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Abstract

Despite previous efforts to map the proportioning of a concrete to its strength, a robust knowledge-
based model enabling accurate strength predictions is still lacking. As an alternative to physical or
chemical-based models, data-driven machine learning methods offer a promising pathway to address
this problem. Although machine learning can infer the complex, non-linear, non-additive relation-
ship between concrete mixture proportions and strength, large datasets are needed to robustly train
such models. This is a concern as reliable concrete strength data is rather limited, especially for realistic
industrial concretes. Here, based on the analysis of a fairly large dataset (>10,000 observations) of
measured compressive strengths from industrial concretes, we compare the ability of three selected
machine learning algorithms (polynomial regression, artificial neural network, random forest) to
reliably predict concrete strength as a function of the size of the training dataset. In addition, by
adopting stratified sampling, we investigate the influence of the representativeness of the training
datapoints on the learning capability of the models considered herein. Based on these results, we
discuss the nature of the competition between how accurate a given model can eventually be (when
trained on alarge dataset) and how much data is actually required to train this model.

1. Introduction

Concrete—which is by far the most manufactured material in the world—is made of stones (coarse aggregates)
and sand (fine aggregates) that are glued together by the cement paste—which forms upon the reaction between
cement and water [1]. The 28-day compressive strength is one of the most widely used metrics to characterize
concrete’s performance in its engineering applications (e.g., holding structural loads). Indeed, although this
standardized index is primarily used to evaluate the ultimate strength of concretes [2], it can also be used to infer
other critical mechanical properties, e.g., stiffness or tensile strength [3]. Accurate concrete strength predictions
have a profound impact on construction projects since an insufficient concrete strength can be the culprit ofa
catastrophic failure of civil infrastructures. Conversely, concretes exhibiting an overdesigned strength leads not
only to higher material expenses [4], but also to additional environmental burdens (e.g., cement production is
associated with large CO2 emissions) [5].

Over the past decades, substantial efforts have been devoted to developing predictive models for correlating a
given concrete mixture proportion to its associated strength [6]. Beyond this, an ideal predictive model would
also provide important insights for designing new concrete formulas with better constructability and durability,
and/orat[1, 2] alower cost [7, 8]. Conventional approaches often seek to achieve these goals using physics or
chemistry-based relationships [9-11]. Although the role played by major proportioning parameters—e.g.,
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Table 1. Settings of the key hyperparameters adopted in the polynomial
regression (PR), artificial neural networks (ANN), and random forest
(RF) models investigated in this study. Unless specified, the other
hyperparameters are kept as default in Scikit-learn [35].

Complexity
Model type parameters Other parameters
PR Polynomial degree: 3 N/A
ANN Hidden layer: 1 Optimizer: LBFGS

Number of neurons: 7 Activation function:

Sigmoid
Max iteration: 500

RF Trees: 16 N/A

Maximum depth: 10
Minimum leaf size: 2

cement dosage, aggregate fraction, and air void content—has been extensively investigated, disentangling the
combined effects of these features in real concretes can be a daunting task. In addition, the influence of other
secondary factors is not always negligible (e.g., nature and dosage of chemical and mineral admixtures, aggregate
size gradation, etc) [12]. Due to the limited understanding of these complex property-strength correlations, it is
still extremely challenging to get a robust and universal concrete strength model using conventional

approaches [13].

As an alternative pathway, the recent development of machine learning (ML) techniques provides a novel
data-driven approach to revisit the strength prediction problem. Importantly, ML-based predictions have been
shown to significantly outperform those of conventional approaches, especially for non-linear problems [14]. As
such, recent studies have established ML as a promising approach to predict concrete strength [15-18].
However, ML approaches often require a large dataset to ‘learn’ the relationship between inputs and outputs
[19,20]. This is a major concern for concrete applications, as strength data for industrial concretes are often
difficult to access (i.e., data is not publicly available). In addition, reported concrete strength data are often
incomplete (some important features that can impact concrete strength are often missing, e.g., mixing method,
curing temperature, types of aggregates, etc). More generally, ML approaches require accurate and self-
consistent data—which is often questionable for concrete strength data due to non-standardized measurements
or inconsistencies in data recording [21]. For example, the strength of a given concrete can significantly vary
when the testing protocol or specimen size is altered [22—24]. Although such difficulties can be filtered out with
sufficiently large datasets, their significance tends to be exacerbated when the training datasets are small—which
is often the case in applications involving engineering materials. For all these reasons, it is critical to assess how
the reliability of ML approaches for concrete strength prediction applications depends on the number of
training data points.

With the special goal for predicting concrete strength in mind, we carry out this study around three core
questions: (i) how much data is sufficient for training a ML model, (i) which ML algorithms are better suited to
deal with small datasets, and (iii) what the role of data representativeness on the learning capability of ML models
is. By building on our previous studies [ 18, 25], we explore these questions by taking the example of three
archetypal ML algorithms, i.e., polynomial regression (PR), artificial neural network (ANN), and random forest
(RF). We compare the ultimate accuracy of these algorithms and their learning efficiency as a function of data
volume. These results are insightful for facilitating the adoption of ML for small datasets—as relevant to
concrete engineering.

2. Background and methods

2.1. Dataset of concrete strength measurements

The dataset used in this study comprises the 28-day compressive strength of 10,264 commercial concretes and
their associated mixture proportions [18]. All the mixtures were cast using ASTM C150 compliant Type I /11
cement [26] and Class F fly ash compliant with ASTM C618 [27]—wherein fly ash is a by-product of coal power
plants that can be used as supplementary cementitious material, that is, to replace cement in concrete [28]. The
seven most influential features are considered in this study, namely, (1) water-to-cementitious ratio (in this case,
the ratio between the mass of water and that of cement and fly ash), (2) cement fraction, (3) fly ash fraction, (4)
fine aggregate fraction, (5) air-entraining admixture dosage (used for enhancing concrete durability), and (6)
water-reducing admixture dosage (used for increasing concrete early-stage workability). For normalization
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purposes, the features (2-to-4) are taken as the solid weight fractions. The fraction of coarse aggregates is
excluded as it is redundant with features (2-to-4) since the four weight fractions always sum up to 100%.

2.2.Machine learning algorithms and hyperparameter optimization

We assess the performance of three archetypical ML algorithms (PR, ANN, and RF) as a function of the number
of training data points. These three models are chosen as they belong to three distinct families of ML models, i.e.,
polynomial, network-based, and tree-based [29, 30]. All the hyperparameters of the ML models considered
herein were optimized in a previous study so as to achieve an optimal balance between under- and overfitting
(see [17]). The key hyperparameters of the three ML models are summarized in table 1 and also detailed in the
following. First, we consider PR, which is essentially based on linear regression, wherein the model parameters
designate an n-degree polynomial function [31]. Based on our previous work [17], the PR model adopted herein
features a maximum polynomial degree of 3. Second, we explore the potential of ANN, which is a computational
structure consisting of an input layer, an output layer, and one or several hidden layers bridging the two formers
—wherein each layer comprises a collection of artificial neurons (i.e., computational units) [32]. Based on our
previous work [17], the present ANN model exhibits 7 neurons in a single hidden layer. We adopt the sigmoid
function as activation function and we use the backpropagation algorithm to optimize the model parameters
[33]. Third, we consider RF, which is an enhanced bagging method. By using the majority-voting concept, this
approach is typically more accurate than conventional single decision trees [34]. Here, based on our previous
work [17], our RF model comprises 16 trees with a maximum depth of 10. Despite the different nature of these
algorithms, their common goal is to predict a variable y (here, the 28-day strength) as a function of the input
variables x (here, mixing proportions of concrete), while minimizing the difference between measured and
predicted strength values (see [17] for details).

2.3.Model training, validation, and testing

Following common practices, 70% of the strength observations are randomly selected and used for model
training (i.e., ‘training set’). The remaining 30% of the data are kept hidden to the model, so as to assess the
ability of the model to predict the strength of unknown concretes (i.e., ‘test set’). A fraction of the initial training
set then used as validation set to optimize the hyperparameters of the models. To this end, we adopt a five-fold
cross-validation approach [36]. In detail, the initial training set is randomly split into five folds (each made of
20% of the training data). In each of the five rounds of analysis, the model is iteratively trained based on four
folds and validated based on the remaining fold (i.e., ‘cross-validation set’).

2.4. Accuracy evaluation

We evaluate the accuracy of each model based on their mean-square error (MSE) and coefficient of
determination (R?), wherein the MSE is the averaged Euclidian distance between predicted and measured
strength data. The root mean-square error (RMSE) is calculated as the square root of the MSE. The R* factor
further quantifies the accuracy of the model predictions in terms of the degree of scattering around the fitted
input-output relationship (wherein a perfect prediction is associated with R* = 1). We analyze the deviation
between strength predictions and measurements by computing the error distribution—that is, the distribution
of the differences between predicted and measured strength values for each concrete mixture in the test set. The
error distribution yielded by each model then serves to calculate the 90 and 95% confidence intervals of a
predicted strength falling into these ranges (see [17] for details).

2.5. Evaluation of the learning efficiency

To investigate how each model ‘learns” how to predict concrete strength as it is exposed to increasing numbers of
training examples, we compute their ‘learning curve’ [37]. This approach consists in plotting the training and
validation accuracy of the model as it is exposed to an increasing number of training examples. Results are
averaged over five train-validation splits by using the five-fold cross-validation method. In detail, we first split
the whole dataset into five folds, wherein each fold iteratively serves as validation set while the remaining four
folds are used as training set. Rather than exposing the model to the whole training set, a series of smaller subsets
of the training set with increasing sizes are used to train the model iteratively (with 10% increments in each
iteration). In turn, the validation set remains constant (with a fixed size) during the model training. At each
training iteration, the MSE of the model on the (partial) training and (full) validation sets are recorded. Finally,
the average and standard deviation of the MSE as a function of the size of the training set are determined based
on the five folds. To ensure a consistent comparison, all the models considered herein are trained and evaluated
based on the same training and validation sets.
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Figure 1. (top) Comparison between the predicted versus measured (ground-truth) 28-day strength and (bottom) error distribution
for the test set offered by the (a) polynomial regression (PR), (b) artificial neural network (ANN), and (c) random forest (RF) models.
The pixel colors in the top plots indicate the number of overlapped points. The error distributions are fitted by Gaussian distributions.
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Figure 2. Learning curves showing the MSE of the training and cross-validation sets as a function of the size of the training set for the
(a) polynomial regression (PR), (b) artificial neural network (ANN), and (c) random forest (RF) models. The green shadowed area
indicates the standard deviation of the validation set MSE.

2.6. Stratification of the dataset

We then assess the role played by the representativeness of the datapoints in small training sets. Indeed, a
common issue of using small datasets for ML applications is that the extracted training and validation sets do not
offer a proper representation of the data distribution in the entire dataset. This issue is often encountered when
the datapoints in the dataset vary within a large range or follow a certain statistical pattern—such that randomly
extracted subsets (i.e., the training and validation sets) may not alone be representative of the entire feature space
that is covered in the dataset due to the limited density of datapoints. Note that this problem is typically more
exacerbated for validation sets (or test sets) since they are typically smaller than the associated training sets. Such
lack of representativeness may yield biased validation sets, which do not fairly assess the ability of models to
generalize.

In that regard, stratified sampling is a data preprocessing technique that aims to improve the
representativeness of training and validation sets [38, 39]. In detail, data stratification divides the whole dataset
into homogeneously distributed subgroups based on the statistical distribution of the datapoints. As such, when
compared to random training-validation splits, data stratification is a more efficient data sampling technique as
it ensures that both the training and validation sets homogeneously sample the entire dataset. This technique can
be combined with k-fold cross-validation (i.e., ‘stratified cross-validation’), wherein each of the k folds is
constructed so as to present the same data distribution as that of the entire dataset.
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Table 2. Coefficient of determination (R?) and confidence interval values
offered by each model for the test set (when trained based on the entire training
set), and minimum number of training data that is needed for each model to
achieve an average validation set MSE that is less than one standard deviation
away from its final validation set MSE.

Accuracy analysis
Confidence
interval (MPa)

Learning analysis

Minimum number of
Model type R 90% 95% training data
PR 0.596 +7.43 +8.86 2680
ANN 0.591 +7.45 +8.88 3010
RF 0.620 +7.22 +8.60 4070

Here, we explore the effect of stratified cross-validation on the learning capability of the ML models
considered herein. To this end, we first split the raw concrete dataset into ten even classes (with an equal number
of datapoints), wherein the datapoints are ranked based on the 28-day strength value (i.e., the output). We then
iteratively randomly extract 20% of the samples from each class to construct each of the five folds—so that the
folds comprise the same number of datapoints than in the case of random training-validation splits. To
investigate the influence of stratification on the learning efficiency of the different ML models considered herein,
we subsequently conduct the learning curve analysis detailed in section 2.5, wherein the training and validation
MSE values are computed after progressively training the model with increasing numbers of (stratified) samples.

3. Results

3.1. Accuracy of the machine learning models

We first compare the final accuracy offered by each ML model when trained based on the entire training set.
Figure 1 shows, for each model, the predicted versus measured strengths for the entire test set and the associated
error distributions. The accuracy analysis is summarized in table 2. In detail, we find that RF features the highest
degree of accuracy, which manifests itself by a minimum RMSE, maximum R, and minimum confidence
intervals.

3.2. Gradual learning upon increasing training set size
Having shown that RF offers the highest final accuracy when trained based on the entire training set, we now
focus on the learning curve exhibited by each model—to assess their ability to quickly learn the input-output
relationship as they become exposed to a gradually increasing number of training examples (see figure 2). As
expected, all the models exhibit a fairly similar trend, that is, (i) the MSE of the training set increases with
increasing training set size since it becomes increasingly difficult for the model to perfectly interpolate the
training set with a fixed number of model parameters and (ii) the MSE of the cross-validation set decreases with
increasing training set size as the model gradually manages to learn the input-output relationship and, hence,
eventually shows an increased ability to generalize, that is, to predict the strength of unknown concretes.
Nevertheless, we find that, although the final accuracy offered by the models shows only minor differences
(see table 2), their learning curves exhibit significantly distinct features. In detail, in agreement with the data
presented in table 2, we find that RF eventually features the lowest MSE for the validation set, as well as for the
training set. As compared with PR and ANN—wherein both the training and validation set accuracy converge
evidently as a function of the training set size—the RF model does not present a clear plateau and finally shows a
gap between its training and validation accuracy values (when trained on the entire training set). This indicates
that the RF model features a greater potential to eventually achieve even higher accuracy if additional data points
can be added to the training set. Interestingly, we also note that the MSE of the validation set exhibits a faster
decrease in the case of PR and ANN, as compared to the more gradual decrease obtained in the case of RF. In
addition, we further note that the models exhibit significantly different initial degrees of stability when trained
based on extremely small numbers of samples. In particular, the PR model considered herein present a level of
fluctuation that is notably larger than that shown by the other more complex models when the number of
training samples is small (i.e., <2600 samples). This is likely related to the fact that, unlike the other models
(ANN and RF), the PR model is not regularized. As such, PR is more sensitive to the noise that is presented in the
training dataset, especially when its size is not statistically representative. This point is further discussed in the
next section.
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Figure 3. Learning curves showing the MSE of the training and cross-validation sets as a function of the size of the training set for the
(a) polynomial regression (PR), (b) artificial neural network (ANN), and (c) random forest (RF) models in the case of stratified cross-
validation. For reference, the data are compared with the non-stratified learning curves from figure 2, which are represented as dashed
lines. The green shadowed area indicates the standard deviation of the validation set MSE.

Opverall, since various factors can affect the minimum number of data points that is needed to reliably train a
given model, we adopt herein the following criterion: we define the minimum training set size as the lowest
number of training data points that is needed for the model to achieve an average validation set MSE that is less
than one standard deviation away from its final validation set MSE (i.e., when trained based on the entire
training set), wherein the standard deviation is calculated based on the MSE obtained for each validation fold
during cross-validation. In case of the three models investigated in this study, we find that PR (and, to a lesser
extent, ANN) features an increased ability to quickly learn how to predict concrete strength from small datasets
as compared to RF (see table 2).

3.3. Gradual learning assisted by stratified sampling

Next, we assess the role of the representativeness of the training samples in controlling the learning capability of
each model. To this end, we implement stratified cross-validation (see section 2.6 for details) [40]. By following
the general analysis discussed in section 3.2, we repeat the model training by gradually exposing more stratified
datapoints to the three models investigated herein (see figure 3). We first observe that, for the training set, the
learning curves obtained with stratified cross-validation are fairly similar to the non-stratified ones shown in
figure 2 (which, for reference, appear as dashed lines in figure 3). Similarly, we note that the final (when trained
based on the entire training set) validation set MSE achieved by the three models is unaffected by stratification,
which indicates that the level of representativeness of the training samples does not notably affect the final
accuracy offered by the ML models.

However, we find that stratification has a significant effect on learning when the training set is small. Indeed,
atlow number of training examples, the validation set MSE values achieved by stratified cross-validation are
systematically smaller than the non-stratified ones. In addition, we observe that stratification systematically
results in a decrease in the standard deviation of the validation set MSE (see figures 2 and 3). This indicates that
data representativity plays a key role in governing the ability of the ML models to learn the input-output
relationship when they are exposed to small training sets. In the case of the present concrete strength dataset,
data representativity is important as the distribution of the output strength values is highly non-uniform. In
particular, very few datapoints are available in the low- and high-strength domains (i.e., below 30 MPa and
above 60 MPa, respectively, wherein the degree of overlapping of data points is far below 10 in figure 1), while the
majority of the datapoints present intermediate strength values (i.e., between 30 and 60 MPa). Due to the
sparsity of the present dataset, conventional cross-validation exhibits a high propensity to result in the formation
of folds that are not representative of the entire dataset—for instance, such folds might be ignoring some poorly-
populated regions of the feature space. In turn, models that are trained /validation based on poorly
representative folds tend to require additional training samples to achieve the same accuracy as those that are
trained/validation based on representative folds.

We find that the effect of stratification is especially pronounced in the case of PR and ANN, whereas
stratification has little effect, if any, on the learning of the RF model. This indicates that, due to its non-analytical
form (i.e., based on decision trees), RF models are less affected by the distribution of the points in the dataset
[41]. In contrast, the PR model features the largest improvement in its accuracy when trained by stratified cross-
validation. This is a consequence of the fact that the datapoints that are located at the boundaries of the
populated region of the feature space (which are likely to be associated with very small or very large strength
values) have a strong influence on the value of the PR model parameters, especially those associated with high
degree terms—since the high degree components of PR models tend to quickly diverge toward =00 at the limits
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of the populated region of the feature space. As such, whether or not such boundary datapoints are included in
the training set has a strong influence on the ability of the model to properly generalize toward the edges of the
feature space. Overall, these results demonstrate that stratified cross-validation has the potential to significantly
accelerate the learning of ML model, that is, to reduce the number of datapoints that is needed for the models to
achieve their final accuracy.

4. Discussion

Overall, we find that the model offering the highest final degree of accuracy (i.e., RF) requires the largest training
set to be trained, whereas, in turn, the models presenting the lowest final accuracy (i.e., PR and ANN) require the
smallest training set. These results highlight the existence of competition between (i) the ultimate ability of a
model to accurately learn the input-output relationship when trained based on an abundance of training
examples and (ii) the ability of a model to quickly learn this relationship when trained based on a small dataset.
This competition can be rationalized in terms of the intrinsic ‘flexibility’ of the model.

On the one hand, PR and ANN are constrained, poorly-flexible models—since PR relies on a fixed analytical
form, while the present ANN model exhibits a limited ability to capture complex input-output relationships as it
comprises a single hidden layer. This lack of flexibility limits the final accuracy that is achievable by these models.
Although the degree of complexity of these models (i.e., maximum polynomial degree for PR and number of
hidden neurons for ANN) is already tuned to achieve the best balance between under- and overfitting [17], the
fact that the MSE of the training and validation sets both plateau toward the same value suggests that these
models are too simple and lack some degrees of freedom. For a given amount of data, this limitation could
potentially be mitigated by carefully increasing the complexity of these models (while avoiding overfitting)—for
instance, by increasing the number of hidden layers in ANN [42]. In turn, the constrained nature of the PR and
single-layer ANN models allows them to quickly achieve their maximum accuracy—since only a limited
number of parameters (i.e., polynomial coefficients for PR and neuron-neuron connection weights for ANN)
need to be parameterized [43]. This makes it possible for these algorithms to handle small, sparse datasets.
However, it is clear from figure 2 that these models have already achieved their maximum accuracy and, hence,
would not benefit from being trained with any additional data. In addition, it can be noted from figure 3 that the
level of data representativity in the training set has a large impact on those models’ performance. Clearly,
stratified sampling is able to significantly reduce the critical (minimum) number of datapoints that is needed for
the models to achieve their final accuracy.

On the other hand, RF is, in contrast, more flexible as it is not constrained by any analytical formulation.
Indeed, in contrast to PR (which intrinsically yields a smooth, continuous, and differentiable relationship
between inputs and output due to its analytical form), the tree-based structure makes it possible for the RF
model to capture rough, less-continuous, and less-differentiable functions [44]. This flexibility enables RF to
eventually reach a higher final degree accuracy once trained based on the entire training set. In turn, such
complexity comes at a cost, namely, a large number of training data points is needed to properly parameterize
the RF model. This is well illustrated by the facts that, unlike the cases of PR and ANN, (i) the validation set MSE
of the RF model does not reach a plateau and continues to decrease upon increasing training set size and (ii) the
final validation set MSE is significantly higher than the final training set MSE. Both of these learning curve
features suggest that the RF model has not yet finished its training and, hence, would further be improved if
exposed to an increased number of data.

5. Conclusions

Opverall, these results establish machine learning as a promising approach to predict the strength of commercial
concrete based on the sole knowledge of their mixture proportions. Although all the models considered herein
present only minor differences in their final accuracy (i.e., when trained based on the entire dataset), they exhibit
notable differences in their abilities to quickly learn the input-output mapping when exposed to small, sparse
datasets—especially when trained with stratified cross-validation. We find that simple, more constrained
models (e.g., polynomial regression) offer limited final accuracy, but can quickly achieve their maximum
accuracy while trained based on small training sets. In contrast, less constrained, more flexible models (e.g.,
random forest) require larger training sets, but can eventually feature a higher final prediction accuracy. This
highlights the importance of properly comparing the performance offered by various machine learning models
when considering small datasets—which are common in engineering applications wherein each additional
datapoint comes with a significant time and cost burden.
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