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a b s t r a c t

Real-world datasets often comprise outliers (e.g., due to operational error, intrinsic variability of
the measurements, recording mistakes, etc.) and, hence, require cleansing as a prerequisite to any
meaningful machine learning analysis. However, data cleansing is often a laborious task that requires
intuition or expert knowledge. In particular, selecting an outlier detection algorithm is challenging as
this choice is dataset-specific and depends on the nature of the considered dataset. These difficulties
have prevented the development of a ‘‘one-fits-all’’ approach for the cleansing of real-world, noisy
datasets. Here, we present an unsupervised, ensemble-based outlier detection (EBOD) approach that
considers the union of different outlier detection algorithms, wherein each of the selected detectors
is only responsible for identifying a small number of outliers that are the most obvious from their
respective standpoints. The use of an ensemble of weak detectors reduces the risk of bias during
outlier detection as compared to using a single detector. The optimal combination of detectors is
determined by forward–backward search. By taking the example of a noisy dataset of concrete strength
measurements as well as a broad collection of benchmark datasets, we demonstrate that our EBOD
method systematically outperforms all alternative detectors, when used individually or in combination.
Based on this new outlier detection method, we explore how data cleansing affects the complexity,
training, and accuracy of an artificial neural network.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The recent growth of machine learning approaches is rapidly
eshaping our understanding of the unknown [1–4]. As an alter-
ative route to the long-established ways to develop our cogni-
ion based on the progressive accumulation of knowledge, ma-
hine learning algorithms approach a puzzle directly from an
nsemble of existing data [5]. As such, machine learning has
hanged engineering practices and offers practical (and often
urprisingly accurate) solutions to problems that, previously, re-
uired experience, intuition, or theoretical knowledge [6]. Since
achine learning approaches solely rely on the analysis of data,

heir outcomes are unsurprisingly strongly affected by the size,
istribution, and quality of the dataset [7]. In particular, many
tudies have stressed the importance of data quality for the
uccess of a machine learning analysis [8–12].
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In that regard, unreliable, inaccurate, or noisy data often hin-
ders the learning efficiency of a model and, in extreme cases, can
even mislead the learning process and result in biased predictions
[6]. This is a serious issue as datasets for engineering applications
are often based on experimental observations and, hence, can
exhibit various types of imperfections, e.g., experimental errors,
uncertainties regarding the tested system, variability resulting
from the effect of missing features, data entry error, etc. Such dat-
apoints are usually referred to as ‘‘outliers’’ [13]. Importantly, if
numerous enough, the presence of outliers in a dataset, can nega-
tively impact machine learning models, which, in turn, can reduce
the trust of the public, industry, and governmental agencies in
machine learning approaches. As such, proper data cleansing is
often a prerequisite to any machine learning analysis. However,
it should be noted that ‘‘extreme datapoints’’ that are simply
far from the distribution of most of the observations are not
always detrimental and can even be extremely informative—as
they sometimes capture behaviors in regions of the features space
that are poorly sampled.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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To reduce the impact of outliers on machine learning models,
two solutions are commonly adopted: (1) expanding the dataset
to minimize the weight of outliers and (2) identifying outliers and
excluding them from the dataset [14]. The first option is often not
practical for reasons of time, cost, or unavoidable uncertainties
during data collection. Hence, it is of special importance to find
efficient ways to detect outliers in datasets. To this end, various
outlier detection methods are available. Simple approaches are
based on identifying points that are far away from an expected
pattern (e.g., Gaussian distribution) [15], further than n standard
deviations away from the mean [16], or beyond the interquar-
tile range, as defined with boxplots [17]. More advanced outlier
detection algorithms have been developed in the field of data
mining. Many studies have focused on data clustering [12,18–20],
where isolated clusters are considered as outliers. Alternatively,
outlier detection approaches can be based on the analysis of the
distance [21], density [22], or angle [23] between datapoints.

As non-parametric methods, the detection methods mentioned
above facilitate the data cleansing process as they can identify
outliers without the need for any assumptions regarding the na-
ture of the data distribution. However, these detection algorithms
are sensitive to hyperparameter settings, e.g., the number of
neighbors for cluster-based algorithms. In detail, outlier detection
algorithms usually rely on the fairly arbitrary choice of a ‘‘thresh-
old’’ value in discriminating outliers from non-outlier datapoints
[24]. Selecting the optimal threshold is often a complex choice—
as a loose threshold may not properly detect outliers, whereas,
in turn, a strict threshold may result in the removal of valuable
information from the dataset. Further, their performance can
largely depend on the spatial distribution of the data points
(i.e., depending on the sparsity and homogeneity of the dataset).
Due to these difficulties, in practice, no single detection algorithm
can universally apply to all datasets. For instance, cluster-based
algorithms do not perform well in highly-dimensional spaces,
since the sparse distribution of the datapoints makes it unlikely
for locally-clustered datapoints to be found [25]. Since each out-
lier detection algorithm comes with strengths and weaknesses,
selecting a detector often requires some level of intuition or
knowledge on the nature of the dataset—since each outlier de-
tection algorithm comes with its own definition regarding how
outliers differ from normal datapoints. For all these reasons, data
cleansing is often highly subjective.

As an alternative route to individual detectors (i.e., that rely
on a single algorithm), combining a number of individual de-
tectors (i.e., base learners) into an ensemble-based detector can
efficiently address the limitations raised above. Over the past
recent years, a number of ensemble-based outlier detection al-
gorithms have been proposed to improve the detection accuracy
and robustness of data cleansing pipelines—especially for the
case of noisy datasets wherein single detectors tend to be less
reliable [26–28]. This approach typically relies on (i) a collection
of dissimilar ‘‘base learners’’ (i.e., outlier detection algorithms)
and (ii) a ‘‘combiner’’ that selects a set of optimal base learns and
fuses their outcomes. However, combining dissimilar base learn-
ers into an ensemble of detectors is a tricky task that requires
intuition or expert knowledge—since each single detector can
dramatically affect the performance of the ensemble [28]. Indeed,
poorly-performing base detectors can substantially weaken the
accuracy of ensemble-based detectors (e.g., by removing non-
outlier datapoints that are actually informative) [29]. As a result,
outlier detection algorithms usually need to be adjusted, replaced,
or recombined dynamically from one dataset to the other.

Unfortunately, over the past years, far more attention has been
placed on designing complex regression/classification machine
learning algorithms than on developing robust, non-biased outlier

detection methods—so that one may argue that outlier detection
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might be the actual bottleneck of many machine learning appli-
cations (rather than more complex machine learning algorithms
or increased numbers of datapoints). Here, as a steppingstone
toward this end, we propose an unsupervised, ensemble-based
outlier detection (EBOD) approach that automatically determines
the optimal the union of different outlier detection algorithms—
wherein each outlier detector is used to solely detect the most
extreme outliers (based on how each detector define outliers).
Specifically, the EBOD approach considers a pool of individual
outlier detection algorithms as base learners. A combiner relying
on a forward–backward search then identifies the optimal set of
base learners. The use of such an ensemble of loose detectors
reduces the risk of bias during outlier detection as compared to
data cleansing conducted based on a single detector.

To illustrate this approach, we apply EBOD on a series of re-
gression tasks. As a measure of performance of data cleansing, we
compare the test set accuracy of a base machine learning model
on a large number of regression datasets before and after data
cleaning—so as to assess the ability of the EBOD detector to gener-
alize. First, we consider the example of a noisy dataset of produc-
tion concrete strength measurements previously presented in Ref.
[30]. This dataset comprises concrete mixing proportions (as in-
puts) and associated measured strength after 28 days (as output)
for more than 10,000 concrete samples. Further, to demonstrate
the generic nature of the EBOD method, we apply it to a selection
of ten additional benchmark regression datasets and evaluate its
cleaning performance based on the test set regression accuracy
of the same learning algorithm. We demonstrate that our EBOD
outlier detection method systematically outperforms all detectors
in terms of test set regression accuracy after data cleaning, when
used individually or in combination (based on a comparison with
several other prevailing ensemble-based outlier detectors). Based
on this new outlier detection method, we also explore how data
cleansing affects the complexity, training, and accuracy of the
machine learning model trained based on the concrete dataset.

2. Methodology

2.1. Datasets

2.1.1. Concrete dataset
To illustrate our EBOD outlier detection approach, we consider

the concrete strength regression dataset described in Ref. [30,
31]. This dataset comprises a total of 10,264 concrete strength
measurements, which are sourced from real concrete production
without any pre-cleaning. It should be noted that concrete is
by far the most manufactured material in the world and, hence,
accurately predicting its strength is critical to ensure the integrity
of the built environment [32]. Concrete takes the form of a
mixture of cement, water, sand (fine aggregates), stones (coarse
aggregates), supplementary cementitious materials (e.g., fly ash),
and chemical additives [33]. To the first order, the strength of
a given concrete depends on the mixing proportions of these
raw ingredients [34]. As such, the regression dataset considered
herein presents the following inputs: (1) water-to-cementitious
ratio, i.e., the ratio between the mass of water and that of the ce-
mentitious materials (here, cement and fly ash), (2) cement mass
fraction, (3) fly ash mass fraction, (4) fine aggregate mass fraction,
(5) coarse aggregate mass fraction, (6) dosage of air-entraining
chemical admixture, and (7) dosage of water-reducing chemical
admixture. The output is the concrete strength, measured 28 days
after production following ASTM C39 [35]. The 28-day strength
of concrete is indicative of its long-term strength and largely
dictates its performance (and price).

This concrete dataset exemplifies many difficulties associated
with real-world regression datasets. For example, strength mea-

surements exhibit some intrinsic variability, which makes it hard
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enchmark regression datasets considered in this study.
Data Instances Input features Reference

Real estate 414 8 [38]
Delta Elevators 9,517 7 [39]
Qsar fish toxicity 908 7 [40]
California Housing 20,640 9 [41]
Red wine 1,599 12 [42]
Boston Housing 506 14 [35]
UCI concrete 1,030 9 [43]
Abalone 4,177 9 [44]
Ailerons 7,154 41 [45]
Airfoil noise 1,503 6 [46]

to discriminate outliers from legitimate measurement variabili-
ties [36]. Outliers may also result from data entry typos or ex-
perimental errors, such as errors in mixing proportions (e.g., ex-
cess of water). Strength measurements can also be affected by
external factors that are not captured by the present features
(e.g., temperature, relative humidity, raw material quality, mixing
protocols, etc.). As such, this dataset offers an ideal, archetypal,
and challenging basis to illustrate our EBOD outlier detection
approach.

2.1.2. Additional benchmark regression datasets
To demonstrate the generic nature of the proposed EBOD

pproach, we consider a series of ten additional benchmark re-
ression datasets. The benchmark datasets are listed in Table 1.
hese datasets were selected to encompass a broad variety of
ize (number of data points), dimensionality (number of input
eatures), and data distribution. The Red wine, Housing, UCI con-
rete, Qsar fish toxicity, Airfoil noise, and Abalone datasets are
ourced from the UCI repository [37], while the California Hous-
ng, Ailerons, and Delta Elevators datasets are obtained from Luís
orgo’s repository (https://www.dcc.fc.up.pt/~ltorgo/Regression/
ataSets.html).

.2. Artificial neural network model

We train an artificial neural network (ANN) regression model
iming to predict concrete strength as a function of the mixture
roportions, as well as outputs of the datasets listed in Table 1.

Although ANN may not offer the highest accuracy for all these
datasets [31], we select this regressor based on its sensitivity
to outliers [47]. The ANN model is implemented and trained by
using Scikit-learn [48]. We adopt resilient backpropagation to
optimize the model parameters [45]. For simplicity, we restrict
the ANN model to a single hidden layer and use a sigmoid
as activation function. During training, the model is iteratively
updated using a stochastic gradient descent optimizer until the
relative change of the loss (here, the mean-square error) becomes
minuscule (< 10−4). Once trained, the performance of the ANN
model is evaluated based on the root-mean-square error (RMSE)
and coefficient of determination (R2). Here, the RMSE is the av-
eraged Euclidian distance between predicted and measured data
and R2 quantifies their corresponding degree of scattering.

Prior to any training, all the datasets are randomly divided
into a training set (80% of the datapoints), which is used to train
the model, and a test set (remaining 20% of the datapoints),
which is kept invisible to the model during its training and,
eventually, is used to assess its ability to generalize to unknown
samples. The model hyper-parameters are then optimized based
on the concrete dataset. To this end, we implement five-fold
cross-validation within the training set [49]. In this study, the
only hyperparameter that is considered is the number of neurons
in the single hidden layer—wherein a deficit of neurons results in
3

Table 2
Individual outlier detection algorithms considered as base learners for
constructing the proposed EBOD ensemble-based outlier detector.
Detection algorithm Description Reference

KNN K-nearest neighbors [21]
LOF Local outlier factor [22]
COF Connectivity-based outlier factor [50]
OCSVM One-class support vector machine [51]
IFOREST Isolation forest [52]
ABOD Angle-based outlier detection [23]
SOS Stochastic outlier selection [53]

a simple model that is prone to underfitting (high bias), whereas
an excess of neurons leads to an unnecessarily complex model
that exhibits overfitting (high variance) and poorly generalizes to
new samples that are not included in the training set. The optimal
number of hidden neurons (and the dependence thereof on the
presence of outliers) is determined based on the average cross-
validation RMSE (see below). To ensure a meaningful comparison
among different benchmark datasets, we then keep the same ANN
model (number of hidden layers and neurons, hyperparameters,
etc.) for all the other datasets.

2.3. Collection of base outlier detection algorithms

In this study, we introduce an ensemble-based outlier de-
tection (EBOD) method that is based on an optimized combi-
nation of several base detectors. Our approach combines these
base detectors so as to yield an optimal detection of outliers in
various datasets. To this end, we select seven common outlier
detection algorithms as the base learners, which are listed in
Table 2. This selection is based on the wide acceptance, sim-
plicity of implementation, complementarity, and variety of these
algorithms.

Among the individual base learners shown in Table 2, the LOF,
KNN, and SOS detectors can be classified as belonging to the
family of distance-based algorithms, but differ in their approach
and mathematical basis for identifying outliers. LOF approaches
the problem from the concept of local density (which is estimated
by the distance over which a point can be reached by its neigh-
bors) since outliers tend to reside in low-density regions. Outliers
are defined as the points that exhibit a density of neighbors
that is low enough. Likewise, KNN evaluates the average distance
between a central data point and its k nearest neighbors and
scores its probability of being an outlier based this distance. The
detection offered by SOS is based on the concept of affinity. This
algorithm first computes the distance matrix of feature vectors
for a datapoint, and then transforms this distance matrix into an
affinity matrix. As such, outliers are defined as points showing a
low affinity with the other datapoints.

The other algorithms are rooted in alternative viewpoints re-
garding what differs outliers from normal datapoints. In that
regard, ABOD detects the outliers based on the weighted variance
of the angles between a datapoint and its neighbors—wherein
outliers are defined as datapoints that are far from the majority
of the other data points in the hyperspace, with a low variance
of the angles. This algorithm is efficient for identifying outliers in
high-dimensional space by alleviating the curse of dimensionality
[23]. COF identifies outliers based on the degree of connection
of a datapoint. IFOREST carries out the detection using a tree-
based model, wherein outliers are more likely to be isolated near
the root of the tree. Finally, OCSVM relies on a support vector
machine to draw the boundary segregating true datapoints from
anomalies.

https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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.4. Description of the EBOD combiner

As the core component of our proposed EBOD approach, we
mplement as combiner a forward–backward search approach
iming to pinpoint the optimal combination of the base detectors
or flagging outliers across datasets. This method relies on the
ollowing steps. First, to avoid any bias regarding the choice of
he threshold value to be used for each algorithm, the sensitivity
f each outlier detector is tuned so as to systematically flag
0% of the datapoints as outliers. This aims to ensure that each
etector identifies a small, constant fraction of the datapoints as
eing abnormal. Second, the performance of each single outlier
etector (when used individually) is evaluated by comparing the
est set R2 of the base ANN model (see Section 2.2) before and
fter removing the detected outliers—wherein outlier detector
eaturing good generalizability is expected to notably increase the
est set R2. It should be noted that a single detector can either
esult in an increase in the test set R2 (if it successfully removes
bnormal datapoints) or, potentially, in a decrease in the test set
2 (if it actually removes useful information, which harms the
raining of the model). The detectors are then ranked in terms
f test set R2 (i.e., from the best to the worse detector). Third,
e conduct the forward–backward search to identify the optimal
ombination of these outlier detectors, as detailed below.
The general algorithm of the forward–backward search used

erein as combiner is summarized in Fig. 1. After determining
he cleaning effect of the individual detectors (based on the test
et R2 of the ANN model), we first conduct a forward search
(Fig. 1a). This search comprises the following steps: (i) assess the
model accuracy by removing the outliers identified by each of the
detectors in the algorithm pool, P, in a one-by-one fashion, (ii)
dd the best detector to the detector ensemble, U; (iii) remove

the union of the outliers identified by the selected detectors in
U; (iv) calculate the test set model accuracy based on the cleaned
dataset; and (v) repeat the above steps iteratively until the model
accuracy does not improve any further. In parallel, we conduct
a backward search, which basically mirrors the forward search,
namely, starting with all the detectors being in the ensemble U,
we remove one detector at a time by systematically selecting
the action that yields the largest increase in the test set model
accuracy. As such, we track the evolution of the model test set
accuracy during both the forward and backward processes, and,
based on this information, we select the optimal set of detectors
as the one that maximizes the test set R2 of the ANNmodel during
the forward–backward search.

2.5. Alternative benchmark ensemble-based detectors

To illustrate the ability of the new EBOD data cleansing method
(see Section 2.4) to robustly identify outliers, we compare it with
alternative ensemble-based outlier detection methods listed in
Table 3. The characteristics of each alternative ensemble-based
outlier detector is briefly summarized as follows. The Averaging
algorithm attributes an outlier score to each datapoint based on
the average of the scores yielded by each individual detector
[26]. In contrast, Maximization defines the final score as the
maximum of the scores offered by the detectors [54]. Building
on these two ideas, AOM further introduces a bootstrap process,
wherein the base individual detectors are first randomly divided
into predefined subgroups and the final score is calculated by
averaging the maximum scores within each subgroup [54]. Simi-
larly, MOA defines the final score as the maximum of the average
scores within each subgroups [54]. Feature Bagging combines the
outcome of several base outlier detection algorithms by fitting
them on random subset of features [55]. LODA identifies outliers
by modeling the probability of observed samples based on a
4

Table 3
Summary of the previously proposed ensemble-based outlier ensemble algo-
rithms that are considered herein as benchmarks to quantify the performance
of the proposed EBOD ensemble-based outlier detector.
Ensemble-based
detection algorithm

Description Reference

Averaging Simple combination by
averaging the scores

[26]

Maximization Simple combination by
taking the maximum
scores

[54]

AOM Average of Maximum [54]
MOA Maximum of Average [54]
Feature bagging Combine multiple outlier

detection algorithms
using different set of
features.

[55]

LODA Lightweight On-line
Detector of Anomalies

[56]

LSCP Locally Selective
Combination of Parallel
Outlier Ensembles

[57]

SUOD Large-Scale Unsupervised
Heterogeneous Outlier
Detection

[58]

AKPV Average the scores of
top three outlier
detectors

[29]

collection of one-dimensional histograms. Each one-dimensional
histogram is weak in detecting outlies, but the combination of
these weak detectors eventually results in a strong anomaly
detector [56]. LSCP is based on the idea that outliers located in
distinct regions of the feature space are likely to be properly iden-
tified by different individual detectors. As such, this algorithm
evaluates the competency of each individual base detector in
identifying outliers within a given local region and subsequently
combines the top-performing detectors for each region as the
final output [57]. SUOD initially fits unsupervised base detectors
on randomly projected feature space (like Feature bagging). It
then evaluates the computational cost of each base model and
replace the costly model with a faster supervised regression
model, which can increase interpretability and reduce storage
costs [58]. The last algorithm considered herein, a recent outlier
ensemble method AKPV (named after the authors of the source
paper), combines individual detectors by averaging the scores of
three detectors that have best performance [29]. For consistency,
the implementation of all the above ensemble-based detectors
relies on the same pool of individual base detectors, as introduced
in Section 2.3. To ensure a meaningful comparison, we tune the
detection parameters used the ensemble-based detectors such
that they yield a number of outliers that is identical to that
offered by our new EBOD method. In addition to these unsu-
pervised detectors, many supervised ensemble-based detectors
that have been developed over the past years, e.g., Bagged Outlier
Representation Ensemble (BORE) [59] or Extreme Gradient Boost-
ing Outlier Detection (XGBOD) [60]. However, these supervised
approaches are not considered herein since, in the case of the
present dataset (as well as in many other engineering datasets),
the nature of the outliers is not a priori known.

2.6. Non-parametric statistical tests

To ensure the statistical significance of the comparison
between the performance of the present EBOD approach and that
offered by nine alternative outlier detection methods
(Table 3), we carry out two non-parametric tests—also referred
as distribution-free tests, which do not assume that the data
is normally distributed. To ensure the generality of our results,
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Fig. 1. Flowchart illustrating the (a) forward and (b) backward searching processes for determining the optimal combination U of the detectors in our ensemble-based
utlier detection (EBOD) method.
e further extend the analysis to a series of ten additional
enchmark regression datasets (see Table 1). We first imple-
ent the Friedman test [61]. Starting from ten groups of data

i.e., the ten regression datasets considered herein) and ten treat-
ents (i.e., the ten ensemble-based detectors), the Friedman test

irst ranks the performance achieved for each dataset/treatment
ombination and then computes the summed ranking for each
reatment. The Friedman test statistics are then used for cal-
ulating the p-value—wherein a p-value that is smaller than
.05 indicates that at least one of the treatments is statistically
ifferent from the others. To quantify how the performance of
BOD compares to that of the other methods, a post hoc Dunn’s
est [62] is also performed based on the mean rank differences
rovided by the Friedman’s test. The Dunn’s test runs multiple
airwise comparisons using Z-test statistics, which can be used
o obtain the p-value for each comparison (i.e., for each pair of
etectors) [63]. A p-value that is smaller than a certain threshold
typically 0.05) indicates the existence of a statistically signif-
cant difference of performance between the compared pair of
etectors.

. Results and discussion

.1. Performance of the individual outlier detectors

First, we evaluate the performance of individual (i.e., non-
nsembled) outlier detectors based on the concrete dataset. For
ach outlier detector, the threshold value is adjusted so as to
dentify (and remove) 10% of the datapoints from the dataset

i.e., 1,027 observations). The ability of each detector to increase

5

the predictive accuracy of the ANN model (as compared to that
of the ANN model trained based on uncleaned data) is presented
in Table 4. We find that the COF, SOS, LOF, and ABOD detectors
tend to improve prediction accuracy, both for the training and
test sets. In contrast, the OSCVM, IFOREST, and KNN detectors
result in a decrease in the accuracy of the ANN model. This
exemplifies the fact that removing datapoints from a dataset can
be beneficial or detrimental—since removing outliers can either
filter out the noise of the dataset or remove useful information.
Among all these detectors, we find that the ABOD algorithm
offers the largest increase in the test set R2 (from 0.49 to 0.54,
i.e., a 10% increase). The high performance of the ABOD algorithm
for the present dataset may arise from the fact that, in high-
dimension spaces, the concept of ‘‘angle’’ between datapoints
is more meaningful than those of proximity or distance [23]. A
detailed inspection of the results reveals that, even though the
COF, SOS, LOF, and ABOD detectors all have a positive effect on
the accuracy of the ANN model, the outliers that are detected by
each algorithm are (unsurprisingly) not the same. This suggests
that combining several detectors may further increase the accu-
racy of the ANN model—which is the basis of the EBOD method
presented herein.

3.2. Determination of the optimal union of detectors

We now assess the effect of combining detectors, which is
at the core of our ensemble-based EBOD approach. To this end,
Fig. 2 shows the evolution of the accuracy of the ANN model
during the forward–backward search in the case of the concrete
dataset (see Section 2.4). Note that, for illustration purposes, we
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oefficient of determination (R2) of the artificial neural network considered
erein before and after removing 10% of the datapoints from the dataset (1027
amples) based on the selection of outliers identified by a series of detectors.
esults are presented for the concrete dataset (see Section 2.1).
R2

accuracy
Original
dataset

Outlier detector that is used to remove outliers

OSCVM KNN IFOREST SOS COF LOF ABOD

Training
set

0.53 0.33 0.39 0.44 0.53 0.54 0.53 0.55

Test set 0.49 0.31 0.41 0.42 0.51 0.52 0.52 0.54

continue the forward and backward searches even after finding
the optimal combination of detectors, that is, even after the
accuracy reaches a maximum and starts to decrease (which is
slightly different from the algorithm described in Fig. 1). This
ims to illustrate how the optimal set of detectors yield maxi-
um accuracy. Interestingly, we note that the series of detectors

hat are iteratively selected at each step of the search does not
ystematically follow their ranking, when used as single detector
see Table 1). This highlights the existence of some combined
ffects, wherein a given detector may not exhibit notable benefits
hen used alone, but can positively complement other detectors
hen used in pairs. Overall, we find that the optimal ensemble
f detectors consists in using the union of ABOD, COF, SOS, and
OF. Importantly, both the forward and backward search yield
he same optimal ensemble, which confirms the robustness of
he present EBOD approach. The optimal ensemble of detectors
esults in a significant increase in the accuracy of the ANN model,
hich increases from 0.53 to 0.63 and from 0.49 to 0.60 for the
raining and test set R2, respectively.

Fig. 3 illustrates the combined evolution of model accuracy
nd dataset size (i.e., based on the number of removed outliers)
uring the forward–backward search (in the case of the concrete
ataset). As expected, each iteration of the forward and backward
earch reduces and increases the size of the dataset, respectively.
evertheless, we note that the number of outliers that are re-
oved at each iteration is not constant. This illustrates the fact

hat, during the forward search, the first detector already removes
ost of the outliers, while each subsequent detector adds its own
ontribution. The contribution of each detector tends to decrease
ver time as the dataset gradually runs out of ‘‘true’’ outliers,
hich manifests itself by a gradual decrease in the number of
utliers that are removed at each iteration, as well as a gradual
ecrease in the associated increment in accuracy. At some point,
he search approach leads to excessive removal of outliers and,
ence, results in the disappearance of some useful information
rom the dataset—which, in turn, negatively affects the accuracy
f the ANN model. Overall, we find that optimal performance is
chieved after removing 2,645 data points (i.e., about 25%) from
he dataset.

.3. Influence of data cleansing on model complexity

Having established our EBOD data cleansing approach, we
hen discuss how the removal of outliers affects the optimal
egree of complexity of the ANN model trained based on the
oncrete dataset. To this end, we conduct a comparative hyperpa-
ameter optimization, both before and after data cleansing. This
s achieved by five-fold cross-validation, wherein we train based
n the concrete dataset a series of ANN models with varying
umber of hidden layers (the sole hyperparameter considered
erein, for simplicity). Fig. 4 shows the evolution of the training

and validation set RMSE as a function of the number of hidden
neurons. As expected, we note that, independently of whether

data cleansing is conducted or not, increasing the number of

6

hidden neurons systematically results in a decrease in the train-
ing set RMSE. This signals the fact that, as the model becomes
more complex, it gradually manages to better interpolate all the
details of the training set [64]. Similarly, the validation set RMSE
initially decreases upon increasing number of hidden neurons.
In this regime, the model is underfitted and exhibits high bias,
which is evident from the fact that the RMSE of the training and
validation sets are both high and equal to each other. However, in
contrast to the RMSE of the training set, the validation set RMSE
eventually does not decrease any further and exhibits a plateau.
In this regime, the difference between the RMSEs of the training
and validation set suggests that the model becomes overfitted.
Based on this analysis, we select the optimal number of neurons
(a measure of model complexity) as the minimum number of
neurons that yields a validation set RMSE that is less than one
standard deviation away from the minimum RMSE [65], wherein
the standard deviation is calculated based on the various RMSE
values obtained during cross-validation.

Based on this analysis, we assess how data cleansing affects
the optimal complexity of the model trained based on the con-
crete dataset (see Fig. 4a and Fig. 4b). We note that the ANN
model trained with the cleaned dataset systematically achieves
lower RMSE values than its counterpart trained with the non-
cleaned dataset—both for the training and validation sets. This
indicates that, at an equivalent degree of complexity (i.e., con-
stant number of neurons), the model trained based on cleaned
data systematically outperforms the one that is trained on the
raw dataset. In addition, we find that the standard deviation of
the validation set RMSE (represented by the light blue shaded
area in Fig. 4) is systematically larger when the model is trained
based on the uncleaned dataset. This suggests that, based on the
folds used for training, the presence of outlier greatly impact the
training of the model and its ability to generalize well so as to
reliably and consistently predict the validation set. Importantly,
we observe that the plateau of the validation set RMSE occurs
sooner in the case of the cleaned dataset. In fact, we find that
the optimal number of hidden neurons prescribed by the present
analysis is 15 and 9 before and after cleansing, respectively.
This indicates that data cleansing reduces the optimal degree of
complexity of the ANN model. This can be understood from the
fact that, when trained from the raw dataset, the model does not
properly capture the intrinsic relationship between inputs and
output and tends to become more complex than necessary so as
to capture some fluctuations in the training set induced by the
presence of outliers (see below for more detail on this). In the
following, we fix the number of neurons in the hidden layer to
these optimal values.

3.4. Influence of data cleansing on learning efficiency

Next, we further investigate how the presence of outliers
negatively affects the learning process of the ANN model in the
case of the concrete dataset. To this end, we compute the learning
curve of the model, both before and after data cleansing. This
is achieved by iteratively training the ANN model based on in-
creasing fractions of the training set and subsequently testing its
prediction based on the same test set. To enhance the statistical
significance of this analysis, the analysis is repeated five times
(based on different random training-test splits). The resulting
learning curves are shown in Fig. 5. As expected, the training
set RMSE is initially low and then gradually increases with the
number of training examples. This is a consequence of the fact
that it becomes harder and harder for the model to perfectly
interpolate the training set (with a fixed, limited number of
adjustable parameters). In contrast, the test set RMSE gradually
decreases with the number of training examples—since the model
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Fig. 2. Coefficient of determination (R2) achieved by the artificial neural network considered herein for the training and test sets at each iteration of the (a) forward
and (b) backward searching process. Results are presented for the concrete dataset (see Section 2.1). Note that, here, to illustrate how the optimal set of detectors
ield maximum accuracy, we continue the forward and backward searches after finding the optimal combination of detectors, that is, even after the accuracy reaches
maximum and starts to decrease (which is slightly different from the algorithm described in Fig. 1).
radually learns how to properly generalize to unknown obser-
ations. Irrespectively of whether data cleansing is conducted
r not, we note that the training and test set RMSE eventually
onverge toward a fairly similar value, which confirms that these
odels do not exhibit any significant degree of overfitting. Note

hat the maximum size of the training set is smaller in the case of
he cleaned data since a given fraction of the datapoints is flagged
s outliers and removed.
By comparing Fig. 5a and b, we observe that, at fixed number

f training examples, the training set RMSE is systematically
ower after cleansing. This confirms that, despite remaining fully
nsupervised, our EBOD outlier detection indeed removes points
hat are far away from the interpolated model. This suggests that
he points that are removed indeed act as true outliers. Similarly,
he test set RMSE is systematically lower after cleansing, which
uggests that the removal of the outliers enhances the ability
f the model to learn how to properly generalize to unknown
bservations. Finally, we find that the ANN model converges
aster toward its optimal accuracy (i.e., after being exposed to
7

a lower number of training examples) when trained based on
the cleaned dataset. This demonstrates that proper data cleansing
effectively reduces the number of datapoints that is needed to
train the ANN model.

3.5. Influence of data cleansing on model accuracy

We now further discuss how data cleansing affects the fi-
nal accuracy of the ANN model trained based on the concrete
dataset (i.e., after hyperparameter optimization). Fig. 6 shows
the strength values that are predicted by the ANN model for
the test set (i.e., for unknown samples that are invisible to the
model during its training) as a function of the actual strength
values—wherein the y = x line indicates ideal agreement be-
tween predicted and true strength values. In these figures, the
color of each pixel indicates the number of overlapped datapoints
locally. Overall, we find that the ANN model trained with the
cleaned dataset exhibits a higher accuracy—the test set RMSE
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n

Fig. 3. Coefficient of determination (R2) achieved by the artificial neural network considered herein for the training and test sets at each iteration of the (a) forward
and (b) backward searching process as a function of the number of removed outliers (bottom axis) and remaining datapoints in the dataset (top axis), wherein the
solid line is solely meant to guide the eye. Results are presented for the concrete dataset (see Section 2.1).
Fig. 4. Root-mean-square error (RMSE) achieved by the artificial neural network considered herein for the training and test sets as a function of the number of
eurons in the single hidden layer when trained based on the (a) raw and (b) cleaned dataset. Results are presented for the concrete dataset (see Section 2.1).
decreasing from 5.07 to 4.40 MPa. A visual inspection of Fig. 6
also reveals that data cleansing results in a distribution of the
datapoints that is more sharply centered around y = x. To further
assess the overall performance of the ANN model on the concrete
dataset, we compute the error distributions (i.e., distribution of
the deviation between the prediction and true strength values),
which are displayed in Fig. 7. We find that the ANN model trained
on the uncleaned dataset is slightly biased as, overall, it tends to
slightly underestimate concrete strength (which manifests itself
by a negative mean error). In contrast, the mean error offered by
the model trained based on the cleaned dataset is one order of
magnitude smaller. Furthermore, we find that the error distribu-
tion becomes notably sharper after data cleansing. To quantify
this change, we calculate the 90% and 95% confidence intervals
based on a Gaussian fit. We find that, after data cleansing, the 90%
and 95% confidence intervals decrease from ±8.3 to ±7.2 MPa
and from ±9.9 to ± 8.6 MPa, respectively. This one more time
illustrates that the outliers that are identified by our unsupervised
EBOD approach are indeed far away from the interpolation model,

which confirms their outlier nature.

8

We further explore whether the presence of outliers ‘‘de-
forms’’ the model trained based on the concrete dataset. This
analysis aims to understand if the outliers that are present in the
dataset simply increase the overall error of the model by lying
far from the interpolated function or if the error of the model
actually arises from the fact that the model itself is affected by the
presence of outliers. To this end, since a direct data visualization
is not possible in the entire feature space, we focus on the role
of two select important features: (i) the water-to-cementitious
(w/cm) ratio and (ii) the weight fraction of fly ash. These features
are convenient since common concrete engineering knowledge
suggests that concrete strength should monotonically decrease
upon increasing w/cm and fly ash fraction [66]. For illustration
purposes, Fig. 8 shows the evolution of the strength that is pre-
dicted by the ANN models (with and without data cleansing)
as a function of these two features. Note that, in this case, the
other features are fixed to their average values. In both cases,
the predicted values are compared with actual datapoints. Note
that these datapoints are not exactly comparable to the predicted

strength values as their features are not perfectly equal to the
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Fig. 5. Learning curves showing the root-mean-square error (RMSE) achieved by the artificial neural network considered herein for the training and test sets as
a function of the number of training examples when trained based on the (a) raw and (b) cleaned dataset. Results are presented for the concrete dataset (see
Section 2.1).

Fig. 6. Test set concrete strength values predicted by the artificial neural network model as a function of the measured strength, when the model is trained based
on the (a) raw and (b) cleaned dataset (note: the color here indicates the number of overlapped data points at each pixel). Results are presented for the concrete
dataset (see Section 2.1).

Fig. 7. Test set error distribution shown by the artificial neural network models trained based on the (a) raw and (b) cleaned dataset (note: the distributions are
fitted by some Gaussian distributions). Results are presented for the concrete dataset (see Section 2.1).

9
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able 5
ummary of the test set performance of the artificial neural network models
onsidered in this study, both before and after using the proposed EBOD outlier
emoval method. Results are presented for the concrete dataset (see Section 2.1)
Dataset Complexity Accuracy

Number of
neurons

R2 RMSE
(MPa)

Bias
(MPa)

Confidence interval (MPa)

90% 95%

Original 15 0.49 5.07 0.010 ±8.3 ±9.9
Cleaned 9 0.59 4.40 0.002 ±7.2 ±8.6

average values used to interrogate the ANN models. Nevertheless,
these points are selected based on their vicinity within the feature
space (with a relative variation of the features that is less than
10%). Among these datapoints, those that are flagged as outliers
(and, hence, eventually removed) are highlighted in orange.

In both cases (see Fig. 8a and Fig. 8b), we observe that dat-
apoints that are identified as outliers are indeed far away from
the rest of the datapoints (in terms of the output value, but not
in terms of the input features). Importantly, we find that the
presence of outliers significantly deforms the ANN model. First,
in both cases, we find that the outliers tend to shift the model
toward lower strength values. This echoes the fact the, without
any data cleansing, the model exhibits a negative mean error (see
Fig. 7a). Further, we find that the presence of outliers tends to
make the model less monotonic and more prone to fluctuations
(see Fig. 8b). This indicates that the model is locally deformed
so as to attempt to fit the outliers. This illustration exemplifies
why the model that is trained based on the non-cleaned dataset
is associated with a higher optimal degree of complexity—since
this increased complexity is required to fit the variability of the
training set. In both cases, the non-monotonic behavior exhibited
by the model trained based on the raw data is not supported by
common concrete engineering knowledge and, hence, is solely a
spurious effect arising from the outliers.

The key effects of data cleansing on the complexity and accu-
racy of the ANN model are summarized in Table 5. Overall, our
proposed EBOD method not only lowers the complexity of the
ANN model by reducing the neurons needed for training, but also
improves its accuracy in terms of increasing R2 while reducing
RMSE, bias, and the confidence interval.

3.6. Comparison with alternative ensemble-based outlier detection
methods

To further illustrate the performance of the present EBOD data
cleansing method, we compare it with several prevailing un-
supervised ensemble-based outlier detection methods (see Sec-
tion 2.5 for details) by first taking the example of the concrete
ataset. To this end, we first clean the dataset by removing the
utliers identified by each method. Note that, to enable a mean-
ngful comparison, the threshold parameters of each detector are
djusted so as to yield the same number of outliers as those
dentified by the present EBOD method (i.e., 25% of the datapoints
n the raw dataset are detected as outliers and removed, see Sec-
ion 2.5). As such, at constant number of removed datapoints, this
omparative analysis aims to assess the ability of each method
o identify and remove ‘‘true’’ outliers. Following data cleansing,
he ANN model presented in Section 2.2 is then independently
etrained for each ensemble-based outlier detection method.

To assess the performance of these ensemble-based outlier
etection methods, we calculate the coefficient of determina-
ion R2 accuracy and the mean absolute error achieved by each
NN model on the test set, after applying each data cleansing
ethod. Associated results are displayed in Table 6. We first
10
ote that, in contrast to the individual detector algorithms (see
able 1), no ensemble-based outlier detection method has a no-
ably detrimental effect on the performance of the ANNmodel—as
he test set accuracy remains fairly similar or larger than that
chieved after training the model based on the raw, uncleaned
ataset. This highlights the fact that, in general, ensemble-based
utlier detection methods are effective in preventing inappropri-
te individual detector (e.g., OSCVM) from removing too many
on-outlier datapoints that are actually useful to train the ANN
odel.
Overall, we find that the Averaging, Maximization, AOM, and

OA methods yield fairly similar performance (i.e., test set R2
=

.48-to-0.49). This suggests that these methods, although they
re not harmful to the model, do not succeed at identifying and
emoving the very outliers that limit the accuracy of the model.
he lower performance of the Averaging and Maximization ap-
roaches likely arises from the fact that these approaches do not
xclude the prediction from poorly performing individual base
etectors. In fact, all these methods eventually yield a model
ccuracy that is inferior to that offered by the ABOD detector
lone (see Table 4). This illustrates the fact that, although all these
nsemble-based methods use the ABOD detector in their pool,
heir outcomes are contaminated by the inaccurate predictions
f the other detectors in the pool.
In contrast, the Feature Bagging, LSCP and AKPV methods offer

notably improved accuracy as compared to the other alternative
nsemble-based outlier detection approaches. This is likely due
o the fact that, in many cases, outliers can only be identified in
ertain subsets of the feature space while it might be difficult to
ind outliers within the entire feature space (by simultaneously
onsidering all the dimensions)—especially when some features
re less influential than others. Feature bagging addresses this
ifficulty by combing the outlier scores offered by different de-
ectors applied to different subsets of the features [55], while
SCP considers the location of the datapoints when combining
he predictions from the different detectors [57]. Nevertheless,
he accuracy offered by the Feature Bagging and LSCP methods
R2

= 0.54) remains similar to that offered by the ABOD detector
lone. Even though AKPV achieves higher accuracy than Feature
agging and LSCP, its performance is limited by the fact that this
lgorithm only considers the top three detectors (while EBOD is
ore flexible and can consider a larger set of detectors—ABOD,
OF, SOS, and LOF in this case). This indicates that, overall, these
ethods do not succeed at meaningfully combining the indi-
idual detectors so as to leverage and combine their respective
trengths.
Compared to Feature Bagging, LODA and SUOD also rely on
random sampling of the feature space by a series of base

etectors. However, both of them exhibit inferior performance
n the case of the present dataset. This may arise from the fact
hat LODA relies on simple one-dimensional histograms as base
etectors, which might be too simplistic for the present dataset.
n turn, by replacing costly unsupervised algorithms with faster
upervised regression algorithms [58], this surrogate model gen-
rated by SUOD can affect the accuracy of the detection. Although
his approach has some merits for large datasets, computational
urden is not a bottleneck in the case of the present small dataset.
Overall, as a key conclusion, we find that our new EBOD

ethod systematically outperforms all these alternative
nsemble-based methods by a large margin. This denotes that,
n the case of the present dataset, our EBOD approach is the
ost effective at identifying the optimal union of detector algo-

ithms, wherein the selected detectors tend to most positively
omplement each other. This is likely a positive consequence of
he forward–backward search for the top outliers as implemented
n the present EBOD method, which is efficient at pinpointing
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Fig. 8. Concrete strength predicted by the artificial neural network models trained based on the raw and cleaned dataset as a function of two select features, namely,
(a) the water-to-cementitious ratio (w/cm) and (b) the weight fraction of fly ash. Other features are fixed to their average values. The predicted values are compared
with actual datapoints that are located at the vicinity of the predicted datapoints in the feature space (see text). Results are presented for the concrete dataset (see
Section 2.1).
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Table 6
Performance on the test set of the artificial neural network model trained using
the concrete dataset cleaned by select ensemble-based outlier detection method
Ensemble-based detector R2 Mean absolute error

of the model (MPa)
Mean absolute
distance of outliers
from model (MPa)

Raw uncleaned dataset 0.49 3.91 –
Averaging 0.49 4.39 2.66
Maximization 0.48 4.32 2.85
AOM 0.49 4.30 2.95
MOA 0.48 4.12 3.29
SUOD 0.43 3.25 6.53
LODA 0.51 3.95 4.63
Feature bagging 0.54 3.83 5.00
LSCP 0.54 3.47 5.49
AKPV 0.55 3.41 5.96
Present EBOD method 0.59 3.45 5.86

the most optimal combination of detectors and disregarding
poorly-performing detectors.

As an alternative assessment of the ability of each ensemble-
ased outlier detection method to identify and remove true out-
iers (rather than non-outlier datapoints that are useful to train
he ANN model), we compute the distance between the labels
nd the model predictions of the datapoints identified by each
ethod. This analysis is based on the idea that, after training, the
odel filters out the noise of the dataset and offers an estimation
f what the ground truth should be in the absence of any noise. As
uch, provided that the model is accurate, the distance of a given
atapoint from the model prediction offers a posteriori validation
f whether this datapoint was indeed an outlier or not—wherein
rue outliers are associated with large absolute distances from
he model prediction. It is worth noting that this analysis offers
meaningful, independent check on each data cleansing method,
ince all the detectors considered herein are unsupervised and are
ever exposed to the predictions of the ANN model.
Fig. 9 shows the distributions of the distance from the model

rediction of the outliers detected by each of the data cleansing
pproaches considered herein. In line with the coefficient of
etermination values presented in Table 3, we find that most of
he outliers identified by the Averaging, Maximization, AOM, and
OA methods are located in the vicinity of the model surface

i.e., < 8 MPa absolute distance). In fact, the average absolute
istance of the outliers identified by these methods is lower
 F

11
than the mean absolute error of the model (see Table 3). This
indicates that these approaches tend to classify useful datapoints
as outliers and, in turn, fail to detect the true outlier datapoints
that are far from the model prediction. In contrast, SUOD, LODA,
Feature Bagging, LSCP, AKPV as well as the present EBOD ap-
proach tend to classify as outliers datapoints that, on average, are
further away from the model prediction than the mean absolute
error of the model (see Table 3), which shows that all these
methods successfully identify the outliers that are far from the
model prediction. Although the outliers detected by SUOD show
the largest distance from the model prediction, the ANN model
trained based on remaining datapoints eventually exhibit the
lowest coefficient of determination R2. This implies that some
f the outliers that are identified by SUOD are actually rather
nformative for the model training, so that removing them greatly
educes the accuracy of the trained model. In contrast, our new
BOD approach outperforms other methods in their ability to
etect and remove the most extreme outliers that are the furthest
way from the model prediction (e.g., > 15 MPa away from the
odel, see Fig. 9).
Finally, Fig. 10 shows the strength (i.e., output) distribution

f the outliers identified by each ensemble-based data cleansing
pproach. We find that the Averaging, Maximization, AOM, and
OA methods tend to systematically classify as outliers some
atapoints that are associated with intermediate strength values
i.e., between 30 and 45 MPa), which is also the most densely
opulated region of the original dataset. In turn, these approaches
o not label as outliers most of the extreme datapoints (i.e., asso-
iated with very low or very high strength values). This behavior
ontrasts with the fact that concrete strength measurement out-
iers are essentially random and are not expected to be solely
ncountered for intermediate strength values [36,67,68]. Rather,
he fact that these detector methods tend to classify as outliers
ome datapoints that are associated with intermediate strength
alues suggests that these methods perform better in the densely
opulated regions of the dataset (i.e., wherein each datapoint
hows a large density of neighbors) but do not perform well
n the low-density, sparser regions of the dataset. In contrast,
UOD, LODA, Feature Bagging, LSCP, AKPV as well as the present
BOD approach classify as outliers a notably increased fraction of
xtreme datapoints, that is, which are associated with strength
alues (that are lower than 30 MPa or larger than 45 MPa).

urthermore, the present EBOD method also yields a distribution
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Fig. 9. Distributions of the distance from the artificial neural network (ANN) model prediction (i.e., in terms of output strength difference) of the outliers detected
by each of the ensemble-based outlier detection methods considered herein. Note that, in each case, a distinct ANN model is trained after the outliers identified by
each approach are removed. Results are presented for the concrete dataset (see Section 2.1).
f outlier strength values that exhibits the largest degree of

imilarity (in shape) as compared to the distribution of the initial

trength values in the entire dataset. This echoes the fact that, in

he case considered herein (i.e., concrete strength measurement),

he probability of a datapoint to be an outlier is expected to

e fairly independent of strength. Overall, all these observations

onfirm that the present EBOD method features an enhanced

bility to meaningfully detect and remove true outlier datapoints

s compared to other alternative ensemble-based methods.
12
3.7. Comparison with alternative ensemble-based detectors based on
benchmark datasets

To ensure that the obtained results are generic and representa-
tive of various types of datasets, we extend the analysis to a series
of ten additional benchmark regression datasets (see Table 1).
To evaluate the robustness of the proposed EBOD method across
datasets, we then carry out a series of statistical tests to compare
its cleansing performance to that of nine established ensemble-
based outlier detection methods (see Table 3). We first consider
the test set accuracy of the ANN model considered herein (see
Section 2.2) when trained based on the cleaned dataset as a
measure of the performance of the detector. To this end, we
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Fig. 10. Distribution of the true strength of the outliers detected by each of the ensemble-based outlier detection methods considered herein. The distributions are
compared with the distribution of the strength values in the raw, uncleaned dataset. Results are presented for the concrete dataset (see Section 2.1).
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une the threshold of each of the ensembled methods to flag
he same number of outliers as EBOD, for each dataset. After
ata cleaning, we train the ANN model (using the same fixed
yperparameters) to assess the performance of all the ensemble-
ased detectors. The R2 results on the test set (20% of the cleaned

dataset) achieved by each detector for each dataset are compared
in Table 7. Note that these R2 results are evaluated based on ten
random repetitions of the train-test split. Based on this evalu-
ation, we find that EBOD broadly outperforms its counterparts,
since EBOD achieves the highest test R2 for seven out of the ten
atasets and consistently exhibits a performance that is compa-
able to that of the top detection algorithm in all the other three
ases.
To further establish the statistical significance of the per-

ormance increase offered by EBOD, we then carry out some
riedman and post hoc Dunn’s tests by following the procedures
13
presented in Section 2.6. Based on the Friedman test, the p-
value for EBOD is determined to be 1.11× 10−16. This extremely
low value suggests that there exists a statistically significant
performance difference between EBOD and the other methods
(see Table 8). In addition, a post hoc Dunn’s test is conducted for
each pair of detectors—to individually compare the performance
of EBOD with that offered by each of the other alternative out-
lier ensemble methods (see Table 9). In this case, the p-values
represent the significance of the pairwise comparison. For most
pair comparisons, the null hypothesis (H0) that both methods
exhibit comparable performance (i.e., p-values > 0.05) is rejected.
Although the above statistical tests suggest that both AKPV and
Feature bagging are not significantly different from EBOD (with
their p-values > 0.1), the test R2 results shown in Table 7 nev-
rtheless still affirm the superior performance of EBOD—both in
erms of increased accuracy of compared to alternative cleansing
pproaches and generalizability to various datasets.
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omparison of the R2 prediction accuracy on the test set (20%) offered by the artificial neural network model trained using the benchmark datasets—wherein each
ataset is cleaned by each of the ensemble-based detectors. The test R2 values shown here are averaged based on ten repetitions of random train-test split. The

highest score is highlighted in bold.
Dataset EBOD Alternative detectors

Averaging Maximization AOM MOA SUOD LODA Feature bagging LSCP AKPV

Delta Elevators 0.711 0.661 0.663 0.662 0.663 0.664 0.642 0.707 0.697 0.706
Red wine 0.362 0.247 0.221 0.221 0.221 0.281 0.216 0316 0.325 0.320
Airfoil noise 0.931 0.884 0.905 0.899 0.901 0.896 0.854 0.909 0.908 0.928
Qsar fish toxicity 0.725 0.643 0.622 0.622 0.641 0.657 0.546 0.706 0.704 0.740
Boston Housing 0.909 0.762 0.744 0.769 0.769 0801 0.831 0.834 0.805 0.864
California Housing 0.842 0.739 0.731 0.735 0.731 0.803 0.703 0.847 0.821 0.843
Ailerons 0.841 0.775 0.782 0..775 0.834 0.798 0.824 0.834 0.829 0.836
Abalone 0.610 0.552 0.487 0.615 0.474 0.538 0.476 0.611 0.555 0.572
UCI concrete 0.918 0.886 0.899 0.894 0.917 0.895 0.891 0.905 0.899 0.901
Real estate 0.752 0.603 0.624 0.528 0.624 0.471 0.492 0.678 0.554 0.726
c
a
u
E
d
o
s
m
t
a
a
(
a
f
e
t

Table 8
Ranking of the ensemble-based outlier detection
algorithms considered herein using the Friedman
test.
Rank score Algorithm

6.94 EBOD
6.27 AKPV
6.05 Feature bagging
4.72 LSCP
3.58 MOA
3.02 SUOD
2.91 Maximization
2.84 AOM
2.54 Averaging
1.9 LODA

Table 9
Post hoc Dunn’s test, wherein the performance of the EBOD approach is com-
pared with that of each alternative individual ensemble-based outlier detection
algorithm.
Pairwise
comparison

p-value Result

EBOD vs. AKPV 0.50 p > 0.1; H0 is
accepted

EBOD vs. Feature
bagging

0.37 p > 0.1; H0 is
accepted

EBOD vs. LSCP 0.0260 p < 0.05; H0 is
rejected

EBOD vs. MOA 0.00070 p < 0.05; H0 is
rejected

EBOD vs. SUOD 9.06× 10−5 p < 0.05; H0 is
rejected

EBOD vs.
Maximization

5.69× 10−5 p < 0.05; H0 is
rejected

EBOD vs. AOM 4.15× 10−5 p < 0.05; H0 is
rejected

EBOD vs.
Averaging

1.11× 10−5 p < 0.05; H0 is
rejected

EBOD vs. LODA 1.57× 10−7 p < 0.05; H0 is
rejected

3.8. Limitations

Despite its performance on the broad selection of datasets
onsidered herein, the proposed EBOD method comes with a
ertain number of limitations. First, as an unsupervised outlier
etection approach, the EBOD approach cannot benefit from the
nowledge of labeled outliers. Although the unsupervised char-
cteristic of the EBOD approach is primarily a strength (since it
oes not require any manual labeling of outliers), EBOD would
ikely be outperformed by supervised approaches if a collection
f representative ground-truth outliers is a priori known. Second,
he EBOD does not rely on any assumptions regarding the nature
f the outliers. Although this makes the EBOD approach robust
14
and general (especially for noisy datasets), the EBOD approach is
likely to be outperformed by more specialized outlier detection
approaches for specific datasets wherein the outliers exhibit a
clear, distinctive fingerprint. Finally, the EBOD approach comes
with a notable computational burden. To illustrate this, Table 10
shows the running time of each detector for cleaning the ten
benchmark datasets considered herein. The results show that,
although it offers an enhanced accuracy, EBOD consistently re-
quires more computing time to complete the cleaning. This is
mainly due to the fact that EBOD relies on a costly forward–
backward search for the optimal set of detectors. In practice, this
high computing cost can prevent the use of EBOD on very large
datasets—wherein model training takes a significant time. Never-
theless, the computational cost of EBOD still remains reasonable
for all the datasets considered herein (which present a maximum
of 20,640 data points and 41 input features). More generally, this
computational time is expected to remain small as compared
to the time that needs to be invested to conduct a typical data
cleansing based on trial-and-error, Edisonian approaches. This
computational time is also considered reasonable since a robust
data cleansing can result in a larger increase in model accuracy
than a costly systematic optimization of model learning algorithm
and hyperparameters.

4. Conclusions

Overall, we find that our proposed EBOD outlier detection
method improves the learning efficiency of the ANN model con-
sidered herein by decreasing the number of required hidden
neurons, as well as the number of datapoints that are needed
for the model to learn how to map inputs to output. Impor-
tantly, we find that our EBOD outlier detection approach consid-
erably improves the accuracy of the trained ANN model, which
is systematically illustrated by the test set R2, RMSE, bias, and
onfidence interval. Importantly, our new EBOD method system-
tically outperforms alternative outlier detector algorithm, when
sed either individually or in ensemble. The performance of the
BOD method consistently apply to a broad range of regression
atasets. Altogether, these results suggest that considering an
ptimized ensemble of outlier detection algorithms (rather than a
ingle detector or simply an average of several detectors) offers a
ore robust data cleansing and, consequently, notably increases

he performance of the subsequent machine learning model. It is
lso worth mentioning that the EBOD approach does not require
ny intuition or knowledge regarding which type of detector
e.g., distance-based, angle-based, etc.) is best suited to tackle
given dataset. This approach also has the advantage of being

ully unsupervised, that is, it does not require any expert-based
xamples of outliers or of any preexisting knowledge of what the
ypical signature of an outlier should be.
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Table 10
Comparison of the running time (in seconds) of the EBOD method, as well as that of alternative ensemble-based outlier detection
methods.
Dataset EBOD Averaging Maximization AOM MOA SUOD LODA Feature bagging LSCP AKPV

Delta elevators 359.9 57.7 59.1 55.3 52.1 22.1 8.9 16.4 92.3 89.5
Red wine 385.8 5.2 4.8 4.1 4.2 6.7 3.4 9.2 6.08 46.6
Airfoil noise 266.4 6.3 6.6 5.1 7.6 5.7 3.9 12.7 7.1 31.3
Qsar fish toxicity 197.1 3.0 3.1 2.7 2.9 4.9 1.9 7.6 4.8 22.2
Boston Housing 121.5 2.3 2.5 2.2 2.4 4.4 1.7 4.1 3.0 12.9
California Housing 2132.6 613.6 474.9 656.1 730.3 90.8 34.8 67.7 699.2 496.0
Ailerons 2126.6 75.4 60.9 302.7 54.7 35.7 24.0 80.1 67.3 289.1
Abalone 826.6 17.7 17.3 18.2 16.4 12.7 6.3 20.6 132.1 95.4
UCI concrete 211.6 5.1 4.2 4.1 4.8 5.9 2.0 6.4 3.5 25.4
Real estate 94.9 1.7 2.2 2.1 2.4 5.7 1.9 1.1 2.3 14.8
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