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The properties of concretes are controlled by the rate of reaction of 
their precursors, the chemical composition of the binding phase(s), 
and their structure at different scales. However, the complex and 
multiscale structure of the cementitious hydrates and the dissimilar 
rates of numerous chemical reactions make it challenging to eluci-
date such linkages. In particular, reliable predictions of strength 
development in concretes remain unavailable. As an alternative 
route to physics- or chemistry-based models, machine learning 
(ML) offers a means to develop powerful predictive models for 
materials using existing data. Here, it is shown that ML models 
can be used to accurately predict concrete’s compressive strength 
at 28 days. This approach relies on the analysis of a large data 
set (>10,000 observations) of measured compressive strengths 
for industrially produced concretes, based on knowledge of their 
mixture proportions. It is demonstrated that these models can 
readily predict the 28-day compressive strength of any concrete 
based merely on the knowledge of the mixture proportions with 
an accuracy of approximately ±4.4 MPa (as captured by the root-
mean-square error). By comparing the performance of select ML 
algorithms, the balance between accuracy, simplicity, and inter-
pretability in ML approaches is discussed.

Keywords: machine learning; modeling; strength.

INTRODUCTION
Thanks to standardized, popular, and straightforward 

means of measurement, the compressive strength of concrete 
at 28 days offers a convenient metric of engineering perfor-
mance that forms a key input in structural design and quality 
control.1 In addition, the development of other mechan-
ical properties (for example, stiffness and flexural/tensile 
strength) is correlated with compressive strength.2 Better 
predictability of concrete strength offers a means to reduce 
the extent of overdesign of field-produced concretes. This is 
a straightforward means of reducing its carbon footprint as it 
allows for more efficient use of cement, without sacrificing 
performance.3 As such, new predictive models for concrete 
strength could accelerate the discovery of new concretes, 
simultaneously offering higher performance, longer service 
life, lower cost, and lower carbon impact.4,5

Although concrete’s strength is governed largely by the 
water-cement ratio (w/c, mass basis), it is also affected by 
other features, such as chemical and mineral admixtures, 
cement type and quantity, aggregates types and quantity, 
and entrained air.6 Altogether, the high number of features 
influencing concrete’s strength and the fact that the effects 
of individual features may be nonlinear, competitive, 
and/or non-additive make reliable prediction of strength  
development in concrete extremely challenging.7 Although 

the development of physics- and chemistry-based predictive 
models would be desirable,8 despite decades of research, no 
robust, accurate models that can precisely, accurately, and 
reliably predict concrete’s strength are currently available.9

As an alternative route to physics- and chemistry-based 
models, artificial intelligence and machine learning (ML) 
offer an attractive option to develop data-driven models by 
“learning from example” based on existing data sets.10 In this 
article, by building on previous studies that seek to predict 
concrete strength by ML,11,12 several classes of ML algo-
rithms (for example, polynomial regression, artificial neural 
network, random forest, and boosted tree) are compared in 
predicting concrete’s strength. On the basis of these results, 
the trade-offs between accuracy, complexity, and interpret-
ability offered by each ML approach are discussed.

RESEARCH SIGNIFICANCE
This paper demonstrates that ML offers a robust approach 

to predicting the 28-day compressive strength of concrete. 
Specifically, it is shown that a well-optimized random forest 
model successfully predicts, with an accuracy of ±4.4 MPa, 
the 28-day compressive strength of concrete mixtures that 
are hidden from the model during its training. On the basis 
of these results, an analysis of the balance between accu-
racy, complexity, and interpretability in ML models applied 
to small and noisy data sets is presented. The outcomes 
offer a powerful new basis for predicting the strength of 
any concrete simply based on knowledge of its mixture 
proportions.

BACKGROUND AND METHODS
Feature selection

This study leverages a data set (comprising 10,264 obser-
vations) of measured compressive strength values obtained 
from actual jobsite mixtures and their corresponding 
mixture proportions.11 The mixture proportions reported 
reflect the actual mixture proportions—that is, based on the 
batch weights of industrially produced concretes that were 
either truck- or central-plant mixed. Furthermore, all the 
strength measurements reported in the data sets used ASTM 
C150-compliant Type I/II ordinary portland cement (OPC). 
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Class F fly ash compliant with ASTM C618 was used in 
select cases.

To select the features to be used as inputs for the ML 
models considered herein, a permutation importance analysis 
was conducted,13 in which the feature importance is deter-
mined by independently randomly shuffling each feature and 
tracking the associated loss in accuracy (wherein important 
features result in more significant accuracy loss). Note that 
this analysis is conducted based on the artificial neural 
networks (ANN) model presented in the section “Machine 
learning algorithms.” Figure 1 shows the outcome of this 
analysis. As expected, the water-cement ratio (w/c) features 
the highest importance. Then, the features used herein to 
train the ML model on the basis of their importance were 
selected, while nevertheless limiting the dimensionality of 
the feature space by disregarding features of low importance. 
On the basis of this analysis, the following six most influen-
tial features controlling concrete’s strength were selected, 
namely (in order of decreasing importance), 1) w/c (mass 
basis); 2) fine aggregate mass fraction; 3) water-reducing 
admixture (WRA) dosage; 4) coarse aggregate mass frac-
tion; 5) fly ash mass fraction; and 6) air-entraining admix-
ture (AEA) dosage. In contrast, due to their low importance, 
the following features are disregarded in this study: concrete 
load size, ambient temperature, and plant origin (categorial 
variable). Note that, for normalization purposes, all the rele-
vant features are converted into a weight fraction (in %). The 
cement mass fraction is not considered in this work, because 
it is redundant with other features (that is, the sum of all the 
weight-based features is 100%). In the following, the overall 
ML strategy as well as the different ML algorithms that are 
considered and compared herein are briefly described.

Training and testing of models
To avoid any risk of overfitting, a fraction of the data 

points (randomly chosen) are hidden from the models and 
are used as a “test set” to a posteriori assess the accuracy of 
each model; that is, to minimize variance and bias. The test 
set is formed by randomly selecting 30% of the data points 
within the data set. The rest (that is, 70%) are used as a 
“training set,” that is, to train “by example” the ML models. 
Further, to obtain a proper setting for the hyperparameters of 
each model, a fraction of the remaining training set is kept 
as a “validation set.” However, isolating a fixed validation 
set would further reduce the number of points used to train 
the models, which can be a serious issue in the case of a 
small data set as that used in this work. To overcome this 
limitation, the k-fold cross-validation (CV) technique was 
adopted.14 The CV technique consists in splitting the training 
set into k distinct sets, wherein the model is trained on “k – 
1” of the folds and validated on the basis of the remaining 
data (that is, the last remaining fold). The results are then 
averaged by iteratively using each of the k folds for valida-
tion. Here, k = 5.

Optimization of model complexity
ML models must present an optimal balance between 

accuracy and simplicity—models that are too simple (that 
is, biased) tend, in turn, to be poorly accurate (that is, 

“underfitted”), whereas models that are too complex (that is, 
high variance) tend to place too much weight on the noise of 
the training set (that is, “overfitted”). By keeping the memory 
of the noise of the training set, overfitted models often show 
poor transferability to unknown sets of data. To avoid under- 
and overfitting, one needs to identify the optimal degree 
of complexity (for example, number of hyperparameters) 
for each model. Here, the degree of complexity of each 
model is optimized by gradually increasing its complexity 
and tracking the accuracy of the model predictions for both 
the training and the test sets. As shown in the following, 
although the accuracy of the training set prediction typically 
monotonically increases with increasing model complexity, 
overfitted models usually manifest themselves by a decrease 
in the accuracy of the test set prediction.

Machine learning algorithms
Polynomial regression—The first focus is on the poly-

nomial regression (PR) method. PR is a special case of 
multiple linear regression that includes higher-degree poly-
nomial terms and treats these higher-degree polynomes as 
other independent variables.15 In the case of a single input, 
the N-th degree PR method can be described as

	 Y Xi
i

N
i= + ∑

=
β β0

1

	 (1)

where Y is the output (here, the 28-day compressive strength); 
X is the input of the models; N is the maximum polynomial 
degree; and βi are the parameters of the model.

The least-square method is then used to identify the coef-
ficients βi that minimize the sum of the squared difference 
between the true strength values and those predicted by the 
PR method (that is, Y) during the training phase. Equation (1) 
is then extended to account for additional inputs (such as 

Fig. 1—Permutation importance of each feature considered 
herein—namely (in order of increasing importance) ambient 
temperature, concrete load size, plant origin (categorical 
variable), AEA dosage, fly ash mass fraction, WRA dosage, 
coarse aggregate mass fraction,  fine aggregate mass frac-
tion, and w/c (mass basis).
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w/c and fraction of fly ash) in the case of multivariate PR. 
The complexity of PR models depends on the choice of the 
number N of polynomial degrees considered during training.

Artificial neural networks—ANNs aim to mimic the 
learning process of human brains.16 ANN models consist of 
an input layer that is connected to an output layer through 
some “hidden” layers of neurons. Each neuron takes as 
inputs the signals from the previous layer and produces a 
new output (to be used as input by the neurons from the next 
layer). The output yi of a neuron i in one of the hidden layers 
is calculated as17

	 y s w x Ti

M

i i i
hid= ∑ +

 )
1

	 (2)

where s( ) is an activation function; M is the number of input 
neurons in the previous layer; xi are the input values; wi is the 
weight associated with each edge of the network; and Ti

hid is 
the threshold term (bias) of hidden neurons.

To capture the nonlinear relationship between concrete 
mixture proportions and compressive strength values, a 
sigmoid function as activation function was adopted herein
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e u( ) =

+ −

1
1

	 (3)

The resilient backpropagation (BP) algorithm is adopted 
to train the neural network model, which allows the network 
to iteratively learn from its errors.18 The BP algorithm is 
an efficient method that tunes the weight, wi, of the ANN 
model by calculating the gradient of the loss function Eloss 
(refer to Eq. (4)). To measure the error between the predicted 
and real strength outputs after a training sample has propa-
gated through the network, the squared Euclidean distance 
was used to calculate the loss function Eloss over n training 
outputs as

	 E
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where Yi and Yi′ are the predicted and real strength outputs, 
respectively. Then, after a given number k of iterations, each 
weight wi is modified by applying an increment

	 wi
(k+1) = wi

(k) + Δ(k)wi	 (5)

where wi
(k+1) is the updated weight for the step k + 1; wi

(k) is 
the initial weight before update; and Δ(k)wi is the increment, 
which is calculated by steepest descent gradient in the error 
function as

	 Δ(k)wi = –γi
(k)sign(∇ ( )

i
kE )	 (6)

where sign( ) is the “sign function”; ∇i
kE  is the partial deriv-

ative (that is, gradient) of the error function E(k) with respect 
to the weights w at the k-th iteration; and γi

(k) is the learning 
rate data used for training.

The model is iteratively refined until the relative change 
in the loss function becomes less than 10–4. The degree of 
complexity of ANN models is characterized by the number 

of nonzero weights, which depends on the number of layers 
and neurons per layer.

Random forest—The random forest (RF) method relies 
on building of a “forest”—that is, an ensemble of decision 
trees.19 The RF approach creates a tree by randomly choosing 
n samples from the training set (bootstrap method). Then, at 
each node, it uses a randomly selected subset of variables to 
choose the best split to construct trees. RF runs input data on 
all nt trees and yields a prediction that is the average of all 
the values returned by each tree

	 Y
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where Yi(X) is the individual value predicted by one of the 
trees for an input vector X; and Y is the overall output of the 
RF model with nt trees.20 The degree of complexity of RF 
models is characterized by the number of variables in the 
random subset and trees in the forest.

Boosted tree—In boosted tree (BT),21 trees are grown 
sequentially, each successive tree grown so as to correct the 
errors contained in the previous trees. At every iteration, 
a decision tree is fitted to the negative gradient of the loss 
function and added to the output value obtained from the 
previous iteration. In details, in the first iteration, a base 
decision tree learner F(X) is fitted to the training set (X,Y′), 
where X denotes the input variables, and Y′ denotes the true 
concrete strength. Then, for the next iteration, i, the pseu-
do-residuals ri are calculated as
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where L( ) is the loss function. Then, a new tree learner hi(X) 
is fitted to the pseudo-residuals using the training set (X, ri). 
The multiplier coefficient, mi, is then computed by solving 
the following optimization problem

	 mi = argmin[L(Y, Fi–1(X) + mhi(X)]	 (9)

where m is a constant (taken as 1 here). The decision tree 
learner is then updated as

	 Fi(X) = Fi–1(X) + λmihi(X)	 (10)

where λ is the learning rate (taken as 0.01 herein), which is 
applied at each step to help prevent the model from becoming 
overfitted. The model is refined until convergence.

Determination of model accuracy
Finally, the accuracy of each model (with different degrees 

of complexity) is assessed by computing the root-mean-
square error (RMSE), the mean absolute percentage error 
(MAPE), and the coefficient of determination (R2) metrics. 
The RMSE factor measures the average Euclidian distance 
between the predicted and real output values as:

	 RMSE = ∑ − ′( )
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where Yi and Yi′ are the predicted and real output values, 
respectively; and n is the number of samples in the data 
set. The MAPE factor measures the average percent error 
between the predicted and real output values as

	 MAPE
%
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The RMSE has the property of having the same units as 
that of the output values and, hence, can be used to estimate 
the accuracy of the compressive strength values predicted 
by each model (namely, lower RMSE values indicate higher 
accuracy). Here, the RMSE of the training and test sets is 
used to determine the optimal degree of complexity for each 
ML model.

To complement the RMSE and MAPE metrics, the R2 
determination factor was computed, which captures the 
response variable variation. This factor can be used to quan-
tify how close the output data are to the fitted line. R2 = 1 
indicates a perfect prediction, while smaller values indi-
cate less accurate predictions. Here, we use the R2 factor to 
compare the performances of each different ML algorithms 
(once the degree of complexity has been optimized based on 
the RMSE).

Finally, the error distribution was computed—that is, 
the distribution of the difference between measured and 
predicted strength. Then determined were: 1) the mean value 
of the error distribution (that is, average error), which offers 
a measure of the systematic bias of a given model, that is, 
its propensity to under- or overestimate strength; and 2) the 
90% (95%) confidence interval, wherein the strength that 
is predicted for an unknown concrete shows a 90% (95%) 
probability of falling within this error interval.

RESULTS
Polynomial regression

First assessed was the ability of the different ML algo-
rithms considered herein to predict the relationship between 
concrete mixture proportions (inputs) and compressive 
strength (output). The first focus was on the performance 
of PR. Figure 2(a) shows the RMSE offered by PR for the 
training and test sets as a function of the maximum polyno-
mial degree considered in the model. As expected, it was 
observed that the RMSE of the training set decreases upon 
increasing polynomial degree (that is, increasing model 
complexity). This indicates that as the model becomes more 
complex, it becomes able to better interpolate the training 
set. In contrast, an increase in the RMSE was observed when 
the polynomial degree is equal to 1 or 2—which signifies 
that, in this domain, the model is underfitted (so that the 
model is too simple to properly interpolate the training set). 
This confirms, as shown extensively in the literature,22,23 
that linear models based on additive relationships are intrin-
sically unable to properly describe the linkages between 
concrete mixture proportions and compressive strength.

On the other hand, it was observed that the RMSE of the 
test set initially decreases with increasing polynomial degree, 
shows a minimum for degree 3, and eventually increases 
with increasing degree. This demonstrates that the models 

incorporating some polynomial terms that are strictly larger 
than 3 are overfitted. This arises from the fact that, in the 
case of high degrees, the model starts to fit the noise of the 
training set rather than the “true” overall trend. These results 
exemplify 1) how the accuracy of the training set interpo-
lation allows identification of the minimum level of model 
complexity that is required to avoid underfitting; and 2) how 
the accuracy of the test set prediction allows tracking of the 
maximum level of model complexity before overfitting. 
Overall, the optimal polynomial degree (here found to be 3) 
manifests itself by a minimum in the RMSE of the test set.

Next, the focus is on assessing the accuracy of the predic-
tions offered by the best PR model identified herein (that is, 
with a maximum polynomial degree of 3). Figure 2(b) shows 
a comparison between the true compressive strength values 
of the test set (that is, which are unknown to the model) 
and those predicted by the ML model. The R2 factor of the 
test set was found to be 0.596. This indicates that, even in 
the case of a simple algorithm like PR, ML is able to iden-
tify the underlying patterns represented in the data set. The 
error distribution (that is, the distribution of the difference 
between the predicted and true strength values of the test set) 
of the best PR model (that is, with a maximum polynomial 
degree of 3) is shown in Fig. 2(c). It was observed that the 
distribution does not exhibit any notable bias (which would 
manifest by a nonzero average error—here the mean error is 
0.007 MPa) and presents a standard deviation of 4.52 MPa. 
The 90% and 95% confidence intervals extend from –7.43 
to 7.43 MPa and –8.86 to 8.86 MPa, respectively. This 
indicates that there is a 90% probability that the predicted 
strength (for an unknown concrete) is within ±7.43 MPa of 
the true (measured) strength.

Artificial neural network
Next, focus is on the outcomes of the ANN algorithm. 

Figure 3(a) shows the RMSE offered by ANN for the training 
and test sets as a function of the number of neurons (that is, 
which characterizes the complexity of the model). Note that, 
here, this work is restricted to ANN architectures comprising 
a single hidden layer. In contrast to the outcomes of PR, it was 
observed that ANN does not yield any noticeable signature 
of overfitting at high model complexity, which would mani-
fest itself by an increase in the RMSE of the test set. Here, in 
contrast, the RMSE of the test set only eventually shows a 
plateau with an increasing number of neurons. The optimal 
degree of complexity was selected (herein, seven neurons) as 
the one for which the RMSE of the test set becomes less than 
one standard deviation away from the minimum RMSE (that 
is, in the plateau regime), wherein the standard deviation is 
calculated on the basis of the RMSE of each fold during CV.

As for the accuracy of the optimal ANN model (that is, 
with seven neurons), Fig. 3(b) shows a comparison between 
the true compressive strength of the test set and that predicted 
by the ML model. The R2 factor of the test set was 0.591. 
This suggests that, in the present case, the ability of the 
ANN algorithm to offer accurate predictions of the compres-
sive strength values of unknown concretes (that is, test set) 
is slightly lower than in the case of PR. Figure 3(c) shows 
the error distribution. Again, no notable bias was observed 
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(the mean error is 0.009 MPa), and the standard deviation 
of the distribution is 4.53 MPa. The 90% and 95% confi-
dence intervals extend from –7.45 to 7.45 MPa and –8.88 to 
8.88 MPa, respectively.

Boosted tree
Next, focus is on the outcomes of the BT algorithm. 

Figure 4(a) shows the RMSE offered by BT for the training 
and test sets as a function of the number of trees (that is, 
which characterizes the complexity of the model). Overall, 
as previously observed in the cases of ANN, BT does not 
yield any noticeable overfitting at high model complexity. 
Here, 700 was selected as being the optimal number of trees 
(by adopting the same criterion as that used in the case of 
ANN).

To characterize the accuracy of the optimal BT model 
(that is, with 700 trees), Fig. 4(b) shows a comparison 
between the true compressive strength of the test set and 
those predicted by the ML model. The R2 factor of the test 

set was found to be 0.619. This indicates that, here, BT offers 
an increased ability to predict the compressive strength of 
unknown concretes as compared with the PR and ANN 
models. Figure 4(c) shows the corresponding error distribu-
tion. Note that, in the present case, BT presents a notable 
bias because the mean error is –0.322 MPa. This indicates 
that this method yields a nonnegligible systematic error and, 
overall, tends to underestimate the compressive strength. 
Such bias may arise from the high complexity of the present 
BT model and its propensity to overfit the data set.

The standard deviation of the error distribution is 
4.38 MPa, and the 90% and 95% confidence intervals extend 
from –7.20 to 7.20 MPa and –8.88 to 8.28 MPa, respectively. 
The asymmetry of the 95% confidence interval is another 
signature of the bias of the BT model.

Random forest
Finally, the performance of the RF algorithm is investi-

gated. Figure 5(a) shows the RMSE offered by RF for the 

Fig. 2—(a) Accuracy (as captured by RMSE value) of PR models as function of maximum polynomial degree considered in each 
model, as obtained for training and test sets, respectively. Optimal polynomial order is chosen as that for which RMSE of test 
set is minimum. Line is to guide eye. (b) Comparison between true compressive strength values of test set and those predicted 
by optimal PR model (with degree of 3). and (c) Error distribution of predicted strength values offered by optimal PR model. 
Data are fitted by Gaussian distribution.

Fig. 3—(a) Accuracy (as captured by RMSE value) of ANN models as function of number of neurons considered in each model, 
as obtained for training and test sets, respectively. Optimal number of neurons is determined as that one for which RMSE of test 
set is one standard deviation away from minimum RMSE (that is, in plateau regime). (b) Comparison between true compressive 
strength values of test set and those predicted by optimal ANN model (with seven neurons). (c) Error distribution of predicted 
strength values offered by optimal ANN model. Data are fitted by Gaussian distribution.
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training and test sets as a function of the number of trees 
(that is, which characterizes the complexity of the model). As 
observed in the case of ANN and BT, RF does not yield any 
noticeable signature of overfitting at high model complexity, 
that is, the RMSE of the test set only plateaus on increasing 
number of trees (Fig. 5). Here, 16 was selected as being the 
optimal number of trees (by adopting the same criterion as 
that used in the case of ANN and BT).

To quantify the accuracy of the predictions of the optimal 
RF model (that is, with 16 trees), Fig. 5(b) shows a compar-
ison between the true compressive strength of the test set 
and those predicted by the ML model. The R2 factor for 
the test set was found to be 0.620. Overall, among all the 
ML algorithms considered in this study, the RF algorithm 
offers the most accurate compressive strength predictions for 
unknown concrete (test set). Figure 5(c) shows the obtained 
error distribution. In contrast to BT, RF does not yield any 
notable bias because the mean error is –0.013 MPa. The 
standard deviation of the distribution is 4.39 MPa, and the 

90% and 95% confidence intervals extend from –7.22 to 
7.22 MPa and –8.60 to 8.60 MPa, respectively.

DISCUSSION
The following compares the overall performance of the 

different ML algorithms used in this study. An ideal ML 
model should offer: 1) high “accuracy” (that is, low error 
when predicting the strength of unknown concretes); 2) low 
“complexity”; and 3) good “interpretability.” These features 
are often mutually exclusive, because more complex models 
are more accurate and less interpretable. However, accuracy 
is not the only criterion used to select an optimal model, 
because simpler and more interpretable models are 1) less 
likely to overfit small data sets; 2) usually more computa-
tionally efficient; and 3) their enhanced interpretability (that 
is, by not acting as a “black box”) can potentially offer some 
mechanistic understanding about the nature of the relation-
ship between inputs and outputs.24-26

Fig. 4—(a) Accuracy (as captured by RMSE value) of BT models as function of number of trees considered in each model, as 
obtained for training and test sets, respectively. Optimal number of trees is determined as that for which RMSE of test set is one 
standard deviation away from minimum RMSE (that is, in plateau regime). (b) Comparison between true compressive strength 
values of test set and those predicted by optimal BT model (with 700 trees). (c) Error distribution of predicted strength values 
offered by optimal BT model. Data are fitted by Gaussian distribution.

Fig. 5—(a) Accuracy (as captured by RMSE value) of RF models as function of number of trees considered in each model, as 
obtained for training and test sets, respectively. Optimal number of trees is determined as that for which RMSE of test set is one 
standard deviation away from minimum RMSE (that is, in plateau regime). (b) Comparison between true compressive strength 
values of test set and those predicted by optimal RF model (with 16 trees). (c) Error distribution of predicted strength values 
offered by optimal RF model. Data are fitted by Gaussian distribution.
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To explore the balance between accuracy, complexity, 
and interpretability, Table 1 summarizes for each ML algo-
rithm the coefficient of determination R2 of the test set, 
the 95% confidence interval of the test set, the mean error 
bias (which all capture the accuracy of the model when 
predicting unknown compressive strength data), the MAPE 
of the test set, the degree of complexity (roughly captured 
by the number of nonzero parameters in PR, the number of 
trees in RF and BT, and the number of weight coefficients 
and threshold terms in ANN), and the overall degree of 
interpretability.

On the one hand, the PR and ANN algorithms offer a 
fairly similar level of accuracy. This indicates that, despite 
its complex architecture, the ANN model does not offer any 
improvement in accuracy as compared with a simpler analyt-
ical polynomial model. This may arise from the fact that the 
number of data points per dimension is here too small to 
benefit from the ability of ANN to model complex, nonlinear 
functions.25,27 In turn, thanks to its analytical form, PR offers 
significantly higher interpretability than ANN, which is 
essentially a black box for practical purposes.

On the other hand, we note that both the RF and the BT 
methods offer a notable increase in accuracy as compared 
with PR and ANN. This likely arises from the superior resis-
tance of tree-based models to overfitting, which is key in 
the case of small and noisy data sets as the one considered 
herein. Nevertheless, despite its significantly higher degree 
of complexity (as compared with RF), BT does not offer any 
improvement in accuracy and, worse, shows a nonnegligible 
systematic bias when predicting the strength of unknown 
concrete. Overall, it is concluded that RF offers the most 
optimal balance between accuracy, complexity, and inter-
pretability among the ML algorithms considered herein.

Overall, all the ML algorithms considered herein exhibit 
a MAPE that is lower than 10%, which compares favor-
ably with the intrinsic uncertainty of the compressive 
strength experimental data obtained by ASTM C39.28 This 
suggests that, overall, all these algorithms offer good predic-
tive power, with a degree of accuracy that approaches the 
upper limit set by the uncertainty of the experimental data. 
Although incremental increases in accuracy can certainly be 
beneficial, other aspects (for example, computing burden, 
complexity, and interpretability) should be considered when 
comparing the performance of different ML approaches.

CONCLUSIONS
This study demonstrates that machine learning (ML) can 

offer a robust prediction of the 28-day compressive strength 
of concrete—by learning solely from the data set, without 
the need for any prerequisite domain knowledge. All the ML 
approaches investigated here achieved a satisfactory test set 
coefficient of determination that is between 0.59 and 0.62. As 
expected, the existence of a general balance between model 
accuracy and complexity was reported. For instance, the 
random forest (RF) model successfully predicts the strength 
of unknown concretes with an RMSE accuracy of approxi-
mately 4.4 MPa. In contrast, a simpler polynomial regression 
(PR) model achieves a lower RMSE accuracy of approxi-
mately 4.5 MPa. It should be noted, however, that higher 
model complexity does not systematically result in higher 
accuracy. For instance, despite its high complexity, the artifi-
cial neural network (ANN) presented herein yields an accu-
racy that is lower than that offered by the polynomial model. 
This highlights the fact that, despite the current popularity 
of advanced learning models (for example, deep learning), 
simpler models may still offer competitive, if not superior, 
accuracy—and, hence, such simple models should not be 
disregarded without investigation. This may be especially 
true for small and noisy data sets. This is significant because, 
in contrast to complex “black box” models, simpler models 
are often more interpretable and, thus, more suitable for 
inverse design problems—for example, predicting optimal 
concrete formulations with maximum strength. More gener-
ally, interpretable models offer some exclusive opportunities 
to decipher the underlying physics or chemistry that governs 
concrete’s behavior. Overall, it is suggested that, rather than 
selecting ML algorithms solely on the basis of their balance 
between accuracy and complexity, one should also take into 
account their interpretability, which will be key to advancing 
the state of the art in concrete science.

It should be noted that, once trained, regression ML 
models can be used as surrogates to inform the “inverse-
design” optimization approach, for example, to accelerate 
the discovery of optimized concrete mixture proportions 
featuring minimum cost, maximum strength, and/or 
minimum carbon footprint. In this regard, the level of 
complexity of the trained model can impact the nature and 
efficiency of such optimization tasks. First, simpler models 
are often faster to compute, which, in turn, can greatly reduce 

Table 1—Comparison between levels of accuracy (captured by R2, 95% confidence interval, mean error 
bias, and MAPE), complexity (roughly captured by number of nonzero parameters in PR, number of trees 
in RF and BT, and number of weight coefficients and threshold terms in ANN), and overall interpretability 
of model

ML algorithms R2 95% confidence interval, MPa Systematic bias, MPa MAPE, % Complexity and interpretability

PR 0.596 [–8.86, 8.86] 0.007 9.00 Intermediate (41)
High interpretability

ANN 0.591 [–8.88, 8.88] 0.009 9.06 Intermediate (49)
Low interpretability

BT 0.619 [–8.88, 8.28] –0.322 8.89 High (700)
Intermediate interpretability

RF 0.620 [–8.60, 8.60] –0.013 8.74 Low (16)
Intermediate interpretability
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the associated computational burden (especially in the case 
of brute-force searches). Second, unlike simple analytical 
models (for example, PR), tree-based models are usually not 
differentiable, making it challenging to adopt gradient-based 
optimization methods (for example, gradient descend). 
Finally, thanks to their higher interpretability, simpler 
models offer more direct access to the importance of each 
feature. This knowledge can be used to filter out features of 
low importance and, in turn, reduce the dimensionality of 
the feature space—which is key to facilitating inverse- 
design approaches.29
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NOTATION
Eloss	 =	 loss function in ANNs
F(X)	 =	 output of BT models
hi(X)	 =	 new tree learner that fits to pseudo-residuals in BT models

L( )	 =	 loss function in BT models
M	 =	 number of input neurons in previous layer in ANN model
mi	 =	 multiplier in BT models
nt	 =	 number of trees in RF models
ri	 =	 pseudo-residuals in BT models
s( )	 =	 activation function of ANN model
sign( )	=	 sign function
Ti

hid	 =	 threshold term (bias) of hidden neurons
wi	 =	 weight associated with each edge of ANN
wi

(k)	 =	 initial weight before update
wi

(k+1)	 =	 updated weight for step k + 1
X	 =	 input variables
Y	 =	 output of ML models
Y′	 =	 concrete strength true values
Yi(X)	 =	 individual value predicted by tree for input vector X
yi	 =	 output of neuron i in ANN
βi	 =	 parameters of polynomial regression model
Δ(k))wi	=	 increment in weight
γi

(k)	 =	 learning rate data used for training in ANNs
λ	 =	 learning rate in BT models
∇i

kE 	 =	 partial derivative of error function (k) with respect to weights w 
at k-th iteration
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