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Abstract
Despite previous efforts tomap the proportioning of a concrete to its strength, a robust knowledge-
basedmodel enabling accurate strength predictions is still lacking. As an alternative to physical or
chemical-basedmodels, data-drivenmachine learningmethods offer a promising pathway to address
this problem. Althoughmachine learning can infer the complex, non-linear, non-additive relation-
ship between concretemixture proportions and strength, large datasets are needed to robustly train
suchmodels. This is a concern as reliable concrete strength data is rather limited, especially for realistic
industrial concretes. Here, based on the analysis of a fairly large dataset (>10,000 observations) of
measured compressive strengths from industrial concretes, we compare the ability of three selected
machine learning algorithms (polynomial regression, artificial neural network, random forest) to
reliably predict concrete strength as a function of the size of the training dataset. In addition, by
adopting stratified sampling, we investigate the influence of the representativeness of the training
datapoints on the learning capability of themodels considered herein. Based on these results, we
discuss the nature of the competition between how accurate a givenmodel can eventually be (when
trained on a large dataset) and howmuch data is actually required to train thismodel.

1. Introduction

Concrete—which is by far themostmanufacturedmaterial in theworld—ismade of stones (coarse aggregates)
and sand (fine aggregates) that are glued together by the cement paste—which forms upon the reaction between
cement andwater [1]. The 28-day compressive strength is one of themost widely usedmetrics to characterize
concrete’s performance in its engineering applications (e.g., holding structural loads). Indeed, although this
standardized index is primarily used to evaluate the ultimate strength of concretes [2], it can also be used to infer
other criticalmechanical properties, e.g., stiffness or tensile strength [3]. Accurate concrete strength predictions
have a profound impact on construction projects since an insufficient concrete strength can be the culprit of a
catastrophic failure of civil infrastructures. Conversely, concretes exhibiting an overdesigned strength leads not
only to highermaterial expenses [4], but also to additional environmental burdens (e.g., cement production is
associatedwith large CO2 emissions) [5].

Over the past decades, substantial efforts have been devoted to developing predictivemodels for correlating a
given concretemixture proportion to its associated strength [6]. Beyond this, an ideal predictivemodel would
also provide important insights for designing new concrete formulas with better constructability and durability,
and/or at [1, 2] a lower cost [7, 8]. Conventional approaches often seek to achieve these goals using physics or
chemistry-based relationships [9–11]. Although the role played bymajor proportioning parameters—e.g.,
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cement dosage, aggregate fraction, and air void content—has been extensively investigated, disentangling the
combined effects of these features in real concretes can be a daunting task. In addition, the influence of other
secondary factors is not always negligible (e.g., nature and dosage of chemical andmineral admixtures, aggregate
size gradation, etc) [12]. Due to the limited understanding of these complex property-strength correlations, it is
still extremely challenging to get a robust and universal concrete strengthmodel using conventional
approaches [13].

As an alternative pathway, the recent development ofmachine learning (ML) techniques provides a novel
data-driven approach to revisit the strength prediction problem. Importantly,ML-based predictions have been
shown to significantly outperform those of conventional approaches, especially for non-linear problems [14]. As
such, recent studies have establishedML as a promising approach to predict concrete strength [15–18].
However,ML approaches often require a large dataset to ‘learn’ the relationship between inputs and outputs
[19, 20]. This is amajor concern for concrete applications, as strength data for industrial concretes are often
difficult to access (i.e., data is not publicly available). In addition, reported concrete strength data are often
incomplete (some important features that can impact concrete strength are oftenmissing, e.g., mixingmethod,
curing temperature, types of aggregates, etc).More generally,ML approaches require accurate and self-
consistent data—which is often questionable for concrete strength data due to non-standardizedmeasurements
or inconsistencies in data recording [21]. For example, the strength of a given concrete can significantly vary
when the testing protocol or specimen size is altered [22–24]. Although such difficulties can befiltered out with
sufficiently large datasets, their significance tends to be exacerbatedwhen the training datasets are small—which
is often the case in applications involving engineeringmaterials. For all these reasons, it is critical to assess how
the reliability ofML approaches for concrete strength prediction applications depends on the number of
training data points.

With the special goal for predicting concrete strength inmind, we carry out this study around three core
questions: (i) howmuch data is sufficient for training aMLmodel, (ii)whichML algorithms are better suited to
deal with small datasets, and (iii)what the role of data representativeness on the learning capability ofMLmodels
is. By building on our previous studies [18, 25], we explore these questions by taking the example of three
archetypalML algorithms, i.e., polynomial regression (PR), artificial neural network (ANN), and random forest
(RF).We compare the ultimate accuracy of these algorithms and their learning efficiency as a function of data
volume. These results are insightful for facilitating the adoption ofML for small datasets—as relevant to
concrete engineering.

2. Background andmethods

2.1.Dataset of concrete strengthmeasurements
The dataset used in this study comprises the 28-day compressive strength of 10,264 commercial concretes and
their associatedmixture proportions [18]. All themixtures were cast using ASTMC150 compliant Type I/II
cement [26] andClass Ffly ash compliant withASTMC618 [27]—wherein fly ash is a by-product of coal power
plants that can be used as supplementary cementitiousmaterial, that is, to replace cement in concrete [28]. The
sevenmost influential features are considered in this study, namely, (1)water-to-cementitious ratio (in this case,
the ratio between themass of water and that of cement and fly ash), (2) cement fraction, (3)fly ash fraction, (4)
fine aggregate fraction, (5) air-entraining admixture dosage (used for enhancing concrete durability), and (6)
water-reducing admixture dosage (used for increasing concrete early-stage workability). For normalization

Table 1. Settings of the key hyperparameters adopted in the polynomial
regression (PR), artificial neural networks (ANN), and random forest
(RF)models investigated in this study. Unless specified, the other
hyperparameters are kept as default in Scikit-learn [35].

Model type

Complexity

parameters Other parameters

PR Polynomial degree: 3 N/A

ANN Hidden layer: 1 Optimizer: LBFGS

Number of neurons: 7 Activation function:

Sigmoid

Max iteration: 500

RF Trees: 16 N/A

Maximumdepth: 10

Minimum leaf size: 2
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purposes, the features (2-to-4) are taken as the solid weight fractions. The fraction of coarse aggregates is
excluded as it is redundant with features (2-to-4) since the fourweight fractions always sumup to 100%.

2.2.Machine learning algorithms andhyperparameter optimization
Weassess the performance of three archetypicalML algorithms (PR, ANN, andRF) as a function of the number
of training data points. These threemodels are chosen as they belong to three distinct families ofMLmodels, i.e.,
polynomial, network-based, and tree-based [29, 30]. All the hyperparameters of theMLmodels considered
hereinwere optimized in a previous study so as to achieve an optimal balance between under- and overfitting
(see [17]). The key hyperparameters of the threeMLmodels are summarized in table 1 and also detailed in the
following. First, we consider PR,which is essentially based on linear regression, wherein themodel parameters
designate an n-degree polynomial function [31]. Based on our previous work [17], the PRmodel adopted herein
features amaximumpolynomial degree of 3. Second, we explore the potential of ANN,which is a computational
structure consisting of an input layer, an output layer, and one or several hidden layers bridging the two formers
—wherein each layer comprises a collection of artificial neurons (i.e., computational units) [32]. Based on our
previouswork [17], the present ANNmodel exhibits 7 neurons in a single hidden layer.We adopt the sigmoid
function as activation function andwe use the backpropagation algorithm to optimize themodel parameters
[33]. Third, we consider RF, which is an enhanced baggingmethod. By using themajority-voting concept, this
approach is typicallymore accurate than conventional single decision trees [34]. Here, based on our previous
work [17], our RFmodel comprises 16 trees with amaximumdepth of 10. Despite the different nature of these
algorithms, their common goal is to predict a variable y (here, the 28-day strength) as a function of the input
variables x (here,mixing proportions of concrete), whileminimizing the difference betweenmeasured and
predicted strength values (see [17] for details).

2.3.Model training, validation, and testing
Following common practices, 70%of the strength observations are randomly selected and used formodel
training (i.e., ‘training set’). The remaining 30%of the data are kept hidden to themodel, so as to assess the
ability of themodel to predict the strength of unknown concretes (i.e., ‘test set’). A fraction of the initial training
set then used as validation set to optimize the hyperparameters of themodels. To this end, we adopt afive-fold
cross-validation approach [36]. In detail, the initial training set is randomly split into five folds (eachmade of
20%of the training data). In each of the five rounds of analysis, themodel is iteratively trained based on four
folds and validated based on the remaining fold (i.e., ‘cross-validation set’).

2.4. Accuracy evaluation
Weevaluate the accuracy of eachmodel based on theirmean-square error (MSE) and coefficient of
determination (R2), wherein theMSE is the averaged Euclidian distance between predicted andmeasured
strength data. The rootmean-square error (RMSE) is calculated as the square root of theMSE. TheR2 factor
further quantifies the accuracy of themodel predictions in terms of the degree of scattering around thefitted
input-output relationship (wherein a perfect prediction is associatedwithR2=1).We analyze the deviation
between strength predictions andmeasurements by computing the error distribution—that is, the distribution
of the differences between predicted andmeasured strength values for each concretemixture in the test set. The
error distribution yielded by eachmodel then serves to calculate the 90 and 95% confidence intervals of a
predicted strength falling into these ranges (see [17] for details).

2.5. Evaluation of the learning efficiency
To investigate how eachmodel ‘learns’how to predict concrete strength as it is exposed to increasing numbers of
training examples, we compute their ‘learning curve’ [37]. This approach consists in plotting the training and
validation accuracy of themodel as it is exposed to an increasing number of training examples. Results are
averaged over five train-validation splits by using thefive-fold cross-validationmethod. In detail, wefirst split
thewhole dataset into five folds, wherein each fold iteratively serves as validation set while the remaining four
folds are used as training set. Rather than exposing themodel to thewhole training set, a series of smaller subsets
of the training set with increasing sizes are used to train themodel iteratively (with 10% increments in each
iteration). In turn, the validation set remains constant (with afixed size) during themodel training. At each
training iteration, theMSE of themodel on the (partial) training and (full) validation sets are recorded. Finally,
the average and standard deviation of theMSE as a function of the size of the training set are determined based
on thefive folds. To ensure a consistent comparison, all themodels considered herein are trained and evaluated
based on the same training and validation sets.

3
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2.6. Stratification of the dataset
We then assess the role played by the representativeness of the datapoints in small training sets. Indeed, a
common issue of using small datasets forML applications is that the extracted training and validation sets do not
offer a proper representation of the data distribution in the entire dataset. This issue is often encounteredwhen
the datapoints in the dataset varywithin a large range or follow a certain statistical pattern—such that randomly
extracted subsets (i.e., the training and validation sets)may not alone be representative of the entire feature space
that is covered in the dataset due to the limited density of datapoints. Note that this problem is typicallymore
exacerbated for validation sets (or test sets) since they are typically smaller than the associated training sets. Such
lack of representativenessmay yield biased validation sets, which do not fairly assess the ability ofmodels to
generalize.

In that regard, stratified sampling is a data preprocessing technique that aims to improve the
representativeness of training and validation sets [38, 39]. In detail, data stratification divides thewhole dataset
into homogeneously distributed subgroups based on the statistical distribution of the datapoints. As such, when
compared to random training-validation splits, data stratification is amore efficient data sampling technique as
it ensures that both the training and validation sets homogeneously sample the entire dataset. This technique can
be combinedwith k-fold cross-validation (i.e., ‘stratified cross-validation’), wherein each of the k folds is
constructed so as to present the same data distribution as that of the entire dataset.

Figure 1. (top)Comparison between the predicted versusmeasured (ground-truth) 28-day strength and (bottom) error distribution
for the test set offered by the (a)polynomial regression (PR), (b) artificial neural network (ANN), and (c) random forest (RF)models.
The pixel colors in the top plots indicate the number of overlapped points. The error distributions are fitted byGaussian distributions.

Figure 2. Learning curves showing theMSE of the training and cross-validation sets as a function of the size of the training set for the
(a) polynomial regression (PR), (b) artificial neural network (ANN), and (c) random forest (RF)models. The green shadowed area
indicates the standard deviation of the validation setMSE.
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Here, we explore the effect of stratified cross-validation on the learning capability of theMLmodels
considered herein. To this end, we first split the raw concrete dataset into ten even classes (with an equal number
of datapoints), wherein the datapoints are ranked based on the 28-day strength value (i.e., the output).We then
iteratively randomly extract 20%of the samples from each class to construct each of the five folds—so that the
folds comprise the same number of datapoints than in the case of random training-validation splits. To
investigate the influence of stratification on the learning efficiency of the differentMLmodels considered herein,
we subsequently conduct the learning curve analysis detailed in section 2.5, wherein the training and validation
MSE values are computed after progressively training themodel with increasing numbers of (stratified) samples.

3. Results

3.1. Accuracy of themachine learningmodels
Wefirst compare thefinal accuracy offered by eachMLmodel when trained based on the entire training set.
Figure 1 shows, for eachmodel, the predicted versusmeasured strengths for the entire test set and the associated
error distributions. The accuracy analysis is summarized in table 2. In detail, we find that RF features the highest
degree of accuracy, whichmanifests itself by aminimumRMSE,maximumR2, andminimumconfidence
intervals.

3.2. Gradual learning upon increasing training set size
Having shown that RF offers the highestfinal accuracywhen trained based on the entire training set, we now
focus on the learning curve exhibited by eachmodel—to assess their ability to quickly learn the input-output
relationship as they become exposed to a gradually increasing number of training examples (see figure 2). As
expected, all themodels exhibit a fairly similar trend, that is, (i) theMSE of the training set increases with
increasing training set size since it becomes increasingly difficult for themodel to perfectly interpolate the
training set with afixed number ofmodel parameters and (ii) theMSE of the cross-validation set decreases with
increasing training set size as themodel graduallymanages to learn the input-output relationship and, hence,
eventually shows an increased ability to generalize, that is, to predict the strength of unknown concretes.

Nevertheless, wefind that, although thefinal accuracy offered by themodels shows onlyminor differences
(see table 2), their learning curves exhibit significantly distinct features. In detail, in agreement with the data
presented in table 2, wefind that RF eventually features the lowestMSE for the validation set, as well as for the
training set. As comparedwith PR andANN—wherein both the training and validation set accuracy converge
evidently as a function of the training set size—the RFmodel does not present a clear plateau and finally shows a
gap between its training and validation accuracy values (when trained on the entire training set). This indicates
that the RFmodel features a greater potential to eventually achieve even higher accuracy if additional data points
can be added to the training set. Interestingly, we also note that theMSE of the validation set exhibits a faster
decrease in the case of PR andANN, as compared to themore gradual decrease obtained in the case of RF. In
addition, we further note that themodels exhibit significantly different initial degrees of stability when trained
based on extremely small numbers of samples. In particular, the PRmodel considered herein present a level of
fluctuation that is notably larger than that shown by the othermore complexmodels when the number of
training samples is small (i.e.,<2600 samples). This is likely related to the fact that, unlike the othermodels
(ANNandRF), the PRmodel is not regularized. As such, PR ismore sensitive to the noise that is presented in the
training dataset, especially when its size is not statistically representative. This point is further discussed in the
next section.

Table 2.Coefficient of determination (R2) and confidence interval values
offered by eachmodel for the test set (when trained based on the entire training
set), andminimumnumber of training data that is needed for eachmodel to
achieve an average validation setMSE that is less than one standard deviation
away from itsfinal validation setMSE.

Accuracy analysis

Confidence

interval (MPa)
Learning analysis

Model type R2 90% 95%

Minimumnumber of

training data

PR 0.596 ±7.43 ±8.86 2680

ANN 0.591 ±7.45 ±8.88 3010

RF 0.620 ±7.22 ±8.60 4070
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Overall, since various factors can affect theminimumnumber of data points that is needed to reliably train a
givenmodel, we adopt herein the following criterion: we define theminimum training set size as the lowest
number of training data points that is needed for themodel to achieve an average validation setMSE that is less
than one standard deviation away from itsfinal validation setMSE (i.e., when trained based on the entire
training set), wherein the standard deviation is calculated based on theMSE obtained for each validation fold
during cross-validation. In case of the threemodels investigated in this study, wefind that PR (and, to a lesser
extent, ANN) features an increased ability to quickly learn how to predict concrete strength from small datasets
as compared to RF (see table 2).

3.3. Gradual learning assisted by stratified sampling
Next, we assess the role of the representativeness of the training samples in controlling the learning capability of
eachmodel. To this end, we implement stratified cross-validation (see section 2.6 for details) [40]. By following
the general analysis discussed in section 3.2, we repeat themodel training by gradually exposingmore stratified
datapoints to the threemodels investigated herein (see figure 3).Wefirst observe that, for the training set, the
learning curves obtainedwith stratified cross-validation are fairly similar to the non-stratified ones shown in
figure 2 (which, for reference, appear as dashed lines infigure 3). Similarly, we note that thefinal (when trained
based on the entire training set) validation setMSE achieved by the threemodels is unaffected by stratification,
which indicates that the level of representativeness of the training samples does not notably affect the final
accuracy offered by theMLmodels.

However, wefind that stratification has a significant effect on learningwhen the training set is small. Indeed,
at lownumber of training examples, the validation setMSE values achieved by stratified cross-validation are
systematically smaller than the non-stratified ones. In addition, we observe that stratification systematically
results in a decrease in the standard deviation of the validation setMSE (see figures 2 and 3). This indicates that
data representativity plays a key role in governing the ability of theMLmodels to learn the input-output
relationshipwhen they are exposed to small training sets. In the case of the present concrete strength dataset,
data representativity is important as the distribution of the output strength values is highly non-uniform. In
particular, very few datapoints are available in the low- and high-strength domains (i.e., below 30MPa and
above 60MPa, respectively, wherein the degree of overlapping of data points is far below 10 infigure 1), while the
majority of the datapoints present intermediate strength values (i.e., between 30 and 60MPa). Due to the
sparsity of the present dataset, conventional cross-validation exhibits a high propensity to result in the formation
of folds that are not representative of the entire dataset—for instance, such foldsmight be ignoring some poorly-
populated regions of the feature space. In turn,models that are trained/validation based on poorly
representative folds tend to require additional training samples to achieve the same accuracy as those that are
trained/validation based on representative folds.

Wefind that the effect of stratification is especially pronounced in the case of PR andANN,whereas
stratification has little effect, if any, on the learning of the RFmodel. This indicates that, due to its non-analytical
form (i.e., based on decision trees), RFmodels are less affected by the distribution of the points in the dataset
[41]. In contrast, the PRmodel features the largest improvement in its accuracy when trained by stratified cross-
validation. This is a consequence of the fact that the datapoints that are located at the boundaries of the
populated region of the feature space (which are likely to be associatedwith very small or very large strength
values) have a strong influence on the value of the PRmodel parameters, especially those associatedwith high
degree terms—since the high degree components of PRmodels tend to quickly diverge toward±∞ at the limits

Figure 3. Learning curves showing theMSE of the training and cross-validation sets as a function of the size of the training set for the
(a) polynomial regression (PR), (b) artificial neural network (ANN), and (c) random forest (RF)models in the case of stratified cross-
validation. For reference, the data are comparedwith the non-stratified learning curves fromfigure 2, which are represented as dashed
lines. The green shadowed area indicates the standard deviation of the validation setMSE.
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of the populated region of the feature space. As such, whether or not such boundary datapoints are included in
the training set has a strong influence on the ability of themodel to properly generalize toward the edges of the
feature space. Overall, these results demonstrate that stratified cross-validation has the potential to significantly
accelerate the learning ofMLmodel, that is, to reduce the number of datapoints that is needed for themodels to
achieve their final accuracy.

4.Discussion

Overall, wefind that themodel offering the highest final degree of accuracy (i.e., RF) requires the largest training
set to be trained, whereas, in turn, themodels presenting the lowestfinal accuracy (i.e., PR andANN) require the
smallest training set. These results highlight the existence of competition between (i) the ultimate ability of a
model to accurately learn the input-output relationshipwhen trained based on an abundance of training
examples and (ii) the ability of amodel to quickly learn this relationshipwhen trained based on a small dataset.
This competition can be rationalized in terms of the intrinsic ‘flexibility’ of themodel.

On the one hand, PR andANNare constrained, poorly-flexiblemodels—since PR relies on afixed analytical
form,while the present ANNmodel exhibits a limited ability to capture complex input-output relationships as it
comprises a single hidden layer. This lack offlexibility limits thefinal accuracy that is achievable by thesemodels.
Although the degree of complexity of thesemodels (i.e.,maximumpolynomial degree for PR and number of
hidden neurons for ANN) is already tuned to achieve the best balance between under- and overfitting [17], the
fact that theMSE of the training and validation sets both plateau toward the same value suggests that these
models are too simple and lack some degrees of freedom. For a given amount of data, this limitation could
potentially bemitigated by carefully increasing the complexity of thesemodels (while avoiding overfitting)—for
instance, by increasing the number of hidden layers in ANN [42]. In turn, the constrained nature of the PR and
single-layer ANNmodels allows them to quickly achieve theirmaximumaccuracy—since only a limited
number of parameters (i.e., polynomial coefficients for PR andneuron-neuron connectionweights for ANN)
need to be parameterized [43]. Thismakes it possible for these algorithms to handle small, sparse datasets.
However, it is clear from figure 2 that thesemodels have already achieved theirmaximumaccuracy and, hence,
would not benefit frombeing trainedwith any additional data. In addition, it can be noted from figure 3 that the
level of data representativity in the training set has a large impact on thosemodels’ performance. Clearly,
stratified sampling is able to significantly reduce the critical (minimum)number of datapoints that is needed for
themodels to achieve their final accuracy.

On the other hand, RF is, in contrast,more flexible as it is not constrained by any analytical formulation.
Indeed, in contrast to PR (which intrinsically yields a smooth, continuous, and differentiable relationship
between inputs and output due to its analytical form), the tree-based structuremakes it possible for the RF
model to capture rough, less-continuous, and less-differentiable functions [44]. Thisflexibility enables RF to
eventually reach a higherfinal degree accuracy once trained based on the entire training set. In turn, such
complexity comes at a cost, namely, a large number of training data points is needed to properly parameterize
the RFmodel. This is well illustrated by the facts that, unlike the cases of PR andANN, (i) the validation setMSE
of the RFmodel does not reach a plateau and continues to decrease upon increasing training set size and (ii) the
final validation setMSE is significantly higher than thefinal training setMSE. Both of these learning curve
features suggest that the RFmodel has not yet finished its training and, hence, would further be improved if
exposed to an increased number of data.

5. Conclusions

Overall, these results establishmachine learning as a promising approach to predict the strength of commercial
concrete based on the sole knowledge of theirmixture proportions. Although all themodels considered herein
present onlyminor differences in their final accuracy (i.e., when trained based on the entire dataset), they exhibit
notable differences in their abilities to quickly learn the input-outputmappingwhen exposed to small, sparse
datasets—especially when trainedwith stratified cross-validation.Wefind that simple,more constrained
models (e.g., polynomial regression) offer limited final accuracy, but can quickly achieve theirmaximum
accuracywhile trained based on small training sets. In contrast, less constrained,more flexiblemodels (e.g.,
random forest) require larger training sets, but can eventually feature a higher final prediction accuracy. This
highlights the importance of properly comparing the performance offered by variousmachine learningmodels
when considering small datasets—which are common in engineering applications wherein each additional
datapoint comeswith a significant time and cost burden.

7

Eng. Res. Express 3 (2021) 015022 BOuyang et al



Acknowledgments

The authors acknowledge some financial support for this research provided by theUSDepartment of
Transportation through the Federal HighwayAdministration (Grant#: 693JJ31950021) and theUSNational
Science Foundation (DMREF: 1922167).

Data availability statement

The data generated and/or analysed during the current study are not publicly available for legal/ethical reasons
but are available from the corresponding author on reasonable request.

ORCID iDs

Yu Song https://orcid.org/0000-0001-6218-3234
Gaurav Sant https://orcid.org/0000-0002-1124-5498
Mathieu Bauchy https://orcid.org/0000-0003-4600-0631

References

[1] TaylorWH1967Concrete Technology and Practice 4/E (UnitedKingdom:McGrawHill Education)
[2] Rodríguez de Sensale G 2006 Strength development of concrete with rice-husk ashCem. Concr. Compos. 28 158–60
[3] Ashour SA andWafa F F 1993 Flexural behavior of high-strength fiber reinforced concrete beams Struct. J. 90 279–87
[4] Purnell P andBlack L 2012 Embodied carbon dioxide in concrete: variationwith commonmix design parametersCem. Concr. Res. 42

874–7
[5] VanceK, FalzoneG, Pignatelli I, BauchyM, BalonisM and SantG 2015Direct carbonation of Ca(OH)2 using liquid and supercritical

CO2: implications for carbon-neutral cementation Ind. Eng. Chem. Res. 54 8908–18
[6] MoutassemF andChidiac S E 2016Assessment of concrete compressive strength predictionmodelsKSCE J. Civ. Eng. 20 343–58
[7] Biernacki J J et al 2018Cements in the 21st century: challenges, perspectives, and opportunities J. Am. Ceram. Soc. 100 2746–73
[8] Provis J L 2015Grand challenges in structuralmaterials Front.Mater. 2
[9] Powers TC 1960Physical Properties of Cement Paste Proc. First International Symposium on the Chemistry of Cement 2 (Washington, DC,

1960,USDepartment of Commerce, National Bureau of Standards,Monograph 4)pp 577–613
[10] Popovics S 1998History of amathematicalmodel for strength development of portland cement concreteMater. J. 95 593–600
[11] ZainMFMandAbd SM2009Multiple regressionmodel for compressive strength prediction of high performance concrete J. Appl.

Sci. 9 155–60
[12] Wild S, Sabir B B andKhatib JM1995 Factors influencing strength development of concrete containing silica fumeCem. Concr. Res. 25

1567–80
[13] Burris L E, Alapati P,Moser RD, LeyMT, BerkeN andKurtis K E 2015Alternative cementitiousmaterials: challenges and

opportunities Int.Workshop onDurability and Sustainability of Concrete Structures (Bologna, Italy)
[14] Yeh I-C 1998Modeling of strength of high-performance concrete using artificial neural networksCem.Concr. Res. 28 1797–808
[15] RafieiMH,KhushefatiWH,Demirboga R andAdeliH 2016Neural network,machine learning, and evolutionary approaches for

concretematerial characterizationACIMater. J. 113 781–9
[16] DeRousseauMA,Kasprzyk J R and SrubarWV III 2018Computational design optimization of concretemixtures: a reviewCem.

Concr. Res. 109 42–53
[17] Ouyang B, Li Y,WuF, YuH,Wang Y, SantG andBauchyM2020 PredictingConcrete’s Strength byMachine Learning: Balance

betweenAccuracy andComplexity of AlgorithmsACIMater. J. 117 125–33
[18] YoungBA,Hall A, Pilon L, Gupta P and SantG 2019Can the compressive strength of concrete be estimated fromknowledge of the

mixture proportions?: new insights from statistical analysis andmachine learningmethodsCem.Concr. Res. 115 379–88
[19] LiuH, Zhang T, KrishnanNMA, SmedskjaerMM,Ryan J V,Gin S andBauchyM2019 Predicting the dissolution kinetics of silicate

glasses by topology-informedmachine learningNpjMater. Degrad. 3 1–12
[20] Bishnoi S, Singh S, Ravinder R, BauchyM,GosvamiNN,KodamanaH andKrishnanNMA2019 Predicting Young’smodulus of oxide

glasses with sparse datasets usingmachine learning J. Non-Cryst. Solids 524 119643
[21] Pani AK, AminKG andMohantaHK2012Data driven soft sensor of a cementmill using generalized regression neural network 2012

Int. Conf. onData Science Engineering (ICDSE) 2012 Int. Conf. onData Science Engineering (ICDSE) pp 98–102
[22] Rejeb SK 1996 Improving compressive strength of concrete by a two-stepmixingmethodCem. Concr. Res. 26 585–92
[23] Hemalatha T, Sundar KR,Murthy AR and IyerNR 2015 Influence ofmixing protocol on fresh and hardened properties of self-

compacting concreteConstr. Build.Mater. 98 119–27
[24] ElhakamAA,MohamedAE andAwad E 2012 Influence of self-healing,mixingmethod and adding silica fume onmechanical

properties of recycled aggregates concreteConstr. Build.Mater. 35 421–7
[25] OeyT, Jones S, Bullard JWand SantG 2020Machine learning can predict setting behavior and strength evolution of hydrating cement

systems J. Am. Ceram. Soc. 103 480–90
[26] ASTMC150 /C150M-20 2020 Standard Specification for Portland Cement (ASTM International: United States of America) (www.astm.

org) (https://doi.org/10.1520/C0150_C0150M-20)
[27] ASTMC618-19 2019 Standard Specification for Coal Fly Ash andRaw or CalcinedNatural Pozzolan forUse in Concrete (West

Conshohocken, PA: ASTM International) (www.astm.org) (https://doi.org/10.1520/C0618-19)
[28] ConnRE, SellakumarK andBlandAE 1999Utilization of CFB Fly Ash for Construction Applications (Livingston, NJ: FosterWheeler

Development Corp.)

8

Eng. Res. Express 3 (2021) 015022 BOuyang et al

https://orcid.org/0000-0001-6218-3234
https://orcid.org/0000-0001-6218-3234
https://orcid.org/0000-0001-6218-3234
https://orcid.org/0000-0001-6218-3234
https://orcid.org/0000-0002-1124-5498
https://orcid.org/0000-0002-1124-5498
https://orcid.org/0000-0002-1124-5498
https://orcid.org/0000-0002-1124-5498
https://orcid.org/0000-0003-4600-0631
https://orcid.org/0000-0003-4600-0631
https://orcid.org/0000-0003-4600-0631
https://orcid.org/0000-0003-4600-0631
https://doi.org/10.1016/j.cemconcomp.2005.09.005
https://doi.org/10.1016/j.cemconcomp.2005.09.005
https://doi.org/10.1016/j.cemconcomp.2005.09.005
https://doi.org/10.14359/4186
https://doi.org/10.14359/4186
https://doi.org/10.14359/4186
https://doi.org/10.1016/j.cemconres.2012.02.005
https://doi.org/10.1016/j.cemconres.2012.02.005
https://doi.org/10.1016/j.cemconres.2012.02.005
https://doi.org/10.1016/j.cemconres.2012.02.005
https://doi.org/10.1021/acs.iecr.5b02356
https://doi.org/10.1021/acs.iecr.5b02356
https://doi.org/10.1021/acs.iecr.5b02356
https://doi.org/10.1007/s12205-015-0722-4
https://doi.org/10.1007/s12205-015-0722-4
https://doi.org/10.1007/s12205-015-0722-4
https://doi.org/10.3389/fmats.2015.00031
https://doi.org/10.14359/401
https://doi.org/10.14359/401
https://doi.org/10.14359/401
https://doi.org/10.3923/jas.2009.155.160
https://doi.org/10.3923/jas.2009.155.160
https://doi.org/10.3923/jas.2009.155.160
https://doi.org/10.1016/0008-8846(95)00150-B
https://doi.org/10.1016/0008-8846(95)00150-B
https://doi.org/10.1016/0008-8846(95)00150-B
https://doi.org/10.1016/0008-8846(95)00150-B
https://doi.org/10.1016/S0008-8846(98)00165-3
https://doi.org/10.1016/S0008-8846(98)00165-3
https://doi.org/10.1016/S0008-8846(98)00165-3
https://doi.org/10.14359/51689360
https://doi.org/10.14359/51689360
https://doi.org/10.14359/51689360
https://doi.org/10.1016/j.cemconres.2018.04.007
https://doi.org/10.1016/j.cemconres.2018.04.007
https://doi.org/10.1016/j.cemconres.2018.04.007
https://doi.org/10.1016/j.cemconres.2018.09.006
https://doi.org/10.1016/j.cemconres.2018.09.006
https://doi.org/10.1016/j.cemconres.2018.09.006
https://doi.org/10.1038/s41529-019-0094-1
https://doi.org/10.1038/s41529-019-0094-1
https://doi.org/10.1038/s41529-019-0094-1
https://doi.org/10.1016/j.jnoncrysol.2019.119643
https://doi.org/10.1109/ICDSE.2012.6281902
https://doi.org/10.1109/ICDSE.2012.6281902
https://doi.org/10.1109/ICDSE.2012.6281902
https://doi.org/10.1016/0008-8846(96)00030-0
https://doi.org/10.1016/0008-8846(96)00030-0
https://doi.org/10.1016/0008-8846(96)00030-0
https://doi.org/10.1016/j.conbuildmat.2015.08.072
https://doi.org/10.1016/j.conbuildmat.2015.08.072
https://doi.org/10.1016/j.conbuildmat.2015.08.072
https://doi.org/10.1016/j.conbuildmat.2012.04.013
https://doi.org/10.1016/j.conbuildmat.2012.04.013
https://doi.org/10.1016/j.conbuildmat.2012.04.013
https://doi.org/10.1111/jace.16706
https://doi.org/10.1111/jace.16706
https://doi.org/10.1111/jace.16706
http://www.astm.org
http://www.astm.org
https://doi.org/10.1520/C0150_C0150M-20
http://www.astm.org
https://doi.org/10.1520/C0618-19


[29] AnoopKrishnanNM,Mangalathu S, SmedskjaerMM,Tandia A, BurtonH andBauchyM2018 Predicting the dissolution kinetics of
silicate glasses usingmachine learning J. Non-Cryst. Solids 487 37–45

[30] LiuH, FuZ, YangK, XuX andBauchyM2019Machine learning for glass science and engineering: a review J. Non-Cryst. SolidsX 4
100036

[31] Sinha P 2013Multivariate polynomial regression in datamining:methodology International Journal of Scientific&Engineering Research
4 962

[32] WassermanPD1993AdvancedMethods inNeural Computing (NewYork,NY,United States of America:Wiley)
[33] Li J, Cheng J, Shi J andHuang F 2012 Brief introduction of back propagation (BP)neural network algorithm and its improvement

Advances in Computer Science and Information Engineering Advances in Intelligent and Soft Computing edD Jin and S Lin (Berlin,
Heidelberg: Springer) pp 553–8

[34] LiawA andWienerM2002Classification and Regression by randomForest 2 18–22
[35] Pedregosa F, VaroquauxG,Gramfort A,Michel V, Thirion B,Grisel O, BlondelM, Prettenhofer P,Weiss R andDubourgV 2011

Scikit-learn:machine learning in Python J.Mach. Learn. Res. 12 2825–30
[36] StoneM1974Cross-validatory choice and assessment of statistical predictions J. R. Stat. Soc. Ser. BMethodol. 36 111–33
[37] AnzanelloM J and Fogliatto F S 2011 Learning curvemodels and applications: literature review and research directions Int. J. Ind.

Ergon. 41 573–83
[38] Breiman L, Friedman J,OlshenR and StoneC 1984Classification andRegression Trees 37 (Belmont, CA:Wadsworth Int. Group)

pp 237–51
[39] JablonkaKM,Ongari D,Moosavi SMand Smit B 2020 Big-data science in porousmaterials:materials genomics andmachine learning

Chem. Rev. 120 8066–8129
[40] ZengX andMartinez TR 2000Distribution-balanced stratified cross-validation for accuracy estimation J. Exp. Theor. Artif. Intell. 12

1–12
[41] Breiman L 2001Random forestsMach. Learn. 45 5–32
[42] Ravinder R, Sridhara KH, Bishnoi S, GroverH S, BauchyM,KodamanaH andKrishnanNA2020Deep learning aided rational design

of oxide glassesMater. Horiz. 1819–27
[43] LiuH, FuZ, Li Y, Sabri N FA andBauchyM2019Balance between accuracy and simplicity in empirical forcefields for glassmodeling:

insights frommachine learning J. Non-Cryst. Solids 515 133–42
[44] YangK, XuX, Yang B, CookB, RamosH,KrishnanNMA, SmedskjaerMM,HooverC andBauchyM2019 Predicting the Young’s

modulus of silicate glasses using high-throughputmolecular dynamics simulations andmachine learning Sci. Rep. 9 8739

9

Eng. Res. Express 3 (2021) 015022 BOuyang et al

https://doi.org/10.1016/j.jnoncrysol.2018.02.023
https://doi.org/10.1016/j.jnoncrysol.2018.02.023
https://doi.org/10.1016/j.jnoncrysol.2018.02.023
https://doi.org/10.1016/j.jnoncrysol.2019.04.039
https://doi.org/10.1016/j.jnoncrysol.2019.04.039
https://doi.org/10.1007/978-3-642-30223-7_87
https://doi.org/10.1007/978-3-642-30223-7_87
https://doi.org/10.1007/978-3-642-30223-7_87
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1016/j.ergon.2011.05.001
https://doi.org/10.1016/j.ergon.2011.05.001
https://doi.org/10.1016/j.ergon.2011.05.001
https://doi.org/10.1021/acs.chemrev.0c00004
https://doi.org/10.1021/acs.chemrev.0c00004
https://doi.org/10.1021/acs.chemrev.0c00004
https://doi.org/10.1080/095281300146272
https://doi.org/10.1080/095281300146272
https://doi.org/10.1080/095281300146272
https://doi.org/10.1080/095281300146272
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1039/D0MH00162G
https://doi.org/10.1039/D0MH00162G
https://doi.org/10.1039/D0MH00162G
https://doi.org/10.1016/j.jnoncrysol.2019.04.020
https://doi.org/10.1016/j.jnoncrysol.2019.04.020
https://doi.org/10.1016/j.jnoncrysol.2019.04.020
https://doi.org/10.1038/s41598-019-45344-3

	1. Introduction
	2. Background and methods
	2.1. Dataset of concrete strength measurements
	2.2. Machine learning algorithms and hyperparameter optimization
	2.3. Model training, validation, and testing
	2.4. Accuracy evaluation
	2.5. Evaluation of the learning efficiency
	2.6. Stratification of the dataset

	3. Results
	3.1. Accuracy of the machine learning models
	3.2. Gradual learning upon increasing training set size
	3.3. Gradual learning assisted by stratified sampling

	4. Discussion
	5. Conclusions
	Acknowledgments
	Data availability statement
	References



