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Low-Power Wide-Area Network (LPWAN) is an enabling Internet-of-Things technology that supports long-

range, low-power, and low-cost connectivity to numerous devices. To avoid the crowd in the limited ISM

band (where most LPWANs operate) and cost of licensed band, the recently proposed Sensor Network over

White Spaces (SNOW) is a promising LPWAN platform that operates over the TV white spaces. As it is a very

recent technology and is still in its infancy, the current SNOW implementation uses the Universal Software

Radio Peripheral devices as LPWAN nodes, which has high costs (≈$750 USD per device) and large form-

factors, hindering its applicability in practical deployment. In this article, we implement SNOW using low-

cost, low form-factor, low-power, and widely available commercial off-the-shelf (COTS) devices to enable

its practical and large-scale deployment. Our choice of the COTS device (TI CC13x0: CC1310 or CC1350)

consequently brings down the cost and form-factor of a SNOW node by 25× and 10×, respectively. Such

implementation of SNOW on the CC13x0 devices, however, faces a number of challenges to enable link

reliability and communication range. Our implementation addresses these challenges by handling peak-to-

average power ratio problem, channel state information estimation, carrier frequency offset estimation, and

near-far power problem. Our deployment in the city of Detroit, Michigan, demonstrates that CC13x0-based

SNOW can achieve uplink and downlink throughputs of 11.2 and 4.8 kbps per node, respectively, over a

distance of 1 km. Also, the overall throughput in the uplink increases linearly with the increase in the number

of SNOW nodes.
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1 INTRODUCTION

Low-Power Wide-Area Network (LPWAN) is an emerging communication technology that

supports long-range, low-power, and low-cost connectivity to numerous devices. It is regarded as

a key technology to drive the Internet-of-Things (IoT). Due to their escalating demand, recently

multiple LPWAN technologies have been developed that operate in the licensed/cellular (NB-IoT,

LTE-M, 5G, etc.) or unlicensed/non-cellular (Sensor Network over White Spaces (SNOW),

LoRa, SigFox, etc.) bands [21]. Most of the non-cellular technologies operate in the sub-1-GHz

ISM band except SNOW and WEIGHTLESS-W that operate in the TV white spaces [21, 43].

White spaces are the allocated but locally unused TV spectrum (54–698 MHz in the US) that

can be used by unlicensed devices as the secondary users. Compared to the crowded ISM band,

white spaces offer less crowded and much wider spectrum in both urban and rural areas, boast-

ing an abundance in rural and suburbs [50]. Due to their low frequency, white spaces have ex-

cellent propagation and obstacle penetration characteristics enabling long-range communication.

Thus, they hold the potentials for LPWAN to support various IoT applications. To our knowl-

edge, WEIGHTLESS-W (which, to the best of our knowledge, has been decommissioned [21]) and

SNOW [51] are the only two efforts to exploit the TV white spaces for LPWAN. Initially introduced

in Reference [49], SNOW is a highly scalable LPWAN technology offering reliable, bi-directional,

concurrent, and asynchronous communication between a base station (BS) and numerous nodes.

Despite its promise as a LPWAN technology, SNOW has not yet received sufficient attention

from the research community due to its limited availability for practical deployment. The SNOW

implementation in Reference [51], which is also available as open-source [4], uses Universal Soft-

ware Radio Peripheral (USRP) devices as LPWAN nodes, hindering the applicability of this

technology in practical and large-scale deployment. USRP is a hardware platform developed for

software-defined radio applications [6]. Using them as the SNOW node limits the practical de-

ployment of SNOW in real-world applications due to several factors including its high cost and

large form-factor. Currently, a USRP B200 device with a half-duplex radio costs ≈$750 USD. As

such, it inherently becomes costly to deploy a large-scale SNOW network. Today, IoT applications

including smart city (e.g., waste management and smart grid), transportation and logistics (e.g.,

connected vehicles), agricultural and smart farming (i.e., Microsoft FarmBeats), process manage-

ment (e.g., oil field monitoring), and healthcare require collection of information from thousands

of IoT nodes [21].

In this article, we address the above practical limitations of the existing SNOW technology by

implementing it on low-cost and low form-factor commercial off-the-shelf (COTS) devices.

Through this implementation, we demonstrate that any COTS device that has a programmable

physical layer (PHY), operates in the white spaces, and supports amplitude-shift-keying

(ASK) or binary phase-shift-keying (BPSK) may work as a SNOW node in practical deploy-

ments. Along with our original TI CC1310-based SNOW implementation in Reference [40], we

thus implement SNOW on TI CC1350 that has a programmable PHY, costs approximately $30

USD (retail price) and is 10× smaller than a USRP B200 device, thereby making SNOW adoptable

in practical IoT applications. Additionally, we emphasize the fact that this implementation maybe

is adaptable in the diverse range of COTS IoT devices with minimal efforts (e.g., only needs to

deal with new development software), which makes it highly portable and practical choice for

SNOW.

The existing USRP-based SNOW implementation does not face the following practical chal-

lenges due to the expensive and powerful hardware design of USRP (as reflected by evaluation

in References [49–51]), which the implementation on CC13x0 (CC1310 or CC1350) has to ad-

dress. First, due to its orthogonal frequency division multiplexing–(OFDM) based design,

the SNOW BS transmitter is subject to high peak-to-average power ratio (PAPR). Thus, the
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overall reliability at the CC13x0 device during downlink communication degrades severely. Sec-

ond, due to the asymmetric bandwidth requirements of the SNOW BS and the nodes, channel

state information (CSI) estimation between the BS and a CC13x0 device plays a vital role in

both uplink and downlink communications. Without CSI estimation, the overall reliability and

the communication range decreases. Third, Carrier frequency offset (CFO) needs to be han-

dled robustly as its effects are much more pronounced in the low-cost CC13x0 devices, leading

to severe inter-carrier-interference (ICI). ICI decreases the overall bitrate in both uplink and

downlink communications. While these challenges are quite common in the wireless domain, due

to the novel design of SNOW, the existing solutions/approaches may not be adopted in SNOW.

Along with addressing these challenges, through this new implementation, we also make SNOW

resilient to the classic near-far power problem. Due to the near-far power problem, where a far

node’s transmission gets buried under a near node’s transmission radiation, the reliability in the

uplink communication may be degraded. We thus address the above challenge as well. Specifically,

we make the following key contributions.

• We implement SNOW for practical deployment on CC13x0s to work as SNOW nodes. Com-

pared to the current USRP-based SNOW implementation, the cost and the form-factor of a

single CC13x0-based SNOW node are decreased approximately 25× and 10×, respectively.

• In our implementation, we address several practical challenges including the PAPR problem,

CSI and CFO estimation, and near-far power problem. Specifically, we propose a data-aided

CSI estimation technique that allows a CC13x0 device to communicate directly with the

SNOW BS from a distance of approximately 1 km. Additionally, we propose a pilot-based

CFO estimation technique that takes into account the device mobility and increases relia-

bility in both uplink and downlink communications. Finally, we address the near-far power

problem in SNOW through an adaptive transmission power control (ATPC) protocol

that improves the reliability in the uplink communications.

• We experiment with the CC13x0-based SNOW implementation through deployment in the

city of Detroit, Michigan. Our results demonstrate that we achieve an uplink throughput

of 11.2 kbps per node. Additionally, our overall uplink throughput increases linearly with

the increase in the number of SNOW nodes. In the downlink, we achieve a throughput

of 4.8 kbps per node. Compared to a typical LoRa deployment (channel bandwidth: 500

kHz, spreading factor: 7, and coding rate: 4/5), our uplink throughput is approximately 3.7×
higher when 5 nodes transmit to a gateway that can receive concurrent packets using 3

channels.

In the rest of the article, Section 2 provides an overview of SNOW and TI CC13x0. Section 3

presents our SNOW implementation. Section 4 describes the near-far power problem in SNOW.

Sections 5 and 6 analyze the deployment cost and performance of our CC13x0-based SNOW, re-

spectively. Section 7 overviews related work. Finally, Section 8 concludes our article.

2 BACKGROUND AND SYSTEM MODEL

2.1 An Overview of SNOW

In this section, we provide a brief overview of SNOW. Its complete design and description is avail-

able in Reference [39]. SNOW is a highly scalable LPWAN technology operating in the TV white

spaces. It supports asynchronous, reliable, bi-directional, and concurrent communication between

a BS and numerous nodes. Due to its long-range, SNOW forms a star topology allowing the BS

and the nodes to communicate directly, as shown in Figure 1(a). The BS is powerful, Internet-

connected, and line-powered while the nodes are power-constrained and do not have access to
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Fig. 1. The SNOW architecture [50].

the Internet. To determine white space availability in a particular area, the BS queries a cloud-

hosted geo-location database via the Internet. A node depends on the BS to learn its white space

availability. In SNOW, all the complexities are offloaded to the BS to make the node design simple.

Each node is equipped with a single half-duplex radio. To support simultaneous uplink and down-

link communications, the BS uses a dual-radio architecture for reception (Rx) and transmission

(Tx), as shown in Figure 1(b).

The SNOW PHY uses a distributed implementation of OFDM called D-OFDM. D-OFDM enables

the BS to receive concurrent transmissions from asynchronous nodes using a single-antenna ra-

dio (Rx-radio). Also, using a single-antenna radio (Tx-Radio), the BS can transmit different data

to different nodes concurrently [41, 42, 44, 49–51]. Note that the SNOW PHY is different from

MIMO radio design adopted in other wireless domains such as LTE, WiMAX, and 802.11n [50] as

the latter use multiple antennas to enable multiple transmissions and receptions. The BS operates

on a wideband channel split into orthogonal narrowband channels/subcarriers (Figure 1(b)). Each

node is assigned a single subcarrier. For encoding and decoding, the BS runs inverse fast Fourier

transform (IFFT) and global fast Fourier transform (G-FFT) over the entire wideband chan-

nel, respectively. When the number of nodes is no greater than the number of subcarriers, every

node is assigned a unique subcarrier. Otherwise, a subcarrier is shared by more than one node.

SNOW supports ASK and BPSK modulation techniques, supporting different bitrates.

The nodes in SNOW use a lightweight CSMA/CA (carrier sense multiple access with collision

avoidance)-based media access control (MAC) protocol similar to TinyOS [5]. The nodes can

autonomously transmit, remain in receive mode, or sleep. Specifically, when a node has data to

send, it wakes up by turning its radio on. Then it performs a random back-off in a fixed initial back-

off window. When the back-off timer expires, it runs Clear Channel Assessment. If the subcarrier is

clear, then it transmits the data. If the subcarrier is occupied, then the node makes a random back-

off in a fixed congestion back-off window. After this back-off expires, if the subcarrier is clean the

node transmits immediately. This process is repeated until it makes the transmission and gets an

acknowledgment (ACK).

2.2 An Overview of TI CC13x0 LaunchPads

Texas Instruments introduced TI CC1310 and TI CC1350 LaunchPads as a part of the SimpleLink

microcontroller (MCU) platform to support ultra-low-power and long-range communication

having a Cortex-M3 processor with 8-KB SRAM and up to 128 KB of in-system programmable

storage [2, 40]. With a small form-factor (length: 8 cm, width: 4 cm), both CC1310 and CC1350

are designed to operate in the lower frequency bands (287–351 MHz, 359–527 MHz, and 718–

1054 MHz) including the TV band. As an added feature, CC1350 can also operate in the 2.4-GHz

band while using Bluetooth low energy radio. The packet structure of the CC13x0 devices includes
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Fig. 2. Devices used in our SNOW implementation. A node is a CC1310 or CC1350 device. The BS has two

USRP B200s, each having its own antenna. An antenna is approximately 2× bigger than a B200.

a preamble, followed by sync word, payload length, payload, and CRC, chronologically. They

support different data modulation techniques including Frequency Shift Keying (FSK), Gaussian

FSK, On-Off Keying (OOK), and a proprietary long-range modulation. They are capable of using

a Tx/Rx bandwidth that ranges between 39 and 3,767 kHz. Additionally, with a supply voltage in

the range of 1.8 to 3.8 V, their Rx and Tx current consumption is 5.4 mA and 13.4 mA at +10 dBm,

respectively, offering ultra-low-power communication. The greatest advantage is that they have a

programmable and reconfigurable physical layer, offering flexibility and feasibility for customized

protocol implementation.

3 SNOW IMPLEMENTATION ON TI CC13X0

The original SNOW implementation in Reference [51] uses the USRP hardware platform for both

the BS and the nodes. In our implementation, we use the CC13x0 devices as SNOW nodes and

USRP in the BS (Figure 2). For BS implementation, we adopt the open-source code provided in

Reference [4]. The BS uses two half-duplex USRP devices (Rx-Radio and Tx-Radio), each having

its own antenna. Also, the BS is implemented on the GNURadio software platform that gives a high

magnitude of freedom to perform baseband signal processing [3]. In the following, we explore a

number of implementation considerations and feasibility for a CC13x0 device to work as a SNOW

node in practical deployments. First, we show how to configure a CC13x0 device to make it work

as a SNOW node. We then address the practical challenges (e.g., PAPR problem, CSI estimation,

and CFO estimation) associated with our CC13x0-based SNOW implementation.

3.1 Configuring TI CC13x0

We configure the subcarrier center frequency, bandwidth, modulation, and the Tx power by set-

ting appropriate values to the CC13x0 command inputs centerFreq, rxBw, modulation, and

txPower, respectively, using Code Composer Studio (CCS) provided by Texas Instruments [40].

A graphical user interface alternative to CCS is SmartRF Studio. The MAC protocol of SNOW in

CC13x0 is implemented on top of the example CSMA/CA project that comes with CCS. Note that

the functionalities of a SNOW node are very simple and may be incorporated easily in the IoT

devices that have both storage and computational limitations like the CC13x0 devices.

3.2 Peak-to-Average Power Ratio Observation

By transmitting on a large number of subcarriers simultaneously (in the downlink), the BS suffers

from a traditional OFDM problem called PAPR. PAPR of an OFDM signal is defined as the ratio of

the maximum instantaneous power to its average power. In the SNOW downlink communications

(i.e., BS to nodes), after the IFFT is performed by the BS, the composite signal can be represented

as x (t ) = 1√
N

∑N−1
k=0

Xke
j2π fk t , 0 ≤ t ≤ NT . Here, Xk is the modulated data symbol for node k =

{0, 1, . . . ,N − 1} on subcarrier center frequency fk = kΔf , where Δf = 1
NT

and T is the symbol
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Fig. 3. PAPR distribution of D-OFDM signal in Tx-Radio.

period. Therefore, the PAPR may be calculated as

PAPR[x (t )] = 10 log10
��

max
0 ≤ t ≤ NT

[|x (t ) |2]

Pavg

�� dB.
Here, the average power Pavg = E[|x (t ) |2]. A node’s signal detection on its subcarrier is very sen-

sitive to the nonlinear signal processing components used in the BS, i.e., the digital-to-analog con-

verter and high power amplifier (HPA), which may severely impair the bit error rate (BER) in

the nodes due to the induced spectral regrowth. If the HPA does not operate in the linear region

with a large power back-off due to high PAPR, then the out-of-band power will exceed the speci-

fied limit and introduce severe ICI [24]. Moreover, the in-band distortion (constellation tilting and

scattering) due to high PAPR may cause severe performance degradation [25]. It has been shown

that the PAPR reduction results in significant power saving at the transmitters [10].

As shown in Figure 3, the PAPR in the SNOW downlink communications (for N = 64) follows

the Gaussian distribution. Thus, the peak signal occurs quite rarely and the transmitted D-OFDM

signal will cause the HPA to operate in the nonlinear region, resulting in a very inefficient am-

plification. To illustrate the power efficiency of the HPA for N = 64, let us assume the probability

of the clipped D-OFDM frames is less than 0.01%. We thus need to apply an input back-off [10]

equivalent to the PAPR at a probability of 10−4. Here, PAPR ≈ 14 dB or 25.12. Thus, the efficiency

(η = 0.5/PAPR) of the HPA [24] is η = 0.5/25.12 ≈ 1.99%. Such low efficiency at the HPA motivates

us to explore the high PAPR in SNOW for practical deployments. Several uplink PAPR reduction

techniques for single-user OFDM systems have been proposed (see survey [24]). However, the

characteristics of the downlink PAPR in SNOW, where different data are concurrently transmitted

to different nodes, are entirely different from the PAPR observed in a single-user OFDM system. To

adopt an uplink PAPR reduction technique used in the single-user OFDM systems for the downlink

PAPR reduction in SNOW, each node has to process the entire data frame transmitted by the BS

and then demodulate its own data. However, a SNOW node has less computational power and does

not apply FFT to decode its data [51], or any other node’s data. Thus, the existing PAPR reduction

techniques will not work in our implementation.

We propose to handle the PAPR problem in SNOW by using only one subcarrier (called downlink

subcarrier) for downlink communication. All the nodes use this subcarrier to receive from the BS.

Namely, the Tx-Radio transmits only on one subcarrier that is not used by any node for uplink

communication. The BS may send any broadcast message, ACK, or data to the nodes using that

downlink subcarrier. A node has to switch to the downlink subcarrier to listen to any broadcast

message, ACK, or data. The BS may reserve multiple subcarriers as backup subcarriers for downlink

communication. If the currently used downlink subcarrier becomes overly noisy or unreliable,

then it can be replaced by a backup subcarrier. Note that the dual-radio in the BS allows it to

receive concurrent packets from a set of nodes (uplink) and transmit broadcast/ACK/data packets
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to another set of nodes (downlink), simultaneously. The BS can acknowledge several nodes using

a single transmission by using a bit-vector of size equals to the number of subcarriers. If the BS

receives a packet from a node operating on subcarrier i , then it will set the ith bit in the bit-vector.

Upon receiving the bit-vector, that node may get an ACK by looking at the ith bit of the vector.

Because of the bit-vector, the downlink ACKs also scale up like the uplink traffic. In the case of

different packets for different nodes, the volume of downlink traffic (compared to the uplink traffic)

is also practical, since the IoT applications may not require high volume downlink traffic [43].

When a node u transmits to the BS, if another node v sharing the same subcarrier wants to

transmit,v senses the channel as busy and refrain from transmitting. When the BS transmits ACK

to u on the downlink subcarrier using the Tx-Radio, node v may also transmit to the BS. Since

the Tx-Radio at that time is making a downlink transmission, it may not send the ACK upon v’s

transmission immediately. However, the Tx-Radio can send v’s ACK immediately after complet-

ing its current downlink transmission. Thus, v may need to wait for ACK for a little longer than

the time needed to send a downlink transmission from the BS. A node may go to sleep mode or its

next state right after receiving an ACK. However, a node that has not received the ACK for a sent

packet should wait for a little longer (e.g., up to one or two downlink transmission times). Note

that a very few nodes (sharing the same subcarrier) may be involved in this scenario, since the

ACK generation time at the BS is very small. For the same reason, the waiting time for ACK will

also not be very long (e.g., up to one or two downlink transmission time). Note that this scenario

is quite rare and most of the times the nodes will receive ACK immediately upon transmission.

3.3 Channel State Information Estimation

Multi-user OFDM communication requires channel estimation and tracking to ensure high data

rate at the BS. One way to avoid channel estimation is to use the differential phase-shift keying

(DPSK) modulation. DPSK, however, results in a lower bitrate at the BS due to a 3 dB loss in

the signal-to-noise ratio (SNR) [12]. Additionally, the current SNOW design does not support

DPSK modulation. SNR at the BS for each node is different in SNOW. Also, SNR of each node

is affected differently due to channel conditions, deteriorating the overall bitrate in the uplinks.

Thus, it requires handling of the channel estimation in SNOW.

Figure 4 shows the experimentally found received signal strength indicator (RSSI), path loss,

and BER at the SNOW BS for a CC1310 device that transmits successive 1000 30-byte (payload)

packets from 200- to 1000-m distances, respectively, with a Tx power of 15 dBm, subcarrier center

frequency at 500 MHz, and a bandwidth of 98 kHz. Figure 4(a) indicates that the RSSI decreases

rapidly with the increase in distance. Also, the path loss in Figure 4(b) shows that it is significantly

higher than the theoretical free space loss [45]. We also compare with the Okumura–Hata [45] loss

to check if it fits the model; however, it does not. Finally, Figure 4(c) confirms that the BER goes

above 10−3 (which is not acceptable [22]) beyond 400 m due to the unknown channel conditions.

Figure 4(c) also shows that the BER worsens for an increase in the subcarrier bandwidth. Thus, to

make our implementation more resilient, we need to incorporate the CSI estimation in SNOW.

We calculate the CSI for each SNOW node independently on its subcarrier. We consider a slow

flat-fading model [56], where the channel conditions vary slowly with respect to a single node to

BS packet duration. Note that joint-CSI estimation [23, 46] in SNOW is not our design goal, since

it would require SNOW nodes to be strongly time-synchronized. Similarly to IEEE 802.16e, we run

CSI estimation independently for each node because of their different fading and noise character-

istics. In the following, we explain the CSI estimation technique for one node on its subcarrier for

each packet. The BS uses the same technique to estimate CSI for all other nodes.

For a node, in a narrowband flat-fading subcarrier, the system is modeled as y = Hx +w ,

where y, x , and w are the receive vector, transmit vector, and noise vector, respectively. H is the

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 30. Publication date: May 2021.



30:8 M. Rahman et al.

Fig. 4. RSSI, path loss, and BER at the SNOW BS for a TI CC1310 node.

channel matrix. We model the noise as additive white Gaussian noise, i.e., a circular symmetric

complex normal (CN) with w ∼ CN (0,W ), where the mean is zero and noise covariance matrix

W is known. As the subcarrier conditions vary, we estimate the CSI on a short-term basis based

on popular approach called training sequence. We use the known preamble transmitted at the be-

ginning of each packet. H is estimated using the combined knowledge of the received and the

transmitted preambles. To make the estimation robust, we divide the preamble into n equal parts

(preamble sequence). For example, n = 4, which is similar to the estimation in IEEE 802.11.

Let the preamble sequence be (p1,p2, . . . ,pn ), where vector pi is transmitted as yi = Hpi +wi .

Combining the received preamble sequences, we get Y = [y1, . . . ,yn] = HP +W , where P =
[p1, . . . ,pn] and W = [w1, . . . ,wn]. With combined knowledge of Y and P , channel matrix H is

estimated. Similarly to the CSI estimation in the uplink communications by the BS, each node also

estimates the CSI during its downlink communications. Note that the computational complexity

of CSI estimation at the nodes is lightweight, since each SNOW packet has a 32-bit preamble [51],

divided into four equal parts. A node thus processes a vector of only 8 bits at a time.

3.4 Carrier Frequency Offset Estimation

Multi-user OFDM systems are very sensitive to the CFO between the transmitters and the re-

ceiver. CFO causes the OFDM systems to lose orthogonality between subcarriers, which results

in severe ICI. A transmitter and a receiver observe CFO due to (i) the mismatch in their local os-

cillator frequency as a result of hardware imperfections and (ii) the relative motion that causes

a Doppler shift. ICI degrades the SNR between an OFDM transmitter and a receiver, which re-

sults in significant BER. Thus, we investigate the needs for CFO estimation in our implementa-

tion. The loss in SNR due to the CFO between the SNOW BS and a node can be estimated as

SNRloss = 1 + 1
3 (πδ f T )2 Es

N0
[38], where δ f is the frequency offset, T is the symbol duration, Es

is the average received subcarrier energy, and N0/2 is the two-sided spectral density of the noise

power.
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Fig. 5. BER at different Eb/N0.

To observe the effects of CFO, we choose two neighboring orthogonal subcarriers in the BS and

send concurrent packets from two nodes at 200m distance. Each node sends successive one thou-

sand 30-byte packets. We repeat this experiment varying the transmission powers at the nodes to

generate signals with different Eb/N0, where Eb is the average energy per bit in the received sig-

nals. Figure 5 shows the BER at the BS while receiving packets from these two nodes. This figure

shows that BER is nearly 10−3 even for very high Eb/N0 (≈40 dB), which is also very high com-

pared to the theoretical BER [14]. Thus, CFO is heavily pronounced in SNOW. The distributed and

asynchronous nature of SNOW does not allow CFO estimation similar to the traditional multi-user

OFDM systems. While the USRP-based SNOW implementation provides a trivial and coarse CFO

estimation, it is not robust and does not account for the mobility of the nodes [51]. We propose a

pilot-based robust CFO estimation technique, combining both coarse and finer estimations, which

accounts for the mobility of the nodes as well. We use training symbols for CFO estimation in an

ICI free environment for each node independently, while it joins the network by communicating

with the BS using a non-overlapping join subcarrier.

We explain the CFO estimation technique between a node and the BS (uplink) on a join subcar-

rier f based on time-domain samples. Note that the BS keeps running the G-FFT on the entire BS

spectrum. We thus extract the corresponding time-domain samples of the join subcarrier by apply-

ing IFFT during a node join. The join subcarrier does not overlap with other subcarriers; hence it is

ICI-free. If fnode and fBS are the frequencies at a node and the BS, respectively, then their frequency

offset δ f = fnode − fBS. For transmitted signal x (t ) from a node, the received signal y (t ) at the BS

that experiences a CFO of δ f is given by y (t ) = x (t )e j2π δ f t . Similar to IEEE 802.11a, we estimate

δ f based on short and long preamble approach. Note that the USRP-based implementation has

considered only one preamble to estimate CFO. In our implementation, the BS first divides a n-bit

preamble from a node into short and long preambles of lengths n/4 and 3n/4, respectively. Thus

for a 32-bit preamble (typically used in SNOW), the lengths of the short and long preambles are 8

and 24, respectively. The short preamble and the long preamble are used for coarse and finer CFO

estimation, respectively. Considering δts as the short preamble duration and δ fs as the coarse CFO

estimation, we have y (t − δts ) = x (t )e j2π δ fs (t−δ ts ) .
Since y (t ) and y (t − δts ) are known at the BS, we have

y (t − δts )y∗ (t ) = x (t )e j2π δ fs (t−δ ts )x∗ (t )e−j2π δ fs t = |x (t ) |2e j2π δ fs−δ ts .

Taking angle of both sides gives us the following:

�y (t − δts )y∗ (t ) = �|x (t ) |2e j2π δ fs−δ ts = −2πδ fsδts .

By rearranging the above equation, we get

δ fs = −
�y (t − δts )y∗ (t )

2πδts
.
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Now that we have the coarse CFO δ fs , we correct each time domain sample (say, P ) received in

the long preamble as Pa = Pae
−jaδ fs , where a = {1, 2, . . . ,A} and A is the number of time-domain

samples in the long preamble. Taking into account the corrected samples of the long preamble and

considering δtl as the long preamble duration, we estimate the finer CFO as follows:

δ f = −�y (t − δtl )y∗ (t )

2πδtl
. (1)

To this extent, considering the join subcarrier f , the parts per million (ppm) on the BS’s crystal

is given by ppmBS = 106
(

δ f

f

)
. Thus, the BS calculates δ fi on subcarrier fi (assigned for node i) as

δ fi =
(fi ∗ppmBS )

106 . The CFO between the Tx-Radio and the Rx-radio can be estimated using a basic

SISO CFO estimation technique [60]. Thus, BS also knows the CFO for the downlink.

We now explain the CFO estimation to compensate for the Doppler shift. Note that if the signal

bandwidth is sufficiently narrow at a given carrier frequency and mobile velocity, the Doppler

shift can be approximated as a common shift across the entire signal bandwidth [55]. Thus, the

Doppler shift in the join subcarrier for a node also represents the Doppler shift at its assigned

subcarrier, and hence the estimated CFO in Equation (1) is not affected due to the Doppler Shift.

For simplicity, we consider that a node’s velocity is constant and the change in Doppler shift is

negligible during a single packet transmission in SNOW. Considering δ fd as the CFO due to the

Doppler shift, v as the velocity of the node, and θ as the angle of the arrived signal at the BS

from the node, we have fd = fi
(

v
c

)
cos(θ ) [55], where fi is the subcarrier center frequency and c

is the speed of light. The node itself may consider its motion as circular and approximate θ = δs
r

,

where δs is the amount of anticipated change in position during a packet transmission and r is

the line-of-sight distance between the node and BS. Thus, CFO compensation due to the Doppler

shift is done at the nodes during uplink communications. In the downlink communications, the

BS Tx-Radio can also compensate for the node’s mobility as the node can report its Doppler shift

to the BS during the uplink communications.

In summary, as the nodes asynchronously transmit, estimating joint-CFO of the subcarriers at

the BS is very difficult. We thus use a simple feedback approach for proactive CFO correction in the

uplink communications. Specifically, δ fi estimated at the BS for subcarrier fi is given to the node

(during joining process at subcarrier fi ). The node may then adjust its transmitted signal based on

δ fi and δ fd , calculated as (δ fi + δ fd ), which will align its signal so that the BS does not need to

compensate for CFO in the uplink communications. Such feedback-based proactive compensation

scheme was studied before for multi-user OFDM and is also used in global system for mobile

communication (GSM) [11].

4 HANDLING THE NEAR-FAR POWER PROBLEM

Wireless communication is susceptible to the near-far power problem, especially in Code Division

Multiple Access [36]. Multi-user D-OFDM system in SNOW may also suffer from this problem.

Figure 6 illustrates the near-far power problem in SNOW. Suppose, nodes A and B are operating

on two adjacent subcarriers. Node A is closer to the BS compared to node B. When both nodes A

and B transmit concurrently to the BS, the received frequency domain signals from node A and B

may look as shown on the right of Figure 6. Here, transmission from node B is severely interfered

by the strong radiations of node A’s transmission. As such, node B’s signal may be buried under

node A’s signal making it difficult for the BS to decode the packet from node B. A typical SNOW

deployment may have such scenarios if the nodes operating on adjacent subcarriers use the same

transmission power and transmit concurrently at the BS from different distances.
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Fig. 6. An illustration of the near-far power problem. B is farther from the BS than A and both transmit

concurrently using the same Tx power.

Fig. 7. Packet delivery ratio at different Tx powers.

To observe the near-far power problem in SNOW, we run experiments by choosing 3 different

adjacent subcarriers, where the middle subcarrier observes the near-far power problem introduced

by both subcarriers on its left and right. We place two CC1310 nodes within 20 m of the BS that use

the left and the right subcarrier, respectively. We use another CC1310 node that uses the middle

subcarrier and is placed at different distances between 200 and 1000 m from the BS. Nodes that

are within 20 m of the BS transmit packets continuously with a transmission power of 0 dBm. At

each distance, for each transmission power between 8 and 15 dBm, the node that uses the middle

subcarrier sends 100 rounds of 1,000 consecutive packets (sends one packet then waits for the ACK

and then sends another packet, and so on) to the BS and with a random interval of 0–500 ms. For

each transmission power level, at each distance, that node calculates its average packet delivery

ratio (PDR). PDR is defined as the ratio of the number of successfully acknowledged packets to

the number of total packets sent. We repeat the same experiments for 7 days at 9 AM, 2 PM, and

6 PM.

Figure 7(a) shows that the average PDR increases at each distance with the increase in the

transmission power. Figure 7(b) depicts the result for 7-day experiments (only at a distance of

200 m) and shows that the average PDR changes at different time of the day. Overall, Figure 7(a)

and (b) confirms that the average PDR increases with the increase in the transmission power.

To ensure the energy-efficiency at the nodes, i.e., to find a transmission power that suffices to

eliminate the effects of near-far power problem, we propose an adaptive transmission power

control for the SNOW design, as described below.

4.1 Adaptive Transmission Power Control

Our design objective for the adaptive Tx power control is to correlate the subcarrier-level Tx power

and link quality (i.e., PDR) between each node and the BS. We thus formulate a predictive model

to provide each node with a proper Tx power to make a successful transmission to the BS using

its assigned subcarrier. Note that our work differs from the work in Reference [32] in fundamental
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concepts of the network design and architecture. In Reference [32], the authors have considered

a multi-hop wireless sensor network based on IEEE 802.15.4 with no concurrency between a set

of transmitters and a receiver. Additionally, our model is much more simpler, since we deal with

single hop communications. As such, the overheads (i.e., energy consumption and latency at each

node) associated with our model are fundamentally lesser than that in Reference [32], or the other

techniques developed for multi-hop wireless networks [31, 53]. In the following, we describe our

model.

Whenever a node is assigned a new subcarrier or observes a lower PDR, e.g., PDR below quality

of service (QoS) requirements due to mobility, it runs a lightweight predictive model to determine

the convenient Tx power to make successful transmissions to the BS. Our predictive model uses an

approximation function to estimate the PDR distribution at different Tx power levels. Over time,

that function is modified to adapt to the node’s changes. The function is built from the sample pairs

of the Tx power levels and PDRs between the node and the BS via a curve-fitting approach. A node

collects these samples by sending groups of packets to the BS at different Tx power levels. A node

may not be assigned new subcarriers or may not observe lower PDR due to mobility (as per our

CSI and CFO estimations) frequently. Thus, the overhead (e.g., energy consumption) for collecting

these samples may be negligible compared to the overall network lifetime (which is several years).

Specifically, our predictive model uses two vectors: TP and L, where TP = {tp1, tp2, . . . , tpm }
contains m different Tx power levels that the node uses to send m groups of packets to the BS

and L = {l1, l2, . . . , lm } contains the corresponding PDR values at different Tx power levels. Thus,

li represents the PDR value at Tx power level tpi . We use the following linear function to correlate

between Tx power and PDR,

l (tpi ) = a . tpi + b . (2)

To lessen the computational overhead in the node, we adopt the least square approximation tech-

nique to determine the unknown coefficients a and b in Equation (2). Thus, we find the minimum

of the function S (a,b), where S (a,b) =
∑ |li − l (tpi ) |2. The minimum of S (a,b) is determined by

taking the partial derivatives of S (a,b) with respect to a and b, respectively, and setting them to

zero. Thus, ∂S
∂a
= 0 and ∂S

∂b
= 0 give us

a
∑

(tpi )2 + b
∑

tpi =
∑

li .tpi and

a
∑

tpi + bm =
∑

li .

Simplifying the above two equations, we find the estimated values of a and b as follows:[
â

b̂

]
=

1

m
∑

(tpi )2 − (
∑
tpi )2

×
[

m
∑
li .tpi −

∑
li
∑
tpi∑

li
∑

(tpi )2 −∑ li .tpi
∑
tpi

]
Using the estimated values of a and b, the node can calculate the appropriate Tx power as follows:

tp =
[PDRthreshold − b̂

â

]
∈ TP . (3)

Here, PDRthreshold is the threshold set empirically or according to QoS requirements, and [.] denotes

the function that rounds the value to the nearest integer in the vector TP .

Now that the initial model has been established in Equation (3), this needs to be updated con-

tinuously with the node’s changes over time. In Equation (2), both a and b are functions of time

that allow the node to use the latest samples to adjust the curve-fitting model dynamically. It is

empirically found that (Figure 7(a)) the slope of the curve does not change much over time; hence
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Fig. 8. The SNOW architecture for practical deployment (the PC may be replaced by a Raspberry Pi device;

the two USRP B200 devices can be replaced by a USRP B2100 device that has two half-duplex radios.)

a is assumed time-invariant in the predictive model. However, the value of b changes drastically

over time (Figure 7(b)). Thus, Equation (2) is rewritten as follows that characterizes the actual

relationship between Tx power and PDR,

l (tp (t )) = a.tp (t ) + b (t ).

Now, b (t ) is determined by the latest Tx power and PDR pairs using the following feedback-based

control equation [32],

Δb̂ (t ) = b̂ (t ) − b̂ (t + 1)

=

∑K
k=1[PDRthreshold − lk (t − 1)]

K
= PDRthreshold − l (t − 1). (4)

Here, l (t − 1) is the average value of K readings denoted as

l (t − 1) =

∑K
k=1 lk (t − 1)

K
.

Here, lk (t − 1), for k = {1, 2, . . . ,K }, is one reading of PDR during the time period t − 1 and K is

the number of feedback responses at time period t − 1. Now, the error in Equation (4) is deducted

from the previous estimation; hence the new estimation of b (t ) can be written as: b̂ (t ) = b̂ (t − 1) −
Δb̂ (t ). Given the newly estimated b̂ (t ), the node now can set the Tx power at time t as

tp (t ) =
[PDRthreshold − b̂ (t )

â

]
.

5 NETWORK ARCHITECTURE AND DEPLOYMENT COST

In this section, we discuss the practical applicability of our implementation. Figure 8 shows our

network view. The SNOW BS is a PC that connects two USRP B200 devices (Tx-Radio and Rx-

Radio). The BS is also connected to the Internet. In the BS, a USRP B210 device may be used that

has two half-duplex radios. Also, a Raspberry Pi device may be used instead of the PC. All the

CC13x0 nodes are battery-powered and directly connected to the BS.

We now analyze the deployment cost of our CC13x0-based SNOW implementation and com-

pare with the original USRP-based SNOW implementation in Reference [51]. Figure 9 shows the

total deployment cost of our CC13x0-based SNOW implementation for different numbers of nodes

between 1,000 and 10,000. A CC1310 or CC1350 device costs approximately $30 USD (retail price).
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Fig. 9. Practical deployment cost with numerous nodes.

The price for the BS is approximately $1600 USD (two USRP B200 devices $750 USD each, and

two antennas $50 USD each). In this comparison, the cost of the PC is not considered, since it

is common for both implementations. For SNOW implementation in Reference [51], a node is a

USRP B200 device that has an antenna and runs on a Raspberry Pi. A Raspberry Pi device costs

approximately $35 USD.

To provide an insight into the deployment cost of a LoRaWAN network, we consider the Dragino

LoRa/GPS-Hat (e.g., SX1276 chip) that runs on Raspberry Pi and costs approximately $32 USD (re-

tail price) [15]. We choose this LoRaWAN node, since it has almost identical computational and RF

capabilities, compared to the TI CC13x0 devices (e.g., both have the Cortex-M series MCU, similar

energy profiles, same set of sensors, and software support). In addition, we consider a LoRaWAN

gateway that costs approximately $299 USD and can receive packets on multiple channels simul-

taneously [1]. We rule out cheaper LoRaWAN devices (costs ≈$10 USD) from the calculation, since

they do not have a similar profile as CC13x0 and do not provide software support.

As shown in Figure 9, to deploy an LPWAN with 1000 nodes, the CC13x0-based SNOW im-

plementation may cost approximately $31.6K USD, compared to $836.6K USD for the USRP-based

SNOW implementation proposed in Reference [51], and $67.3K USD for the Dragino LoRa-Hat-

based LoRaWAN. For a deployment of 10,000 nodes, the costs are $301.6K, $8.3M, and $670.3K

USD for CC13x0-based SNOW implementation, USRP-based SNOW implementation, and Dragino

LoRa-Hat-based LoRaWAN, respectively. As shown in Figure 9, the cost of each LPWAN increases

linearly with the increase in the number of nodes. However, the cost of our CC13x0-based SNOW

implementation in unnoticeable. Our new implementation of SNOW on the CC13x0 devices thus

becomes highly scalable in terms of cost, making SNOW deployable for practical applications.

6 EVALUATION

In this section, we provide an extensive evaluation (both uplink and downlink performances) of

our CC13x0-based SNOW implementation, considering both stationary and mobile CC13x0 nodes.

6.1 Setup

Figure 10 shows our deployment in the city of Detroit, Michigan. Specifically, we deploy 22 CC1310

devices and 3 CC1350 devices (25 CC13x0 devices in total). Due to our limited resources (e.g., bat-

teries/power supply options outdoors), we create five (denoted by black pins) different clusters

from 25 nodes at distances 200, 400, 600, 800, and 1,000 m from the BS (denoted by orange pin

as well as a label). In each cluster, we randomly place 5 CC1310 devices or a mixture of CC1310

and CC1350 devices that are connected to a laptop via a USB hub so that they can operate with-

out interruptions. In our deployment, one group of nodes may be hidden from another group of

nodes, thus creating hidden terminal scenarios. For example, the nodes at 1.05 km and 800 m (see

Figure 10) may be hidden from each other, since they are placed in the opposite directions of the
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Fig. 10. SNOW deployment in Detroit, Michigan.

BS. We use a white space channel with frequency band 500–506 MHz and split into 29 (numbered

1–29) overlapping (50%) orthogonal subcarriers, each 400 kHz wide. The USRP-based SNOW also

uses a similar subcarrier bandwidth [51]. We use the 28th subcarrier as the join subcarrier and the

26th subcarrier as the downlink subcarrier. We do not use the 29th and the 27th subcarriers so that

the join subcarrier may remain ICI-free. The remaining 25 subcarriers are assigned to different

nodes.

We use the packet structure of the CC13x0 devices (preamble: (32 bits), sync word: (32 bits),

paylod length:, payload: variable length, and CRC (16 bits)). Our default payload length is 30

bytes and contains random data. Our default bandwidth at the CC13x0 nodes is 39kHz. We use

OOK modulation supported by the CC13x0 devices. Unlike the USRP-based SNOW, we do not use

any spreading factor. Since the subcarrier bandwidths at the BS and the CC13x0 nodes are 400 and

39 kHz, respectively, the oversampling at each subcarrier in the BS compensates for the spreading

factor. Our default transmission power at the BS and the nodes is 15 dBm. However, a CC13x0

device may choose to operate with any transmission power between 0 and 15 dBm, as needed

by our ATPC model. The receive sensitivity at the BS is set to −114 dBm, as per the white space

regulations [43]. Unless stated otherwise, these are the default parameter settings.

6.2 Reliability over Long Distance

6.2.1 Achievable Distance. We first test the achievable communication range of CC13x0-based

SNOW. We take one CC13x0 device and transmit to the BS from different distances between 200

and 1,000 m. We keep our antenna height at 3 m above the ground for both the BS and node. At each

distance, each CC13x0 transmits 1,000 packets with a random interval between 0 and 500 ms. The

transmission power is set to 15 dBm. To show comparison, we repeat the same experiments without

compensating for CSI and CFO as well. Additionally, we test the achievable distance between two

LoRa SX1276 devices (bandwidth: 125 kHz, spreading factor: 12, coding rate: 4/5) with the above

settings. We choose a bandwidth of 125 kHz in LoRa, since it is the closest value compared to the

bandwidth in CC13x0 (39 kHz).

Figure 11(a) shows that the packet reception rate (PRR) at the SNOW BS when packets are

sent with and without compensating for CSI and CFO, comparing with LoRa. PRR is defined as the

ratio of the number of successfully decoded packets to the number of total packets sent. As shown

in this figure, with CSI and CFO compensation, the BS achieves 95% of PRR from a distance of 1

km . Without CSI and CFO compensation, the PRR at the BS is as low as 30% from 1 km distance.

This figure also shows that a LoRa SX1276 device can deliver packets to another over 1 km with a

PRR of 96%, which is similar to the CC13x0-based SNOW node (CSI and CFO compensated). The

results thus demonstrate that SNOW on the new platform is highly competitive against LoRa, an

LPWAN leader that operates in the ISM band. Additionally, we find that beyond approximately 1

km, PRR stars decreasing in our implementation. Our best guess is that if we can place the BS or
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Fig. 11. Reliability in long distance communication.

the node at a higher altitude (FCC allows up to 30 m), we may achieve high reliability over much

longer communication range.

6.2.2 Uplink Reliability. To show the uplink reliability under concurrent transmissions from

different numbers of nodes (CFO and CSI compensated), we transmit from 1, 5, 10, 15, 20, and 25

nodes to the BS, respectively. In this experiment, all the nodes are distributed within 200 and 1,000

m of the BS, as shown in Figure 10. Each node uses different subcarrier bandwidths between 39 and

392 kHz. For each bandwidth starting from 39 kHz, a node sends consecutive 1,000 packets. Be-

tween each bandwidth, a node sleeps for 500 ms. Thus, the BS knows the change in the bandwidth.

Note that in practical deployment scenarios, a node can let know the BS of its bandwidth during the

joining process. In this experiment, we show the performance of a node for different bandwidths.

Figure 11(b) shows that we can achieve up to 99% PRR when 25 nodes transmit concurrently using

39 kHz, and up to 98.1% PRR using 392 kHz. Additionally, the number of concurrent transmissions

does not affect the trend in PRR for any given bandwidth. Thus, ensuring high uplink reliability

of our CC13x0-based implementation over long distances.

6.2.3 Downlink Reliability. In the downlink, we test the reliability by sending 100 consecutive

30-byte (payload length) packets to each of the 25 nodes that are distributed within 200 and 1,000

m of the BS. We repeat the same experiment 50 times with an interval between 0 and 500 ms. In

this experiment, we compensate for both CSI and CFO. Figure 11(c) shows our downlink reliability

at different distances observed by different nodes. For better representation, we cluster the nodes

that are located approximately at the same distance and plot the PRR against distance. As shown in

this figure, the PRR in the downlink is as high as 99% for 75% of the nodes that are approximately

200 m away from the BS. Also, 75% of the nodes that are approximately 1 km away from the BS

achieve a PRR of 96%. Thus, this experiment confirms high downlink reliability of our CC13x0-

based implementation over long distances.
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Fig. 12. Network performance in uplink under varying number of nodes.

6.3 Performance in Uplink Communication

In this section, we evaluate the uplink network performance in terms of throughput (achievable

bitrate), end-to-end delay (time between the transmission and ACK reception of a packet), and

energy consumption. We allow from 1, 5, 10, 15, 20, and 25 nodes to transmit concurrently to

the BS, respectively. We distribute the nodes between 200 and 1,000 m in our testbed. Each node

transmits 1,000 30-byte (payload length) packets with a random packet interval between 0 and

100 ms. Such packet interval confirms that the node’s transmissions are indeed asynchronous to

the BS. Each node uses a bandwidth of 39 kHz. We evaluate the uplink network performance for

three different cases: (1) nodes or/and BS compensate for CSI, CFO, and ATPC; (2) nodes or/and

BS compensate only for CSI and CFO, but not ATPC; (3) nodes or/and BS do not compensate for

CSI, CFO, and ATPC. Note that ATPC applies to the nodes only, and hence we use ”or/and” in the

above three cases. For each case, we run the experiments as long as at least 90% of the packets are

delivered to the BS. A node may thus try several retransmissions.

6.3.1 Throughput. Figure 12(a) shows that the BS achieves 279 kbps of throughput when 25

nodes transmit concurrently (case 1), yielding approximately 11.16 kbps per node. Additionally,

the overall throughput at the BS increases linearly with an increase in the number of nodes trans-

mitting concurrently. When only CSI and CFO are compensated for, the overall throughput at the

BS also increases with an increase in the number of concurrent transmissions, however, it depends

on the nodes’ distribution (physical) across the network. If there is no near-far power problem, then

the overall throughput may be the same as observed in case 1. With no compensation, the through-

put per node is approximately 5 kbps, thus more than 2× lesser than case 1. Note that a CC13x0

device can generate a baseband signal with a symbol rate of 11.2 kbaud (OOK modulated). Thus,

using a node bandwidth of 39 kHz or 392 kHz will not affect the per node throughput. However,

a lower node bandwidth gives higher PRR (Section 6.2) due to longer symbol duration, combating

the ICI to some extent. Additionally, if we use any other COTS device that can generate a higher
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Fig. 13. Average throughput per node in downlink.

symbol rate for OOK at higher node bandwidth, the per node throughput may also increase with

an increase in the node bandwidth. Similarly, adopting a quadrature amplitude modulation

(QAM) or frequency modulation (FM) (both yet to be explored in SNOW) at the nodes may

increase the throughput at the SNOW BS. In the future, we shall adopt QAM-based or FM-based

modulations in SNOW. Overall, our CC13x0-based SNOW implementation shows high potential

for practical deployments of low-rate IoT applications [21, 43].

6.3.2 End-to-end Delay. Figure 12(b) shows the average end-to-end delay per packet at the

nodes. When CSI, CFO, and ATPC are compensated for, the average end-to-end delay per packet

in the network is 53 ms with 25 concurrent transmissions. Also, for case 1, the average end-to-end

delay per packet almost remains constant for any number of concurrent transmissions. For case 2,

where only CSI and CFO are compensated for, the average end-to-end delay per packet increases

a little bit with an increase in the number of concurrent transmissions. With no compensation,

the average end-to-end delay per packet increases almost linearly with an increase in the number

of concurrent transmissions. The reason is that a node retransmits several packets several times.

Overall, our CC13x0-based SNOW implementation shows great promise for low-latency Industry

4.0 applications and their deployments [35].

6.3.3 Energy Consumption. Figure 12(c) shows the average energy consumption per bit at the

nodes. We use the CC13x0 energy profile to calculate the energy consumption during Tx, Rx, and

idle time [2]. For case 1, where the CSI, CFO, and ATPC are compensated for, the average energy

consumption per bit in the network is approximately 11.6 μJ with 25 concurrent transmissions.

Also, the average energy consumption per bit almost remains constant for any number of concur-

rent transmissions. For case 2, where only CSI and CFO are compensated for, the average energy

consumption per bit increases to 16 μJ for 25 concurrent transmissions. Also, when nothing is

compensated for, the average energy consumption per packet increases almost linearly with an

increase in the number of concurrent transmissions. The reason is that a node retransmits several

packets several times. Overall, small energy consumption in case 1 confirms that our CC13x0-based

SNOW implementation may host long-lasting deployments.

6.4 Performance in Downlink Communication

In this section, we evaluate the downlink network performance in terms of throughput. The BS

sends 1,000 consecutive 30-byte (payload length) packets to each of the 25 nodes. Also, the BS and

the nodes compensate for both CSI and CFO. In the downlink, the BS uses a Tx bandwidth of 39

kHz. We repeat the above experiment without compensating for CSI and CFO as well. Figure 13

shows the average throughput per node at different distances. For better representation, we clus-

ter the nodes that are located approximately at the same distance and plot average throughput

against the distance. As shown in this figure, a node that is approximately 200 m away from the
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Fig. 14. Throughput and energy consumption under mobility.

BS can achieve an average downlink throughput of 4.75 kpbs, while both the BS and the node

compensate for CSI and CFO. The average throughput remains almost the same as those observed

at other distances, up to 1km as well. In contrast, the average throughput drops sharply with an

increase in the distance when CSI and CFO are not compensated for. Note that a CC13x0 device

can successfully receive an OOK-modulated signal with 4.8 kbaud symbol rate and 39-kHz band-

width [40]. Overall, our CC13x0-based SNOW implementation holds the potentials for low-rate

IoT applications.

6.5 Performance under Mobility

In this section, we evaluate the network performance under CC13x0 node’s mobility in terms of

throughput, energy consumption, and end-to-end delay. We allow all 25 nodes to transmit con-

currently to the BS. However, due to our limited resources, we enable mobility in only one node

that is approximately 600 m far from the BS and calculate its performance. All nodes except the

mobile node continuously transmit to the BS 30-byte (payload size) packets with a random inter-

val between 0 and 50 ms, using their assigned subcarriers, each 39 kHz wide. Our CFO estimation

technique (Section 3.4) allows a mobile node to travel in any direction but at a uniform speed dur-

ing a packet transmission. We vary the speed of the mobile node for different packets to 5 mph, 10

mph, and 20 mph in any arbitrary direction within our network range. At each speed, we change

the payload size of the mobile node between 10 and 120 bytes. For each payload size, the mobile

node transmits to the BS 1,000 packets with a random interval between 0 and 50 ms. We run ex-

periments with the above settings for two cases: (1) the mobile node or/and the BS compensate for

CSI, CFO, and ATPC; (2) the mobile node or/and the BS do not compensate for CSI, CFO, and ATPC.

6.5.1 Throughput. Figure 14(a) shows the throughput at the BS (of the mobile node) for dif-

ferent speeds and payload sizes. As this figure suggests, the throughput decreases slightly from

11.18 to 10.3 kbps at 5 mph, 10.35 kbps at 10 mph, and 10.3 kbps at 20 mph for an increase in the

payload size between 10 and 120 bytes, as CSI, CFO, and ATPC are compensated for. When the

mobile node or/and the BS do not compensate for CSI, CFO, and ATPC, the throughput decreases

sharply with an increase in speed and packet size. For example, at 20 mph, the throughput drops

to approximately 0 for payload size of 60 bytes. In general, the packet size is susceptible to node’s

mobility. In fact, if CSI and CFO are not compensated for, then the effects of unknown channel

conditions and frequency offset ripple through a longer packet and increase the BER. Thus, our

SNOW implementation is resilient and robust under the mobility of the nodes.

6.5.2 Energy Consumption. Figure 14(b) shows an interesting behavior of the energy consump-

tion per bit of the CC13x0 devices. At each speed (CSI, CFO, or/and ATPC compensated), the aver-

age energy consumption per bit decreases when we increase the payload size from 10 to 60 bytes.
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Fig. 15. End-to-end delay analysis of mobile node under varying payload length.

But, when we increase the payload size beyond 60 bytes (e.g., 90 and 120bytes), the energy con-

sumption per bit starts to increase. For example, the average energy consumption per bit (at 5mph)

for payload sizes 10, 30, 60, 90, and 120 bytes are 22.2, 11.8, 9.3, 11.2, and 12.1 μJ, respectively. At

speeds 10 and 20 mph, the trends in energy consumption per bit are also similar to the above trend.

To the best of our knowledge, CC13x0 devices show such behavior due to their arbitrary end-to-

end delays of packets with different payload lengths (to be discussed in Section 6.5.3). Overall, a

payload of length 60 bytes may be preferable (in terms of energy per bit) in the CC13x0-based

SNOW implementation.

6.5.3 End-to-end Delay. Figure 15(a) shows that the average per-packet end-to-end delay at

the mobile node increases with an increase in speed and payload size. For example, at 5mph, the

average per-packet end-to-end delays with payloads of sizes 10, 30, 60, 90, and 120 bytes are 35, 56,

88, 160, 200 ms, respectively; at 20 mph, the average end-to-end delays are 42, 65, 93, 170, 220 ms,

respectively. Note that these delays in terms of payload lengths are in fact arbitrary. For example,

the ratio between the delays of 30-byte and 10-byte payloads is not 30/10 = 3× but 56/35 = 1.6× at

5 mph and 65/42 ≈ 1.5× at 20 mph speed at the node.

Figure 15(b) shows the cumulative distribution function (CDF) of the end-to-end delay at

a constant speed of 5 mph with varying payload sizes. This figure shows that 60% of the 10-byte

(payload length) packets observe an end-to-end delay more than 35 ms, 65% of the 30-byte (payload

length) packets observe an end-to-end delay more than 55 ms, 50% of the 60-byte (payload length)

packets observe an end-to-end delay more than 90 ms, 98% of the 90-byte (payload length) packets

observe an end-to-end delay more than 150 ms, and 95% of the 120-byte (payload length) packets

observe an end-to-end delay more than 195 ms. Furthermore, Figure 15(c) shows the CDF of end-

to-end delays for a fixed payload length of 30 bytes at varying speed. As this figure shows, 98% of

the packets at 5 mph observe an end-to-end delay up to 55 ms, 99.99% of the packets at 10 mph

observe an end-to-end delay up to 60 ms, and 98% of the packets at 20 mph observe an end-to-end
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Fig. 16. Performance under interference.

delay up to 65 ms. Overall, Figure 15 confirms that our CC13x0-based SNOW implementation may

provide very low latency under the mobility of the nodes.

6.6 Performance in the Presence of Interference

In this section, we evaluate the performance of our implementation in the presence of interfer-

ence. Due to the COVID-19 restrictions, we limit this experiment in an indoor area of (20 × 30)

m2. We place a USRP B200 device within 10 m of the BS to act as an interferer. Within 200 ms

intervals, the interferer randomly operates near the 25 subcarriers used by the CC13x0 devices

and transmits random 40-byte payloads. The CC13x0 devices send packets to the BS concurrently

and incessantly from distances between 20 and 30 m. We let the interferer overlap 20%, 40%, 60%,

80%, and 100% with the legitimate subcarriers. For each magnitude of overlaps, we run this exper-

iment for 2 minutes. In Figure 16, we show the distribution of PRR at the BS (CSI, CFO, and ATPC

are compensated) for 30 runs of the above experiment. As shown in this figure, even with 100%

overlap, the PRR at the BS can be as high as 84%. For 60% overlap, the PRR at the BS is as high

as 92%. Overall, as we decrease the percentage of overlaps, the PRR increases at the BS. This ex-

periments thus confirms that the impact of external interference is less severe or negligible when

the interferer’s spectrum partially overlaps with the legitimate subcarriers in our CC13x0-based

SNOW implementation.

6.7 Performance Comparison with LoRaWAN

In this section, we experimentally compare the performance of our CC13x0-based SNOW imple-

mentation with a LoRaWAN network. We have eight Dragino LoRa/GPS-Hat Sx1276 transceivers

that can transmit or receive on a single channel. We create a LoRaWAN gateway capable of re-

ceiving on three channels simultaneously using three of our LoRa-Hats, while the remaining five

devices act as LoRaWAN nodes. For a fair comparison, we allow five SNOW nodes (3 CC1350 de-

vices and 2 CC1310 devices) to transmit to the SNOW BS, allowing only three subcarriers for data

Rx/Tx. Similarly, in LoRaWAN, five nodes transmit on three 500-kHz channels using a spreading

factor of 7 and a coding rate of 4
5 . In SNOW, the nodes use a subcarrier bandwidth of 392 kHz with

no bit spreading factor. While choosing 500 kHz or 392 kHz has no differentiable impact in our

CC13x0-based SNOW implementation (as discussed in Section 6.3), we choose the latter due to the

configurable Tx bandwidth limitation of the devices. The LoRaWAN gateway uses three adjacent

500-kHz channels in the 915-MHz frequency band (in the US), while the SNOW BS, in this setup,

uses three adjacent overlapping subcarriers, numbered 10, 11, and 12 (please refer to Section 6.1

for subcarrier allocation).

The above configuration for LoRaWAN will result in its best possible throughput and energy-

efficiency [51]. Additionally, choosing LoRaWAN’s largest spreading factor (e.g., 12) and 125-kHz

channel bandwidth for better reliability will make the comparison unfair with SNOW (e.g., SNOW
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Fig. 17. Uplink performance comparison between SNOW and LoRaWAN.

uses 392-kHz bandwidth and no spreading factor). Each node (for both LoRaWAN and SNOW)

transmits one thousand 30-byte (payload size) packets from a distance of approximately 1km to

the gateway/BS with a random inter-packet interval between 500 and 1,000 ms and a Tx power

of 15 dBm. Each node randomly hops to a different channel/subcarrier after sending 200 packets.

In LoRaWAN, the nodes use the pure ALOHA MAC protocol, and thus operating as the Class-

A LoRaWAN nodes [21]. In SNOW, the nodes use the lightweight CSMA/CA MAC protocol (as

discussed in Section 2.1). In the following, we compare LoRaWAN and SNOW in terms of reliabil-

ity, throughput, and energy consumption with the above settings. Note that achievable distance

comparison between SNOW and LoRaWAN has already been presented in Section 6.2.

6.7.1 Reliability Comparison with Parallel Tx/Rx. Figure 17(a) shows the PRR at the gateway/BS

for LoRaWAN and CC13x0-based SNOW implementation under varying number of nodes that

transmit concurrently. As shown in this figure, when only one node transmits, the PRR is ap-

proximately 95% in both LoRaWAN and SNOW. Also, the PRR of LoRaWAN decreases with the

increase in the number of parallel transmissions. For SNOW, it remains almost similar with the

increase in the number of parallel transmissions. For example, when 5 nodes transmit in parallel,

LoRaWAN achieves a PRR of 59%, compared to 87% in SNOW. Such performance degradation in

LoRaWAN happens as it uses an ALOHA-based MAC protocol without any collision avoidance.

The PRR of LoRaWAN may increase if we increase the inter-packet interval and will remain the

same for SNOW even if we decrease the inter-packet interval.

6.7.2 Throughput Comparison. Figure 17(b) shows the overall throughput (kbps) comparison at

the gateway/BS between LoRaWAN and SNOW. As shown in this figure, the throughput at the Lo-

RaWAN gateway is approximately 20.8 kbps, compared to 10.64 kbps at the SNOW BS when only

one node transmits. However, the throughput at the SNOW BS surpasses that at the LoRaWAN

gateway when 2 or more nodes transmit concurrently. As shown in Figure 17(b), the throughput
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at the SNOW BS is 48.12
12.9 ≈ 3.7× higher compared to LoRaWAN when five nodes transmit concur-

rently. The throughput in LoRaWAN decreases as we increase the number of LoRaWAN nodes

because of the following reason. The LoRaWAN nodes adopt the ALOHA-based MAC protocol.

Thus, a LoRaWAN node does not check if a channel is free before transmitting a packet, which

results in a collision with another ongoing packet transmission (if any) from a different LoRaWAN

node in the same channel. Consequently, both packets are lost as well as not considered in the

throughput calculation. Packet collisions might happen in our setup, since five LoRaWAN nodes

share three channels. Note that our setup is realistic, which emulates the scenario of having hun-

dreds of LoRaWAN nodes under a 64-channel (maximum possible) LoRaWAN gateway. For 100

LoRaWAN nodes, the channel to node ratio is 64
100 ≈

3
5 , which is also the same in our setup. The

SNOW nodes, however, avoid packet collisions on the same channel by adopting the CSMA/CA

MAC protocol. Compared to LoRaWAN, our CC13x0-based SNOW implementation thus observes

better throughput.

6.7.3 Energy Consumption Comparison. Figure 17(c) shows the per packet energy consump-

tion at the nodes of LoRaWAN and our CC13x0-based SNOW implementation. As the figure shows,

when five nodes transmit in parallel, a LoRaWAN node spends 3.7 μJ/bit, compared to 10.6 μJ/bit in

SNOW. Here, the per-bit energy consumption in SNOW is slightly higher than that in LoRaWAN.

However, this figure shows that the per-bit energy consumption increases in LoRaWAN and re-

mains almost steady in SNOW when the number of concurrent nodes increases. SNOW is designed

to enable a large number of concurrent transmissions to the BS and such a tendency in energy con-

sumption shows its energy efficiency under that scenario. However, the number of retransmissions

to deliver a packet increases with the increase in the number of nodes in LoRaWAN, thereby in-

creasing the per packet energy consumption. Due to a limited number of devices, we are unable to

demonstrate this in real experiment. Note that the LoRaWAN configuration used in this experiment

(e.g., channel bandwidth of 500 kHz, spreading factor of 7, coding rate of 4
5 ) is the most energy-

efficient (for a given Tx power) for an individual LoRaWAN node. As reported in Reference [58],

increasing the spreading factor increases energy consumption at the LoRaWAN nodes. Similarly,

decreasing the channel bandwidth also increases energy consumption at the LoRaWAN nodes [58].

6.8 Discussion on the Performance of CC1310 and CC1350

As we experiment with both CC1310 and CC1350 devices as the SNOW nodes (Sections 6.2–6.5),

we see no noticeable performance difference at the SNOW BS in terms of reliability and through-

put, compared to our previous experiments with the CC1310 devices only in Reference [40]. Sim-

ilarly, there is no noticeable performance difference in terms of end-to-end latency and energy

consumption between the two platforms. The reason is that our SNOW implementation is min-

imally invasive to the IoT devices having almost similar PHY layer properties. We envision that

any IoT device with a programmable PHY, capable of operating in the white spaces, and capable

of OOK/BPSK modulation may work as a SNOW node by addressing the same set of challenges as

described through Sections 3.3–4. In this article, we practically demonstrate this by implementing

SNOW on CC1310 and CC1350 devices and showing that their performance is similar.

7 RELATED WORK

Recently, a number of LPWAN technologies have been developed that operate in the licensed

(e.g., LTE Cat M1, NB-IoT, EC-GSM-IoT, and 5G) or unlicensed (e.g., LoRa, SigFox, RPMA

(INGENU), IQRF, Telensa, DASH7, WEIGHTLESS-N, WEIGHTLESS-P, IEEE 802.11ah, IEEE

802.15.4k, and IEEE 802.15.4g) spectrum [7, 13, 17, 21, 29, 43, 52]. Operating in the licensed band
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is costly due to high service fee and costly infrastructure. On the contrary, most non-cellular LP-

WANs including LoRa and SigFox operate in the sub-1-GHz ISM band, for example, between 902

and 928 MHz in the continents of North America and South America. While the ISM band is

unlicensed, it is heavily crowded due to the proliferation of LPWANs as well as other wireless

technologies in this band. To avoid the high cost of licensed band and the crowd of the ISM band,

SNOW was designed to exploit the TV white spaces. As reported in References [8, 21, 43, 50],

white spaces are widely available in both urban and rural areas, less crowded (compared to the

ISM band), and offer a wider spectrum (compared to the available frequency bands for LPWANs

in the ISM band) that a SNOW BS can utilize.

The existing work on white space focused on exploiting the white spaces for broadband ac-

cess [8, 19, 20, 30, 43, 54, 57, 59, 61–64] and spectrum determination through spectrum sensing [9,

26, 27, 33, 48] and/or geo-location database approach [16, 18, 34, 37, 63]. Alongside, various stan-

dards bodies (e.g., IEEE 802.11af, IEEE 802.15.4m, IEEE 802.19.1, IEEE 802.22, IEEE 1900.4a, IEEE

1900.7, and ECMA-392) and industry leaders (e.g., Microsoft and Google) have also targeted the

white spaces for unlicensed personal or commercial use [21, 28, 43, 47]. In contrast, SNOW, as

a LPWAN, exploits white spaces for highly scalable and wide-area sensor network applications.

With the rapid growth of IoT, LPWANs will suffer from crowded spectrum due to long range. It is

hence critical to exploit white spaces for IoT. Our article focuses on implementing SNOW using

the cheap and widely available COTS devices for practical and scalable deployment.

8 CONCLUSIONS

The recently proposed LPWAN technology—SNOW—has the potential to enable connectivity to

numerous IoT devices over long distances. However, the high cost and the large form-factor of the

USRP-based SNOW nodes hinder its practical deployments. In this article, we have implemented

SNOW for practical deployments using the CC13x0 devices as SNOW nodes. Our CC13x0-based

SNOW implementation decreases the cost and the form-factor of a single SNOW node by 25× and

10×, respectively. We have also addressed several practical deployment challenges that include

PAPR reduction, CSI estimation, CFO estimation, and near-far power problem. We have deployed

our CC13x0-based SNOW in the city of Detroit, Michigan and achieved per node uplink and down-

link throughputs of 11.2 and 4.8 kbps, respectively, over a distance of 1 km. Our experiments also

show that SNOW can achieve throughput several times higher than LoRaWAN under typical set-

tings. Finally, our extensive experiments have demonstrated the CC13x0-based SNOW as a feasible

LPWAN technology that can be deployed practically at low-cost and in large-scale for future IoT

applications.
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