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1  |   INTRODUCTION

The progress of human civilization has always been closely 
associated with the discovery of new materials. This is 
probably why the tripartite classification of historical peri-
ods is also based on materials—stone, bronze, and iron age. 

Beyond these materials, there are several others which have 
significantly improved the quality of human life, namely, 
steel, aluminum, glass, plastics, the latest in the list being 
nanomaterials. Among these materials, glasses hold a 
unique place in human lives, considering their applications 
ranging from everyday glass utensils and kitchen-wares to 
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Abstract
Glasses have been an integral part of human life for more than 2000 years. Despite 
several years of research and analysis, some fundamental and practical questions on 
glasses still remain unanswered. While most of the earlier approaches were based on 
(i) expert knowledge and intuition, (ii) Edisonian trial and error, or (iii) physics-driven 
modeling and analysis, recent studies suggest that data-driven techniques, such as ar-
tificial intelligence (AI) and machine learning (ML), can provide fresh perspectives 
to tackle some of these questions. In this article, we identify 21 grand challenges in 
glass science, the solutions of which are either enabling AI and ML or enabled by AI 
and ML to accelerate the field of glass science. The challenges presented here range 
from fundamental questions related to glass formation and composition–processing–
property relationships to industrial problems such as automated flaw detection in 
glass manufacturing. We believe that the present article will instill enthusiasm among 
the readers to explore some of the grand challenges outlined here and to discover 
many more challenges that can advance the field of glass science, engineering, and 
technology.
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more exotic ones such as bioactive implants and energy 
materials.1-5

Although being extensively used for more than two mil-
lennia, very few glasses among the total possible glass com-
positions have been discovered, and even fewer have been 
well-studied.6,7 This could be attributed to the composi-
tional flexibility associated with glasses, wherein any liquid 
melt—a concoction of any number of elements and com-
pounds in any proportional—when cooled fast enough, can 
form a glass. As such, the traditional design of glasses, thus 
far, has primarily been based on an Edisonian trial-and-error 
methodology. Although this approach has yielded some suc-
cess in the past, it is highly time-consuming, inefficient, and 
risky (for example, it may not produce the desired result) for 
industrial applications. Accelerating the knowledge in glass 
science and the discovery of glasses in an economical fashion 
with a reduced to design-to-deploy period are two key areas 
where much work is needed.

Recent advances in computer hardware and algorithms 
have created a new surge of interest toward artificial intel-
ligence (AI) and machine learning (ML) approaches for ma-
terials discovery, design, and synthesis. This has resulted in 
an integrated computational materials engineering (ICME) 
framework, which employs a combination of physics- and 
data-based modeling approaches to accelerate materials 
science.

Glasses are ideal candidates for data-driven modeling as 
(i) virtually any element from the periodic table, or the com-
bination thereof, can form a glass when cooled fast enough, 
(ii) the properties of glasses are mainly driven by compo-
sition due to their disordered structure, and (iii) unlike 
crystals, the compositions of glasses can be continuously 
tuned, (iv) large experimental database of glass properties 
is available.8-11 Due to these reasons, the glass community 
has also started adopting the AI/ML approaches to tackle 
a variety of problems such as property-prediction, tailored 
design, understanding the physics, accelerating the model-
ing, to name a few. Among these, some of the specific ap-
plications include the prediction of Young's modulus,12-14 
liquidus temperature,15 solubility,16 glass-transition tem-
perature,17,18 dissolution kinetics,19,20 viscosity.8,21 Other 
recent works have developed composition–property mod-
els for several important thermal, optical, and mechanical 
properties of glasses based on the available experimental 
dataset.22-25 A recent work has bundled these models,22,23 
along with a database and an optimization module, in a 
first-of-its-kind software package for accelerating glass 
discovery, namely Python for Glass Genomics (PyGGi, see 
http://pyggi.iitd.ac.in).23 PyGGi is a copyrighted software-
as-a-service (SaaS) package, which is available both online 
and offline for use. At present, while the online version 
is free to use, the offline package has both free and paid 
versions.

It may be observed that most of the ML-related work in 
the glass literature focus mainly on property prediction and a 
few on compositional optimization using ML models as sur-
rogates.25 However, there are multitudes of opportunities in 
the area of AI and ML that can accelerate the field of glass 
science. In this article, we try to identify the main challenges 
that need to be addressed to accelerate innovation and de-
velopment in the field of glass science and technology. The 
challenges are placed in such a manner that they address one 
of the following outstanding problems in the field of glasses, 
namely, (i) development of novel glasses for targeted applica-
tions, (ii) accelerating the design-to-deploy period of glasses, 
(iii) improving the synthesis process of glasses, (iv) funda-
mental understanding on the nature and response of glasses, 
(iv) knowledge dissemination in the area of glass science. In 
what follows, we briefly give an introduction to AI and ML 
and some of the commonly used methods. Then, we present 
21 grand challenges in the field of glass science that can be 
addressed with the technological developments exploiting AI 
and ML in the 21st century.

2  |   ARTIFICIAL INTELLIGENCE 
AND MACHINE LEARNING

AI refers to a broad field that focuses on enabling machines 
to perform actions as humans would, based on situations or 
stimuli.26,27 In this process, the machines learn the implemen-
tation of a function that maps sequences to actions in differ-
ent ways possible. This approach represents a paradigm shift 
from the traditional physics-driven modeling, wherein, rather 
than instructing the computers what to do, we are allowing 
the system to “learn” to perform actions based on the avail-
able data. ML is thus a subset of AI, which focuses on devel-
oping algorithms or machines that can be used to detect and 
understand patterns in the data and extrapolate it to hitherto 
unexplored domains and circumstances.28,29 It should be em-
phasized that, in ML, machines learn to do this task without 
being explicitly programmed on how to achieve it. Some of 
the application areas of AI include natural language process-
ing (NLP), robotics,30 computer vision, automated reasoning, 
automated programming, to name a few.27 Similarly, some 
of the ML applications include classification, regression, and 
clustering. It should be noted that the applications of AI com-
monly employ the ML algorithms to achieve the objectives. 
For example, the NLP uses a variety of ML algorithms such 
as neural networks, support vectors, and random forest to ex-
tract knowledge from the text data.31,32

Learning algorithms in ML can be broadly classified into 
supervised, unsupervised, and reinforcement.33 Figure 1 shows 
the hierarchy and list of algorithms commonly used in the field 
of ML. This list by no means is complete or exhaustive—it is 
representative of the broad fields in the area of machine learning. 

http://pyggi.iitd.ac.in
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Supervised learning, which is one of the most common and 
useful learning approaches, involves learning a function that 
maps the input features to an output. To “learn” this function, 
available data are used to “train” the model. This model is then 
tested on an unseen dataset sampled from the same distribution 
to assess the performance. Supervised learning can be used for 
classification—that is, to classify the data into different classes, 
for example, bioactive or not bioactive, glass forming or not 
glass forming—or regression—that is, predicting the output as 
a function of features, for example, predicting Young's modulus 
or glass-transition temperature as a function of the glass com-
position. Commonly used algorithms for classification include 
logistic, decision trees, random forest, support vector, and neu-
ral network.

Similarly, regression is performed using algorithms such 
as linear, polynomial, support vector, decision trees, random 
forest, neural network, and Gaussian process. Unsupervised 
learning is used to understand the hidden patterns in data 
without any labels. Thus, in unsupervised learning, there is 
no output to “supervise” or train the model, and the model 
learns from the patterns in the features of the data. Some ex-
amples of unsupervised learning involve clustering, that is, 
to group data having similar trends or behavior, for exam-
ple, grouping window glass, sealing glass, bioactive glasses, 
or optical glasses based on the input glass composition. 
Another practical application of unsupervised learning in-
cludes detecting outliers in the dataset or identifying glass 
samples with defects from a production pipeline. Some of 
the commonly used algorithms for clustering include T-SNE, 
DBSCAN, k-means, and k-NN. There is a third class of algo-
rithms, namely reinforcement learning. In this approach, an 
agent interacts with the environment and learns the actions 

that maximize the reward. This approach is commonly used 
in many areas, including game theory, multi-agent systems, 
and optimization, to develop optimal solutions and algo-
rithms. Reinforcement learning has found little application in 
glass science, in particular, and materials science in general. 
Some of the areas where reinforcement learning can have 
applications include the design of smart robots (robotics), 
which allow automated high-throughput synthesis, character-
ization, selection, and design of novel materials.30 A review 
of some of the algorithms used in materials science and glass 
science can be found elsewhere.15,34-36

3  |   GRAND CHALLENGES IN 
GLASS SCIENCE, ENGINEERING, 
AND TECHNOLOGY

Here, we aim to present some of the open challenges that are 
impeding the progress in the area of glass science, engineer-
ing, and technology. These challenges broadly belong to two 
categories: (i) ones that can be addressed using AI and ML 
techniques and (ii) ones that enable the application of AI and 
ML techniques for accelerated glass design, discovery, and 
manufacturing. Thus, each challenge in itself presents an op-
portunity to advance the area of glass science.

3.1  |  Challenge 1: development of high-
fidelity experimental datasets

The performance of ML algorithms is highly contingent 
upon the availability of high-quality, reliable, and consistent 

F I G U R E  1   Basic machine learning 
paradigm
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datasets. Specifically, the dataset should consist of glasses 
prepared with the same experimental protocols, including 
the usage of the same cooling rates, heating rates, charging, 
stirring, crucibles, furnace, annealing time, to name a few. 
Similarly, testing protocols used for obtaining properties 
such as density, elastic moduli, hardness, glass-transition 
temperature, liquidus temperature, to name a few, should 
also be consistent. This is especially important in some of 
the properties such as (i) hardness—which is not a mate-
rial property and depends on the testing protocol such as 
loading rate, indenter tip geometry, and environmental 
conditions; (ii) liquidus temperature—the exact determina-
tion of the lower point of which is quite challenging; (iii) 
glass-transition temperature—which is dependent on the 
cooling rate, measurement technique, and the fitting range 
used; (iv) viscosity—which depends on the precision of the 
measurement technique, furnace, and other environmental 
conditions.

The available glass databases include Interglad and 
SciGlass, both of which are compiled based on data from 
the literature.11,37,38 These datasets have a large number of 
outliers and are highly inconsistent for many properties. 
Furthermore, while Interglad data are not freely available, 
SciGlass data are not being updated and are not available 
in an easily accessible and human-/machine-readable for-
mat.10 A recent effort has made many of the properties 
from this database publicly available through a growing 
glass database, namely, PyGGi bank, a part of the Python 
for Glass Genomics (PyGGi) initiative.39 There are other 
similar efforts such as the GlassPy, which is a free and 
open-source package,40 thus following the FAIR data 
principle.41 On the other hand, specialized glass compa-
nies with a track record of experimental research, such 
as Corning Inc., houses high-quality data, which can be 
used for developing high-quality data-driven models.8,14 
However, these models and data are restricted to internal 
use as the models give them a unique position for develop-
ing novel glass compositions.8,14 An international collabo-
rative initiative for the development of a publicly available 
experimental glass property database following a univer-
sal protocol agreed upon by the glass community—similar 
to the international simple glass (ISG) for studying the 
dissolution of nuclear waste glass42—will go along way in 
obtaining high-quality data that can be used for develop-
ing high-fidelity composition–property ML models that 
are publicly available. An effort toward this direction has 
been attempted by Citrine Informatics43 for metals com-
munity, where users can deposit computational and exper-
imental data. Similarly, PyGGi bank also has an option 
to deposit data that allow researchers to contribute and 
share data available with them along with the appropriate 
details or references, which are then made accessible to 
the users.

3.2  |  Challenge 2: automated extraction of 
datasets from the literature

Most glass datasets, such as SciGlass and Interglad, relies 
on manual extraction of data from the literature. However, 
the number of unique data points in each repository is far 
lower than the total number of glasses that have been studied 
or could be studied in the future. Manual curation of online 
databases through the extraction of annotated composition–
property pairs from literature is inherently inefficient and 
unsuitable for the 21st century. On the other hand, recent 
developments in AI can be exploited to automate the data 
extraction process from journal publications and patents. 
For example, ChemDataExtractor44,45 is a tool that can iden-
tify chemical species through their symbols in literature. 
With specific data parsing algorithms such as Snowball, 
Chemdataextractor has been used to automatically extract 
large datasets of magnetic materials and their Neel's tempera-
tures46 and as well as a database of battery material with five 
leading properties.45 Several such approaches have already 
been used in zeolites47 and inorganic materials.48 In glass 
science, this presents a unique challenge as glass composi-
tions have complex representations without any uniformity. 
For example, a binary sodium silicate glass with a 50 mol% 
soda may be written as Na2O.SiO2 or 50(Na2O).50(SiO2) 
or (Na2O)50.(SiO2)50 or (Na2O)0.5.(SiO2)0.5 or 50(Na2O)–
50(SiO2), all of them referencing the same glass composi-
tion. The recent development of a Named Entity Recognition 
(NER) system for the subject of inorganic literature suggests 
that NLP algorithms can be made “material science aware,” 
allowing nuanced extraction through microlevel parsing. 
Figure 2 shows how NER can be used to label different parts 
of a text into relevant categories such as material, application, 
property, synthesis methods, characterization techniques, to 
name a few. However, a glass-specific NER system is cur-
rently unavailable and presents itself as a major challenge 
that needs to be addressed to enable to automated extraction 
of datasets from the literature.

3.3  |  Challenge 3: outlier detection

Despite the importance of the quality of data for develop-
ing robust models, sufficient attention has not been given 
to data cleansing and outlier detection in machine learning 
in glass science. It could be argued that the availability of 
high-quality data is presently the bottleneck to develop-
ing reliable ML models for property prediction much more 
than the reliability and efficiency of learning algorithms. 
Note that outliers may arise in the data due to various fac-
tors such as instrument errors, human error, measurement 
conditions, system behavior, or even natural variation in the 
data. Detection of outliers is important not only to develop 
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high-fidelity models but also to identify several anomalous 
behaviors—for example, some selected glass compositions 
exhibiting a sudden increase/decrease in the property—or 
system faults—for example, while doing measurement or 
glass manufacturing, an outlier may be due to instrument 
failure or system error. Several outlier detection meth-
odologies are available in the literature depending on the 
nature of data and training algorithms used,50-53 including 
several open-source packages such Pyod54 and XGBOD.55 
Glass datasets in itself present unique challenges due to 
their inherent nonlinearities and anomalies. Therefore, the 
development of specialized and appropriate outlier detec-
tion algorithms for glass datasets can enable improved data 
cleansing and go a long way in reliable model development.

3.4  |  Challenge 4: development of consistent 
synthetic datasets

While the development of an experimental dataset is ideal for 
the development of realistic composition–property dataset, 
experiments can be expensive, time-consuming, and mostly 
inconsistent due to different synthesis, sample preparation, 
and measurement protocol. Besides, many properties at the 
atomic scale may not be easily obtainable from experiments. 
An alternate approach is to use high-throughput atomistic 
and first principle simulations to generate simulation data, 
referred to as synthetic data. Note that such a system has 
been successfully implemented by The Materials Project56 
for inorganic materials, wherein a “self-healing” workflow 
has been implemented for the development of consistent 

high-throughput simulation data. The approach in glasses 
would be slightly more challenging as glasses being a non-
equilibrium system, the simulation protocol such as the num-
ber of atoms, ensembles used, cooling rate used, cooling 
protocol implemented (step-wise vs. continuous), timestep, 
and equilibration steps can all affect the final glass structure. 
Several efforts have already independently used large-scale 
glass simulation data to develop ML models.13,57 An inter-
national collaborative effort to establish a consistent simu-
lation dataset, including the interatomic potentials used for 
glass simulation, glass structures developed through simula-
tion, properties computed, will accelerate the development 
of a consistent simulation dataset that can be used for ML 
applications.

3.5  |  Challenge 5: feature discovery and 
selection—atomic fingerprinting

Once a dataset on glass with the relevant composition and 
properties is obtained, selecting the appropriate input fea-
ture is a major challenge. Feature selection is an impor-
tant aspect as the predictive capability of the model will 
be contingent upon the ability of input features to cover 
the domain appropriately. Thus, the selection of the input 
features should be made in such a way that all the param-
eters controlling a certain property are included, whereas 
all irrelevant features are removed. So far, there have been 
two broad classes of features that have been used for prop-
erty prediction: (i) features based on the glass composition 
and (ii) features based on physics or other fundamental 

F I G U R E  2   Named Entity Recognition systems, as given by Matscholar49, can be used to label parts of a text into relevant categories such as 
“material,” “application,” “property,” “synthesis,” etc. Composition-property-processing tuples can be then be extracted from this annotated text 
block using standard routines



282  |      RAVINDER et al.

properties. In the first approach, the percentage of the com-
ponents or elements present in the glass composition itself 
is used as an input. For example, the mole percentage of 
Na2O and SiO2 in a binary (Na2O)x.(SiO2)1-x or directly the 
amount of Na, Si, and O present in the glass may be used as 
the input for the ML algorithm, and the output would be the 
glass property. While this approach may yield satisfactory 
results for a select glass composition, the models trained on 
one glass composition will not be transferable to another 
set of compositions with different components. A more ge-
neric approach would be to develop novel physics-based 
features—some examples of this include topology—,20 
interatomic potential parameter—,57 and periodic table-
based descriptors.8,21 The advantage of such descriptors is 

that the models developed have the potential to be univer-
sal and transferable. Furthermore, these models might be 
able to provide deeper insights into the factors controlling 
the respective properties. However, physics-based descrip-
tors developed so far have been limited to a few select glass 
compositions or properties. Furthermore, most existing ML 
models for glasses presently are not informed by the glass 
structure, which may also play a crucial role in addition to 
the glass composition. This is an important problem if the 
models need further extended to include materials such as 
glass-ceramics. As such, it still remains as an open chal-
lenge to discover universal physics-based features, also 
known as the atomic fingerprints of glass, that can predict 
glass properties.

F I G U R E  3   Predicted Young's modulus with respect to measured value for (A) linear regression, (B) XGBoost, (C) deep neural network, (D) 
KISS-GP. Inset shows the distribution of error (ε), that is, measured value minus predicted value for the test dataset
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3.6  |  Challenge 6: composition–property 
models—selection of training algorithms

As mentioned earlier (see Figure 1), the choice of an appropriate 
algorithm (or the development of a new one) is a crucial issue 
while developing composition–property models. Algorithms 
may range from simple linear regression to complex deep neu-
ral networks, ensemble-based methods, or Gaussian process 
regressions. These algorithms try to learn the input–output 
relationship from the available data. The preferred algorithm 
may be chosen depending on the size and nature of data and 
the desired output. Figure 3 shows the prediction of Young's 
modulus using four different methods, namely, linear regres-
sion, XGBoost, deep neural networks, and Gaussian process 
regression (GPR). We observe that the predictions for each of 
these models are different, with the GPR exhibiting superior 
performance. Although certain thumb rules exist for the choice 
of algorithm and approach, thus far, there are no “intelligent” 
systems that suggest the best approach for a particular dataset. 
These models also present some deficiencies or superiorities 
when they are used for glass discovery using surrogate model-
based optimization. As a surrogate model, neural networks may 
perform better in contrast to decision tree-based methods such 
as random forest or XGBoost. It should be noted that choosing 
the best model is a general problem in the area of ML. However, 
this problem will have additional constraints in glass science 
in terms of the underlying physics. For example, glasses are 
unique in the sense that a given property changes continuously 
as a function of composition. Thus, the composition–property 
relationship should be continuous and differentiable. Similarly, 
the complexity and interpretability of ML models are inversely 
proportional. It is well understood based on the glass physics 
that some properties are “fairly linear,” whereas some others 
are highly nonlinear. This prior knowledge may go into the ML 
model instead of a brute force approach. As such, the devel-
opment of an automated “intelligent” system that can suggest 
the best learning algorithm for a given dataset, respecting the 
physics of glasses, can significantly reduce the efforts associ-
ated with a trial-and-error approach in choosing a particular ML 
model. In addition, ensuring the reproducibility of ML models 
is also a major issue that has received lesser attention. Making 
the final ML models available (free and open-source), along 
with the complete code and data could be the solution to ad-
dress this challenge. Some recent works21,25 can be taken as 
examples in this regard.

3.7  |  Challenge 7: composition–property 
models—hyperparametric optimization

The performance of a model upon training is highly contin-
gent on the use of appropriate hyperparameters during the 
training process. Note that hyperparameters are different 

from the parameters of an equation. For example, for a 
straight line y = mx + c, m, and c correspond to the param-
eters. On the other hand, the parameters that are employed 
while fitting the straight line such as the order of equation 
(e.g., linear or quadratic), step-size for error minimization, 
the algorithm used for error minimization (e.g., gradient 
descent), error measure (e.g., mean squared error) are the 
hyperparameters. Thus, parameters are learned and updated 
during training, whereas hyperparameters are fixed before 
the training. Poor or no hyperparametric optimization will 
lead to poor training of the model leading to overfitting or 
underfitting. There are several approaches that can be em-
ployed for hyperparametric optimization ranging from the 
traditional grid search or random search to more sophisti-
cated approaches such as Bayesian optimization. While 
there are several packages to perform hyperparametric 
optimization such as hyperopt58 or optuna,59 an intelligent 
system that can suggest the optimal hyperparameters asso-
ciated with a given training algorithm for a glass specific 
dataset, such as Young's modulus, can significantly reduce 
the training time associated with developing composition–
property models while avoiding underfitting or overfitting. 
Furthermore, making these models publicly accessible 
will enable direct access to the high-fidelity composition–
property models for scientists and nonscientists alike. 
Already such an effort is undertaken by the project PyGGi 
through PyGGi Seer, wherein neural network for nine glass 
properties with up to 34 components have been developed 
(see: https://pyggi.iitd.ac.in).

3.8  |  Challenge 8: physics-informed 
machine learning

While most machine learning approaches simply use data as 
an input and train the model, this might result in absurd predic-
tions, especially for regions where data are sparse. To infuse 
“common-sense” into the model, which allows reasonable ex-
trapolation using the basic physical laws available. This alter-
nate approach, known as the gray-box neural network, learns 
the parameters associated with a functional relationship be-
tween the input-output,8,21 instead of directly learning the input 
and output. For example, a recent work used the neural network 
to learn the parameters associated with the MYEGA equation, 
which was then used to predict the viscosity.8 Another ap-
proach in this direction is to redefine the loss function in terms 
of some physics-based differential equations. For example, 
Hamiltonian and lagrangian neural networks60 is an attempt in 
which the neural learns the lagrangian of the function, thus ex-
hibiting superior performance in terms of physical laws such as 
energy conservation. The development of such physics-based 
neural networks may aid the development of models that are 
interpretable and robust against extrapolation.

https://pyggi.iitd.ac.in
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3.9  |  Challenge 9: uncertainty quantification 
in predictions

Most of the ML algorithms discussed thus far are deter-
ministic in nature—for a given output, we always obtain 
the same output. While these algorithms exhibit excellent 
predictive capabilities for interpolation, the ability of the 
models to extrapolate beyond the training domain is ques-
tionable. In such cases, it is important to quantify the uncer-
tainty associated with the predictions. To this extent, GPR 
presents as an ideal candidate as the prediction in GPR is 
done in a probabilistic framework—associated with every 
predicted value, the standard deviation in the prediction can 
also be obtained from GPR, thereby giving insights into 
the reliability of the model. However, GPR is extremely 
computationally intensive, and training is limited to a small 
dataset (due to the matrix inversion operation associated 
with the covariance matrix of GP). Another recent approach 
to address this challenge is the Monte Carlo dropout61 to es-
timate model uncertainty. The advantage of this approach 
is that it can be applied to already trained models as well. 
Alternate approaches under the structured kernel interpo-
lation (SKI) framework, such as kernel interpolation for 
scalable structured GP or KISS-GP62 have been developed 
to address this challenge. Figure 4 shows the predicted val-
ues of density using the KISS-GP approach.22 We observe 
that the prediction provides reasonable agreement with the 
experimental values along with the uncertainty in predic-
tions. Development and applications of algorithms that pro-
vide tighter bounds on uncertainty while having reduced 
computational cost is an open challenge that needs to be 

addressed for novel glass discovery. Furthermore, devel-
oping such models a large number of glass properties and 
making this publicly available will accelerate the design of 
glasses for targeted applications. Already such an effort is 
undertaken by the project PyGGi39 through PyGGi Seer, 
wherein KISS-GP models for nine glass properties with up 
to 34 components have been developed (see: https://pyggi.
iitd.ac.in).

3.10  |  Challenge 10: optimized predictions of 
glass compositions

While the ML model allows us to predict the properties of 
given glass composition, surrogate model-based optimiza-
tion can be used to solve the reverse problem—that is, pre-
dict the composition of glass with desired properties. To 
this extent, various optimization algorithms such as gradi-
ent descent, ant colony, particle swarm, and genetic algo-
rithm can be used to predict the possible compositions for 
a given target property. It should be noted obtaining the 
global minima is challenging in many cases, and thus, the 
optimization algorithms provide a family of glass compo-
sitions. A similar approach has been used in recent work 
to design optical glasses using genetic algorithm with ML 
models for refractive index (nd) and glass-transition tem-
perature (Tg) as surrogates25. In this work, two criteria, 
namely nd >1.7 and Tg <500ºC, was applied to discover 
glasses. Additional criteria can also be applied in terms 
of compositional constraints. Such an approach can sig-
nificantly accelerate the design and discovery of glasses. 
However, at present, this approach is limited to those who 
are already having ML models for the properties of interest. 
In order for this approach to be accessible to a larger public, 
the surrogate models for a large number of properties and 
components need to be developed and shared along with 
various optimization algorithms publicly. Already such an 
effort is undertaken by the project PyGGi through PyGGi 
Zen, wherein optimization models with four different algo-
rithms are shared along with the ML models for nine glass 
properties with up to 34 components for optimized design 
of glasses (see: http://pyggi.iitd.ac.in).

3.11  |  Challenge 11: interpreting the 
machine learning models for composition–
property relationships

ML methods are notoriously known as black-box meth-
ods, as it is extremely challenging to interpret the nature 
of input–output relationships for them. However, to de-
velop reliable models and to interpret the input relation-
ship meaningfully, the interpretability of ML models is an 

F I G U R E  4   The predicted density of B2O3 using KISS-GP 
for a binary (Na2O)x.(B2O3) glass

https://pyggi.iitd.ac.in
https://pyggi.iitd.ac.in
http://pyggi.iitd.ac.in
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important aspect that needs to be explored. Recent devel-
opments in the ML field have resulted in a variety of “in-
terpreting” tools for ML models. Some of these algorithms 
are Shapley additive explanations63 (SHAP), Locally 
Interpretable Models and Effects (LIME), partial depend-
ency plots (PDP), to name a few.64 Applications of these 
approaches to the ML models will allow one to infer the 
role of each of the components in controlling the respective 
property. For example, interpreting the ML model for hard-
ness can provide insights into the role of network former 
and modifier in controlling the overall response to indenta-
tion. As such, this area of interpretable ML can have a huge 
impact on glass science and technology in understanding 
the composition–property relationships.

3.12  |  Challenge 12: development of 
machine-learned interatomic potentials

Glass simulation is an area where there is a lot of interest as 
the simulations can provide insights into the structure and 
properties of glasses. Most of the glass simulations are con-
ducted at the atomic scale as it provides a balance between 
accuracy (better than mesoscale simulations) and computa-
tional cost (lower than first principle simulations). Since the 
atomistic simulations are only as accurate as the interatomic 
potentials used, the development of realistic interatomic po-
tentials for glass is an active field of research. In contrast 
to crystalline systems, potential development and refine-
ment for glasses are more challenging due to their disor-
dered structure. The development of high accuracy (similar 
to the first principle) potentials for glasses remains an open 
challenge, which can be addressed through ML. Potential 
parametrization using machine learning has mainly been of 
two broad categories: (i) use machine learning to learn and 
optimize the parameters of a known functional form,65,66 for 
example, BKS, (ii) develop a machine-learned potential,67 
where the functional itself is approximated using a machine 
learning model such as neural network, random forest, or 
gaussian approximation potential.68 While the former has 
been applied to some simple glasses, the latter has barely 
been attempted for glasses. The challenge can be addressed 
by developing a collaborative cloud-based service, which 
provides an interatomic potential for any system given 
enough training data. Thus, the service should be able to 
take user-given input trajectories of first principle simula-
tion, use this training data to develop a machine-learned 
potential, and share it with the public. These potentials can 
keep improving with more and more training data with an 
increasing user base. Such a trainable machine learning in-
teratomic potential can accelerate the glass simulations al-
lowing deeper insights into the structure and response of 
glassy materials.

3.13  |  Challenge 13: 
deciphering the relationship between 
structure and dynamics of glasses

A comment by Anderson1 emphasizes the “theory of the nature 
of glass and glass transition to be the deepest and most interest-
ing unsolved problem in solid-state theory”. Recent studies sug-
gest that ML may provide a new angle to attack this unsolved 
problem.69-72 These works suggested a machine-learned param-
eter, namely, softness,69,72 which connects the local structure to 
the dynamics during the glass transition. The softness parameter 
addresses the long-standing question regarding whether there is 
a structural signature associated with the dynamics during the 
glass transition. Although the physical meaning of “softness” 
itself and its direct role in solving the mystery of the glass tran-
sition remains unclear, the work suggests how ML can be used 
to decipher the hidden relationship between the structure and 
dynamics of the glass transition. A fresh data-driven approach 
using ML may thus provide insights into one of the greatest un-
solved problems of the 21st century—the glass transition.

3.14  |  Challenge 14: transfer learning—
applying knowledge learned in one area 
to another

In materials science, obtaining large-scale data associated with 
a system are always a challenge. However, it is well-understood 
many of the physical, chemical, mechanical, thermodynamic, 
and electronic properties are interrelated. Similarly, the na-
ture of the relationship between the input features and output 
may also be interrelated in many different materials. Thus, the 
knowledge learned from one system or property can be used 
to develop models for a similar system or property. This ap-
proach, known as transfer learning, has recently found some 
applications in the area of materials science.73,74 The advan-
tage in this approach is that a model pretrained on a large data-
base can then be used to learn the function on a much smaller 
database. Thus, for glasses or properties in which only sparse 
data are available, transfer learning can be used to develop 
reliable models. However, confounding effects that different 
input components may have could be different for each of the 
properties. Such an effect may, thus, make the transfer learning 
approach inferior as well. To this extent, the development of a 
reliable transfer learning module for the development of mod-
els for glasses with a sparse dataset remains an open challenge.

3.15  |  Challenge 15: semantic search and 
analysis from literature

The number of publications relevant to the keyword “glass” 
is over 1.8 million in Science Direct and 1.6 million in 
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Semantic Scholar. Yet, at the same time, our ability to query 
and navigate these databases are rudimentary. For example, 
we are unable to rapidly answer questions such as: (i) What 
glass compositions have been studied for a property P? (ii) 
What experimental results are available in the literature for 
a given glass composition G? (iii) Which synthesis steps S 
are available for a composition G to obtain a property P1>e1 
& P2<e2?, etc. Generically, this comes down to the identi-
fication and extraction of composition-property-processing 
tuples from textual databases. NLP is increasingly being 
recognized as a means to meaningfully engage with scien-
tific literature and to extract user-specific information from 
a large corpus of texts.31 Select demonstrations of this ap-
proach range from regular expression and syntax-based iden-
tification of structure-property-values pairs from literature 
(battery materials,45 phase diagrams,75 inorganic oxides48), 
variational autoencoder-driven prediction of synthesis pa-
rameters (inorganic oxides),76 the discovery of new thermo-
electrics using word embeddings,31 and the identification of 
broad synthesis recipes using neural networks.77-80

The caption-cluster plot81,82 is a graphical summary of 
an entire field of knowledge, providing insights into the 
availability and distribution of research interests within 
the community and their interrelationships. The example 
in Figure 5 is built using standard NLP techniques such as 
vectorization and clustering on over 10 000 figure captions 

selected from 3000 papers selected randomly from glass lit-
erature. The pixelated figure captions are found to cluster 
based on the information contained in the images, such as 
different types of spectra, polarization measurements, X-ray 
diffraction images, thermal measurements, etc. Combined 
with composition and processing markers, this changes into 
a tool that helps answer some of the questions raised at the 
beginning. Each point in the image represents a figure cap-
tion that has been vectorized and clustered. The color of the 
point represents the label assigned to the caption based on 
the type of information it represents. Thus, in Figure 5, blue 
point corresponds to IR spectra, whereas green corresponds 
to DSC images.

However, for the most part, the overwhelming textual, 
graphic, and ontological information on glass literature is 
grossly underutilized and poorly assimilated, even by sub-
ject experts—a condition that is endemic in the physical sci-
ences. Moreover, the absence of a standard subject ontology 
for the physical sciences, variations in terminology, syntax, 
and representation, along with poor writing practices, have 
resulted in disjoint and often indecipherable dependency re-
lations in text, which complicate routine NLP methods. The 
automation of information extraction in the physical sciences 
has, therefore, lagged behind fields such as bioinformatics, 
where standard representation and presentation systems have 
existed for years. The development of automated routines to 

F I G U R E  5   The caption cluster plot of 
10 000 figure captions selected from 3000 
papers on the keyword “glass.” The captions 
are vectorized and clustered using standard 
NLP techniques
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extract meaningful data from glass literature is one of the big-
gest challenges in the field for the 21st century.

3.16  |  Challenge 16: extracting the synthesis 
protocols from the literature

It is well known that processing conditions and synthesis 
recipes influence the final microstructure and properties of 
glasses. Therefore, any predictive ML/AI model—as outlined 
in Challenges 5 and 6, for example—would benefit enor-
mously from the inclusion of synthesis parameters as a fea-
ture. In addition, the extracting of synthesis protocols47,83,84 
can provide deeper insights into the literature by answering 
some questions such as: (i) what are the methods commonly 
used to prepare a glass?, (ii) what method should be used for 
a specific glass, (iii) what is the effect of a method on a prop-
erty, (iv) what method should be adopted to obtain a target 
property, to name a few. One way to address this issue is to 
develop a consistent dataset with the same protocol followed 
throughout, as mentioned in Challenge 1. An alternate ap-
proach would be to extract the synthesis protocol48,80 directly 
from the published scientific literature. This dataset will iden-
tify a glass composition and relate the synthesis and process-
ing parameters associated with it. These parameters, in turn, 
can range from high-level synthesis routines (sol–gel, hydro-
thermal, solid-state), middle-level synthesis steps (annealing, 
quenching, rolling) to low-level synthesis parameters (an-
nealing temperature, quenching rate, indentation stress, etc.). 
Similar approaches have been demonstrated for inorganic ox-
ides where specific synthesis parameters for a given reaction 
have been calculated using variational auto encoders.76 Figure 
6 shows the synthesis steps for hydrothermal, sol–gel, and 
solid-state reactions that have been automatically generated 
from published literature.77 A random forest model trained on 

synthesis routines of oxide inorganics, in combination with a 
Markov chain model, has been shown to “learn” the synthe-
sis steps directly from text without any human input.77 This 
routine was able to identify differences between necessary 
and optional subroutines and to correctly order the steps of 
a reaction chronologically. It has also been shown that Long 
Short Term Neural Network (LSTM) trained on synthesis lit-
erature could currently identify the most appropriate chemical 
precursor for a synthesis routine.80 The development of an 
automated pipeline to extract synthesis protocols for glasses 
will be extremely useful for scientists and industry alike, and 
thus, remains an open challenge.

3.17  |  Challenge 17: image 
repository of glasses

In addition to text, the majority of the knowledge in the lit-
erature is presented in the form of images. These images 
may include graphs, microscopic images, XRDs, spectros-
copies, to name a few. The total number of images in lit-
erature databases on glasses number in the millions. Despite 
the abundance of data, the glass community, as well as the 
broader material science community, suffer from the ab-
sence of a curated image library. This has prevented the 
development of robust computer vision applications to ac-
celerate the development and discovery of new glass com-
positions. For example, convolutional neural networks have 
been shown to perform as well as human agents in correctly 
identify the composition and phase from an XRD image.85 
They have similarly been used to automate the identifica-
tion of vacancies and point defects in TEM images.86 Such 
approaches can vastly improve the quality of glass research 
by automating tedious and labor-intensive characterization 
methods. However, both deep learning and machine learning 

F I G U R E  6   Synthesis steps for 
hydrothermal, sol–gel, and solid-state 
reactions that have been automatically 
generated from published literature. 
Relevant experimental parameters were 
trained using random forest, and the features 
of this model were ordered using a Markov 
chain to generate these protocols. The 
figure is reproduced with permission from 
Ref [77]
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algorithms require a sufficiently large training dataset of an-
notated images with positive and negative labels. Not only as 
these image sets required for training the models, but they also 
set the benchmark for future models—which is necessary for 
the standardization of the field. However, we currently lack 
a large image repository similar to the MNIST handwritten 
images dataset or the IMAGENET—which has played a piv-
otal role in the development of CV models. Tools such as the 
caption-cluster plot mentioned in Challenge 15 is very useful 
in extracting and identifying the labels of an image. We need 
packages such as the ImageDataExtractor87 to extract and 
quantify images from the literature. However, the currently 
available tools are limited to optical microscopy or electron 
microscopy images and do not extend to other characteriza-
tions and spectra. Building a searchable repository of labeled 
images will allow easy access to the knowledge hidden in 
images and buried deep in the literature.

Furthermore, images tell a detailed story of material for 
those who know how to read it, and for those who do not 
know how to read it, there is AI. Recent studies have shown 
that the material properties such as ionic conductivity can 
be directly predicted from the microstructure.88 Similar ap-
proaches have been used in other materials such as compos-
ites and polycrystals89,90 to extract the structure-property 
correlations. Interestingly, a recent study has employed graph 
neural networks to study the structure and dynamics of glass71 
from the 3D images obtained from atomistic simulations. 
These studies suggest that learning the information hidden 
in images using computer vision and AI can provide deeper 
insights into the structure–property relationship in materials.

3.18  |  Challenge 18: automated high-
throughput glass synthesis

High-throughput glass synthesis is time-consuming and in-
volves a lot of manual labor. In addition, there might be human 
errors (or rather, habits) associated with the synthesis that 
makes it less consistent—that is, two different experimentalists 
performing the same protocol might do it slightly differently. 
Automating the glass synthesis process using robotics can sig-
nificantly reduce the design to discovery period for a new prod-
uct through high-throughput experiments at a much faster rate 
and in a more economical fashion. These approaches are ex-
tremely complex involving robots, which can sense the physi-
cal environment based on partial visual, auditory and other 
sensory cues, and make decisions instantaneously. It involves 
the implementation of several concepts in tandem such as state 
estimation, perception, unsupervised and reinforcement learn-
ing, optimization, and scheduling.27,30 Such approaches have 
already been implemented in a modular robotic platform to dis-
cover thin-film materials with optimized optical and electronic 
properties91 and to synthesize and sinter ceramics in seconds92. 

Such “self-driving laboratories” developed for glass synthesis 
and characterization can be a disruptive change allowing for the 
accelerated discovery of optimized glasses.

3.19  |  Challenge 19: scheduling 
problems and optimization during glass 
manufacturing

In addition to being able to tackle the scientific questions, AI 
can also be used to simplify the problems faced in glass in-
dustries. Glass factories always face the issue of scheduling 
the tasks and optimizing the workflow of interdependent tasks 
composed in a job. This scheduling is subject to a large num-
ber of constraints in terms of time, money, resources, and envi-
ronmental impact. A minor misjudgment in the scheduling can 
lead to major financial losses for the company. To this extent, 
AI can be used for automated scheduling of tasks in the indus-
try, which can take into account the dynamic changes in the 
situations and respond intelligently using an on-the-fly optimi-
zation approach.26,27 Furthermore, AI could be further used to 
monitor and tune the manufacturing process parameters such 
as furnace temperature, charging rate, etc. Dynamically opti-
mizing the temperature of furnaces in real-time could lead to 
an enormous reduction in the cost and energy associated with 
glass manufacturing. Such an approach can significantly re-
duce the human efforts associated with the scheduling and pro-
cess optimization while ensuring a reliable and faster solution.

3.20  |  Challenge 20: automated detection of 
flaws in a large-scale glass synthesis

It is important for glass industries, producing glasses on a large 
scale, to detect flaws in their products. These flaws may range 
from inhomogeneities and localized crystallization to microc-
racks and surface scratches. Visual identification of such flaws 
are extremely challenging and relies on the ability of an ex-
pert. To address this challenge, smart computer vision-based AI 
systems can be developed, allowing for automated detection of 
flaws during the glass manufacturing process. Such AI-based 
flaw detections have been used widely for engineering materi-
als.93 Once the AI system is sufficiently trained to detect the 
flaws, they can potentially be used to optimize the processing 
parameters so as to minimize the flaws. Overall, AI may be 
used to optimize and improve the glass manufacturing process.

3.21  |  Challenge 21: automated warning and 
safety systems for glass industries

Maintenance and replacement of machinery and equipment 
form one of the major expenses in industrial applications. 
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While most of the industries focus on the diagnosis of dam-
age through nondestructive methods, damage prognosis is 
disruptive as it can avoid disasters due to material or ma-
chinery failure. Furthermore, the prognosis allows the au-
thority to plan the maintenance or replacement schedule, 
thereby leading to significant savings in terms of energy, 
cost, and human resources. It is well known that workplace 
accidents can have a significant impact on productivity 
when measured in terms of the number of days lost. While 
these accidents seem to be erratic with no structure or pat-
tern, it has been shown that ML approaches can indeed 
predict these accidents reasonably. As part of Industry 4.0, 
great emphasis has been placed on the Industrial Internet of 
Things (IIoT) to provide intelligent solutions based on ma-
chine monitoring to improve workplace safety.94 Thus, the 
development of automated warning and safety systems for 
glass industries as part of IIoT can thus enhance workplace 
safety while ensuring reduced expenses associated with the 
maintenance of the machinery.

4  |   CONCLUSIONS

Altogether, in this article, we discuss various avenues in 
glass science, where AI and ML can bring about a disruptive 
change. Specifically, we discuss 21 grand challenges related 
to glass science, technology, and engineering that can bring 
about drastic changes in the status quo. This list by no means 
is complete or exhaustive—there are many more avenues for 
the application of AI and ML in the field of glasses. We hope 
that this article will instill enough enthusiasm in the readers 
to explore those avenues. Finally, we believe that this article 
will provide the impetus for beginners to explore the exciting 
field of AI and ML for glass science and experts to provide 
novel and innovative ideas to accelerate the field of glass sci-
ence through AI and ML.
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JV, Gin Stéṕhane, et al. Predicting the dissolution kinetics of sil-
icate glasses by topology-informed machine learning. Npj Mater 
Degrad. 2019;3(1):32. https://doi.org/10.1038/s4152​9-019-0094-1

	21.	 Cassar DR. ViscNet: Neural network for predicting the fragility 
index and the temperature-dependency of viscosity. Acta Mater. 
2021;206:116602. http://doi.org/10.1016/j.actam​at.2020.116602

	22.	 Bishnoi S, Ravinder R, Grover HS, Kodamana H, Krishnan NMA. 
Scalable Gaussian processes for predicting the optical, physical, 
thermal, and mechanical properties of inorganic glasses with large 
datasets. Mater Adv. 2021;2(1):477–87. https://doi.org/10.1039/
D0MA0​0764A

	23.	 Ravinder R, Sridhara KH, Bishnoi S, Grover HS, Bauchy M, 
Jayadeva, et al. Deep learning aided rational design of oxide 
glasses. Mater Horiz. 2020;7(7):1819–27. http://doi.org/10.1039/
d0mh0​0162g

	24.	 Cassar DR, Mastelini SM, Botari T, Alcobaça E, de Carvalho 
ACPLF, Zanotto ED. Predicting thermal, mechanical, and optical 
properties of oxide glasses by machine learning using large data-
sets. 2020.

	25.	 Cassar DR, Santos GG, Zanotto ED. Designing optical glasses by 
machine learning coupled with a genetic algorithm. Ceram Int. 
2020. http://doi.org/10.1016/j.ceram​int.2020.12.167

	26.	 Nilsson NJ. Principles of artificial intelligence. Morgan Kaufmann; 
2014.

	27.	 Russell S, Norvig P. Artificial intelligence: a modern approach. 
Englewood Cliffs, NJ: Series in Artificial Intelligence; 2002.

	28.	 Bengio Y, Goodfellow I, Courville A. Deep learning. Cambridge, 
MA: MIT Press; 2017.

	29.	 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 
2015;521(7553):436–44. https://doi.org/10.1038/natur​e14539

	30.	 Yang G-Z, Bellingham J, Dupont PE, Fischer P, Floridi L, Full 
R, et al. The grand challenges of Science Robotics. Sci Robot. 
2018;3(14). https://doi.org/10.1126/sciro​botics.aar7650

	31.	 Tshitoyan V, Dagdelen J, Weston L, Dunn A, Rong Z, Kononova 
O, et al. Unsupervised word embeddings capture latent knowledge 
from materials science literature. Nature. 2019;571(7763):95–8. 
https://doi.org/10.1038/s4158​6-019-1335-8

	32.	 Manning C, Schutze H. Foundations of statistical natural language 
processing. Cambridge, MA: MIT Press; 1999.

	33.	 Bishop CM. Pattern recognition and machine learning (informa-
tion science and statistics). Berlin, Heidelberg: Springer-Verlag; 
2006.

	34.	 Gubernatis JE, Lookman T. Machine learning in materials de-
sign and discovery: examples from the present and suggestions 
for the future. Phys Rev Mater. 2018;2(12):120301. https://doi.
org/10.1103/PhysR​evMat​erials.2.120301

	35.	 Liu H, Fu Z, Yang K, Xu X, Bauchy M. Machine learning for 
glass science and engineering: a review. J Non-Cryst Solids. 
2019;119419: https://doi.org/10.1016/j.jnonc​rysol.2019.04.039

	36.	 Montazerian M, Zanotto ED, Mauro JC. Model-driven design 
of bioactive glasses: from molecular dynamics through machine 

learning. Int Mater Rev. 2019;1–25. https://doi.org/10.1080/09506​
608.2019.1694779

	37.	 Jantzen CM, Crawford CL.Letter Report on SRNL Modeling 
Database: Accelerated Leach Testing of GLASS (ALTGLASS)-
Version 2.1. SRNL-L3100-2014-00229 and FCRD-SWF-
2014-000249; 2015.

	38.	 Bansal NP, Doremus RH. Handbook of glass properties. 
Amsterdam: Elsevier; 2013.

	39.	 Python for Glass Genomics (PyGGi). n.d. http://pyggi.iitd.ac.in
	40.	 Cassar DR. drcassar/glasspy. 2020. https://github.com/drcas​sar/

glasspy
	41.	 Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton 

M, Baak A, et al. The FAIR Guiding Principles for scientific data 
management and stewardship. Sci Data. 2016;3(1):160018. https://
doi.org/10.1038/sdata.2016.18

	42.	 Gin S, Abdelouas A, Criscenti LJ, Ebert WL, Ferrand K, Geisler 
T, et al. An international initiative on long-term behavior of high-
level nuclear waste glass. Mater Today. 2013;16(6):243–8. https://
doi.org/10.1016/j.mattod.2013.06.008

	43.	 Open Citrination Platform - Citrine Informatics: The AI Platform 
for Materials Development. Citrine Inform. n.d.

	44.	 Swain MC, Cole JM. ChemDataExtractor: a toolkit for automated 
extraction of chemical information from the scientific literature. J 
Chem Inf Model. 2016;56(10):1894–904. https://doi.org/10.1021/
acs.jcim.6b00207

	45.	 Huang S, Cole JM. A database of battery materials auto-generated 
using ChemDataExtractor. Sci Data. 2020;7(1):260. https://doi.
org/10.1038/s4159​7-020-00602​-2

	46.	 Court CJ, Cole JM. Auto-generated materials database of Curie and 
Néel temperatures via semi-supervised relationship extraction. Sci 
Data. 2018;5(1):180111. https://doi.org/10.1038/sdata.2018.111

	47.	 Jensen Z, Kim E, Kwon S, Gani TZH, Román-Leshkov Y, 
Moliner M, et al. A machine learning approach to zeolite synthe-
sis enabled by automatic literature data extraction. ACS Cent Sci. 
2019;5(5):892–9. https://doi.org/10.1021/acsce​ntsci.9b00193

	48.	 Kononova O, Huo H, He T, Rong Z, Botari T, Sun W, et al. Text-
mined dataset of inorganic materials synthesis recipes. Sci Data. 
2019;6(1):203. https://doi.org/10.1038/s4159​7-019-0224-1

	49.	 Weston L, Tshitoyan V, Dagdelen J, Kononova O, Trewartha A, 
Persson KA, et al. Named entity recognition and normalization ap-
plied to large-scale information extraction from the materials sci-
ence literature. J Chem Inf Model. 2019;59(9):3692–702. https://
doi.org/10.1021/acs.jcim.9b00470

	50.	 Domingues R, Filippone M, Michiardi P, Zouaoui J. A comparative 
evaluation of outlier detection algorithms: experiments and analy-
ses. Pattern Recognit. 2018;74:406–21. https://doi.org/10.1016/j.
patcog.2017.09.037

	51.	 Hodge V, Austin J. A survey of outlier detection methodologies. 
Artif Intell Rev. 2004;22(2):85–126. https://doi.org/10.1023/
B:AIRE.00000​45502.10941.a9

	52.	 Knorr EM, Ng RT. A unified approach for mining outliers. In 
Proceedings of the 1997 conference of the Centre for Advanced 
Studies on Collaborative research. 1997:11.

	53.	 Breunig MM, Kriegel H-P, Ng RT, Sander J.LOF: identifying 
density-based local outliers. ACM Sigmod Rec, Vol. 29. ACM; 
2000:93–104.

	54.	 Zhao Y, Nasrullah Z, Li Z. PyOD: a python toolbox for scalable 
outlier detection. J Mach Learn Res. 2019;20(96):1–7.

	55.	 Zhao Y, Hryniewicki MK. XGBOD: improving supervised outlier 
detection with unsupervised representation learning. 2018 Int. Jt. 

https://doi.org/10.1016/j.actamat.2020.01.047
https://doi.org/10.1016/j.jnoncrysol.2018.02.023
https://doi.org/10.1038/s41529-019-0094-1
http://doi.org/10.1016/j.actamat.2020.116602
https://doi.org/10.1039/D0MA00764A
https://doi.org/10.1039/D0MA00764A
http://doi.org/10.1039/d0mh00162g
http://doi.org/10.1039/d0mh00162g
http://doi.org/10.1016/j.ceramint.2020.12.167
https://doi.org/10.1038/nature14539
https://doi.org/10.1126/scirobotics.aar7650
https://doi.org/10.1038/s41586-019-1335-8
https://doi.org/10.1103/PhysRevMaterials.2.120301
https://doi.org/10.1103/PhysRevMaterials.2.120301
https://doi.org/10.1016/j.jnoncrysol.2019.04.039
https://doi.org/10.1080/09506608.2019.1694779
https://doi.org/10.1080/09506608.2019.1694779
http://pyggi.iitd.ac.in
https://github.com/drcassar/glasspy
https://github.com/drcassar/glasspy
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1016/j.mattod.2013.06.008
https://doi.org/10.1016/j.mattod.2013.06.008
https://doi.org/10.1021/acs.jcim.6b00207
https://doi.org/10.1021/acs.jcim.6b00207
https://doi.org/10.1038/s41597-020-00602-2
https://doi.org/10.1038/s41597-020-00602-2
https://doi.org/10.1038/sdata.2018.111
https://doi.org/10.1021/acscentsci.9b00193
https://doi.org/10.1038/s41597-019-0224-1
https://doi.org/10.1021/acs.jcim.9b00470
https://doi.org/10.1021/acs.jcim.9b00470
https://doi.org/10.1016/j.patcog.2017.09.037
https://doi.org/10.1016/j.patcog.2017.09.037
https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
https://doi.org/10.1023/B:AIRE.0000045502.10941.a9


      |  291RAVINDER et al.

Conf. Neural Netw. IJCNN. 2018:1–8. https://doi.org/10.1109/
IJCNN.2018.8489605

	56.	 Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. 
Commentary: the materials project: a materials genome approach to 
accelerating materials innovation. APL Mater. 2013;1(1):011002. 
https://doi.org/10.1063/1.4812323

	57.	 Hu Y-J, Zhao G, Zhang M, Bin B, Del Rose T, Zhao Q, et al. 
Predicting densities and elastic moduli of SiO 2 -based glasses by 
machine learning. Npj Comput Mater. 2020;6(1):1–13. https://doi.
org/10.1038/s4152​4-020-0291-z

	58.	 Bergstra J, Yamins D, Cox D. Making a science of model search: 
hyperparameter optimization in hundreds of dimensions for vision 
architectures; 2013:115–23.

	59.	 Akiba T, Sano S, Yanase T, Ohta T, Koyama M.Optuna: a next-
generation hyperparameter optimization framework. Proc. 25th 
ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. Anchorage, 
AK, USA: Association for Computing Machinery. 2019:2623–
2631. https://doi.org/10.1145/32925​00.3330701

	60.	 Cranmer M, Greydanus S, Hoyer S, Battaglia P, Spergel D, Ho S. 
Lagrangian neural networks. 2020.

	61.	 Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: 
representing model uncertainty in deep learning. Int Conf Mach 
Learn. PMLR; 2016:1050–9.

	62.	 Wilson A, Nickisch H. Kernel interpolation for scalable struc-
tured Gaussian processes (KISS-GP). Int Conf Mach Learn. 
2015;1775–84.

	63.	 Lundberg SM, Lee S-I.A unified approach to interpreting model 
predictions. In: Guyon I, Luxburg UV, Bengio S, editors. Advances 
in neural information processing systems 30. Curran Associates, 
Inc.; 2017:4765–74.

	64.	 Ribeiro MT, Singh S, Guestrin C. Model-agnostic interpretability 
of machine learning. ArXiv160605386 Cs Stat. 2016.

	65.	 Liu H, Fu Z, Li Y, Sabri NFA, Bauchy M. Balance between 
accuracy and simplicity in empirical forcefields for glass mod-
eling: insights from machine learning. J Non-Cryst Solids. 
2019;515:133–42. https://doi.org/10.1016/j.jnonc​rysol.2019.04.​
020

	66.	 Liu H, Fu Z, Li Y, Sabri NFA, Bauchy M. Parameterization 
of empirical forcefields for glassy silica using machine learn-
ing. MRS Commun. 2019;9(2):593–9. https://doi.org/10.1557/
mrc.2019.47

	67.	 Deringer VL, Caro MA, Csányi G. Machine learning interatomic 
potentials as emerging tools for materials science. Adv Mater. 
2019;31(46):1902765. https://doi.org/10.1002/adma.20190​2765

	68.	 Bartók AP, Payne MC, Kondor R, Csányi G. Gaussian approxi-
mation potentials: the accuracy of quantum mechanics, without 
the electrons. Phys Rev Lett. 2010;104(13):136403. https://doi.
org/10.1103/PhysR​evLett.104.136403

	69.	 Schoenholz SS, Cubuk ED, Sussman DM, Kaxiras E, Liu AJ. 
A structural approach to relaxation in glassy liquids. Nat Phys. 
2016;12(5):469–71. https://doi.org/10.1038/nphys​3644

	70.	 Cubuk ED, Schoenholz SS, Rieser JM, Malone BD, Rottler J, 
Durian DJ, et al. Identifying structural flow defects in disor-
dered solids using machine-learning methods. Phys Rev Lett. 
2015;114(10):108001. https://doi.org/10.1103/PhysR​evLett.114.​
108001

	71.	 Bapst V, Keck T, Grabska-Barwińska A, Donner C, Cubuk ED, 
Schoenholz SS, et al. Unveiling the predictive power of static 
structure in glassy systems. Nat Phys. 2020;16(4):448–54. https://
doi.org/10.1038/s4156​7-020-0842-8

	72.	 Schoenholz SS, Cubuk ED, Kaxiras E, Liu AJ. Relationship be-
tween local structure and relaxation in out-of-equilibrium glassy 
systems. Proc Natl Acad Sci. 2017;114(2):263–7. https://doi.
org/10.1073/pnas.16102​04114

	73.	 Jha D, Choudhary K, Tavazza F, Liao W-K, Choudhary A, 
Campbell C, et al. Enhancing materials property prediction by le-
veraging computational and experimental data using deep transfer 
learning. Nat Commun. 2019;10(1):1–12. https://doi.org/10.1038/
s4146​7-019-13297​-w

	74.	 Yamada H, Liu C, Wu S, Koyama Y, Ju S, Shiomi J, et al. Predicting 
materials properties with little data using shotgun transfer learn-
ing. ACS Cent Sci. 2019;5(10):1717–30. https://doi.org/10.1021/
acsce​ntsci.9b00804

	75.	 Court CJ, Cole JM. Magnetic and superconducting phase diagrams 
and transition temperatures predicted using text mining and ma-
chine learning. Npj Comput Mater. 2020;6(1):1–9. https://doi.
org/10.1038/s4152​4-020-0287-8

	76.	 Kim E, Huang K, Jegelka S, Olivetti E. Virtual screening of in-
organic materials synthesis parameters with deep learning. Npj 
Comput Mater. 2017;3(1):53. https://doi.org/10.1038/s4152​
4-017-0055-6

	77.	 Huo H, Rong Z, Kononova O, Sun W, Botari T, He T, et al. Semi-
supervised machine-learning classification of materials synthe-
sis procedures. Npj Comput Mater. 2019;5(1):62. https://doi.
org/10.1038/s4152​4-019-0204-1

	78.	 Johansson S, Thakkar A, Kogej T, Bjerrum E, Genheden S, 
Bastys T, et al. AI-assisted synthesis prediction. Drug Discov 
Today Technol. 2019;32-33:65–72. https://doi.org/10.1016/j.
ddtec.2020.06.002

	79.	 Vaucher AC, Zipoli F, Geluykens J, Nair VH, Schwaller P, Laino 
T. Automated extraction of chemical synthesis actions from exper-
imental procedures. Nat Commun. 2020;11(1):3601. https://doi.
org/10.1038/s4146​7-020-17266​-6

	80.	 Kim E, Jensen Z, van Grootel A, Huang K, Staib M, Mysore S, 
et al. Inorganic materials synthesis planning with literature-trained 
neural networks. J Chem Inf Model. 2020;60(3):1194–201. https://
doi.org/10.1021/acs.jcim.9b00995

	81.	 Venugopal V, Broderick SR, Rajan K. A picture is worth a thou-
sand words: applying natural language processing tools for 
creating a quantum materials database map. MRS Commun. 
2019;9(4):1134–41. https://doi.org/10.1557/mrc.2019.136

	82.	 Venugopal V, Sahoo S, Zaki M, Agarwal M, Gosvami NN, 
Krishnan NMA. Looking through glass: knowledge discovery 
from materials science literature using natural language process-
ing. ArXiv210101508 Phys. 2021.

	83.	 Kim E, Huang K, Kononova O, Ceder G, Olivetti E. Distilling a 
materials synthesis ontology. Matter. 2019;1(1):8–12. https://doi.
org/10.1016/j.matt.2019.05.011

	84.	 Kim E, Huang K, Saunders A, McCallum A, Ceder G, Olivetti 
E. Materials synthesis insights from scientific literature via text 
extraction and machine learning. Chem Mater. 2017;29(21):9436–
44. https://doi.org/10.1021/acs.chemm​ater.7b03500

	85.	 Oviedo F, Ren Z, Sun S, Settens C, Liu Z, Hartono NTP, et al. Fast 
and interpretable classification of small X-ray diffraction datasets 
using data augmentation and deep neural networks. Npj Comput 
Mater. 2019;5(1):60. https://doi.org/10.1038/s4152​4-019-0196-x

	86.	 Maksov A, Dyck O, Wang K, Xiao K, Geohegan DB, Sumpter BG, 
et al. Deep learning analysis of defect and phase evolution during 
electron beam-induced transformations in WS2. Npj Comput 
Mater. 2019;5(1):12. https://doi.org/10.1038/s4152​4-019-0152-9

https://doi.org/10.1109/IJCNN.2018.8489605
https://doi.org/10.1109/IJCNN.2018.8489605
https://doi.org/10.1063/1.4812323
https://doi.org/10.1038/s41524-020-0291-z
https://doi.org/10.1038/s41524-020-0291-z
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1016/j.jnoncrysol.2019.04.020
https://doi.org/10.1016/j.jnoncrysol.2019.04.020
https://doi.org/10.1557/mrc.2019.47
https://doi.org/10.1557/mrc.2019.47
https://doi.org/10.1002/adma.201902765
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1038/nphys3644
https://doi.org/10.1103/PhysRevLett.114.108001
https://doi.org/10.1103/PhysRevLett.114.108001
https://doi.org/10.1038/s41567-020-0842-8
https://doi.org/10.1038/s41567-020-0842-8
https://doi.org/10.1073/pnas.1610204114
https://doi.org/10.1073/pnas.1610204114
https://doi.org/10.1038/s41467-019-13297-w
https://doi.org/10.1038/s41467-019-13297-w
https://doi.org/10.1021/acscentsci.9b00804
https://doi.org/10.1021/acscentsci.9b00804
https://doi.org/10.1038/s41524-020-0287-8
https://doi.org/10.1038/s41524-020-0287-8
https://doi.org/10.1038/s41524-017-0055-6
https://doi.org/10.1038/s41524-017-0055-6
https://doi.org/10.1038/s41524-019-0204-1
https://doi.org/10.1038/s41524-019-0204-1
https://doi.org/10.1016/j.ddtec.2020.06.002
https://doi.org/10.1016/j.ddtec.2020.06.002
https://doi.org/10.1038/s41467-020-17266-6
https://doi.org/10.1038/s41467-020-17266-6
https://doi.org/10.1021/acs.jcim.9b00995
https://doi.org/10.1021/acs.jcim.9b00995
https://doi.org/10.1557/mrc.2019.136
https://doi.org/10.1016/j.matt.2019.05.011
https://doi.org/10.1016/j.matt.2019.05.011
https://doi.org/10.1021/acs.chemmater.7b03500
https://doi.org/10.1038/s41524-019-0196-x
https://doi.org/10.1038/s41524-019-0152-9


292  |      RAVINDER et al.

	87.	 Mukaddem KT, Beard EJ, Yildirim B, Cole JM. 
ImageDataExtractor: a tool to extract and quantify data from 
microscopy images. J Chem Inf Model. 2020;60(5):2492–509. 
https://doi.org/10.1021/acs.jcim.9b00734

	88.	 Kondo R, Yamakawa S, Masuoka Y, Tajima S, Asahi R. 
Microstructure recognition using convolutional neural networks 
for prediction of ionic conductivity in ceramics. Acta Mater. 
2017;141:29–38. https://doi.org/10.1016/j.actam​at.2017.09.004

	89.	 Ling J, Hutchinson M, Antono E, DeCost B, Holm EA, Meredig B. 
Building data-driven models with microstructural images: general-
ization and interpretability. Mater Discov. 2017;10:19–28. https://
doi.org/10.1016/j.md.2018.03.002

	90.	 Yang Z, Yabansu YC, Jha D, Liao W-K, Choudhary AN, Kalidindi 
SR, et al. Establishing structure-property localization linkages for 
elastic deformation of three-dimensional high contrast composites 
using deep learning approaches. Acta Mater. 2019;166:335–45. 
https://doi.org/10.1016/j.actam​at.2018.12.045

	91.	 MacLeod BP, Parlane FGL, Morrissey TD, Häse F, Roch LM, 
Dettelbach KE, et al. Self-driving laboratory for accelerated dis-
covery of thin-film materials. Sci Adv. 2020;6(20):eaaz8867. 
https://doi.org/10.1126/sciadv.aaz8867

	92.	 Wang C, Ping W, Bai Q, Cui H, Hensleigh R, Wang R, et al. A 
general method to synthesize and sinter bulk ceramics in sec-
onds. Science. 2020;368(6490):521. https://doi.org/10.1126/scien​
ce.aaz7681

	93.	 Margrave FW, Rigas K, Bradley DA, Barrowcliffe P. The use 
of neural networks in ultrasonic flaw detection. Measurement. 
1999;25(2):143–54. https://doi.org/10.1016/S0263​-2241(98)00​
075​-X

	94.	 McNinch M, Parks D, Jacksha R, Miller A. Leveraging IIoT to 
improve machine safety in the mining industry. Min Metall Explor. 
2019;36(4):675–81. https://doi.org/10.1007/s4246​1-019-0067-5

How to cite this article: Ravinder , Venugopal V, 
Bishnoi S, et al. Artificial intelligence and machine 
learning in glass science and technology: 21 
challenges for the 21st century. Int J Appl Glass Sci. 
2021;12:277–292. https://doi.org/10.1111/ijag.15881

https://doi.org/10.1021/acs.jcim.9b00734
https://doi.org/10.1016/j.actamat.2017.09.004
https://doi.org/10.1016/j.md.2018.03.002
https://doi.org/10.1016/j.md.2018.03.002
https://doi.org/10.1016/j.actamat.2018.12.045
https://doi.org/10.1126/sciadv.aaz8867
https://doi.org/10.1126/science.aaz7681
https://doi.org/10.1126/science.aaz7681
https://doi.org/10.1016/S0263-2241(98)00075-X
https://doi.org/10.1016/S0263-2241(98)00075-X
https://doi.org/10.1007/s42461-019-0067-5
https://doi.org/10.1111/ijag.15881

