people may significantly vary, and might be entirely

different from the training data. Thus, it is important to keep

learning and adapting to the user behavior. Since, we cannot

keep re-training the DNNs because of their resource constraints,

we choose to periodically update the confidence matrix. The

initial confidence matrix, derived from the test cases, would be

programmed into the host device. Further, after each successful

classification, the sensors would send the confidence score for

that classifier along with the output class. This confidence score

would further update the weight matrix of the host device using

a moving average method and keep updating it as the user keeps

using the device.

D. Origin: AASR meets Confidence Matrix

Combined together, the activity aware scheduler with recall

(AASR) and the adaptive confidence matrix we present Origin:

a holistic system where an intelligent scheduler meets an adap-

tive ensemble learner. This design optimizes the DNN execution

in an energy harvesting wireless sensor network by collectively

looking into all the involved components. The DNNs as indi-

viduals are optimized before to meet the power budget. In the

earlier case of naı̈ve scheduling we tried to build an efficient

DNN by applying energy aware pruning [15]. However, since

Origin follows an activity aware scheduling with extended

round-robin, it can relax the power constraint pruning if needed.

Instead of restricting the power constraint to the average power

of the entire power trace, the constraint can be relaxed to

the average power requirement of the extended round-robin
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Fig. 5: Accuracy results of the different policies described in Sec-
tion III. RR indicates the extended round-robin policy in use, e.g.
RR6 AAS represents AAS with RR6.

policy in use. Further, the scheduling strategy was modified

using activity aware scheduling with extended round-robin such

that all the sensors get enough time to harvest and also the

best possible sensor works on the classification task at hand

instead of any arbitrary sensor. The added recall functionality

enables ensemble learning. Moreover, the host device, which

performs the ensemble, is equipped with a confidence matrix,

which adapts to the user and performs weighted majority voting

instead of a naı̈ve majority voting. The associated confidence

matrix boosts the classification accuracy and also resolves ties

while voting.

IV. EVALUATION

In this section we explain the strategy for evaluating Origin.

We discuss about the hardware and software framework, and

the accuracy of Origin compared to two different baselines.

A. Energy Harvester and Sensor Setup

Our evaluation setup consists of three sensors at three dif-

ferent locations. First sensor at the chest, second on the right

wrist and last sensor on the left ankle. Each sensor consists

of four major components, namely, the sensing component, an

IMU, which collects acceleration and attitude data, an energy

harvester which harvest the surrounding RF (WiFi) energy, a

compute component same as [6] and a wireless communication

module (BLE or WiFi) to connect to a host device (battery

backed mobile phone). We assume the communication cost to

be negligible since it infrequently sends a few bytes of data

to the host. To replicate the energy harvesting, we use a real

power trace harvested from a WiFi source while doing various

day to day tasks in an office environment [6]. The specifics

of the energy-harvesting mechanism producing the power trace

are beyond the scope of this work.

B. DNN Classifier and the Dataset

Our DNN design choices are inspired from the works in [11],

[14]. However, instead of designing a centralized DNN which

processes the combined data from all the sensors, we design

three different smaller DNNs that work on their individual data.

Further, to build an energy efficient version of the DNNs, we

applied the energy-aware DNN optimizations proposed in [3],

[15]. We use two different datasets, MHEALTH [12], [13], and

PAMAP2 [16], [17], for our evaluation which follow the similar

sensor setup described in Section IV-A. The DNNs were trained

on the training data-sets using the Keras [18] framework.

C. Accuracy Results

Baseline: We choose two baselines for our evaluation:

1) Baseline-1 consists of the original DNNs built along the

lines of [11], [14] (without any pruning).

2) Baseline-2 uses state of the art pruning techniques described

in [3], [15] to prune the DNNs of Baseline-1 to fit the

average harvested power budget from our harvesting trace

described in Section IV-A.

Both the baseline setups run on a fully powered system

equipped with a steady power source. A majority voting en-

semble method is used in both of these baselines to mimic

ensemble learning. Origin uses the DNNs of Baseline-2 for the

classification tasks. We plot the accuracy of different strategies

described throughout the paper. Fig. 5a shows the accuracy

results on the MHEALTH dataset, and Fig. 5b shows the results

for the PAMAP2 dataset. Following are our observations:

• The overall accuracy tends to improve with increasing

round-robin delay time. This behaviour is expected and can

be attributed to the increasing number of completed inferences.

The nature of the workload itself gives us an opportunity to not

perform inference at a rapid rate. Further evaluations suggest

Origin with RR-12 to be the best fit for HAR. Going beyond

RR-12 might lead to missing an activity window for high

intensity or rapid activities, and going below RR-12 might lead

to energy scarcity at times. In case of abundant energy supply,

one can use a round robin policy fit for the given EH source.

• Table I shows the accuracy comparison between the

RR12-Origin with both the baselines. We observe that, for

the MHEALTH dataset, RR12-Origin is 2.72% more accu-

rate than the Baseline-2. For the PAMAP2 data-set, RR12-

Origin is 2.53% better than Baseline-2. For certain cases like

climbing in PAMAP2, and running in MHEALTH, Origin is

more accurate than Baseline-1. These accuracy improvements

can be attributed to Origin’s use of a confidence matrix in

classification, as opposed to the baseline models, which only

perform majority voting based ensembling. Note that both the

baselines are running on a fully powered system whereas Origin

runs entirely on harvested energy. In practice, we can extend

Origin further to other multi-sensor data-sets for HAR.

Discussion: Although Origin is proposed and works for energy

harvesting wireless sensor networks, it can also be used with

battery-powered or hybrid (a combination to battery powered

and EH) systems to minimize the energy footprint while

maximizing the accuracy. Furthermore, it uses multiple sensors

effectively and hence poses minimum risk if one of the sensors

fails. This makes Origin versatile and suitable for systems

whose intermittence comes from either or both of power or

device reliability limitations, both of which will be key factors

in real-world IoT deployments. Moreover, ensemble learning



Activity
Policy Comparision

RR12 Origin BL-2 BL-1 vs BL-2 vs BL-1

Walking 81.60896 84.46 91.56 -2.85104 -9.95104

Climbing 83.10679 77.93 83.24 5.176789 -0.13321

Cycling 85.88992 85.81 94.27 0.079918 -8.38008

Running 87.13474 81.29 86.91 5.844736 0.224736

Jogging 81.81809 78.04 83.17 3.778086 -1.35191

Jumping 83.69378 79.42 84.26 4.273776 -0.56622

TABLE I: Comparing RR12 Origin with both the baselines on
MHELATH dataset. BL indicates the baseline models.

techniques combined with efficient scheduling occasionally

gives more accuracy than a larger and unpruned centralized

DNN that is more failure-prone and power hungry.

D. Adaptive Ensemble Learner

As discussed earlier in Section III-D, origin uses a

lightweight and adaptive ensemble learner that performs

weighted majority voting based on a confidence matrix. The

confidence matrix adapts and learns from the user pattern.

It is obvious that it is not feasible to train a DNN for all

types and variances of human actions. Even for the same

types of activity, some attributes will vary from user to user.
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Fig. 6: Accuracy over time for different
users: the confidence matrix adapts to the
behaviour and activity pattern of the user
and learns over time to give stable if not
better accuracy.

These variations

can cause

misclassifications

and the adaptive

nature of the

confidence matrix

mitigates this. To

mimic the noisy

and inconsistent

behaviour of real-

world scenarios, we test the adaptive nature of the ensemble

learner for 3 different previously unseen users over a 1000

iterations (10000 successful classifications; each iteration has

10 classifications). The noisy data is generated by adding

a Gaussian noise (with maximum SNR of 20dB) over the

unseen test data. The first iteration shows the accuracy with

the unchanged confidence matrix. Even though the accuracy

claim of the models was nearly 85%, in the first iteration, the

accuracy drops below 80% because of the added noise. As

the confidence matrix gets updated with the newer confidence

values sent from the sensor, we can see (from Fig. 6), that

Origin keeps up with the claimed accuracy (base accuracy),

and at times outperforms it. We can attribute this to the

confidence matrix and ensemble learner, since over these

1000 iterations, only the confidence matrix gets updated.

Note that the confidence matrix reaches the steady state of

baseline accuracy within 100 iterations. This, in turn, will lead

to better and more stable classification for every individual

without extensive need for retraining and updating the DNN,

which might be impractical for EH-WSNs due to the high

communication cost while updating the parameters.

V. CONCLUSION

Enabling DNN inference on edge devices has been gaining

recent traction, especially for tasks like HAR. However, the

compute heavy DNNs make it challenging because of their

power requirements, especially in EH-WSNs. Our proposal,

Origin, holistically looks into multiple aspects of deploying a

DNN on an EH-WSN for the purpose of HAR. Origin combines

an intelligent activity aware scheduler with an adaptive and

light weight ensemble learning method. Our experiments shows

that DNN inference using Origin, running on a harvested

energy only system, is more accurate than energy-constraint-

optimized DNNs, running on a fully-powered system. Although

the current work is limited to HAR, this can further be extended

to many suitable tasks which need to leverage a distributed

sensor system for DNN inference. We believe that the co-

optimization of deep learning and energy harvesting techniques

for edge devices will further invigorate research on the next

generations of intelligent and sustainable IoT platforms.
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