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Abstract—In 2018, Renes [IEEE Trans. Inf. Theory, vol. 64,
no. 1, pp. 577-592 (2018)] developed a general theory of channel
duality for classical-input quantum-output channels. His result
shows that a number of well-known duality results for linear
codes on the binary erasure channel can be extended to general
classical channels at the expense of using dual problems which
are intrinsically quantum mechanical. One special case of this
duality is a connection between coding for error correction on
the quantum pure-state channel (PSC) and coding for wire-
tap secrecy on the classical binary symmetric channel (BSC).
Similarly, coding for error correction on the BSC is related to
wire-tap secrecy on the PSC.

While this result has important implications for classical
coding, the machinery behind the general duality result is rather
challenging for researchers without a strong background in
quantum information theory. In this work, we leverage prior
results for linear codes on PSCs to give an alternate derivation
of the aforementioned special case by computing closed-form
expressions for the performance metrics. The noted prior results
include the optimality of square-root measurement for linear
codes on the PSC and the Fourier duality of linear codes.

I. INTRODUCTION

In the mathematical sciences, duality is a powerful concept

that connects two problems so that the solution of one de-

termines the solution of the other. In coding theory, an [n, k]
binary linear code C ⊆ F

n
2 is a k-dimensional subspace of

the vector space of length-n binary vectors. In this case, its

dual code C⊥ ⊆ F
n
2 is the (n− k)-dimensional subspace that

is orthogonal to C under the standard dot product. An early

and important implication of this duality is that the weight

enumerator (WE) of a linear code can be computed from the

WE of the dual code using the MacWilliams identity [1].

For classical channels, the notion of a dual channel did not

arise until after the rediscovery of low-density parity-check

(LDPC) codes. Even then, it was understood only for the

erasure channel. Let BEC(ǫ) denote the binary erasure channel

with erasure probability ǫ. It was shown in [2] that the extrinsic

information transfer (EXIT) function for a code on the BEC(ǫ)
is closely related to the EXIT function for the dual code on the

BEC(1−ǫ). This and other symmetries in the decoding analysis

of LDPC codes led some researchers to treat the BEC(1− ǫ)
as the dual channel of the BEC(ǫ) [2]–[7].

This work was supported in part by the National Science Foundation (NSF)
under Grant No. 1908730, 1910571, and 1855879. Any opinions, findings,
conclusions, and recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of these sponsors.

For more than a decade, it remained an open question

whether this notion of channel duality could be extended

beyond the erasure case. In 2018, Renes [8] provided such

a definition by showing that the dual channel of a binary

memoryless channel can be defined in terms of a classical-

input quantum-output, or simply a classical-quantum (CQ),

channel [9]. In particular, Renes developed a general theory

of CQ channel duality where a channel W and its dual W⊥,

both with d input symbols, satisfy H(W )+H⊥(W⊥) = log d
for a pair of primal and dual entropies H and H⊥ (e.g.,

see [10]). For example, if we let W = BEC(ǫ), then this

approach shows that W⊥ = BEC(1 − ǫ) and also recovers

some previously known results for the BEC. Additionally, if

W = PSC(θ) is the CQ binary pure-state channel (PSC) with

parameter θ [11] (see Section II-C), then W⊥ = BSC(p) is

the classical binary symmetric channel (BSC) with parameter

p , (1 − cos θ)/2. Note that any classical channel can be

treated as CQ by defining the outputs to be diagonal in the

standard basis, i.e., 0 ≡ |0〉 , 1 ≡ |1〉. Thus, just as the complex

numbers play an important role in our understanding of the real

numbers, this suggests that CQ channels are also relevant to

the theory of classical channels (e.g., see also [12]). Moreover,

Renes also extends EXIT function duality for linear codes on

the BEC to general CQ channels in [8].

This paper focuses on duality between coding problems

for communication and secrecy. For communication on a

channel W , a key quantity of interest is the maximum guessing

probability, P (W ), for the input symbol given the channel

output. Of course, this equals one minus the minimum decoder

error probability. For secret communication where the channel

to the eavesdropper is W , one measure of information leakage

is the minimum squared Bhattacharyya coefficient, Q(W ),
between the prior on the secret message X and the posterior

distribution on X at the eavesdropper. Renes showed that

for a pair of CQ channels W and W⊥, channel duality

implies that P (W ) = Q(W⊥) [8], where both quantities

are optimized over all valid quantum measurements on the

output system. For CQ channels W and W⊥ with input

X ∈ X and output B, P (W ) and Q(W⊥) are related to

quantum conditional entropies Hmin(W ) = Hmin(X|B) and

Hmax(W
⊥) = Hmax(X|B) as P (W ) = 2−Hmin(W ) and

Q(W ) = 1
|X |2

Hmax(W
⊥). So, Renes’ approach is to show that

Hmin(W )+Hmax(W
⊥) = log |X |, which is part of his results
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for general dual entropies [10], and then the result follows.

Renes also extends this to the case where linear codes are

used for both problems. In this paper, we give an alternate

derivation of that result for the PSC-BSC pair by directly

calculating closed-form expressions for (i) the block error rate

and (ii) the Bhattacharyya coefficient between the posterior

distribution of the secret message and the uniform distribution.

For the secrecy setting, we emphasize here that the channel

to the intended recipient is noiseless and the focus is only on

the channel to the eavesdropper. While the approach in [8]

uses some sophisticated quantum techniques, our exposition

relies on direct calculation and targets an audience of classical

information and coding theorists.

The square-root measurement (SRM), also called the least-

squares measurement (LSM) or the pretty-good measurement

(PGM), is an important and useful measurement for many

quantum tasks [13]. Here, its optimality (or suboptimality)

is discussed for the problems and channels considered. We

have also used this SRM analysis for channel coding over the

PSC to verify that belief propagation with quantum messages

(BPQM) is quantum-optimal with respect to the block success

probability for a 5-bit code [14]. Since BPQM produces a

structured receiver circuit, unlike the SRM, this connection

enables one to design receivers for optical communications

over pure-loss bosonic channels. Hence, our work relates to

optimal practical receivers for several communication prob-

lems.

II. BACKGROUND AND NOTATION

A. Quantum States and Measurements

In Dirac notation, the standard basis vectors of C
2 are

represented as |0〉 = [ 10 ] and |1〉 = [ 01 ]. For n ≥ 1 qubits,

the standard basis vectors are denoted by kets |v〉 = |v1〉 ⊗
|v2〉⊗ · · ·⊗ |vn〉, where vi ∈ Z2 and ⊗ denotes the Kronecker

product. Hence, a general n-qubit pure state is represented as

|ψ〉 =
∑

v∈Z
n
2

αv |v〉 ∈ C
2n , ; |〈ψ|ψ〉|2 =

∑

v∈Z
n
2

|αv|2 = 1, (1)

where “bra psi”, 〈ψ| , |ψ〉†, is the conjugate transpose of |ψ〉
and the “bra-ket” 〈ψ|ψ〉 denotes the self inner product of |ψ〉.

If a quantum system is in one of several possible states

|ψm〉 with probability pm, for m = 1, 2, . . . , T , then a succinct

description of the system is given by its density matrix ρ ,
∑T

m=1 pm |ψm〉 〈ψm| ∈ C
2n×2n , also called a mixed state.

A projective measurement is described by a set of complete

orthogonal projectors {Πi, i = 1, . . . ,M} such that ΠiΠj =

δijΠi and
∑M

i=1 Πi = I2n , where I2n is the 2n × 2n identity

matrix. If a system is in state ρ, then by the Born rule the

measurement yields the result i with probability pi = Tr [Πiρ],
and projects the system to the state ρi = ΠiρΠi/pi [9].

B. Linear Codes and their Complements

We briefly review a particular perspective on a linear code

and its complements as described by Renes in [8]. A binary

linear code C : [n, k] and its unique dual code C⊥ : [n, n− k]
can be related through their non-unique complementary codes

C⊤ : [n, n − k] and C⊥⊤ : [n, k], respectively. In particular, a

code and one of its complements define disjoint subspaces

and, thus, provide a direct-sum decomposition for the entire

space. Note that once C and C⊤ are fixed, C⊥ and C⊥⊤ are fixed

automatically. This organization of codes plays an important

role in our results (see [15] for more details).

As an example, consider the following invertible matrices:

A =









1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0









, B =









0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1









. (2)

The first row of A can be interpreted as a generator matrix,

GC , for the 4-bit repetition code C, which means that the last 3
rows of B form a generator matrix, GC⊥ , for the dual single-

parity-check code C⊥. The remaining rows of A generate a

code, C⊤, that complements C so that A generates the whole

vector space F
4
2. Similarly, the first row of B generates a code,

C⊥⊤, that complements C⊥ and is also dual to C⊤.

C. Pure-State Channel (PSC)

The pure-state CQ channel [11] can be described

by the mapping W PSC(θ) : x ∈ Z2 7→ |(−1)xθ〉 ≡
|(−1)xθ〉 〈(−1)xθ|, where |(−1)xθ〉 , cos θ

2 |0〉 +
(−1)x sin θ

2 |1〉 , θ ∈
[

0, π2
]

. The overlap between

the states is 〈−θ|θ〉 = cos θ. For any θ, the optimal

(Helstrom) measurement [16], [17] is given by the projectors

{|+〉 〈+| , |−〉 〈−|}, which achieves the probability of error

P PSC
Hel = 1

2

[

1−
√

1− | 〈−θ|θ〉 |2
]

= (1 − sin θ)/2. Hence,

the PSC combined with this Helstrom measurement induces

the binary symmetric channel BSC(P PSC
Hel ). The PSC model

can be motivated by the pure-loss bosonic channel in optical

communications [14], [18].

Observe that the two output states of the PSC satisfy a

symmetry: |−θ〉 = Z |θ〉, where Z ,
[

1 0
0 −1

]

is the Pauli

Z operator. For a binary vector b = [b1, b2, . . . , bn] we define

Z(b) , Z(b1) ⊗ Z(b2) ⊗ · · · ⊗ Z(bn), where Z(bi) , Zbi .

Then, when b ∈ Z
n
2 is transmitted over n uses of the PSC, the

output state is given by Z(b) |θ〉⊗n
.

III. DUALITY OF CHANNEL CODING AND SECRECY

We begin by discussing this duality for the BEC. Although

the notion of a dual BEC has been known for a while, we

describe the duality here in such a way that it builds the correct

intuition for the PSC-BSC case that we consider subsequently.

At the end of the first two subsections, we will relate the

conditional entropy for channel coding on BEC(ǫ) and the

conditional entropy for secrecy on BEC(1 − ǫ). Then, in the

next subsection, we prove the duality between channel coding

on the PSC and secrecy on the BSC via direct computation

of the optimal success (guessing) probability for the former.

This computation exploits the optimality of the square root

measurement (SRM) for this problem, and combines it with

the factor graph duality of linear codes. Finally, we use these

results to extend the conditional entropy approach for the BEC

to the PSC-BSC pair. Due to space constraints, we omit most
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proofs and also our results for secrecy on the PSC where,

among other things, we show that the SRM is suboptimal. For

these details, we refer the interested reader to [15].

A. Duality for Channel Coding on the BEC

Let C be an (n, k) binary linear code with generator

matrix G and parity-check matrix H . Assume that a random

codeword X is chosen uniformly and transmitted through a

BEC with output Y ∈ {0, 1, ?}n. For an output realization

y, let E , {i ∈ [n] | yi =?} be the set of indices where an

erasure occurs. It turns out that many duality statements are

more natural for a deterministic length-n BEC that erases all

bits whose indices are in E . We refer to this channel as BEC(E)
and its dual channel, which correctly transmits only the bits

with indices in E , is BEC(Ec).
For a set E = (e1, e2, . . . , e|E|) with e1 < e2 < · · · < e|E|

and an m×n matrix A = (a1, a2, . . . , an) whose i-th column

is a, we let AE = (ae1 , ae2 , . . . , ae|E|
). The same rule applies

to row vectors using m = 1. Let V = {z ∈ C | zEc = yEc} be

the set of codewords that are compatible with the observations.

Then, the posterior distribution of X given Y is PX|Y (x|y) =
1/|V | if x ∈ V and 0 otherwise.

Since C is linear, the set V is the affine subspace of x ∈
{0, 1}n satisfying HExTE = HEcxTEc because xEc is known at

the decoder. Thus, dimension of the solution space is given

by |E|− rank(HE). Similarly, affine subspace of input vectors

u ∈ {0, 1}k compatible with y is defined by uGEc = xEc and

dimension of the solution space is k− rank(GEc). Of course,

the two spaces must have the same dimension and this implies

that k − rank(GEc) = |E| − rank(HE). This implies that

H(X|XEc) = |E| − rank(HE) = k − rank(GEc). (3)

Let X ′ ∈ C⊥ be a uniform random dual codeword. Then,

the first equality in (3) shows that the entropy of X ′ over the

dual channel BEC(Ec) is given by

H(X ′|X ′
E) = |Ec| − rank(H⊥

Ec) = |Ec| − rank(GEc)

because H⊥ = G. Applying the second equality in (3) gives

H(X ′|X ′
E) = H(X|XEc) + |Ec| − k. (4)

B. Duality Between Channel Coding and Secrecy on the BEC

In 1975, Wyner introduced the wire-tap channel and pro-

posed encoding secret messages into cosets of a group code

[19]. Encoding proceeds by using the secret message to choose

a coset and then encoding to a uniform random element from

that coset. In this section, we will see that there is a duality

between the information loss of channel coding using C and

the information leakage of Wyner’s coset coding using C⊥.

First, we will consider the standard channel coding problem

for C and Wyner’s wire-tap coding using cosets of C. The

coding problem transmits the codeword x ∈ {0, 1}n as

determined by the information u ∈ {0, 1}k and coset selector

s ∈ {0, 1}n−k using the definitions

A =

[

G
F

]

, x = [u s]A = [u s]

[

G
F

]

= uG+ sF. (5)

In this setup, rowspace(F ) is a linear complement of C =
rowspace(G) and A is full rank.

To decode the codeword, one would assume that the receiver

knows the coset vector sF . In contrast, the wire-tap coding

problem assumes u is unknown and tries to decode the secret

message s. To make this stochastic, we let X be a uniform

random vector over {0, 1}n and define the random vectors

U ∈ {0, 1}k and S ∈ {0, 1}n−k via [U S] = XA−1. We note

that choosing the uniform distribution for X is equivalent to

using uniform distributions for U and S.

Since X is uniform, we can also interpret it as the codeword

for the coding/secrecy problem using the dual code C⊥ on the

dual channel, where the erased positions are in Ec. Note that

xA−1 = [u s]AA−1 = [u s] (6)

implies that the last k columns of A−1 give the transpose of a

parity-check matrix H for C. Also, the first n− k columns of

A−1 give a right inverse for G which we denote by ET (i.e,.

GET = I). Thus, we can define B = (A−1)T ,

B =

[

E
H

]

, x = [s′ u′]B = [s′ u′]

[

E
H

]

= s′E + u′H, (7)

and view any x ∈ {0, 1}n as the sum of the dual codeword

u′H and the coset vector s′E. We also define the random vec-

tors U ′ ∈ {0, 1}n−k and S′ ∈ {0, 1}k via [S′ U ′] = XB−1.

The following derivation relates the secrecy and coding

problems for the dual code on the dual channel:

n = I(U ′, S′;X)

= I(U ′, S′;XE , XEc)

= I(U ′, S′;XE) + I(U ′, S′;XEc |XE)

= I(S′;XE) + I(U ′;XE |S′) + I(U ′, S′;XEc |E , XE)

= I(S′;XE) + I(U ′;XE |, S′) + (n− |E|)
= I(S′;XE) + (n− k)−H(U ′|XE , S

′) + (n− |E|). (8)

The final equation relates the number of erasures |Ec| =
n − |E|, the information leakage I(S′;XE |E) of the dual-

code secrecy problem on the dual channel, and the message

uncertainty H(U ′|XE , E , S′) for the coding problem using the

dual code and dual channel.

Now, we can use (4) to substitute the uncertainty for

primal coding on the primal channel, H(U |XEc , E , S), for

H(U ′|XE , E , S′) and a few other terms. This gives

H(U ′|XE , E , S′) = H(U |XEc , E , S) + n− k − |E| . (9)

For the dual code and channel, combining with (8) allows us

to write the information leakage of the secrecy problem as

H(S′|XE , E) = k − I(S′;XE |E)
= k − (k +H(U ′|XE , E , S′)− n+ |E|)
= k −H(U |XEc , E , S). (10)
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Block Error Rate and Bhattacharyya Distance: If the un-

certainty in U has dimension d = H(U |XEc , E , S), then the

probability of correctly guessing the codeword is 2−d. If the

posterior of S′ given XE and E is uniform over an affine

subspace of dimension f = k−I(S′;XE |E) = k−d, then the

Bhattacharyya coefficient between this posterior distribution

and the uniform distribution is
∑

s∈{0,1}f

√

ps2−k = 2f2−f/22−k/2 = 2(f−k)/2.

By (10), we see that f = k − d and
(

2
f−k
2

)2
= 2f−k = 2−d.

Thus, the block guessing probability, 2−d, equals the square

of the Bhattacharyya coefficient, 2−d, between this posterior

distribution and the uniform distribution.

C. Channel Coding on the PSC and Secrecy on the BSC

Now, we will explicitly compute the block guessing prob-

ability for the PSC and show its equality to the squared

Bhattacharyya coefficient for secrecy on the BSC.

For a M -ary hypothesis testing problem with candidate

states {ρi ; i = 1, 2, . . . ,M} and prior probabilities {pi ; i =
1, 2, . . . ,M}, the minimum Bayes cost is given by

C∗ =

M
∑

j=1

Tr
[

Π̂jρ
′
j

]

, ρ′j ,
M
∑

i=1

piCjiρi, (11)

where Cji is the cost associated to deciding ρj when the truth

is ρi, and {Π̂j ; j = 1, 2, . . . ,M} is the optimal measurement.

For the transmission of an [n, k] binary linear code C on

PSC(θ), the minimum block error probability Pe equals C∗

using the hypothesis testing problem with Cji = 1 − δji and

ρi = |φi〉 〈φi|, where |φi〉 is the result of transmitting the i-th
codeword of C through PSC(θ).

This problem satisfies the geometrically uniform (GU) state

set criterion of Eldar and Forney [13]. The criterion is that

there is a generator state |φ〉 and an abelian group G, of size

|C|, such that each |φi〉 can be written as |φi〉 = Ui |φ〉 for

some Ui ∈ G. For this case, by the PSC symmetry mentioned

in Section II-C, we have |φ〉 = |θ〉⊗n
and G = {Z(c), c ∈ C}.

Hence, for equally likely codewords, the SRM is the optimal

measurement {Π̂j ; j = 1, 2, . . . ,M} [13]. We see that

calculating Pe involves the inner products |〈ψj |φi〉|:
Definition 1: The elements of the SRM are Π̂j = |ψj〉 〈ψj |,

where |ψj〉 is the j-th column of the SRM matrix

Ψ , Φ
(

(

Φ†Φ
)1/2

)−1

∈ C
2n×2k , (12)

the columns of Φ are {|φi〉 ; i = 0, 1, . . . , 2k − 1}, and the

Moore-Penrose pseudo-inverse is used if Φ is rank deficient.

For the setting of transmitting binary linear codes over the

PSC, the Gram matrix Φ†Φ has full rank because Φ has full

column rank. The optimality of SRM for this problem enables

us to combine the results in [13] with Fourier duality of linear

codes [20] to calculate the optimal block error rate as follows.

Definition 2: Given a linear code C that is transmit-

ted over PSC(θ), define the overlap function s(g) ,

〈θ|⊗n
Z(cg) |θ〉⊗n

= (cos θ)
wH(cg), where wH(cg) is the

Hamming weight of the codeword cg , gGC ∈ C, g ∈ Z
k
2 .

Its Fourier transform is given by

ŝ(h) =
1√
2k

∑

g∈Z
k
2

(−1)hg
T

(cos θ)
wH(cg) . (13)

The Fourier transform matrix is given by Fgh = 1√
2k
(−1)gh

T

,

where the rows and columns are indexed by g, h ∈ Z
k
2 .

Now, using the above definitions, we will state a key result

that enables us to calculate Pe in closed-form.

Theorem 3 ([13]): Consider the transmission of an [n, k]
binary linear code C over the channel PSC(θ). The codeword

matrix Φ and the SRM matrix Ψ satisfy Ψ†Φ = FΣF†, where

Σ is a 2k × 2k diagonal matrix with diagonal elements

σ(h) , 2k/4
√

ŝ(h), h ∈ Z
k
2 . (14)

Since Ψ†Φ = FΣF† is Hermitian, we observe (Ψ†Φ)ji =

(Ψ†Φ)∗ij ⇒ |〈ψj |φi〉|2 =
∣

∣(Ψ†Φ)ji
∣

∣

2
=

∣

∣(Ψ†Φ)ij
∣

∣

2
. From

[13], the columns of Ψ are given by {|ψg〉 , g ∈ Z
k
2}, where

|ψg〉 =
1√
2k

∑

h∈Z
k
2

(−1)gh
T 1

σ(h)
I(σ(h) 6= 0)

· 1√
2k

∑

f∈Z
k
2

(−1)hf
T

Z(cf ) |θ〉⊗n
. (15)

and I(·) denotes the indicator function that is 1 iff its argument

is true. Hence, to compute the inner products |〈ψj |φi〉| in Pe,

we need to calculate σ(h) or, equivalently, ŝ(h) for all h ∈ Z
k
2 .

Factor Graph Duality Enables Calculation of Pe

We will now introduce the indicator function of C in ŝ(h) in

order to apply a factor graph duality [20]–[22] that produces

the indicator function of C⊥ and simplifies the calculation of

ŝ(h). For this, let us embed s(g) in Z
n
2 by setting

s′(x) , I(x ∈ C) (cos θ)wH(x)
, x ∈ Z

n
2 . (16)

Then, the Fourier transform over Zn
2 produces

ŝ′(y) =
1√
2n

∑

x∈Z
n
2

(−1)yx
T

I(x ∈ C) (cos θ)wH(x)
. (17)

Remark 4: We immediately observe that, if we express y =
yC⊥⊤ + xC⊥ for some unique yC⊥⊤ ∈ C⊥⊤ and xC⊥ ∈ C⊥, then

ŝ′(y) = ŝ′(yC⊥⊤) since yxT = yC⊥⊤x
T for all x ∈ C.

Now, we see that the sum effectively happens over Zk
2 due to

the presence of the indicator function, but the factor (−1)yx
T

does not exactly map to (−1)hg
T

since the latter is only taken

over the “message” part of the codewords x, y assuming a

systematic encoding. Hence, for a generic code, we need to

make these coefficients ŝ′(y) usable exactly in place of ŝ(h).
For the following results, see [15] for proofs.

Lemma 5: Let yh denote the codeword in C⊥⊤ corresponding

to the message h ∈ Z
k
2 , i.e., ByTh = [0n−k, h]T . Then, the

functions ŝ(h) and ŝ′(yh) are related as ŝ(h) =
√
2n−kŝ′(yh).

This further implies that σ(h) = 2k/4
√

ŝ(h) = 2n/4
√

ŝ′(yh).
We use the following lemma to compute ŝ(h) from (17).
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Lemma 6 (Factor graph duality [22]): For binary vectors

x ∈ Z
n
2 , given functions µj : Z2 → R for each index j ∈

{1, 2, . . . , n}, and an [n, k] binary linear code C, we have

∑

x∈Z
n
2

I(x ∈ C)
n
∏

j=1

µj(xj) =
∑

x̂∈Z
n
2

2k−n/2
I(x̂ ∈ C⊥)

n
∏

j=1

µ̂j(x̂j),

where µ̂j(ẑ) ,
1√
2

∑

z∈Z2
(−1)ẑzµj(z).

Proof: See [23] for an algebraic proof rather than the

graphical approach in [22].

Lemma 7: Given an [n, k] binary linear code C and the

channel PSC(θ), ŝ(h), h ∈ Z
k
2 , can be calculated as

1

2k/2
ŝ(h) =

∑

z∈yh ⊕C⊥

pwH(z)(1− p)n−wH(z) ;
∑

h∈Z
k
2

ŝ(h)

2k/2
= 1.

Here, yh denotes the codeword in C⊥⊤ corresponding to the

message h ∈ Z
k
2 . The code C⊥⊤ is the complement of C⊥ as

defined by Renes [8], i.e., the codewords yh of C⊥⊤ form coset

leaders for the 2k cosets of C⊥ in Z
n
2 .

Lemma 8: Consider an [n, k] binary linear code C and

the channel PSC(θ). The overlap between the square root

measurement (SRM) vectors and the states obtained by trans-

mitting the codewords of C over PSC(θ) is given by

|〈ψg|φt〉|2 =
σ̂(g ⊕ t)2

2k
. (18)

This is equal to the probability of sending a message t ∈ Z
k
2

and decoding it as g ∈ Z
k
2 using the SRM.

This was also used recently to verify the optimality of the

BPQM algorithm for decoding a 5-bit code over PSC(θ) [14].

Theorem 9: Given an [n, k] binary linear code C, the optimal

block error rate for transmission over PSC(θ) is given by

Pe=
1

2k

∑

j∈{0,1}k

∑

i∈{0,1}k

i 6=j

|〈ψj |φi〉|2 =1−B
(

ŝ

2k/2
,
1

2k

)2

, (19)

where the Bhattacharyya coefficient (or fidelity) between the

probability distributions {2− k
2 ŝ(h)} and {2−k} is defined as

B
(

ŝ

2k/2
,
1

2k

)

,
∑

h∈Z
k
2

√

ŝ(h)

2k/2

√

1

2k
. (20)

Furthermore, {2−k/2ŝ(h)} forms the posterior when cosets

of C⊥ are used to send secure messages over the dual,

BSC
(

p = 1−cos θ
2

)

. Hence, B
(

ŝ
2k/2 ,

1
2k

)2
measures the opti-

mal decoupling of the secret from the intercepted information.

Thus, this approach uses standard linear algebra and group

theory to establish that the block error rate for channel

coding on the PSC(θ) with C equals the defined Bhattacharyya

performance measure for secrecy using C⊥ on the BSC(p).

To understand this result in terms of channels, let W
PSC(θ)
C

denote the CQ channel implied by the channel coding problem

over PSC(θ) using C (i.e., the input alphabet is {0, 1}k). Simi-

larly, let W
BSC(p)

C⊥ denote the CQ channel implied by sending

the coset selector s ∈ {0, 1}k for the secrecy problem using

C⊥, where the channel to the eavesdropper is BSC(p) and

the channel to the intended recipient is noiseless. Rewriting

the above result, we see that the optimal success probability

P
(

W
PSC(θ)
C

)

for transmitting a code over PSC(θ) is equal to

the optimal secrecy metric Q
(

W
BSC(p)

C⊥

)

. In [8, Corollary 4],

Renes proved a more general result for coding over general

CQ channels using methods from quantum information theory.

D. Entropic Duality for the PSC-BSC Pair

Here, we extend the entropic result (10) to the PSC-BSC

scenario, thereby completing the intuition we developed.

Lemma 10: For the channel coding problem on the PSC,

the overlap (or normalized Grammian) matrix Γ = 2−kΦ†Φ
is diagonalized by the Fourier transform F . From this, we find

that the set of (non-zero) eigenvalues of both Γ and the density

matrix ρY,S=0 = 2−kΦΦ† equal {2−k/2ŝ(h) |h ∈ {0, 1}k}.

Since the Von Neumann entropy H(C)ρ of a quantum

system C with density matrix ρC equals the Shannon entropy

of the eigenvalues of ρC [9], it follows that

H(Y |S = 0)ρY,S=0 =
∑

h∈{0,1}k

2−k/2ŝ(h) log
1

2−k/2ŝ(h)

=
∑

h∈{0,1}k

P (h | x̂) log 1

P (h | x̂)

= H(S′|Y ′), (21)

where P (h | x̂) is the posterior when cosets of C⊥ are used for

secrecy on the dual BSC, and the final quantity is the classical

Shannon entropy. Note that the set of values {P (h | x̂) , h ∈
{0, 1}k} remain the same irrespective of the intercepted vector

x̂, and only the mapping h 7→ P (h | x̂) depends on x̂.

Using the same setup as the BEC analysis in Section III-B,

we can use the above result to investigate the Von Neumann

conditional entropy. Similar to the BEC result in (10), we have

H(U |Y, S = 0)ρUY,S=0

= H(U |S = 0) +H(Y |U, S = 0)ρUY,S=0 −H(Y |S = 0)ρY,S=0

= k + 0−H(S′|Y ′). (22)

Next, consider the BEC channel coding duality result defined

by (4). One can generalize this to the PSC by observing

H(U ′|Y ′, S′)

= H(U ′|S′) +H(Y ′|S′, U ′)−H(Y ′|S′)

= n− k + η(p)n−
(

H(Y ′) +H(S′|Y ′)−H(S′)
)

= n− k + η(p)n−
(

n+
(

k −H(U |Y, S = 0)ρUY,S=0

)

− k
)

= H(U |Y, S = 0)ρUY,S=0 + η(p)n− k, (23)

where η(p) , −p log p−(1−p) log(1−p) is the binary entropy

function and the term η(p)n can be seen as the total entropy

produced by the dual channel.

Therefore, the Fourier transform ŝ(h) of the overlap func-

tion s(g) for the PSC forms the key link that connects

channel coding on the PSC and secrecy on the BSC via

performance metrices as well as entropies. This might be a

general phenomenon that extends beyond the special case of

the PSC and the BSC, and we leave this investigation to future

work. For our results on secrecy over the PSC, see [15].
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