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Abstract— Connected Autonomous Vehicular (CAV) platoon
refers to a group of vehicles that coordinate their movements
and operate as a single unit. The vehicle at the head acts as the
leader of the platoon and determines the course of the vehicles
following it. The follower vehicles utilize Vehicle-to-Vehicle
(V2V) communication and automated driving support systems
to automatically maintain a small fixed distance between each
other. Reliance on V2V communication exposes platoons to
several possible malicious attacks which can compromise the
safety, stability, and efficiency of the vehicles. We present a
novel distributed resiliency architecture, REPLACE for CAV
platoon vehicles to defend against adversaries corrupting V2V
communication reporting preceding vehicle position. REPLACE

is unique in that it can provide real-time defense against a spec-
trum of communication attacks. R EPLACE provides systematic
augmentation of a platoon controller architecture with real-time
detection and mitigation functionality using machine learn-
ing. Unlike computationally intensive cryptographic solutions
REPLACE accounts for the limited computation capabilities
provided by automotive platforms as well as the real-time
requirements of the application. Furthermore, unlike control-
theoretic approaches, the same framework works against the
broad spectrum of attacks. We also develop a systematic ap-
proach for evaluation of resiliency of CAV applications against
V2V attacks. We perform extensive experimental evaluation to
demonstrate the efficacy of R EPLACE.

I. INTRODUCTION

We are witnessing significant transformation in the trans-
portation industry with the infusion of autonomy and con-
nectivity in vehicular applications. These features have the
potential to significantly improve safety, efficiency, and sus-
tainability by reducing and eventually eliminating human
errors [13]. Unfortunately, one consequence is the increas-
ing vulnerability of vehicular applications to cyber-attacks.
Recent research has shown that it is feasible, and even de-
pressingly simple, to compromise the electronic components
of a vehicle and subvert its driving functionality [6], [12].
A particularly vulnerable component of connected vehicles
is vehicular communication. An adversary can subvert such
communication through a variety of means including fabri-
cation of false messages, mutating or preventing delivery of
legitimate messages, jamming the communication channels
[2], [11], [17], etc. Adoption of connected autonomous vehic-
ular applications depends critically on resiliency techniques
to protect against such attacks.

In this paper, we consider a quintessential connected
vehicle application, viz., connected autonomous vehicular
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platooning (“platooning” for short). In platooning, vehicles
are organized into strings where the goal is for each vehicle
to adapt its velocity in accordance with the rest of the platoon
while maintaining a fixed headway from its immediate neigh-
bor. Vehicles in a platoon coordinate their movement by ex-
changing position, velocity, and acceleration values through
vehicle-to-vehicle (V2V) messages. Platooning enables long
strings of vehicles to safely and efficiently follow each other,
thereby reducing fuel costs and travel time. However, attacks
on V2V communication can subvert the application, which
could lead to catastrophic accidents, inefficient utilization of
the roadway, ghost traffic jams, string instability, etc.

Our primary contribution is a real-time resiliency solution
for platooning. We develop an architecture, REPLACE (for
“Resilient Platoon Controller”), that systematically augments
a platoon controller with architectural components for real-
time detection and mitigation of V2V attacks using machine
learning (ML). This can be installed in any vehicle par-
ticipating in the platoon and offers protection against V2V
compromises. We refer to this vehicle as the ego vehicle. The
key insight behind R EPLACE is that it is possible to enable
an ML system to learn (and predict) the normal behavior
of the ego vehicle in a stable platoon, and consequently
detect an adversarial attack with perceptible impact as an
anomaly. We show how to make this idea work for realistic
platooning implementations and the trade-offs and design
choices involved to account for real-time constraints and the
limited computation available in automotive ECUs.

The paper makes several important contributions. First,
REPLACE represents, to our knowledge, the first comprehen-
sive real-time resiliency framework for multi-vehicle CAV
applications in general and platooning in particular against
V2V attacks. Furthermore, the resiliency solution “works”
even when multiple vehicles in the platoon are targeted by
an adversary simultaneously. Secondly, we present a com-
prehensive taxonomy of V2V attacks that enables systematic
navigation of the attack space. Third, we provide a flexible
experimental methodology for evaluating resiliency of CAV
applications against V2V attacks.

The remainder of the paper is organized as follows.
Section II provides the relevant background. In Section III we
discuss the threat model considered in the work and develop
an attack taxonomy based on the threat model. In Section IV,
we provide an overview of R EPLACE, focusing in particular
on the various constraints that need to be satisfied and the
design choices involved. We present our evaluation results
in Section V. We discuss related work in Section VI and



Fig. 1: A Vehicular Platoon System

conclude in Section VII.

II. BACKGROUND

A. Platooning Basics

A platoon is a string of vehicles operating as a single
unit by coordinating their movements through mutual in-
formation sharing via V2V communication and on-board
sensor systems. Vehicles typically share their instantaneous
position, velocity, acceleration or driving directives as V2V
messages. The goal of a platoon is to achieve maximum
fuel efficiency for all the vehicles while maintaining a safe
optimal headway. In the absence of V2V communications,
a platoon must maintain larger gaps between vehicles to
ensure sufficient response time for the on-board sensors.
However, with V2V communication this response time is
drastically reduced and the vehicles can safely maintain
a smaller headway between them. Connected autonomous
platoon applications are designed as either centralized or
distributed control systems with various information flow
topologies. In a centralized design, driving decisions of each
vehicle in the platoon are dictated by the driving directives
from the “leader, i.e., the first vehicle in the platoon. In a
distributed platoon system, each vehicle has its own control
system that determines how it adapts its velocity. A platoon
controller can utilize information from any subset of vehicles
in the platoon in its decision-making.

B. A Platooning Implementation

While the general framework of R EPLACE can be applied
on top of any platooning implementation, for our evaluation,
we consider the implementation of distributed CAV platoon
system proposed by Santini et al. [16]. In this implemen-
tation, each follower vehicle utilizes V2V communication
from the leader and its immediate preceding vehicle provid-
ing the instantaneous velocity and position. The distributed
controller in each vehicle is designed to minimize the relative
velocity to zero with respect to the leader and maintain a
constant headway close to 0.8s from its immediate preceding
vehicle. Figure 1 shows the corresponding information flow
topology.

III. INTRODUCTION TO PLATOON SECURITY

CAV platoons are susceptible to adversaries that exploit
vulnerabilities in either the vehicles’ hardware, software
or communication interfaces. Our research is focused on
adversaries that compromise V2V communications among
the vehicles of the platoon. Since V2V communication
provides crucial perception information, these attacks can
mislead the victim vehicles into making unsafe or inefficient

driving decisions resulting from inaccurate assessment of the
platoon behavior. In this section we develop a comprehensive
taxonomy of V2V adversaries exploiting platoon systems.
While the taxonomy is used specifically for evaluation of
REPLACE, the principle is applicable to other CAV applica-
tions and more complex threat models.

A. Threat Model

Our threat model accounts for adversaries capable of
corrupting the V2V communication originating from any fol-
lower (i.e., non-lead) vehicle in the platoon. In other words,
one or more vehicles in the platoon may receive corrupted
V2V communication from their preceding vehicles. For our
platoon implementation, since the preceding position is the
primary parameter communicated through V2V, adversarial
corruption can only result in wrong, misleading or unavail-
able value of this parameter. V2V communication from the
leader to the rest of the platoon is assumed to be trusted.
Furthermore, the on-board sensors, decision computing units
and actuarial modules of each vehicle in the platoon are
considered to be trusted.1 REPLACE is agnostic to the origin
of the attack: it can be a compromised communication
network component or ego vehicle on-board infrastructure,
or a rogue preceding vehicle, e.g., denial of message delivery
can be caused by exploiting the hardware/software modules
of the ego vehicle or through malicious interference with the
communication protocol.

B. A Taxonomy Of Adversaries

The V2V attack space is complex and diverse. Popular
communication attack mechanisms include denial of ser-
vice (DoS) through jamming or flooding, masquerading,
wormhole, man-in-the-middle (MITM), etc. Since automo-
tive security and CAV applications are both relatively nascent
research areas, the attack surface for vehicular communica-
tions is continually evolving with new, previously unknown
zero-day attacks discovered frequently. It is infeasible for a
resiliency architecture to be continually updated in response
to newly discovered attacks: a viable resiliency solution
should protect the ego vehicle against known attacks but
additionally be robust against new attacks discovered in
future.

Our approach to address this crucial challenge is to
develop a comprehensive taxonomy of adversaries in CAV
applications. The key insight is that although the attack
mechanisms evolve (e.g., through man-in-the-middle, com-
promised infrastructure component, channel jamming, etc.),
any V2V attack can be sufficiently characterized with the
help of a few well-defined features. For instance, an adver-
sary can manipulate a V2V message only in the following
ways: (1) mutate a message in flight, (2) create a new
(synthetic) message; and (3) prevent delivery of messages to
the ego vehicle. Using such insights, our taxonomy (Fig. 2)

1Sensors and computing units are also vulnerable to cyber-attacks [1], [2],
[7], [14]. Nevertheless, since the modes of operation for attacking sensors
and V2V communication are distinct from each other, it is reasonable to
assume that the sensors remain trusted in the context of a V2V adversary.



Fig. 2: Taxonomy of V2V Communication Attacks

Fig. 3: REPLACE On-board Architecture

decomposes a communication attack into five classifying
features: (i) operation, (ii) impact on the platoon, (iii) attack
target, (iv) stealth or frequency of attacks, and (v) corrupted
channels. Note that by abstracting the attack mechanism,
any V2V attack can be characterized by these five features.
For instance, delivery prevention accounts for diverse attack
mechanisms including jamming, flooding, denial-of-service,
etc.

IV. REPLACE ARCHITECTURE

Fig. 3 shows the on-board architecture of R EPLACE. The
key idea is to augment the platoon controller with two
additional components: (1) Anomaly Detector and (2) Miti-
gator. The goal is to locally mitigate the adverse effects of
malicious V2V communications received at the ego vehicle,
thereby securing the platoon as a whole. Algorithm 1 defines
the high-level functionality of REPLACE. We discuss the two
components in more detail below. In summary, the Anomaly
Detector determines if the inputs received at any instant are
anomalous; if so, the Mitigator is invoked to override the
corrupted naive controller output with a safe and efficient
alternative.

A. Anomaly Detector Functionality

The Anomaly Detector component is an ML-based predic-
tor implemented using a Random Forest (RF) regressor (See
Section IV-C). The Anomaly Detector monitors V2V inputs
received at each cycle and computes an expected normal
response N , which is compared with the controller response
R . If the deviation between N and R exceeds a pre-defined
threshold then the inputs are treated as anomalous. According
to the threat model considered in this work, an abnormality
in the response indicates potentially corrupted preceding
position values. The RF model is trained to estimate the
normal response at cycle t by taking the readings from cycle

t−1 as inputs. Note that the resiliency system is designed to
prevent the propagation of the adverse effects from one cycle
to the next (see Mitigator functionality below). Consequently,
the corrected (i.e., mitigated) inputs from t − 1 can be safely
used even under attack. Furthermore, the estimated output
reference from the RF remains unaffected by any malicious
communication received in cycle t .

B. Mitigator Functionality

The Mitigator is triggered when an anomaly is detected,
to override the corrupted naive controller output with a safe
and efficient alternative. Algorithm 2 describes the Mitigator
functionality. It involves the following steps.

1) Correct the anomalous value with the help of previous
preceding velocity and position values and by applying
kinematics equations. This is essential to prevent prop-
agation of corrupted inputs to the subsequent cycles of
operation.

2) Compute alternate responses by re-invoking the naive
controller with corrected input. Multiple alternatives
are generated by changing the controller constant, Tgap

from the original value of 0.8s to 1.2s in steps of 0.5.
This is done in order generate conservative alternatives
that account for possible inaccuracies in the previous
correction step and ensure safety under attack.

3) Find the optimal response that meets the safety and
efficiency constraints. We ensure safety of the system
by evaluating all the alternatives under a hypothetical
worst case scenario in terms of safety, i.e., where the
preceding vehicle decelerates at its maximum rated
value. All the alternatives that are deemed unsafe
under this scenario are discarded and the most efficient
alternative among the safe choices is applied.

Algorithm 1 R EPLACE Functionality: Ego Vehicle E

1: velL , posL , velP , posP ← ReadV 2V ()
2: aE ← N aiveCtrl()
3: aref

E ← RF Regressor()
4: anmly f lag ← Detector(a ref

E , aE , threshold)
5: if no communication received then

6: no comm ← TRUE

7: if anomly flag or no comm is TRUE then

8: aE ← M itigator() mitigator invoked

9: throttle, braking ← ActuarialControl(aE)

C. Off-line ML Training

Given the computational limitation of automotive plat-
forms and the real-time requirements of the resiliency ap-
plications, any resiliency solution must be computationally
light-weight. REPLACE ensures viability in this environment
through the following observations.



Algorithm 2 Mitigator Functionality

1: posP ← KinematicDeduction() Rectify anomaly

2: alt resps ← ComputeAlternateRepsonses()
3: SimulateW orstCase()
4: for resp in alt resps do

5: tgap ← ComputeT gap(worst case)
6: if tgap < safe tgap then

7: Discard unsafe candidate

8: aE ← F indOptimalCandidate(saf e resps)
9: return aE

1) The computationally intensive component of an ML
solution is training. Consequently, REPLACE does not
require real-time training on automotive platforms.
Rather the usage model of R EPLACE is that the ML
components are trained off-line, possibly in the cloud,
and the trained instances are downloaded to the auto-
motive platform. Furthermore, real-time connectivity
to cloud is not required during driving. Model update
can be performed periodically via a secure connection.

2) Real-time prediction component uses the trained ML
models created above. Although computationally far
less demanding than training itself, a complex ML
model does incur computational and storage costs
during inference. To address this issue, the R EPLACE

architecture is designed to be independent of model
specifics. We consequently choose the most light-
weight ML model that still performs effective predic-
tion under a resource-constrained environment. Based
on significant experiments with several ML models,
we found RF regressor to be optimal for our resiliency
solution. Nevertheless, we leave open the possibility of
other ML models being potentially appropriate based
on field data. The choice in a specific case would
depend on the trade-offs necessary between accuracy
and computation cost.

Table I provides training hyper-parameters and input-
output features used for our RF regressor. In our implemen-
tation, training is carried out to achieve accurate anomaly
detection when deployed in any vehicle in the platoon
regardless of its relative position with respect to the platoon
leader. Note that this is an important design choice that
allowed the distributed resiliency architecture to seamlessly
generalize to platoons of arbitrary lengths.

D. Anomaly Detection Threshold Selection

In addition to model quality, detection accuracy relies
heavily on the appropriate choice of the anomaly thresh-
old. This value is determined after a series of iterations
to balance the trade-off between false positives and false
negatives. False negatives represent missed anomalies while
false positives indicate normal samples incorrectly identified
as anomalous. A lower threshold can potentially reduce the

TABLE I: RF Anomaly Detector Training Details

Input-output features

Input Features
Ego Vehicle Params: {vel E, posE}
Preceing Vehicle Params: {vel P , posP }
Leader Params: velL

Output Feature Ego acceleration (aE)

Architecture and training hyper-parameters

Architecture Parameters
Number of trees: 100
Max number of levels in tree: 10

Training hyper-parameters
Minimum samples split: 2
Split criteria: Gini index
Sampling: Bootstrap

TABLE II: V2V Attacks Orchestrated

Attack ID Operation Target Vehicles Bias Attack Frequency

Attack 1 Mutation Vehicle 4 +28 Continuous
Attack 2 Mutation Vehicle 4 +30 Cluster
Attack 3 Mutation Vehicles 3,5,7 +12 each Continuous
Attack 4 Mutation Vehicles 3,5,7 +18 each Cluster
Attack 5 Delivery Prevention Vehicle 4 - Cluster
Attack 6 Delivery Prevention Vehicles 3,5,7 - Cluster

number of false negatives while at the same time, could
increase the false positives. Owing to the safety critical
nature of the platoon application, we favor lower false
negatives and tolerate false positives in our design.

V. EXPERIMENTAL ANALYSIS

A. Experimental Setup

We developed an evaluation testbed by integrating data
from a state-of-the-art automotive research simulator [15]
with a software prototype of R EPLACE. From the simulator
we collected fine-grained driving trajectory data at a fre-
quency of 100Hz, which represented the leader trajectory
for the platoon. Subsequently, the controller prototype is
invoked to create the trajectories of the follower vehicles. We
simulated V2V communications at the same rate of 100Hz
using the information flow topology explained in Section
II-B. Putting it all together, we created a platoon with a
leader followed by 7 vehicles. Vehicle ID 0 indicates the
leader. Vehicle IDs 1-7 indicate the followers respectively
with vehicle 1 being closest to the leader.

B. Attack Orchestration

We orchestrated 6 representative classes of attacks disrupt-
ing the platoon by causing a collision between one or more
pairs of vehicles. The attacks are systematically orchestrated
following our taxonomy to ensure that the attacks represent
the V2V adversary spectrum. We fix the features “impact”
and “corrupted channel” in all the representative attacks to
be collision and preceding position respectively. All com-
binations of the remaining three features in our taxonomy
are considered in our representative attacks. These attacks
are orchestrated by generating fake position readings by
adding a bias to the ground truth or by preventing delivery.
Each attack scenario is 50 seconds long ( 5000 samples).
The resiliency system remains dormant during the initial



Fig. 4: Mutation attacks. (a) Attack 1: Continuous attack on a single target vehicle (ID: 3); (b) Attack 2: Cluster attack on a single target
vehicle (ID: 3)

Fig. 5: Mutation attacks. (a) Attack 3: Continuous attack on multiple target vehicles (ID: {3 , 5, 7} ); (b) Attack 4: Cluster attack on
multiple target vehicles ((ID: {3 , 5, 7} ))

platoon stabilization time, which is the first 5s (500samples).
No anomalies are injected in the reported communication
during this stabilization time. We orchestrate various mu-
tation attacks and delivery prevention attacks as shown in
Table II. For a continuous attack, the adversarial activity
takes place throughout the test scenario starting from sample
800. For cluster attacks, adversarial activity takes place
between the sample intervals: {1500-1950}, {2200-2700},
and {3500-4000}. Additionally, under mutation attacks, a

bias (positive or negative) is added to the ground truth either
to increase the risk of collision.

C. Resiliency Evaluation

We use time headway as the metric to evaluate the efficacy
of REPLACE under both benign and adversarial condition.
Since the controller is targeted to keep a headway of 0.8s,
the time headway between pairs of vehicles in practice under
benign condition with no resiliency is roughly 1-1.2s. A



Fig. 6: Delivery prevention attacks. (a) Attack 5: Cluster delivery prevention attack on a single target vehicle (ID: 3); (b) Attack 6: Cluster
delivery prevention attack on multiple target vehicles (ID: {3 , 5, 7} )

reduction in time headway represents a compromise in safety,
with a headway near 0 representing a collision.

Figs. 4, 5 and 6 plot the resultant time headways between
each pair of vehicles under (1) benign condition; (2) naive
controller under attack, and (3) REPLACE under attack. Note
that under Attacks 1 and 2 in Fig. 4 with no resiliency,
there is a collision between vehicles 3 and 4 (the direct
target of corrupted communication) at approximately sample
1300. This also results in subsequent collision among all the
vehicles following 4 (indirect victims). More interestingly,
consider the cluster attacks in Fig. 5. Under no resiliency,
there is collision between vehicles 6 and 7. Note that while
the direct targets of the attack are different (i.e., vehicles 3,
5, and 7) the victims impacted most are 6 and 7. Finally,
under Attack 5 and 6 shown in Figure 6, communication is
jammed to a single vehicle 4 and a subset of vehicles 3, 5,
and 7 respectively. Under Attack 5, collision occurs between
vehicles 3 and 4, in turn causing a collision between all the
subsequent vehicles following 4. Under Attack 6, collision
occurs between vehicles 2 and 3 as well as all the subsequent
pairs. Note that with R EPLACE all the attacks are mitigated.

We make several important observations from these re-
sults. First, REPLACE clearly provides resiliency and ensures
safe operation under all the different classes of attack. To
achieve this, REPLACE incurs a small additional overhead
due to mitigation, e.g., the overall time headway under
attacks increases slightly to values between 1.2-2s. Second,
note that the attack orchestrations show that the impact of
an attack may be on a vehicle that is not the direct target
of the attack (i.e., the vehicle actually receiving corrupted
communication). Third, the impact of a mutation attack
becomes more pronounced and the occurrence of collision is

faster as the deviation between the reported communication
and ground truth becomes larger. Furthermore, the longer the
duration of uninterrupted adversarial activity, more impactful
is the attack, i.e., continuous attacks are more impactful than
cluster attacks. This suggests a trade-off between stealth and
impact in adversarial activities on V2V communications.

VI. RELATED WORK AND DISCUSSION

There has been significant recent research in designing
V2V-based platoon controllers [4], [9], [16]. However, ex-
ploration of adversaries corrupting this communication has
been limited. Engoulou et al. [8] presents a survey of the
security challenges in VANETs and also proposes different
secure architectures. Existing research in security of platoons
involves control theoretic defenses against specific classes of
adversarial activities such as denial of service attacks [1], [3],
[5]. However, these solutions do not generalize to other V2V
adversaries.

There has been some research on secure Cooperative
Adaptive Cruise Control (CACC), which is a 2-vehicle car
following application. CACC also forms the basis of some
multi-car platooning implementations. Heijden et al. [18]
propose a mechanism for misbehavior detection based on
subjective logic that involves validating the exchanged posi-
tion information between the participating vehicles. Nunen
et al. [19] propose a control-theoretic approach to mitigate
packet dropouts and communication failures in CACC. To
discuss a few machine learning approaches, Iorio et al. [10]
propose a mechanism for detecting injection attacks based
on correlation between different parameters corresponding to
vehicular movements. Alotibi et al. [2] propose a detection
approach for platoon systems with a compromised leader



vehicle communicating falsified acceleration values to the
rest of the platoon.

A unique aspect of REPLACE is real-time resiliency rather
than offline detection. This goal dictated several components
of the design and evaluation, including efficiency constraints
imposed by vehicular electronics. Furthermore, one has to
account for sustained attacks. Note from Section V that a
continuous attack can have significant impact over time, even
if the deviation from normal behavior is small. However,
comprehending continuous behavior requires comprehend-
ing not only the attack progression but also the response
from the ego vehicle. Finally, it is important to distinguish
the multi-vehicle platooning considered here from 2-vehicle
CACC. A resiliency system for multi-vehicle platoons must
not only mitigate attacks on the direct victim vehicles but
should minimize propagation of the adverse effects down the
platoon, e.g., recall that the impacts of some attacks are more
pronounced on vehicles that did not directly receive corrupt
communications. To address this, the detection system must
distinguish between slight abnormalities resulting from on-
going mitigation by vehicles ahead of it from actual adversar-
ial communication it receives. Correspondingly, mitigation
requires accurate computation of optimal alternate responses
to avoid inaccuracies from cascading and piling up further
down the platoon.

VII. CONCLUSION AND FUTURE WORK

We presented a novel distributed resiliency architecture,
REPLACE for CAV platoon vehicles to defend against adver-
saries corrupting V2X communication reporting preceding
vehicle position. This is one of the only real-time detection
and mitigation infrastructures developed for platoons that
can comprehensively defend against the entire spectrum
of communication attacks. We developed a taxonomy of
attacks to systematically navigate the adversarial space. We
orchestrated various representative collision-causing attacks
targeting one or more vehicles in the platoon. We im-
plemented a flexible evaluation testbed integrating realistic
driving data from a state-of-the-art automotive simulator. We
demonstrated the efficacy of our ML-based resiliency system
in preventing collisions under various communication attacks
targeting one or more vehicles in the platoon. In addition
to preserving safety of the platoon, the mitigation ensures
optimal efficiency close to ideal platoon operation even under
attack for each vehicle.

In future work, we will extend the threat model to account
for other corrupted channels in addition to preceding posi-
tion. We will carry out attack impact analysis and develop
effective detection and mitigation systems to defend against
adversaries exploiting this communication.
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