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Abstract—In 2018, Renes [IEEE Trans. Inf. Theory, vol. 64,
no. 1, pp. 577-592 (2018)] developed a general theory of channel
duality for classical-input quantum-output channels. His result
shows that a number of well-known duality results for linear
codes on the binary erasure channel can be extended to general
classical channels at the expense of using dual problems which
are intrinsically quantum mechanical. One special case of this
duality is a connection between coding for error correction on
the quantum pure-state channel (PSC) and coding for wire-
tap secrecy on the classical binary symmetric channel (BSC).
Similarly, coding for error correction on the BSC is related to
wire-tap secrecy on the PSC.

While this result has important implications for classical
coding, the machinery behind the general duality result is rather
challenging for researchers without a strong background in
quantum information theory. In this work, we leverage prior
results for linear codes on PSCs to give an alternate derivation
of the aforementioned special case by computing closed-form
expressions for the performance metrics. The noted prior results
include the optimality of square-root measurement for linear
codes on the PSC and the Fourier duality of linear codes.

I. INTRODUCTION

In the mathematical sciences, duality is a powerful concept
that connects two problems so that the solution of one de-
termines the solution of the other. In coding theory, an [n, k]
binary linear code C C F% is a k-dimensional subspace of
the vector space of length-n binary vectors. In this case, its
dual code C+ C F¥ is the (n — k)-dimensional subspace that
is orthogonal to C under the standard dot product. An early
and important implication of this duality is that the weight
enumerator (WE) of a linear code can be computed from the
WE of the dual code using the MacWilliams identity [1].

For classical channels, the notion of a dual channel did not
arise until after the rediscovery of low-density parity-check
(LDPC) codes. Even then, it was understood only for the
erasure channel. Let BEC(¢) denote the binary erasure channel
with erasure probability e. It was shown in [2] that the extrinsic
information transfer (EXIT) function for a code on the BEC(e)
is closely related to the EXIT function for the dual code on the
BEC(1—¢). This and other symmetries in the decoding analysis
of LDPC codes led some researchers to treat the BEC(1 — ¢)
as the dual channel of the BEC(¢) [2]-[7].
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For more than a decade, it remained an open question
whether this notion of channel duality could be extended
beyond the erasure case. In 2018, Renes [8] provided such
a definition by showing that the dual channel of a binary
memoryless channel can be defined in terms of a classical-
input quantum-output, or simply a classical-quantum (CQ),
channel [9]. In particular, Renes developed a general theory
of CQ channel duality where a channel W and its dual W+,
both with d input symbols, satisty H(W)+HL(W+) = logd
for a pair of primal and dual entropies H and H* (e.g.,
see [10]). For example, if we let W = BEC(e), then this
approach shows that W+ = BEC(1 — ¢) and also recovers
some previously known results for the BEC. Additionally, if
W = PSC(6) is the CQ binary pure-state channel (PSC) with
parameter 6 [11] (see Section II-C), then W+ = BSC(p) is
the classical binary symmetric channel (BSC) with parameter
p £ (1 — cos#)/2. Note that any classical channel can be
treated as CQ by defining the outputs to be diagonal in the
standard basis, i.e., 0 = |0) , 1 = |1). Thus, just as the complex
numbers play an important role in our understanding of the real
numbers, this suggests that CQ channels are also relevant to
the theory of classical channels (e.g., see also [12]). Moreover,
Renes also extends EXIT function duality for linear codes on
the BEC to general CQ channels in [8].

This paper focuses on duality between coding problems
for communication and secrecy. For communication on a
channel W, a key quantity of interest is the maximum guessing
probability, P(W), for the input symbol given the channel
output. Of course, this equals one minus the minimum decoder
error probability. For secret communication where the channel
to the eavesdropper is W, one measure of information leakage
is the minimum squared Bhattacharyya coefficient, Q(W),
between the prior on the secret message X and the posterior
distribution on X at the eavesdropper. Renes showed that
for a pair of CQ channels W and W, channel duality
implies that P(W) = Q(W+=) [8], where both quantities
are optimized over all valid quantum measurements on the
output system. For CQ channels W and W+ with input
X € X and output B, P(W) and Q(W) are related to
quantum conditional entropies Hin(W) = Hpin(X|B) and
Hypox (W) = Hyon(X|B) as P(W) = 27 Hmin(W) and
QW) = ﬁ2Hmax(WL). So, Renes’ approach is to show that
Honin (W) + Hypar (W) = log | X|, which is part of his results
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for general dual entropies [10], and then the result follows.

Renes also extends this to the case where linear codes are
used for both problems. In this paper, we give an alternate
derivation of that result for the PSC-BSC pair by directly
calculating closed-form expressions for (i) the block error rate
and (ii) the Bhattacharyya coefficient between the posterior
distribution of the secret message and the uniform distribution.
For the secrecy setting, we emphasize here that the channel
to the intended recipient is noiseless and the focus is only on
the channel to the eavesdropper. While the approach in [§]
uses some sophisticated quantum techniques, our exposition
relies on direct calculation and targets an audience of classical
information and coding theorists.

The square-root measurement (SRM), also called the least-
squares measurement (LSM) or the pretty-good measurement
(PGM), is an important and useful measurement for many
quantum tasks [13]. Here, its optimality (or suboptimality)
is discussed for the problems and channels considered. We
have also used this SRM analysis for channel coding over the
PSC to verify that belief propagation with quantum messages
(BPQM) is quantum-optimal with respect to the block success
probability for a 5-bit code [14]. Since BPQM produces a
structured receiver circuit, unlike the SRM, this connection
enables one to design receivers for optical communications
over pure-loss bosonic channels. Hence, our work relates to
optimal practical receivers for several communication prob-
lems.

II. BACKGROUND AND NOTATION
A. Quantum States and Measurements

In Dirac notation, the standard basis vectors of C2 are
represented as [0) = [}] and |1) = [9]. For n > 1 qubits,
the standard basis vectors are denoted by kets |v) = |v1) ®
|[v2) @ - ® |vy,), where v; € Zy and ® denotes the Kronecker
product. Hence, a general n-qubit pure state is represented as

W)=Y o) €C¥, 5 [P = D lew* =1, (1)

vELY vEZLY

where “bra psi”, (1| £ |¢>T, is the conjugate transpose of |1))
and the “bra-ket” (1|10} denotes the self inner product of |¢)).

If a quantum system is in one of several possible states
|ty ) with probability p,,, form = 1,2,...,T, then a succinct
description of the system is given by its density matrix p =
Z:szl P [Um) (Wm| € C¥**2" also called a mixed state.

A projective measurement is described by a set of complete
orthogonal projectors {II;, ¢ = 1,..., M} such that ILII; =
0i;11; and sz\il IT; = Ion, where Ion is the 2™ x 2™ identity
matrix. If a system is in state p, then by the Born rule the
measurement yields the result ¢ with probability p; = Tr [IL;p],
and projects the system to the state p; = IT;pIl; /p; [9].

B. Linear Codes and their Complements

We briefly review a particular perspective on a linear code
and its complements as described by Renes in [8]. A binary
linear code C: [n, k] and its unique dual code C*: [n,n — k]
can be related through their non-unique complementary codes

CT:[n,n — k] and CT: [n, k], respectively. In particular, a
code and one of its complements define disjoint subspaces
and, thus, provide a direct-sum decomposition for the entire
space. Note that once C and C " are fixed, C* and CT are fixed
automatically. This organization of codes plays an important
role in our results (see [15] for more details).

As an example, consider the following invertible matrices:

11 11 00 01
1 0 00 11 00

A= 01 00 » B= 01 10 @
0 010 0 011

The first row of A can be interpreted as a generator matrix,
G, for the 4-bit repetition code C, which means that the last 3
rows of B form a generator matrix, G, for the dual single-
parity-check code Ct. The remaining rows of A generate a
code, CT, that complements C so that A generates the whole
vector space F3. Similarly, the first row of B generates a code,
CT, that complements CL and is also dual to C.

C. Pure-State Channel (PSC)

The pure-state CQ channel [11] can
by the mapping WPCO: z ¢ Z, — |(-1)%0) =
[(=1)*0) ((=1)*0|, where [|(—1)"8) e cosg 0) +
(-1)*sing[1), 6 € [0,Z]. The overlap between
the states is (—6|0) = cosf. For any 6, the optimal
(Helstrom) measurement [16], [17] is given by the projectors

be described

{|4+) (+|,|—) (—|}, which achieves the probability of error
pisc = 11— T 1(-0) |2} — (1 — sin#)/2. Hence,

the PSC combined with this Helstrom measurement induces
the binary symmetric channel BSC(PESC). The PSC model
can be motivated by the pure-loss bosonic channel in optical
communications [14], [18].

Observe that the two output states of the PSC satisfy a
symmetry: |—0) = Z|0), where Z £ [§ %] is the Pauli
Z operator. For a binary vector b = [by, b, ..., b,] we define
Z(b) & Z(b) ® Z(b2) ® --- @ Z(by,), where Z(b;) & Zb.
Then, when b € Z3 is transmitted over n uses of the PSC, the
output state is given by Z(b)[6)*".

III. DUALITY OF CHANNEL CODING AND SECRECY

We begin by discussing this duality for the BEC. Although
the notion of a dual BEC has been known for a while, we
describe the duality here in such a way that it builds the correct
intuition for the PSC-BSC case that we consider subsequently.
At the end of the first two subsections, we will relate the
conditional entropy for channel coding on BEC(¢) and the
conditional entropy for secrecy on BEC(1 — €). Then, in the
next subsection, we prove the duality between channel coding
on the PSC and secrecy on the BSC via direct computation
of the optimal success (guessing) probability for the former.
This computation exploits the optimality of the square root
measurement (SRM) for this problem, and combines it with
the factor graph duality of linear codes. Finally, we use these
results to extend the conditional entropy approach for the BEC
to the PSC-BSC pair. Due to space constraints, we omit most
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proofs and also our results for secrecy on the PSC where,
among other things, we show that the SRM is suboptimal. For
these details, we refer the interested reader to [15].

A. Duality for Channel Coding on the BEC

Let C be an (n,k) binary linear code with generator
matrix G and parity-check matrix H. Assume that a random
codeword X is chosen uniformly and transmitted through a
BEC with output Y € {0,1,7}". For an output realization
y, let &€ £ {i € [n]|y; =7} be the set of indices where an
erasure occurs. It turns out that many duality statements are
more natural for a deterministic length-n BEC that erases all
bits whose indices are in £. We refer to this channel as BEC(E)
and its dual channel, which correctly transmits only the bits
with indices in &, is BEC(£°).

For a set £ = (eq,e2,...,¢e|g) With e; < ex < - < e
and an m X n matrix A = (a1, asg, . . ., a,) whose i-th column
is a, we let Ag = (ae,,ae,,- - -, Qe ¢ ). The same rule applies
to row vectors using m = 1. Let V = {z € C| zgc = yg-} be
the set of codewords that are compatible with the observations.
Then, the posterior distribution of X given Y is Pxy (z|y) =
1/|V|if x € V and 0 otherwise.

Since C is linear, the set V' is the affine subspace of z €
{0, 1} satisfying Hexl = Hgexl. because zgc is known at
the decoder. Thus, dimension of the solution space is given
by |€| —rank(H¢). Similarly, affine subspace of input vectors
u € {0, 1}* compatible with y is defined by uGec = x¢- and
dimension of the solution space is k — rank(Gge). Of course,
the two spaces must have the same dimension and this implies
that k — rank(Ge-) = |€| — rank(Hg). This implies that

H(X|Xge) = €] —rank(Hg) = k — rank(Gge).  (3)

Let X' € C* be a uniform random dual codeword. Then,
the first equality in (3) shows that the entropy of X’ over the
dual channel BEC(E°) is given by

H(X'|X}) = || — rank(HZ.) = |£¢| — rank(Ge-)
because H+ = G. Applying the second equality in (3) gives
H(X'|X}) = H(X|Xeo) +1€°| - k. @)
B. Duality Between Channel Coding and Secrecy on the BEC

In 1975, Wyner introduced the wire-tap channel and pro-
posed encoding secret messages into cosets of a group code
[19]. Encoding proceeds by using the secret message to choose
a coset and then encoding to a uniform random element from
that coset. In this section, we will see that there is a duality
between the information loss of channel coding using C and
the information leakage of Wyner’s coset coding using C*.

First, we will consider the standard channel coding problem
for C and Wyner’s wire-tap coding using cosets of C. The
coding problem transmits the codeword x € {0,1}" as
determined by the information u € {0,1}* and coset selector
s € {0,1}"~F using the definitions

A= m v=[us]A=[u s Lﬂ —uG+sE (5

In this setup, rowspace(F') is a linear complement of C =
rowspace(G) and A is full rank.

To decode the codeword, one would assume that the receiver
knows the coset vector sF'. In contrast, the wire-tap coding
problem assumes u is unknown and tries to decode the secret
message s. To make this stochastic, we let X be a uniform
random vector over {0,1}" and define the random vectors
Ue{0,1}* and S € {0,1}"* via [U S] = XA~. We note
that choosing the uniform distribution for X is equivalent to
using uniform distributions for U and S.

Since X is uniform, we can also interpret it as the codeword
for the coding/secrecy problem using the dual code C* on the
dual channel, where the erased positions are in £¢. Note that

rA™ =[u s]JAAT! = [u (6)

implies that the last k& columns of A~! give the transpose of a
parity-check matrix H for C. Also, the first n — k columns of
A~ give a right inverse for G which we denote by E7 (i.e,.
GET =1I). Thus, we can define B = (A=1)T,

B = {f]} , z=1[su]|B=][sd] Lg] =sE+u'H, (7)

and view any xz € {0,1}" as the sum of the dual codeword
u’H and the coset vector s’ E. We also define the random vec-
tors U’ € {0,1}""* and S’ € {0,1}* via [S' U'] = XB~ 1.

The following derivation relates the secrecy and coding
problems for the dual code on the dual channel:

SI;Xg) + I(U/;Xg|sl) + I(U/,S/;ch|5,Xg)
S Xe) + 1(U'; Xel, 8") + (n — |€])
S Xe)+ (n—k) — H{U'|Xe, ') + (n— |E]). (8)

(
(
(U, 8"; Xe) + I(U', S'; Xee| Xe)
(
(
(

The final equation relates the number of erasures |£¢| =
n — |&|, the information leakage I(S’; X¢|E) of the dual-
code secrecy problem on the dual channel, and the message
uncertainty H(U'|X¢, £, S’) for the coding problem using the
dual code and dual channel.

Now, we can use (4) to substitute the uncertainty for
primal coding on the primal channel, H(U|X¢g.,E,S), for
H(U'|X¢,£,5") and a few other terms. This gives

H(U'|Xe,&,8) = HU|Xee,E,8) +n—k—|€]. (9

For the dual code and channel, combining with (8) allows us
to write the information leakage of the secrecy problem as

H(S'|Xeg, &) =k —1(5"; Xe|€)
=k— (k+ H(U/\Xg,S,S’) —n+ |5D

=k— H(U|Xe,E,S). (10)
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Block Error Rate and Bhattacharyya Distance: If the un-
certainty in U has dimension d = H(U|X¢-, &, S), then the
probability of correctly guessing the codeword is 2-¢. If the
posterior of S’ given Xg and £ is uniform over an affine
subspace of dimension f = k—I(S"; X¢|€) = k—d, then the
Bhattacharyya coefficient between this posterior distribution
and the uniform distribution is

Z /pSQ—k —9fo—f/29=k/2 _ o(f—k)/2
s€{0,1}f
By (10), we see that f = k — d and (2%
Thus, the block guessing probability, 27¢, equals the square
of the Bhattacharyya coefficient, 24 between this posterior
distribution and the uniform distribution.

P oof-k—9-d

C. Channel Coding on the PSC and Secrecy on the BSC

Now, we will explicitly compute the block guessing prob-
ability for the PSC and show its equality to the squared
Bhattacharyya coefficient for secrecy on the BSC.

For a M-ary hypothesis testing problem with candidate
states {p; ; ¢ =1,2,..., M} and prior probabilities {p; ; i =
1,2,..., M}, the minimum Bayes cost is given by

M M
= Tr |:ij;‘:| PR piCiipi,
=1 i=1

where C; is the cost associated to deciding p; when the truth
is p;, and {f[j; j=1,2,..., M} is the optimal measurement.
For the transmission of an [n, k| binary linear code C on
PSC(#), the minimum block error probability P, equals C*
using the hypothesis testing problem with Cj; = 1 — §;; and
pi = |¢i) (¢i], where |¢;) is the result of transmitting the i-th
codeword of C through PSC(9).

This problem satisfies the geometrically uniform (GU) state
set criterion of Eldar and Forney [13]. The criterion is that
there is a generator state |¢) and an abelian group G, of size
;) can be written as |¢;) = U, |¢) for
some U; € G. For this case, by the PSC symmetry mentioned
in Section II-C, we have |¢) = |0)®" and G = {Z(c), ¢ € C}.
Hence, for equally likely codewords, the SRM is the optimal
measurement {f[j; j = 1,2,...,M} [13]. We see that
calculating P, involves the inner products |(1;|¢;)|:

Definition 1: The elements of the SRM are IT; = [¢;) (1/;],
where |1);) is the j-th column of the SRM matrix

Y

-1
UL ((<1>T<1>)1/2) e 2" x2" (12)
the columns of ® are {|¢;); i = 0,1,...,2F — 1}, and the
Moore-Penrose pseudo-inverse is used if @ is rank deficient.
For the setting of transmitting binary linear codes over the
PSC, the Gram matrix ®T® has full rank because ® has full
column rank. The optimality of SRM for this problem enables
us to combine the results in [13] with Fourier duality of linear
codes [20] to calculate the optimal block error rate as follows.
Definition 2: Given a linear code C that is transmit-
A

ted over PSC(6), define the overlap function s(g) =
01" Z(cg) 10)°™ = (cos0)“" () where wp(c,) is the

Hamming weight of the codeword c, £ gGe € C,g € 7k
Its Fourier transform is given by

3( \ﬁ Z h'] (cos G)wH(Cg). (13)
g€zt
The Fourier transform matrix is given by Fg), = \/% (fl)ghT,

where the rows and columns are indexed by g, h € Z5.

Now, using the above definitions, we will state a key result
that enables us to calculate P, in closed-form.

Theorem 3 ([13]): Consider the transmission of an [n, k]
binary linear code C over the channel PSC(6). The codeword
matrix ¢ and the SRM matrix ¥ satisfy Uip = FUFT, where
3 is a 2F x 2F diagonal matrix with diagonal elements

h) 2 284\ /5(h), heZk.

Since ¥T® = FXFT is Hermitian, e observe (\IIJ@)JZ =
(\IIT(I))W = |<w]‘¢l>| = ‘(\IIT(I)) (\IJT(I) 17’ From
[13], the columns of ¥ are given by {|1,), g € Z5}, where

) = fZ ghT—Hu)#m

hezk
Y

fezk

(14)

DM Z(e) ). (15)

and I(-) denotes the indicator function that is 1 iff its argument
is true. Hence, to compute the inner products |(1;|¢;)| in P,
we need to calculate o(h) or, equivalently, §(h) for all h € Z5.

Factor Graph Duality Enables Calculation of P,

We will now introduce the indicator function of C in §(h) in
order to apply a factor graph duality [20]-[22] that produces
the indicator function of C* and simplifies the calculation of
$(h). For this, let us embed s(g) in Z% by setting

s'(z) 2 1(x € C) (cos 0)“" ™) |z €72 (16)
Then, the Fourier transform over Z3 produces
§'(y) \/27 Z v I(z € C) (cos )@ . (17)

TELY

Remark 4: We immediately observe that, if we express y =
YoT + xcs for some unique y,r € CT and zc. € C*, then
§(y) = §(ypx) since ya’ = y,ra” forall z € C.

Now, we see that the sum effectively happens over Z5 due to
the presence of the indicator function, but the factor (—1)WT
does not exactly map to (fl)hgT since the latter is only taken
over the “message” part of the codewords z,y assuming a
systematic encoding. Hence, for a generic code, we need to
make these coefficients §'(y) usable exactly in place of §(h).
For the following results, see [15] for proofs.

Lemma 5: Let y;, denote the codeword in CT corresponding

to the message h € Z&, ie., Byl = [0k A]T. Then, the
functions §(h) and §'(ys,) are related as §(h) = V2"—k§ (yp,).
This further implies that o(h) = 25/, /3(h) = 2"/*\/5 (yp).

We use the following lemma to compute $(h) from (17).
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Lemma 6 (Factor graph duality [22]): For binary vectors
x € Ziy, given functions p;: Zo — R for each index j €

{1,2,...,n}, and an [n, k] binary linear code C, we have
Z JIECH 22" "/Q]IxECLH
€LY j=1 TELY J=1

where j1;(2) £ 130 (—1)%,(2).
Proof: See [23] for an algebraic proof rather than the
graphical approach in [22]. ]
Lemma 7: Given an [n,k] binary linear code C and the
channel PSC(6), 3(h),h € Z5, can be calculated as

Z pwH(z)

z€YR ®CH

2k/2
hezZk

Here, y;, denotes the codeword in CT corresponding to the
message h € Z5. The code CT is the complement of C* as
defined by Renes [8], i.e., the codewords y;, of CT form coset
leaders for the 2 cosets of Ct in Z5.

Lemma 8: Consider an [n, k| binary linear code C and
the channel PSC(). The overlap between the square root
measurement (SRM) vectors and the states obtained by trans-
mitting the codewords of C over PSC() is given by

Dt
(wylanp? = 282
This is equal to the probability of sending a message t € Z&
and decoding it as g € Z% using the SRM.
This was also used recently to verify the optimality of the
BPQM algorithm for decoding a 5-bit code over PSC(0) [14].
Theorem 9: Given an [n, k| binary linear code C, the optimal
block error rate for transmission over PSC() is given by

1 : L,
P=g > Y |(@h51¢)* =1— B(zm’?k)’ 4

J€{0,1}* i{0,1}*
i#]

where the Bhattacharyya coefficient (or fidelity) between the

probability distributions {272 §(h)} and {27} is defined as

5 (2k/2’ 2k> Z \/2’;\/2:

Furthermore, {27%/25(h)} forms the posterior when cosets
of Ct+ are used to send secure messages over the dual,
BSC(p = 1=5=2). Hence, B (3, 21k>2 measures the opti-
mal decoupling of the secret from the intercepted information.
Thus, this approach uses standard linear algebra and group
theory to establish that the block error rate for channel
coding on the PSC(6) with C equals the defined Bhattacharyya
performance measure for secrecy using C+ on the BSC(p).
To understand this result in terms of channels, let Wég SC(0)
denote the CQ channel implied by the channel coding problem
over PSC(6) using C (i.e., the input alphabet is {0, 1}*). Simi-
larly, let WBSC(p ) denote the CQ channel implied by sending
the coset selector s € {0,1}" for the secrecy problem using
Ct, where the channel to the eavesdropper is BSC(p) and

(18)

(20)

n—wg(z) . ,§(h,)
O ZW:L

the channel to the intended recipient is noiseless. Rewriting
the above result, we see that the optimal success probability
P(WCP SC(Q)) for transmitting a code over PSC() is equal to

the optimal secrecy metric Q( BSC(p )) In [8, Corollary 4],
Renes proved a more general result for coding over general
CQ channels using methods from quantum information theory.

D. Entropic Duality for the PSC-BSC Pair

Here, we extend the entropic result (10) to the PSC-BSC
scenario, thereby completing the intuition we developed.

Lemma 10: For the channel coding problem on the PSC,
the overlap (or normalized Grammian) matrix I' = 27*®T®
is diagonalized by the Fourier transform JF. From this, we find
that the set of (non-zero) eigenvalues of both I' and the density
matrix p¥5=0 = 2-*®dT equal {27%/25(h) | h € {0,1}F}.

Since the Von Neumann entropy H(C), of a quantum
system C' with density matrix p© equals the Shannon entropy
of the eigenvalues of p© [9], it follows that

1
27 k/2 h)log —————

1
Z (h|a:)log]P)(h| )

he{0,1}*
= H(S'|Y"),

H(Y|S = 0),v.5-0 =

21

where P (h | #) is the posterior when cosets of C are used for
secrecy on the dual BSC, and the final quantity is the classical
Shannon entropy. Note that the set of values {P(h|Z),h €
{0,1}*} remain the same irrespective of the intercepted vector
Z, and only the mapping h — P (h|Z) depends on Z.

Using the same setup as the BEC analysis in Section III-B,
we can use the above result to investigate the Von Neumann
conditional entropy. Similar to the BEC result in (10), we have

H(UY, S = 0) vv.s5-0
= H(U|S = 0) =+ H(YlU,S = 0)pUY‘S:0 — H(Y‘S = O)pY,S:O
—k+0— H(S|Y"). (22)

Next, consider the BEC channel coding duality result defined
by (4). One can generalize this to the PSC by observing

HU'|Y',S")
— HU'|S") + H(Y'|S",U") — H(Y'|S")
=n—k+np)n— (HY')+H(S'|Y') - H(S))

=n—k+n(p)n—(n+ (k—HU|Y,S=0),0v.s-0
= H(U|Y, S = 0)pUY,S:0 + 77(}9) n —k,

)= k)

(23)

where 7)(p) £ —plog p—(1—p) log(1—p) is the binary entropy
function and the term 7(p) n can be seen as the total entropy
produced by the dual channel.

Therefore, the Fourier transform $(h) of the overlap func-
tion s(g) for the PSC forms the key link that connects
channel coding on the PSC and secrecy on the BSC via
performance metrices as well as entropies. This might be a
general phenomenon that extends beyond the special case of
the PSC and the BSC, and we leave this investigation to future
work. For our results on secrecy over the PSC, see [15].

2236



—

]
[2]

[3]
[4]

[5]

[7]

[8]
[9]
[10]

(11]

REFERENCES

J. MacWilliams, “A theorem on the distribution of weights in a system-
atic code,” The Bell Syst. Techn. J., vol. 42, no. 1, pp. 79-94, 1963.
A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information
transfer functions: model and erasure channel properties,” IEEE Trans.
Inform. Theory, vol. 50, no. 11, pp. 2657-2674, Nov. 2004.

S.-Y. Chung, “On the construction of some capacity-approaching coding
schemes,” Ph.D. dissertation, MIT, 2000.

E. Martinian and J. S. Yedidia, “Iterative quantization using codes on
graphs,” in Proc. Annual Allerton Conf. on Commun., Control, and
Comp., 2003.

H. D. Pfister and 1. Sason, “Accumulate-repeat—accumulate codes:
Capacity-achieving ensembles of systematic codes for the erasure chan-
nel with bounded complexity,” IEEE Trans. Inform. Theory, vol. 53,
no. 6, pp. 2088-2115, June 2007.

A. Thangaraj, S. Dihidar, A. R. Calderbank, S. W. McLaughlin, and J.-
M. Merolla, “Applications of ldpc codes to the wiretap channel,” IEEE
Trans. Inform. Theory, vol. 53, no. 8, pp. 2933-2945, 2007.

N. Obata, Y.-Y. Jian, K. Kasai, and H. D. Pfister, “Spatially-coupled
multi-edge type LDPC codes with bounded degrees that achieve capacity
on the BEC under BP decoding,” in Proc. IEEE Int. Symp. Inform.
Theory, July 2013, pp. 2433-2437.

J. M. Renes, “Duality of channels and codes,” IEEE Trans. Inform.
Theory, vol. 64, no. 1, pp. 577-592, 2018.
M. M. Wilde, Quantum Information Theory.
Press, 2013.

M. Tomamichel, Quantum Information Processing with Finite Re-
sources: Mathematical Foundations. Springer, 2015, vol. 5.

J. M. Renes, “Belief propagation decoding of quantum channels by
passing quantum messages,” New Journal of Physics, vol. 19, no. 7, p.
072001, 2017. [Online]. Available: http://arxiv.org/abs/1607.04833

Cambridge University

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

2237

M. Dalai, “Lower bounds on the probability of error for classical
and classical-quantum channels,” I[EEE Trans. Inform. Theory, vol. 59,
no. 12, pp. 8027-8056, 2013.

Y. C. Eldar and G. D. Forney, “On quantum detection and the square-root
measurement,” IEEE Trans. Inform. Theory, vol. 47, no. 3, pp. 858-872,
2000. [Online]. Available: http://arxiv.org/abs/quant-ph/0005132

N. Rengaswamy, K. P. Seshadreesan, S. Guha, and H. D. Pfister,
“Belief propagation with quantum messages for quantum-enhanced
classical communications,” To appear in npj Quantum Information,
2021. [Online]. Available: http://arxiv.org/abs/2003.04356

N. Rengaswamy and H. D. Pfister, “A semiclassical proof of duality
between the classical BSC and the quantum PSC,” arXiv preprint
arXiv:2103.09225, 2021. [Online]. Available: http://arxiv.org/abs/2103.
09225

C. W. Helstrom, “Quantum detection and estimation theory,” Journal of
Statistical Physics, vol. 1, no. 2, pp. 231-252, 1969.

C. W. Helstrom, J. W. Liu, and J. P. Gordon, “Quantum-mechanical
communication theory,” Proc. of the IEEE, vol. 58, no. 10, pp. 1578-
1598, 1970.

S. Guha and M. M. Wilde, “Polar coding to achieve the Holevo capacity
of a pure-loss optical channel,” in Proc. IEEE Int. Symp. Inform. Theory,
2012, pp. 546-550. [Online]. Available: https://arxiv.org/abs/1202.0533
A. D. Wyner, “The wire-tap channel,” The Bell Syst. Techn. J., vol. 54,
no. 8, pp. 1355-1387, 1975.

C. R. P. Hartmann and L. D. Rudolph, “An optimum symbol-by-symbol
decoding rule for linear codes,” IEEE Trans. Inform. Theory, vol. 22,
no. 5, pp. 514-517, 1976.

G. D. Forney Jr., “Codes on graphs: Normal realizations,” IEEE Trans.
Inform. Theory, vol. 47, no. 2, pp. 520-548, 2001.

G. D. Forney Jr. and P. O. Vontobel, “Partition functions of normal
factor graphs,” in Proc. Annual Workshop on Inform. Theory and its
Appl., 2011. [Online]. Available: http://arxiv.org/abs/1102.0316

H. D. Pfister, “Factor graph duality,” 2014. [Online]. Available:
http://pfister.ee.duke.edu/courses/ece590_gmi/fg_duality.pdf



