

Topological Data Analysis: Concepts, Computation, and Applications in Chemical Engineering

Alexander D. Smith[¶], Paweł Dłotko[†], and Victor M. Zavala^{¶*}

[¶]Department of Chemical and Biological Engineering

University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI 53706, USA

[†]Diouscuri Center for Topological Data Analysis

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland

Abstract

A primary hypothesis that drives scientific and engineering studies is that data has structure. The dominant paradigms for describing such structure are statistics (e.g., moments, correlation functions) and signal processing (e.g., convolutional neural nets, Fourier series). Topological Data Analysis (TDA) is a field of mathematics that analyzes data from a fundamentally different perspective. TDA represents datasets as geometric objects and provides dimensionality reduction techniques that project such objects onto low-dimensional descriptors in 2D. The key properties of these descriptors (also known as topological features) are that they provide multiscale information and that they are stable under perturbations (e.g., noise, translation, and rotation). In this work, we review the key mathematical concepts and methods of TDA and present different applications in chemical engineering.

Keywords: data, topology, space, time, geometry.

1 Introduction

Statistical and signal processing techniques are the dominant paradigms used to analyze data. Unfortunately, these techniques provide limited capabilities to analyze certain types of datasets. Some interesting examples that highlight this limitation are the Anscombe quartet and the *Datasaurus dozen* datasets [5, 45]. These datasets are *visually* distinct but they have the same descriptive statistics (e.g., *mean*, *standard deviation* and *correlation*). An illustration of this issue is provided in Figure 1; here, the two datasets have the same mean and standard deviation along both dimensions and have the same correlation between dimensions. However, it is clear that these datasets define objects with different geometric features (shape).

The recent application of algebraic and computational topology to data science has led to the development of a new field known as Topological Data Analysis (TDA) [14]. TDA techniques are based on the observation that data (e.g., a set of points in a Euclidean space) can be interpreted as elements of a geometric object. As the name suggests, TDA utilizes techniques from computational topology to quantify the shape of data [24]. Fundamentally, topology studies geometric and spatial relations that persist (are stable) in the face of continuous deformations of an object (e.g., stretching, twisting,

*Corresponding Author: victor.zavala@wisc.edu

and bending). This perspective brings a number of advantages over other data analysis techniques [14, 72]:

- Topology studies data in a manner that is independent of the chosen coordinates.
- Topology studies data in a way that minimizes sensitivity to the choice of metric.
- Topology generalizes known graph theory techniques to high-dimensional spaces.
- Topology is robust to large quantities of noise.

The main focus of this paper is a technique in the field of TDA known as *persistence homology* [27, 15]. The goal of persistent homology is to *identify and quantify* topologically dominant features within the data in the form of basic (low-dimensional) topological features such as connected components, holes, voids, and their generalizations. This information can then be used by statistical and machine learning techniques to perform regression, classification, hypothesis testing, and clustering tasks [9, 10, 11, 7, 1, 58]. The TDA methodology is summarized in Figure 2. It is important to emphasize that TDA is a dimensionality reduction technique that maps data from its original high-dimensional space to a low-dimensional space that it is easier to understand and visualize. This is similar in spirit to principal component analysis (PCA), which is a statistical technique that projects data into a low dimensional space by extracting latent variables (principal components) that contain maximum information in terms of variance.

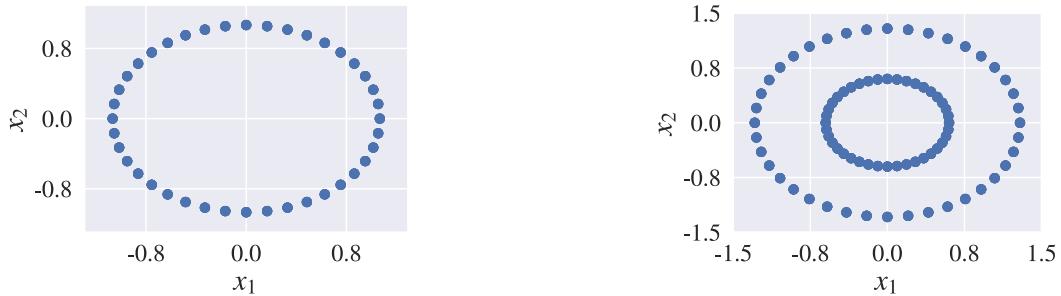


Figure 1: Datasets with the same mean along the x_1, x_2 dimensions (zero), the same standard deviation along both dimensions ($1/2$) and the same correlation between dimensions (zero). While the statistical descriptor values (i.e., first and second moments of a 2D Gaussian ellipse) are identical, the geometric objects that they define are different.

TDA has been used in different scientific and engineering domains. In the medical imaging field, persistent homology has been used in studying brain dendrograms [40] and in identifying brain networks in children with ADHD and autism [39]. In material science, these techniques have been used to characterize complex craze formations [32], to analyze hierarchical structures in glasses [49], and in materials informatics [12]. They have also been used in high throughput screening of nanoporous materials, such as zeolites [41]. TDA has been used in the analysis of dynamical systems and time series [59, 56] to study gene expression [55] and the dynamics of Kolmogorov flows and Raleigh-Bernard convection [37]. TDA has also been used in the analysis of time-varying functional networks [64]. In chemistry and biochemistry, persistent homology has been used to characterize protein structure,

flexibility, and folding [71]; as well as a metric for understanding membrane fusion [35], and used to predict fullerene stability [70].

In this work, we provide a concise summary of relevant concepts and computational methods of TDA from the perspective of chemical engineering applications. We show how to apply persistent homology techniques to analyze datasets described by point clouds and functions in high dimensions and we discuss fundamental stability results of topological features in the face of perturbations. We present multiple case studies with complex synthetic and real experimental datasets to demonstrate the benefits of TDA. Specifically, we show that TDA extracts informative features from complex datasets that correlate strongly with emerging features of practical interest. For instance, we show that the topological features of a 3D solvent environment explains reactivity in such an environment and that topological features of liquid crystals explain composition of its environment. These two results are presented for the first time in this paper. Moreover, we show how to characterize topological features of scatter fields from flow cytometry experiments. Our work seeks to open new research directions and applications of TDA in chemical engineering.

2 TDA Basics

This document is partitioned into two main parts, the first develops the mathematical basis for TDA (see Sections 3-5) and the second explores the application of TDA to different chemical engineering focused problems (see Section 6). We develop this section as a simplified overview of TDA in order to equip the reader with the knowledge necessary to immediately review TDA applications of interest. The focus of TDA is to capture and record the evolution of the topology of a dataset at different scales which is measured through a filtration (see Section 5). Figure 2 is an example of applying TDA to two simple point clouds. On point clouds, a filtration is done by expanding balls of radius (ϵ) around each data point, and connecting those points for which the given balls overlap. This changes the topology of the data representation as the expansion proceeds, resulting in the appearance and disappearance of topological features such as connected components (represented by H_0) and holes (represented by H_1). A similar filtration can also be constructed on continuous functions (see Section 5.3) or on discrete representations of continuous functions such as images (see Section 5.4). Regardless of how the filtration is performed, the time of appearance (birth) and the time of disappearance (death) of the topological features during the filtration constructs the persistence diagram. The persistence diagram is a scatter plot for which the x axis is birth and the y axis is death. All topological features that appear and disappear during the filtration are recorded as points with coordinates $x = \text{birth}$ and $y = \text{death}$ and persistence ($y - x$) within their representative group (e.g., H_0 , H_1). This scatter plot encodes (reduces) the high dimensional structure of the dataset during the filtration and can be vectorized (see Section 5.2) for use in statistical and machine learning models and methods as we demonstrate in Section 6.

3 Fundamental Concepts of TDA

We discuss fundamental concepts and computational methods of TDA. We first introduce the notion of simplicial and cubical complexes, which are the basic geometric constructs used to represent data objects. The representation of data objects as a simplicial or cubical complex enables the use of methods from *simplicial and cubical homology* to quantify the shape of the data in terms of connectedness

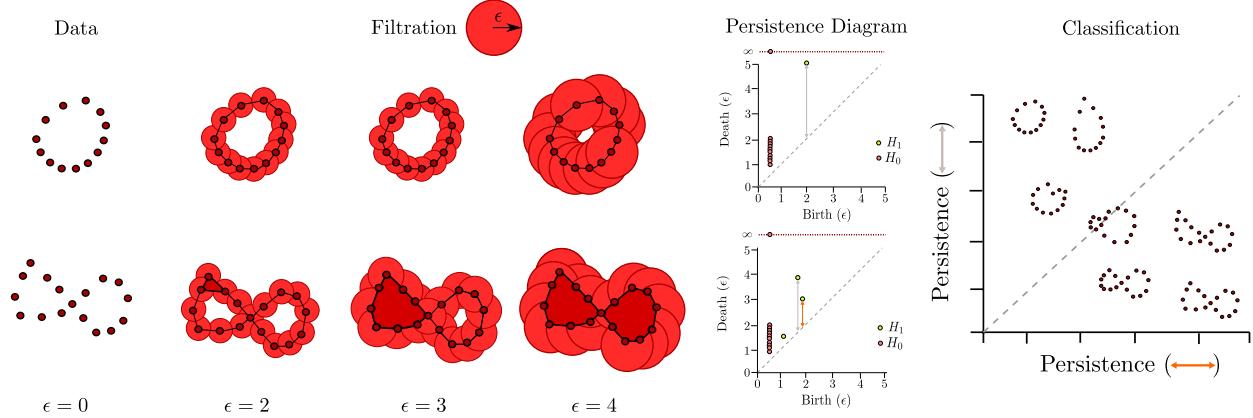


Figure 2: Persistence homology methodology for point clouds: each point cloud is converted into a geometric object via a filtration where the topology is measured at each point in the filtration. At certain points in the filtration topological features, such as the holes above, appear and are eventually filled. The ϵ value at the appearance and disappearance of these features are recorded as birth and death in the filtration. The birth and death of the topological features are represented as points in a persistence diagram, with x =birth and y =death and persistence defined as $(y - x)$. The persistence diagram encodes the topological evolution of the data during the filtration and can be used directly to separate point clouds of different shape and cluster those of similar shape. In this illustration we create a representative classification plot that demonstrates the separation of example point clouds based upon the persistence of the largest and second largest (which is zero in some cases) hole(s) that appear and disappear during the filtration.

and topologically important features [31, 34]. In the following discussion, we use \mathbb{R} to denote the set of real numbers and \mathbb{Z} to denote the set of integer numbers..

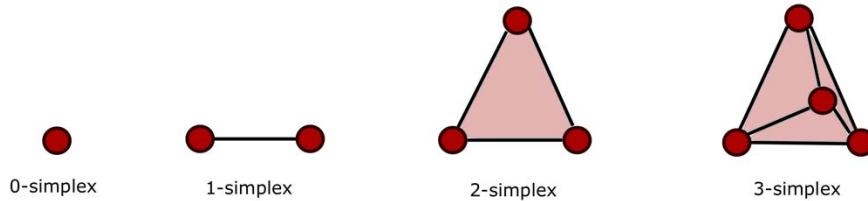


Figure 3: Examples of k -dimensional simplices for $k = 0, 1, 2, 3$. A simplex is a generalization of a triangle in high dimensions. 0 simplices are vertices (points), 1-simplices are edges, 2-simplices are triangles, and 3-simplices are tetrahedra.

3.1 Simplices and Simplicial Complexes

A simplex is a generalization of a triangle from 2D to other dimensions (e.g., a tetrahedra is a 3-dimensional simplex). Simplices spanning dimension $k = 0$ to dimension $k = 3$ are shown in Figure 3. The formal definition of a simplex is as follows.

Definition 3.1. k -simplex: A k -simplex is a convex hull spanned by $k+1$ affinely independent points $v \in \mathbb{R}^m$ and is denoted as:

$$\sigma = [v_0, v_1, \dots, v_k] \quad (3.1)$$

Some interesting properties of simplices are:

1. An m -face of simplex σ is the convex hull of any of its nonempty subsets.
2. The m -face is a simplex.
3. A 0-face is a **vertex**.
4. A 1-face is an **edge**.

A *simplicial complex* (denoted as \mathcal{K}) is obtained by connecting (glueing) simplices, as shown in Figure 4a. We denote the dimension of a given simplex or simplicial complex as $\dim(\cdot)$.

Definition 3.2. Simplicial Complex: A simplicial complex $\mathcal{K} \subset \mathbb{R}^m$ is a collection of simplices that satisfies the following properties:

1. Every face of an element of \mathcal{K} is also in \mathcal{K}
2. A nonempty intersection of simplices $\sigma_1, \sigma_2 \in \mathcal{K}$ is a face of σ_1 and σ_2
3. The dimension of \mathcal{K} is the highest dimension of its simplices: $\dim(\mathcal{K}) = \max(\dim(\sigma) : \sigma \in \mathcal{K})$

A simplicial complex is used to represent the topological characteristics of objects. One example of this is found in finite element analysis where simplicial complexes (also known as triangulations) are used to represent domains over which partial differential equations are solved [23]. In Figure 4b we represent a geometric object (a ring) as a simplicial complex. We see that the central hole of the ring, which is its main topological feature, is preserved in its representation as the simplicial complex. These objects are thus said to be homotopy equivalent (represented by the notation \simeq). Homotopy equivalence identifies spaces which can be deformed continuously into one another without cutting or tearing (e.g., via stretching) [48]. The flexibility of simplicial complexes allows us to create a homotopically equivalent representation of any shape encountered in practice. As we will see, algebraic calculations can be applied to simplicial complexes to quantify the features of the original object [31].

Figure 4: (a) A simplicial 2-complex created by connecting a 2-simplex (a triangle) and multiple 1-simplices (edges). This simplicial complex contains one hole. (b) A geometric object (a ring) and its simplicial complex representation using 2-simplices. Both shapes contain an empty hole and are homotopy equivalent.

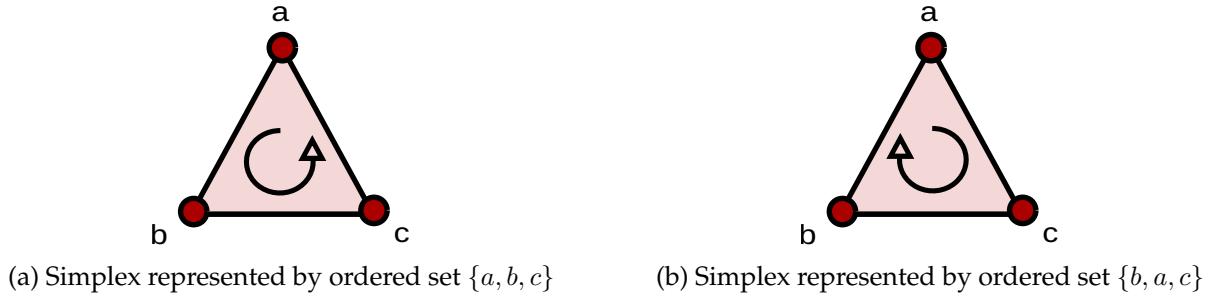


Figure 5: Possible orientations of a 2-simplex.

3.2 Simplicial Homology

Simplicial homology provides computational techniques to study topological spaces that are represented as simplicial complexes. We make some basic definitions that are necessary to explain the working principles of these techniques.

Definition 3.3. Simplex Orientation: The orientation of a k -simplex is given by the ordering of the vertices in the simplex $[v_1, v_2, \dots, v_{k+1}]$. Two orderings can define the same orientation if and only if they differ by an even permutation; thus, there are only two allowable orientations of a simplex.

An example of the possible orientations of a 2-simplex is shown in Figure 5. We can see that only two orientations are possible for this simplex. Here, each oriented simplex is equal to the negative of the simplex with opposite orientation; mathematically, this is stated as $[a, b, c] = -[b, a, c]$.

Figure 6: Examples of 1-simplicial complexes with the same number of vertices; \mathcal{K}_1 contains a hole while \mathcal{K}_2 does not.

3.3 Cycles, Holes, and Homology Groups

In simplicial homology, we want to identify cycles in a given object and we want to know whether a given cycle is bounding a collection of higher dimensional simplices (if it does not, then the cycle is a hole). An example of this concept is presented in Figure 6; we see that complex \mathcal{K}_1 is a cycle that bounds an empty space which constitutes a hole, while the complex \mathcal{K}_2 represents a line with no holes. We now proceed to explore concepts that will allow us to systematically identify the presence of holes and cycles.

A simplicial k -chain on a complex \mathcal{K} is used in the identification of holes in a simplicial complex, and is defined as follows.

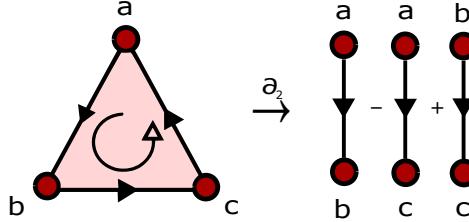


Figure 7: Visualization of the boundary operation (∂_2) applied to a 2-simplex. The boundary operator maps the 2-simplex onto its bounding 1-simplices. The $[a, c]$ simplex is inverted to retain lexicographical ordering.

Definition 3.4. Simplicial k -chains: A k -chain is a finite weighted sum defined on all k -simplices within a complex \mathcal{K} :

$$\sum_{i=1}^N c_i \sigma_i \quad (3.2)$$

where $c_i \in \mathbb{Z}$ and N is the number of k -dimensional simplices. The set of k -chains on \mathcal{K} is written as C_k . Typically, the coefficients are given by $c_i \in \{-1, 0, 1\}$ and we recall that a value of -1 inverts the simplex.

The *boundary operator* is a linear operator that maps the k -chains of a complex to its boundaries. The boundaries are the associated $(k-1)$ -chains that make up the higher dimensional k -chain. A visualization of the boundary operator is presented in Figure 7.

Definition 3.5. Boundary Operator: For a set of k -chains (denoted as C_k) we define the boundary operator ∂ as the mapping:

$$\partial : C_k \rightarrow C_{k-1} \quad (3.3)$$

The boundary operation on a general simplex σ with vertices $[v_0, v_1, \dots, v_k]$ is shown in (3.4), where the vertex \hat{v}_i is removed from the set of vertices in the summation. The boundary operation on a k -simplex maps the simplex to a summation of its $k-1$ faces.

$$\partial([v_0, v_1, \dots, v_k]) = \sum_{i=0}^{k+1} (-1)^i [v_0, \dots, \hat{v}_i, \dots, v_k] \quad (3.4)$$

We use the short-hand notation $\partial(C_k) = \partial_k$ to represent a boundary operation. We show an example for a complex \mathcal{K} with $\dim(\mathcal{K}) = k$ in (3.5); here, we see that the boundary operator is a mapping from the chains of a higher dimension to chains of lower dimension within the simplicial complex. We also note that the k -chain for dimensions greater than k and less than 0 are zero and that the boundary maps ∂_{k+1} and ∂_0 are zero maps.

$$0 \xrightarrow{\partial_{k+1}} C_k(\mathcal{K}) \xrightarrow{\partial_k} C_{k-1}(\mathcal{K}) \xrightarrow{\partial_{k-1}} \dots \xrightarrow{\partial_1} C_0(\mathcal{K}) \xrightarrow{\partial_0} 0 \quad (3.5)$$

As an example, we apply the boundary operator to the simplicial chains in the complexes in Figure 6. We note that these complexes are built from sets of 1-simplices; thus, when we apply the boundary operator ∂_1 , we obtain a set of vertices (0-simplices). The result of the operation on complex \mathcal{K}_1 is found in 3.6, where we invert the orientation of the $[a, c]$ boundary in order to retain lexicographical ordering:

$$\partial_1(\mathcal{K}_1) = \partial([a, b]) + \partial([b, c]) - \partial([a, c]) = (a - b) + (b - c) - (a - c) = 0 \quad (3.6)$$

and the operation on the 1-chain in the complex \mathcal{K}_2 is:

$$\partial_1(\mathcal{K}_2) = \partial([a, b]) + \partial([b, c]) = (a - b) + (b - c) = a - c \quad (3.7)$$

This example illustrates how simplicial homology uses basic boundary operations to identify cycles in a complex. We can see that the cycle formed by \mathcal{K}_1 is mapped to zero. In simplicial homology, a cycle is defined as a chain that is mapped to the *null space* or *kernel* of the boundary operator (denoted as $\ker(\partial)$) and which is zero. With these basic definitions, we can now formally define *cycles* and *boundaries*.

Definition 3.6. Cycles: The k -dimensional *cycles* are given by:

$$Z_k = \ker(\partial_k) \quad (3.8)$$

where $\ker(\partial_k)$ is the kernel of the operator ∂_k .

Definition 3.7. Boundaries: The *boundaries* are given by:

$$B_k = \text{im}(\partial_{k+1}) \quad (3.9)$$

where $\text{im}(\partial_{k+1})$ is the image of the operator ∂_{k+1} .

In summary, the information contained in Z_k gives us the cycles of dimension k within a given complex and the information in B_k tells us whether or not a cycle is the boundary of a collection of higher dimensional simplices. It is also important to note that B_k is a subgroup of Z_k . Also, if a cycle is not a boundary, then it is known as a *hole*. We can summarize this information for any complex by defining the k -homology group H_k and the Betti number β_k . In simple terms, the H_k group contains the unique k -holes within a complex and β_k counts the number of unique k -holes in a complex.

Definition 3.8. k -Homology Group: The k -homology group H_k is given by the quotient group:

$$H_k = Z_k / B_k. \quad (3.10)$$

We illustrate H_k in Figure 8; here, we have two simplicial representations z and b , where z is a cycle that does not bound a higher dimensional simplex (we have $z \in Z_1$ and $z \notin B_1$) while b does bound a higher dimensional simplex (we have $b \in B_1$ and $b \in Z_1$ as $B_1 \subseteq Z_1$). We can also see that both z and $z + b$ contain the same hole and thus they are homologically equivalent (their difference is a boundary). The homology group H_k formally defines this concept and states that, if a cycle $z_1 = z_2 + B_k$ and $z_1, z_2 \in Z_k$, then the two cycles are equivalent $z_1 \simeq z_2$ and are not independent elements of the group (H_k). This logic prevents counting the same topological feature multiple times.

Before we can formally define Betti numbers, we must define the *rank* of a group.

Definition 3.9. Group Rank: We define the $\text{rank}(Z)$ of a group Z as:

$$\text{rank}(Z) = \min\{|Y| : Y \subseteq Z, \langle Y \rangle = Z\} \quad (3.11)$$

where $|Y|$ represents the cardinality of set Y and $\langle Y \rangle$ represents the subgroup of Z generated by element of Y .

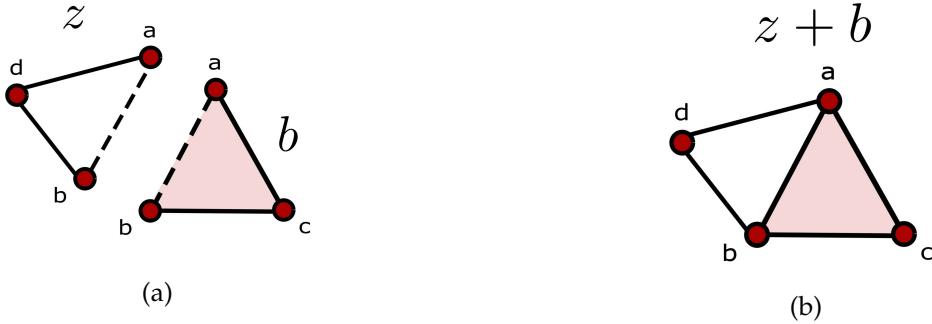


Figure 8: An illustration of the homology group H_1 . (a) z represents a cycle $z \in Z_1$ that is not a boundary ($z \notin B_1$), whereas $b \in Z_1$ is a cycle that bounds a 2-simplex ($b \in B_1$). (b) The cycle z is homotopy equivalent to $z + b$ ($z \simeq z + b$) and should not be counted as a separate hole.

We will see that the rank of a group is analogous to the notion of the rank of a matrix (or to the dimension of a vector space). Specifically, it identifies the number of independent basis elements (known as generators) of a group. With this in mind, we define the k^{th} -Betti number as follows.

Definition 3.10. k^{th} -Betti Number: The k^{th} -Betti number β_k is the rank of H_k and is given by:

$$\beta_k = \text{rank}(H_k) = \text{rank}(Z_k) - \text{rank}(B_k) \quad (3.12)$$

We illustrate these concepts using the complex \mathcal{K}_1 presented in Figure 6. This complex presents a hole; performing the necessary computations to obtain Z_1 and B_1 for \mathcal{K}_1 we find the that:

$$Z_1(\mathcal{K}_1) = \{(a, b) + (b, c) - (a, c)\} \quad (3.13a)$$

$$B_1(\mathcal{K}_1) = \{0\} \quad (3.13b)$$

We now perform the quotient operation to obtain H_1 and β_1 for \mathcal{K}_1 :

$$H_1(\mathcal{K}_1) = \{(a, b) + (b, c) - (a, c)\}/\{0\} = \{(a, b) + (b, c) - (a, c)\} \quad (3.14a)$$

$$\beta_1(\mathcal{K}_1) = \text{rank}(\{(a, b) + (b, c) - (a, c)\}) = 1 \quad (3.14b)$$

We see that the H_1 group identifies the 1-dimensional holes within the complex, and β_1 counts the number of 1-dimensional holes in the complex. The same is true for all other dimensions $k \geq 0$ as long as $\dim(\mathcal{K}) \geq k$ because $H_k = 0$ for all $k > \dim(\mathcal{K})$. This concept becomes familiar when viewed from the perspective of linear algebra and matrices. One can consider the H_k group similar to the basis vectors for a given matrix, where in this case H_k defines the *topological* basis for a given shape and the Betti numbers (β_k) correspond to the rank of this bases and can be seen as the total number of unique topological features. The main difference is that for a given shape there can be multiple sets of topological bases for each dimension of the shape. The goal of TDA is to identify and compare the topological bases for each shape, similar to how one might compare the structure of matrices based upon their basis vectors and corresponding rank.

3.3.1 The 0^{th} Homology Group (H_0)

The 0^{th} homology group H_0 plays an important role in topological analysis. H_0 is the measure of the number of *connected components* in a complex. A *component* (or *subcomplex*) is defined as follows.

Definition 3.11. Subcomplex: A subcomplex is a subset \mathcal{S} of a complex \mathcal{K} such that \mathcal{S} is also a complex.

Definition 3.12. Connected complex: A complex is connected if there exists a path made of 1-simplices from any vertex of the complex to any other vertex.

The group H_0 describes how many disconnected subcomplexes \mathcal{S} there are within a given complex \mathcal{K} . A simple example is shown in Figure 9; here, we note that the first complex \mathcal{K}_3 has two disjoint subcomplexes, and the second complex \mathcal{K}_4 has a single connected component. The calculations for \mathcal{K}_3 are given by:

$$H_0(\mathcal{K}_3) = \{a, b, c, d\} / \{(a - b), (c - d)\} \quad (3.15a)$$

$$\beta_0(\mathcal{K}_3) = 2 \quad (3.15b)$$

and for \mathcal{K}_3 are:

$$H_0(\mathcal{K}_4) = \{a, b, c, d\} / \{(a - b), (b - c), (c - d)\} \quad (3.16a)$$

$$\beta_0(\mathcal{K}_4) = 1. \quad (3.16b)$$

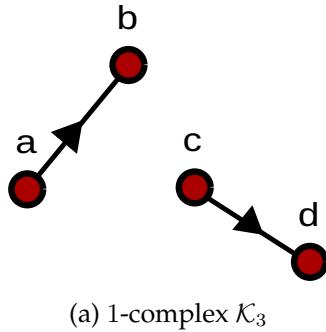
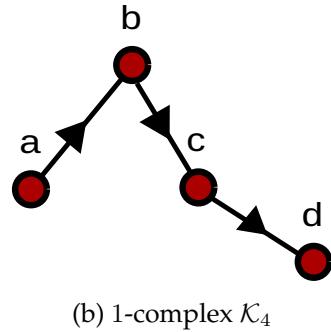


Figure 9: Example complexes with different number of connected components. \mathcal{K}_3 has two connected components and \mathcal{K}_4 has a single connected component.

4 Computational Methods for TDA

Now that we have developed a basic understanding of simplicial homology, we can begin to streamline computations through the tools of numerical linear algebra. In order to simplify our discussion, we will define a new k -chain where the coefficients $c_i \in \mathbb{Z}_2$ where \mathbb{Z}_2 is the set of binaries $\{0, 1\}$ (rather than $c_i \in \mathbb{Z}$), for which $1 + 1 = 0$. With this new definition, we can remove the need for defining an orientation on a simplicial complex. In (4.17a)-(4.17c), we see that computational results are the same as those for the example provided in (3.6).

$$C_1(\mathcal{K}_1) = [a, b] + [b, c] + [a, c] \quad (4.17a)$$

$$\partial_1(\mathcal{K}_1) = \partial([a, b]) + \partial([b, c]) + \partial([a, c]) = (a + b) + (b + c) + (a + c) \quad (4.17b)$$

$$\partial_1(\mathcal{K}_1) = (1 + 1)a + (1 + 1)b + (1 + 1)c = 0 + 0 + 0 = 0 \quad (4.17c)$$

We can now couple the newly defined k -chain with the boundary operator to create what is known as a *boundary matrix* $\mathbf{B} \in \mathbb{Z}_2^{n \times m}$ where n represents the simplices of dimension $(k - 1)$ in \mathcal{K} and m represents the simplices of dimension k in \mathcal{K} . The boundary matrix is built based on the following rules:

- The face of a simplex precedes the simplex in column (row) index.
- An entry of one is placed in position (j, i) if σ_i is a face of σ_j , otherwise it is zero.
- If two simplices are of the same dimension, lexicographic ordering is used (i.e., $[a, b] < [a, c] < [b, c]$).

For example, we take complex in Figure 4a and compute the H_1 group. We show matrix \mathbf{B} for ∂_0 in Table 1, for ∂_1 in Table 2, and for ∂_2 in Table 3. Again, the boundary matrix associated with ∂_1 is mapping the 1-simplices of the complex to its boundaries and similarly for ∂_2 .

∂_0	[a]	[b]	[c]	[d]	[e]
[0]	0	0	0	0	0

Table 1: Boundary matrix \mathbf{B}_0 for ∂_0 of complex in Figure 4a

∂_1	[a,b]	[a,c]	[a,d]	[b,c]	[b,d]	[d,e]
[a]	1	1	1	0	0	0
[b]	1	0	0	1	1	0
[c]	0	1	0	1	0	0
[d]	0	0	1	0	1	1
[e]	0	0	0	0	0	1

Table 2: Boundary matrix \mathbf{B}_1 for ∂_1 of complex in Figure 4a

∂_2	[a,b,c]
[a,b]	1
[a,c]	1
[b,c]	1
[b,d]	0
[d,e]	0

Table 3: Boundary matrix \mathbf{B}_2 for ∂_2 of complex in Figure 4a

In order to compute $\text{rank}(Z_j)$ and $\text{rank}(B_j)$ and the number of k -holes in the complex (the Betti number β_k), we must first reduce the matrices to a canonical form known as the *Smith normal form* (SNF).

Definition 4.1. Smith Normal Form: A matrix $\mathbf{M} \in \mathbb{Z}_2^{n \times m}$ is in *Smith normal form* if it is diagonal and if it can be obtained by multiplying \mathbf{M} by invertible matrices $\mathbf{S} \in \mathbb{Z}_2^{n \times n}$ and $\mathbf{T} \in \mathbb{Z}_2^{m \times m}$ as $\mathbf{M}_{\text{SNF}} = \mathbf{SMT}$.

The reduced matrix $\mathbf{B}_{1_{\text{SNF}}}$ is shown in Table 4 and $\mathbf{B}_{2_{\text{SNF}}}$ is shown in Table 5. The ∂_0 matrix cannot be further reduced and thus it is not shown. The SNF matrices contain all the information required to find $\text{rank}(Z_k)$ and $\text{rank}(B_k)$ for $k \in \{1, 2\}$:

$$\text{rank}(Z_k) = m - \text{rank}(\mathbf{B}_{(k)_{\text{SNF}}}) \quad (4.18a)$$

$$\text{rank}(B_k) = \text{rank}(\mathbf{B}_{(k+1)_{\text{SNF}}}) \quad (4.18b)$$

These simple calculations show us that $\text{rank}(Z_1) = 2$ and $\text{rank}(B_1) = 1$. From this we can see that the number of 1-holes in our complex is $\beta_1 = \text{rank}(Z_1) - \text{rank}(B_1) = 1$, as expected.

∂_1	[a,b]	[a,c]	[a,d]	[b,c]	[b,d]	[d,e]
[a]	1	0	0	0	0	0
[b]	0	1	0	0	0	0
[c]	0	0	1	0	0	0
[d]	0	0	0	0	0	1
[e]	0	0	0	0	0	0

Table 4: Reduced boundary matrix $\mathbf{B}_{1_{\text{SNF}}}$ for ∂_1 of the simplicial complex in Figure 4a. We note that the matrix is not diagonal in order to retain lexicographical ordering, but can be easily made diagonal.

∂_2	[a,b,c]
[a,b]	1
[a,c]	0
[b,c]	0
[b,d]	0
[d,e]	0

Table 5: Reduced boundary matrix $\mathbf{B}_{2_{\text{SNF}}}$ for ∂_2 of the simplicial complex in Figure 4a.

5 Persistent Homology

Persistent homology is a methodology originally proposed by Edelsbrunner, Letscher, and Zomorodian and further developed by many others for extracting and quantifying topological information from data [25]. This methodology is discussed in detail in [73, 6, 19, 14, 21, 27]. The homology of data provides deep insight into the structure of the data and quantification capabilities of their geometric features [27, 21].

5.1 Building Simplicial Complexes from Data

Direct computation of the homology of an arbitrary set defined by the space $\mathcal{X} \subset \mathbb{R}^n$ is a complex task. To simplify this task, we leverage simplicial homology; here, we identify a simplicial complex \mathcal{K} such that its homology is the same or similar to that of \mathcal{X} . We can define such a complex \mathcal{K} by creating a geometric object known as the *cover* (\mathcal{U}) of \mathcal{X} .

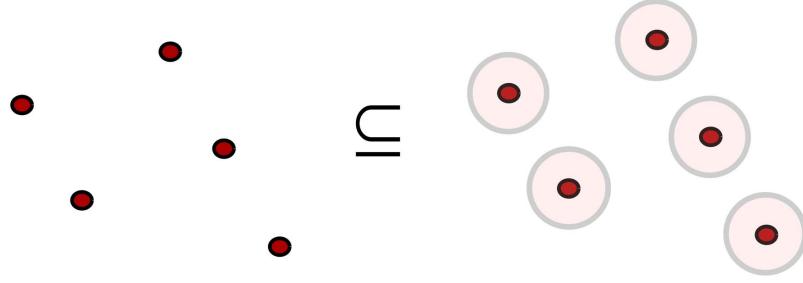


Figure 10: A cover of points $x_i \in \mathcal{X}$ is defined by a set of balls $B(x_i, \epsilon)$ expanded around each point.

Definition 5.1. Cover: $\mathcal{U} = \{U_i\}_{i \in I}$ is a cover of a metric space \mathcal{X} if $\mathcal{X} \subseteq \bigcup_{i \in I} U_i$.

If we define our metric space (\mathcal{X}) to be a finite set of points in \mathbb{R}^n , then we can imagine each set U_i to be a ball $\{B(x_i, \epsilon) : x_i \in \mathcal{X}, \epsilon \in \mathbb{R}^+\}$ centered around each point $x_i \in \mathcal{X}$, where ϵ is the ball's radius. An example of such a cover is presented in Figure 10. We now utilize this cover to develop a simplicial complex, known as a *Čech complex*.

Definition 5.2. Čech Complex: The Čech Complex (\check{C}) is a simplicial complex built from k -simplices that are the non-empty intersection of $k+1$ sets of a cover \mathcal{U} .

A Čech complex is also known as the "nerve" of the cover \mathcal{U} .

Definition 5.3. Nerve: The nerve of collection $\mathcal{U} = \bigcup_{i \in I} \{U_i\}$ is the simplicial complex with vertices I and k -simplices built from $\{i_0, i_1, \dots, i_k\}$ if and only if $U_{i_0} \cap U_{i_1} \cap \dots \cap U_{i_k} \neq \emptyset$.

By using the so-called "Nerve Theorem" construction, we can build a simplicial complex \mathcal{K} for space $\mathcal{X} = \bigcup_{i \in I} \{U_i\}$. Under certain assumptions, the simplicial complex \mathcal{K} and the space \mathcal{X} are homotopy equivalent [3, 28]. With this, we can apply the calculations and analysis of simplicial homology directly to our data. However, there is one caveat that is important to note, which is the selection of the distance ϵ . An example of the the nerve of a dataset with varying levels of ϵ is shown in Figure 11. We can see that, as we adjust ϵ of the cover \mathcal{U} , we obtain different Čech complexes, each with a different homology. We want to ensure that the homology captures the most interesting features of the data. In the complex shown in Figure 11, these features are the two clusters of points; here, one cluster forms a loop and the other does not. It is easy to see in this example what range of ϵ values would be most effective at capturing this information. However, if our dataset is of much higher dimension, finding the correct ϵ is much more difficult. Consequently, we characterize the dataset for multiple values of ϵ . This information is captured by a *filtered simplicial complex* [14].

Definition 5.4. Filtered Simplicial Complex: A filtered simplicial complex $\mathcal{K} \in \mathbb{R}^m$ is a simplicial complex for which there is a series of nested simplicial subcomplexes $\mathcal{K}_\epsilon \in \mathbb{R}^m$ such that:

$$\mathcal{K}_{\epsilon_0} \subset \mathcal{K}_{\epsilon_1} \subset \dots \subset \mathcal{K}_{\epsilon_n} \quad (5.19)$$

where $\epsilon_0 < \epsilon_1 < \dots < \epsilon_n$.

Referring back to the example in which we define the cover \mathcal{U} as a set of balls $B(x_i, \epsilon)$ of radius ϵ , we can view the filtered complex as the set of nerve complexes that are formed as we expand ϵ .

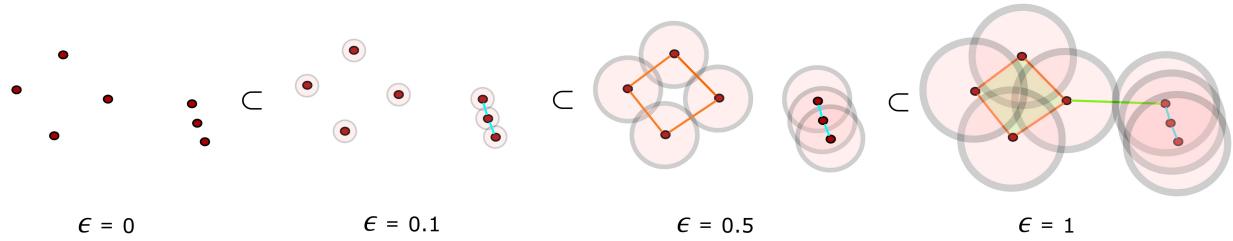


Figure 11: Filtration of points $x_i \in \mathcal{X}$ by a set of balls $B(x_i, \epsilon)$ with expanding ϵ . As ϵ is increased the topology of the Čech complex evolves and this introduces holes and higher dimensional simplices. This filtration builds a filtered simplicial complex ($\mathcal{K}_{\epsilon=0} \subset \mathcal{K}_{\epsilon=0.1} \subset \mathcal{K}_{\epsilon=0.5} \subset \mathcal{K}_{\epsilon=1}$).

Figure 11 demonstrates that the filtration of nerve complexes $\mathcal{K}_{\epsilon=0.1} \subset \mathcal{K}_{\epsilon=0.3} \subset \mathcal{K}_{\epsilon=0.5} \subset \mathcal{K}_{\epsilon=1}$. Note that the interesting features of the data (the two clusters and one loop) are present in the homology of the subcomplexes and persist during a large portion of the filtration. The main goal of this analysis is to identify *persistence intervals* in the complex filtered by ϵ . Given a topological feature present in a filtration, we identify the value of ϵ where the feature is *born* (appears) and *dies* (disappears).

Definition 5.5. Birth: For a filtered complex \mathcal{K} and subcomplexes $\mathcal{K}_i, \mathcal{K}_j$ where $i < j$. A topological feature $x \in H_p(\mathcal{K}_j)$ is *born* at j if $x \notin H_p(\mathcal{K}_i)$.

Definition 5.6. Death: For a filtered complex \mathcal{K} and subcomplexes $\mathcal{K}_i, \mathcal{K}_j$ where $i < j$. A topological feature $x \in H_p(\mathcal{K}_i)$ *dies* at j if $x \notin H_p(\mathcal{K}_j)$. A feature will also die if the feature merges with a feature born earlier in the filtration, this is known as the *elder rule*.

Definition 5.7. Persistence Interval: For a given topological feature x with birth point i and death point j , the *persistence interval* (Int) for the feature is given by:

$$\text{Int} = [i, j] : i, j \in \mathbb{R} \quad (5.20)$$

If $j = \infty$ then the component does not die during the filtration (persists forever).

With a filtration we are identifying the appearance and disappearance of topologically interesting features in our dataset. The filtered complex in Figure 11 demonstrates this concept. We can see that the hole in the dataset is born at $\epsilon = 0.5$ and is completely filled in at $\epsilon = 1$, persisting for a majority of the filtration. We can also see that the individual points (at $\epsilon = 0$) become two connected components at $\epsilon = 0.5$ and then become a single component at $\epsilon = 1$. Thus, the longest persistence intervals in both H_1 and H_0 capture the defining topological characteristics of the filtered complex.

5.2 Persistence Diagrams

The information about topological features contained within a filtered complex is summarized into what is known as a *persistence diagram* (PD) [25]. This can be computed via an extension of the matrix methods presented in Section 4 [24]. The PD is a visual method that represents the *birth* (x) and *death* (y) of topological features as a set of points in \mathbb{R}^2 . The persistence diagram associated with the filtration in Figure 11 is shown in Figure 12. This diagram represents the *birth* and *death* of the

features of the H_0 and H_1 homology groups for the filtered complex. The *persistence interval* associated with each feature is the vertical line segment between the persistence point and the diagonal. This information allows for a direct visual understanding of the topology of the dataset.

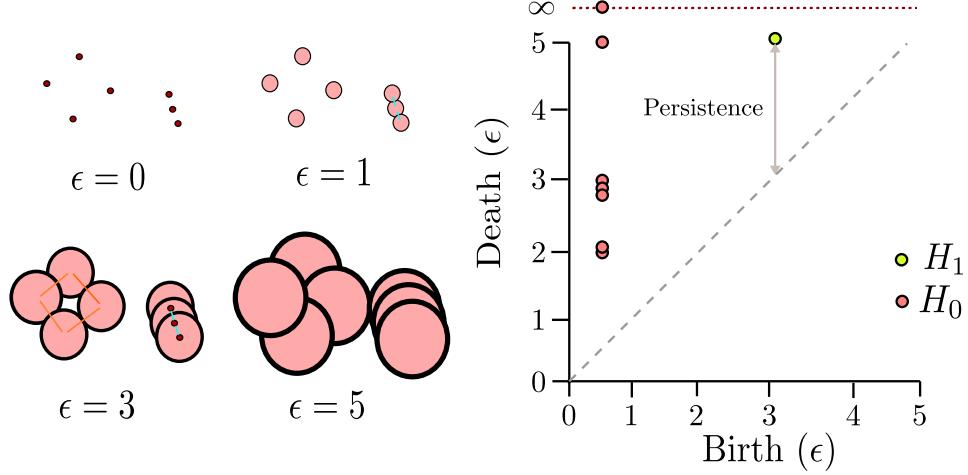


Figure 12: Filtration of points $x_i \in \mathcal{X}$ by a set of balls $B(x_i, \epsilon)$ with expanding ϵ and its corresponding persistence diagram. The PD records the ϵ value at which topological features are born and the ϵ value of their death during the filtration. For example, the cycle born at $\epsilon = 3$ ($x = 3$) dies at $\epsilon = 5$ ($y = 5$) when it is filled in, with a total persistence of $5 - 3 = 2$, which is seen in the PD.

An important property of PDs is that they can be *vectorized* to enable quantification and these vectors can be used to perform tasks such as regression, classification, or clustering. For instance, as we will see in Section (6), one can apply PCA to the vectorized PDs to identify clusters defined by different topological features.

Definition 5.8. Vectorization: A persistence diagram PD_{X_i} of a dataset X_i is vectorized by mapping the PD_{X_i} to a vector $\overrightarrow{PD}_{X_i} \in \mathbb{R}^q$.

There are multiple ways to vectorize a PD, the most widely used mappings are the *persistence landscape* [11, 9] and the *persistence image* [1] (we will focus on the latter). The *persistence image* is a smoothed representation of the points (x, y) in a persistence diagram $(x, y) \in PD$. Typically, the smoothing is done by applying a Gaussian kernel (with mean u and variance σ^2) to each of the points $\{x, y\} \in PD$:

$$\phi(x, y) = \frac{1}{2\pi\sigma^2} \exp -\frac{(x - u_x)^2 + (y - u_y)^2}{\sigma^2} \quad (5.21)$$

Definition 5.9. Persistence Surface: The *persistence surface* is a scalar mapping $\rho : \mathbb{R}^2 \rightarrow \mathbb{R}$ with weighting function $w : \mathbb{R}^2 \rightarrow \mathbb{R}$ and is defined as:

$$\rho(PD) = \sum_{u \in PD} w(u)\phi(u) \quad (5.22)$$

A *persistence image* is the discretization of the *persistence surface*.

Definition 5.10. Persistence Image: For a given PD, a *persistence image* of size n by m is a collection of pixels supported in a rectangle $R = [a, b] \times [c, d]$. The (i, j) pixel $p_{i,j}$, is the area $[a + \frac{i-1}{n}(b-a), a + \frac{i}{n}(b-a)] \times [c + \frac{j-1}{m}(d-c), c + \frac{j}{m}(d-c)]$.

$$\vec{\rho}[i, j] = \iint_{p_{i,j}} \rho dx dy \quad (5.23)$$

The ultimate goal of vectorization methods is to create a *stable* representation of the PD.

Definition 5.11. Stability: A vector representation $\overrightarrow{PD}_{X_i}$ of a persistence diagram PD_{X_i} is said to be *stable* if small perturbations in PD_{X_i} (represented as PD'_{X_i}) results in a bounded change in $\overrightarrow{PD}'_{X_i}$.

Mathematically, we establish the stability property as:

$$\text{dist}(\overrightarrow{PD}_{X_i}, \overrightarrow{PD}'_{X_i}) \leq L \cdot \text{dist}(PD_{X_i}, PD'_{X_i}) \quad (5.24)$$

where $\text{dist}(\cdot, \cdot)$ represents a distance metric and L represents a scalar constant. The distance between PDs is commonly measured using the *Wasserstein distance* or the *bottleneck distance*. Whereas the distance between the vectorized PDs (\overrightarrow{PD}) can be expressed in terms of l_p norms.

Definition 5.12. Wasserstein distance: The p^{th} -*Wasserstein distance* between persistence diagrams PD_1 and PD_2 is defined as:

$$d_{W_p}(PD_1, PD_2) = \left(\inf_{\gamma} \sum_{x \in PD_1} \|x - \gamma(x)\|_{\infty}^p \right)^{1/p} \quad (5.25)$$

where γ ranges over all possible bijections from PD_1 to PD_2 . By convention, we add an infinite number of points in the diagonal to allow for bijections between PD's containing difference numbers of points.

Definition 5.13. Bottleneck distance: The *bottleneck distance* between persistence diagrams, PD_1 and PD_2 , is defined as:

$$d_B(PD_1, PD_2) = \inf_{\gamma} \sup_x \|x - \gamma(x)\|_{\infty} \quad (5.26)$$

where γ ranges over all possible bijections from PD_1 to PD_2 with the same considerations made in the Wasserstein distance definition.

Notably, it has been proven that *persistence landscapes* and *persistence images* are stable under the appropriate distances [11, 9, 1]. Intuitively, stability indicates that topology changes in a *continuous* manner under perturbations. This makes them excellent representations of PD and amenable to use in diverse tasks such as regression and classification, as we demonstrate in Section 6.

5.3 Topology of Continuous Functions

In the previous sections we focus on understanding the topology of datasets that are made of point clouds. We now discuss how to quantify the topology of continuous functions. An example of this type of object is the scalar function shown Figure 13. Topologically, the interesting features of this function are its critical points (min and max points). In order to characterize these critical points we

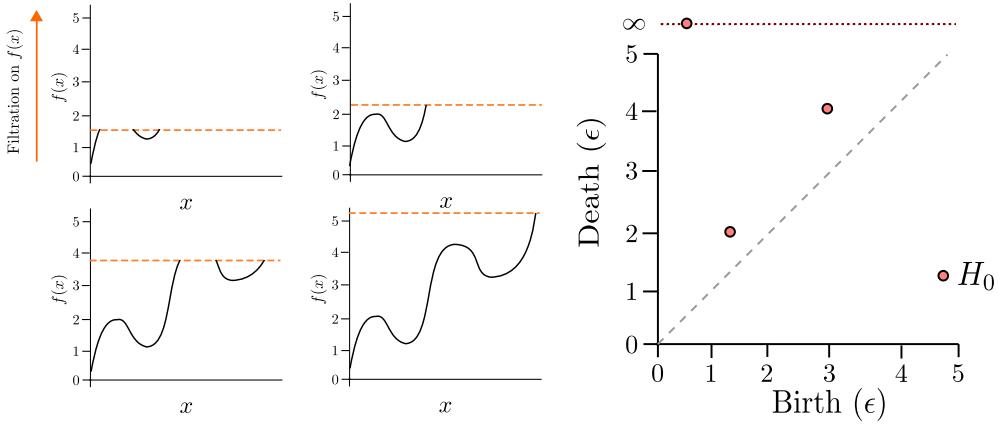


Figure 13: Morse filtration of a function $f : \mathbb{R} \rightarrow \mathbb{R}$. Consider a sublevel set $f^{-1}(-\infty, b)$ for increasing values of b . The topology of these sublevel sets changes at the critical points of f . As b increases the value of the sublevel set, the persistence diagram records the topological changes in the function.

utilize a new form of filtration known as a *Morse filtration* or *sublevel set filtration* [47]. The Morse filtration is derived from ideas of Morse theory, which is the study of the topology of manifolds through differential functions and the analysis of the critical points of these functions [46]. Here, we consider the graph of a continuous function as a differentiable manifold [57].

Definition 5.14. Level Set: Given a differentiable manifold M and function $f : M \rightarrow \mathbb{R}$, the *level set* M^a at a point a is defined as the pre-image:

$$M^a = f^{-1}(a) = \{x \in M : f(x) = a\}. \quad (5.27)$$

The level set contains all points of the manifold that have the same function value. In order to create a filtration, we use a *sublevel set* defined below.

Definition 5.15. Sublevel Set: A *sublevel set* $M^{(a,b)}$, where $a, b \in \bar{\mathbb{R}}$ and $a = -\infty$ is defined as:

$$M^{(-\infty,b)} = \{x \in M : f(x) \leq b\}. \quad (5.28)$$

As we pass through the Morse filtration and build the sublevel set of the function, we are creating a well-defined filtered complex. The topology of the function will change as the filtration passes through critical points in the manifold [47]. These topological changes are quantified in a persistence diagram which is subsequently vectorized for analysis. An example of this type of filtration and the corresponding persistence diagram are shown in Figure 13. The Morse filtration is a good choice for functions that are continuous or that can be approximated as piece-wise linear functions (e.g., a time series). The method can be expanded to k -dimensional functions [30]. This makes it a powerful approach to characterize complex surfaces (landscapes) that have many minima/maxima. We demonstrate this technique on 2D and 3D functions in Section 6.

5.3.1 Stability of Persistence Diagrams for Functions

Persistence diagrams of real valued functions are also *stable* representations of data. The following Theorem 1, established by Cohen-Steiner and co-workers, highlights this result [21].

Theorem 1. Given real valued functions f, g with finitely many critical points and their corresponding persistence diagrams PD_f, PD_g , we have that:

$$d_B(PD_f, PD_g) \leq \|f - g\|_\infty \quad (5.29)$$

where $\|\cdot\|_\infty$ represents the l_∞ distance between two functions $f, g : X \rightarrow \mathbb{R}$:

$$\|f - g\|_\infty = \sup\{\|f(x) - g(x)\| : x \in X\}. \quad (5.30)$$

An illustration of the stability of persistence diagrams is shown in Figure 14. Here, we can see that the persistence diagram of the two functions are similar. The presence of the strong critical points, with large persistence, are well captured in both diagrams. We can also see that the persistence diagram captures the structure of the weak critical points (arising from noise), which have short persistence.

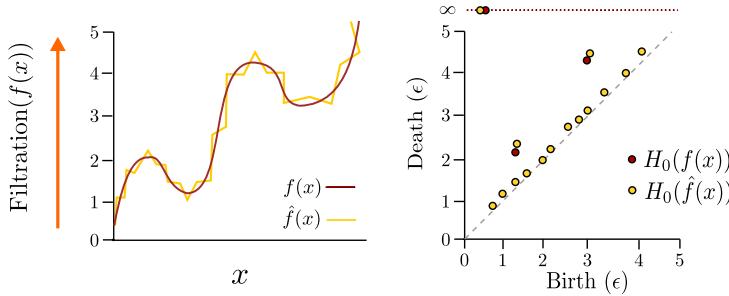


Figure 14: Filtration of functions $f(x)$ and $\hat{f}(x)$. The strong critical points of both functions are captured in the persistence diagram analysis while the weak critical points (arising from noise) remain close to the diagonal as they have minimal persistence.

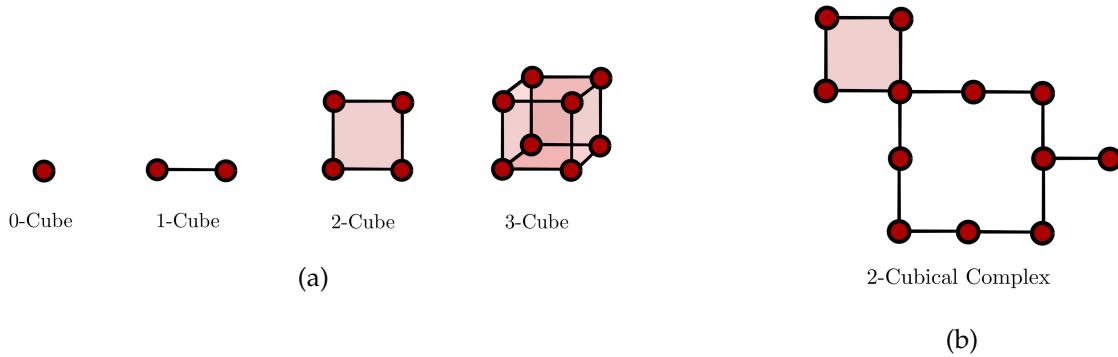


Figure 15: (a) Representations of the elementary k -cubes of dimension 0 to dimension 3. (b) A 2-cubical complex that contains a 2-cube, along with a hole created by 1-cubes.

5.4 Cubical Complexes and Images

We briefly discuss cubical complexes and cubical homology as these are important in understanding data over rectangular domains such as images (represented by pixels in 2D or voxels in 3D) and

are used primarily in Morse filtrations [4, 50]. Cubical homology is similar to simplicial homology but uses different basis shapes. This highlights the fact that one can choose different basis shapes in topological analysis. The basis shapes for cubical complexes are k -cubes (hypercubes) or elementary cubes built from sides of equal length. In Figure 15a we show k -cubes of dimension 0 through 3. An example cubical complex is found in Figure 15b.

Filtered cubical complexes can be developed from data and we can perform persistence homology calculations on them, similar to filtered simplicial complexes. An important application of cubical analysis is the analysis of images. An image can be viewed as a 2D surface embedded in three dimensions where two dimensions are the coordinates of each pixel, and the third dimension is the scalar value associated with each pixel (e.g., intensity). We can also view an image as an approximation of a continuous object over which a Morse filtration can be performed. We demonstrate the concept of filtration on the image in Figure 16a. We filter through the level sets of this image and develop the filtered complex through the sublevel set. This filtration is demonstrated in Figure 16b, where $\mathcal{C}_{f \leq 1} \subseteq \mathcal{C}_{f \leq 3} \subseteq \mathcal{C}_{f \leq 5}$. The persistence diagram is then represented in Figure 17. The PD is able to capture the dominant topological features of our image such as the presence of the two critical points in the image and the fact that there is only a single connected component. The persistence diagram generated from a cubical complex filtration and a simplicial complex filtration have the same properties and can be vectorized in the same way. Thus, we can extend our analysis from discrete point data to that of images or other high-dimensional continuous objects.

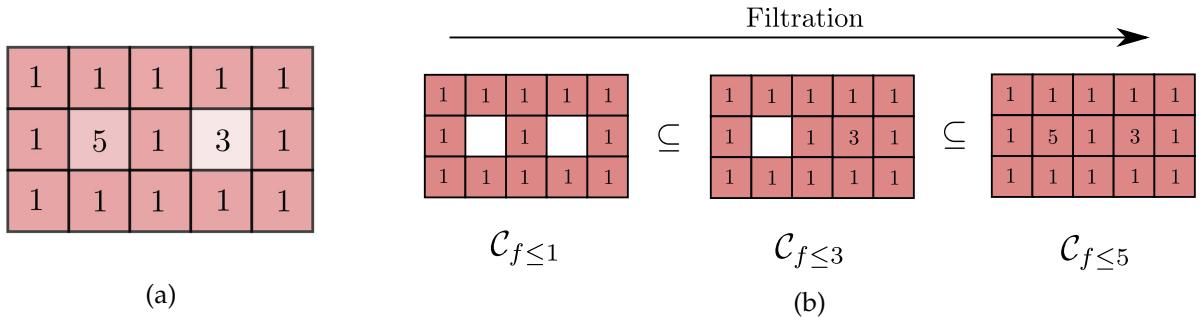


Figure 16: (a) Representation of an image; the values within each pixel represent intensity. (b) The representative filtration on the image itself and the corresponding sublevel sets.

5.5 Inverse Analysis

The algorithm to compute persistence homology allows us, for each point in a persistence diagram, to identify representative features in the filtration. The intuition behind this idea is presented in Figure 18. However, before we discuss this procedure along with an appropriate post-processing step, a few issues need to be clarified. The persistence algorithm will provide a set of cycles that generate a persistent homology group. However, it will not necessarily be the set that is close to what we may call *geometrically optimal generators*. A similar problem can occur when identifying an optimal basis for a vector space. For example, let us consider the \mathbb{R}^2 space and various possible bases for this space presented below.

$$B_1 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}, B_2 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 10 \end{bmatrix} \right\}, B_3 = \left\{ \begin{bmatrix} 123 \\ 21 \end{bmatrix}, \begin{bmatrix} 2121 \\ 1243 \end{bmatrix} \right\}.$$

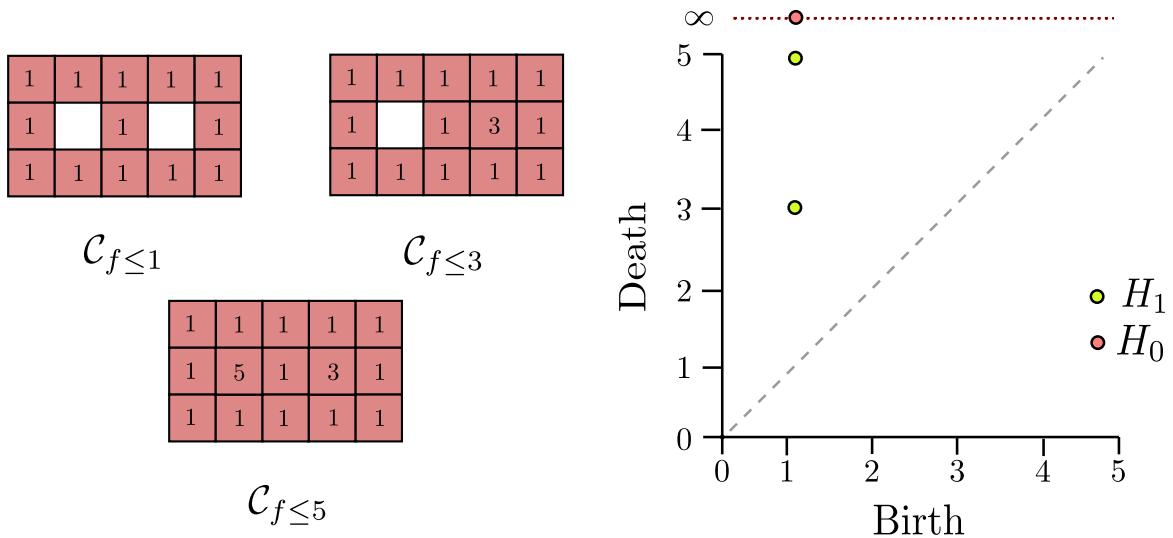


Figure 17: Persistence diagram for the filtration of the image in Figure 16a. The PD reveals the structure of the image, which changes at the critical points of the image (i.e., $f = 3$ and $f = 5$.)

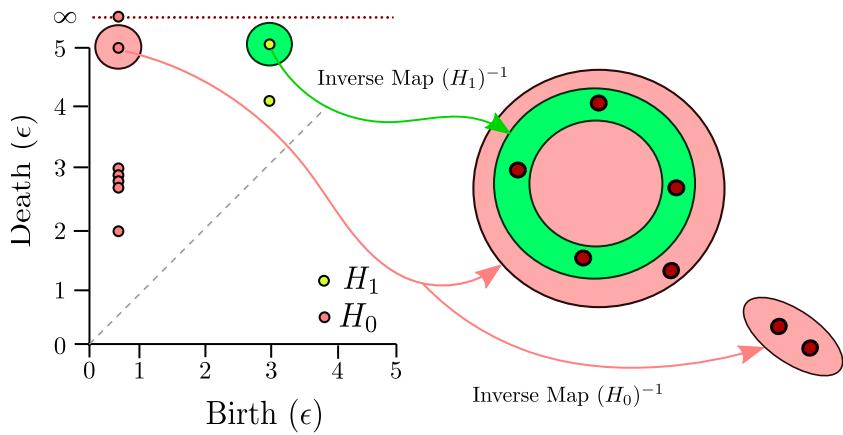


Figure 18: Inverse mapping of the features of persistence diagram to the features dataset in Figure 12. The features of interest are picked up within the persistence diagram; In this case they are the highly persistent hole and connected component. The inverse mapping for the selected point in one dimensional persistence identifies the dominant loop in the dataset and the inverse mapping for the selected point in zero dimensional persistence identifies the two most distinct clusters of the data.

B_1, B_2 and B_3 are all valid basis of \mathbb{R}^2 and they can be mapped to each other via multiplication by a non-singular matrix. Yet, only B_1 can be called *geometrically optimal* as it is the natural representation of the space.

We now illustrate, with a simple example, how this issue manifests itself when selecting a basis for a persistent homology group. The cubical complex presented in Figure 19 contains two holes (h_1, h_2). Cycles g_1 and g_2 surrounding h_1 and h_2 are generators (they form a basis) for the first homology group of this shape. They are the optimal geometric representation of these holes. Let \mathbf{G}_{b1} be the basis made up of these two cycles. The second basis \mathbf{G}_{b2} contains cycles g'_1 and g'_2 . They are a perturbed version of cycles g_1 and g_2 , as $g_1 \simeq g'_1$ and $g_2 \simeq g'_2$, but are not geometrically optimal.

Lastly, let us consider a basis \mathbf{G}_{b3} . It generates the first homology group of our shape, but it is a non-optimal basis for the holes because there is no unique correspondence between cycles and holes. \mathbf{G}_{b3} and \mathbf{G}_{b1} can be transformed into each other by multiplication of a nonsingular matrix (change of basis).

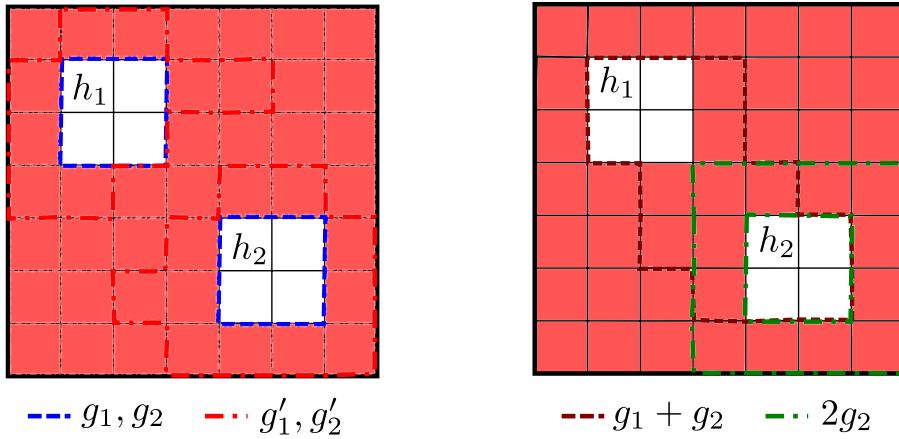


Figure 19: A representation of a cubical complex with two holes. (left) Cycles g_1 and g_2 are an optimal representation of holes (h_1, h_2) as they trace each hole. Cycles g'_1 and g'_2 also represent these holes, but are not geometrically optimal. (right) Another set of generators for the holes (h_1, h_2) that are not optimal as they represent linear combinations of the cycles g_1 and g_2 .

$$\mathbf{G}_{b1} = \begin{bmatrix} g_1 & 0 \\ 0 & g_2 \end{bmatrix}, \mathbf{G}_{b2} = \begin{bmatrix} g'_1 & 0 \\ 0 & g'_2 \end{bmatrix}, \mathbf{G}_{b3} = \begin{bmatrix} g_1 & 0 \\ g_2 & 2g_2 \end{bmatrix}$$

The persistent homology algorithm may return non-optimal bases, like \mathbf{G}_{b3} . There is not much that can be done to fix this issue in general. However, there is a way of finding the most optimal generators within their homology class. This will allow, for instance, to simplify \mathbf{G}_{b2} into \mathbf{G}_{b1} . In order to address the problem of non-optimal generators, we construct an integer optimization problem to obtain the sparsest representation of a given generator. We begin this optimization with the representative cycle c obtained from the persistence algorithm and identify the sparsest chain of simplices from the homology class of c . For example, in Figure 18, we wish to identify the basis (generator) for the persistent cycle identified in green. We construct a simplified representation for the dataset in Figure 18 where \mathcal{K}_ϵ represents the associated simplicial complexes with the specified level of filtration. Because we know the cycle is born at $\epsilon = 3$ and dies at $\epsilon = 5$ we only focus on the portion of the filtration up to the level $\epsilon = 5$. Given the simplices below that filtration level, we

wish to identify the sparsest set of 1-simplices $z = \sum_i \sigma_i$, where $\sigma_i \in \mathcal{K}$, that is homologous to the generator c . We denote $\|z\|_0$ as the cardinality of z .

With this information, we construct an integer optimization formulation, found in 5.31, where we seek to identify the sparsest set of simplices $z \in \mathcal{K}_{\epsilon < 5}$ that is homologous to the cycle c obtained from persistent homology computations. In Figure 20 we identify multiple cycles ($z_1, z_2 \in \mathcal{K}_{\epsilon < 5}$), and note that $z_1 = z$ because $\|z_1\|_0 < \|z_2\|_0$.

$$z = \operatorname{argmin} \|z\|_0, \text{ subject to } z \simeq c \quad (5.31)$$

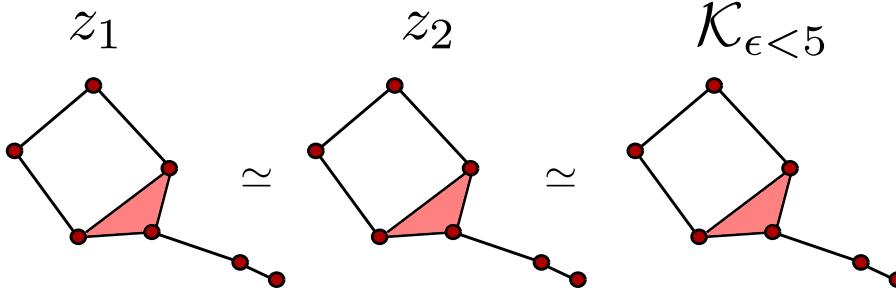


Figure 20: A representation of potential simplicial complexes that are homotopy equivalent (\simeq) to the filtration complex (\mathcal{K}). The complex z_1 contains the fewest number of 1-simplices, thus is the optimal representation of the cycle contained in $\mathcal{K}_{\epsilon < 5}$.

Inverse analysis can be used to understand dominant features that drive classification and regression results. For instance, the defining characteristics of a given class within a dataset can be identified via the weights of regression/classification models in the space of PDs (see Section 6). These defining characteristics can then be mapped back to the original data set which can be used to gain physical understanding of differences between datasets. Applications of these methods in material science are found in [12, 49, 32]. Here, inverse analysis is used to identify fracture or degradation sites in materials and to identify pore configurations in granular crystallization.

6 Applications

We now proceed to demonstrate how these methods can be applied to different types of datasets. To do so, we use a couple of illustrative examples and real datasets derived from soft materials and molecular dynamics simulations. All the calculations presented were conducted in Python [53] using the TDA packages GUDHI [44] and Homcloud [52]. All scripts and data needed to reproduce these results can be found in <https://github.com/zavalab/ML/tree/master/TDApaper>.

6.1 Topology of Point Clouds

We illustrate how to use TDA to analyze point clouds; specifically, we seek to extract topological features from the data to perform binary classification of point clouds. The clouds used here are collections of points in two dimensions x_1, x_2 (for visualization purposes). In actual applications, one can conduct analysis on a point cloud of any dimension. We represent each cloud as X_i where each cloud can belong to two different types of classes (Class 1 or Class 2). Our goal is to take each point cloud X_i as an input, project this data to their respective H_1 persistence diagram PD_{X_i} through

an epsilon ball filtration (i.e., extract the topological features), vectorize the PDs ($\overrightarrow{PD}_{X_i} \in \mathbb{R}^q$), and perform classification of the cloud based on the vectorized topological features.

The point cloud classes are shown in Figure 21 and the H_1 PDs are found in Figure 22. Note how the point clouds of Class 1 define a simple object (ellipse) while those of Class 2 define a more complex object (overlapping ellipses). We can see that the persistence diagrams are visually distinct; specifically, point clouds of Class 2 have features that persist over a longer range of the filtration.

We utilize the persistence image method to vectorize the PDs. We apply principal component analysis (PCA) to the vectorized PDs to verify if there is a separation between Class 1 and Class 2. We emphasize that the PCA projection is not applied to the original datasets X_i but to the transformed datasets $\overrightarrow{PD}_{X_i}$ obtained from TDA. The PCA projection on first and second principal components is shown in Figure 22c. This shows an obvious separation between Class 1 and Class 2, which means that the topological features extracted from the data (contained in H_1) are informative. This also suggests that a simple linear classifier using vectorized PDs as features should work well. To test this hypothesis, we apply a linear support vector machine (SVM) classifier using the $\overrightarrow{PD}_{X_i}$ as features; we find that we can *perfectly classify* the datasets (we use a 5-fold cross validation scheme). This again indicates that the topological features extracted with TDA are highly informative.

An advantage of utilizing a linear classifier is the ability to extract which features are the ones driving classification. Specifically, the magnitude of the weights of the SVM classifier $w \in \mathbb{R}^q$ can be directly associated with the importance of each feature of the vectorized PDs [62]. Weights with a large negative value are characteristic of point clouds in Class 1 and weights with a large positive value are characteristic of point clouds in Class 2. A visualization of the weights is shown in Figure 23a. From this representation, we can see that Class 1 is characterized by 1-D holes that are born and die in the early stages of the filtration suggesting a higher number of small radius holes. Class 2 is characterized by 1-D holes that persist over multiple stages of the filtration, suggesting the presence of holes with large radius. These results highlight how one can exploit topological information obtained with TDA to perform statistical (PCA) or machine learning tasks (SVM classification).

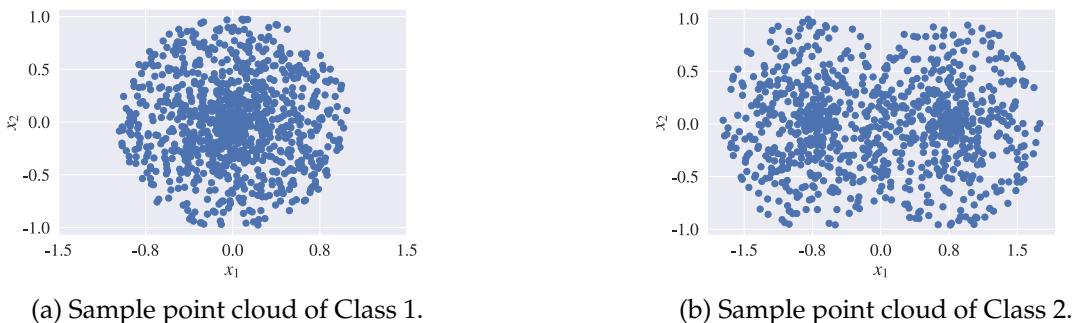


Figure 21: Types of point clouds analyzed using epsilon ball filtration.

Work conducted in [51] has led to the development a set of techniques that are useful in the interpretation of PDs. These techniques allow for the identification of *volume-optimal* cycles, which are cycles that correspond to the sparsest representation of the topological features identified in a PD. This technique has been implemented in the Homcloud software, which can be used to identify the 1D holes that are responsible for differences between the classes. Inverse analysis identifies features of the data corresponding to areas of the PD associated with the masks found in Figure 23. The

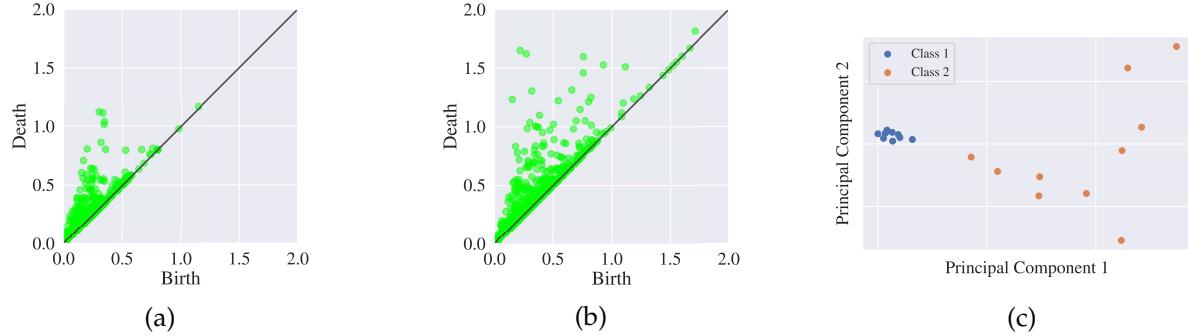


Figure 22: Persistence diagrams for Class 1 and Class 2 point clouds and the corresponding PCA analysis on the set of persistence images created from Class 1 and Class 2. (a) H_1 persistence diagram for Class 1. (b) H_1 persistence diagram for Class 2. (c) Principal components of persistence images for Class 1 and Class 2 datasets. It is clear that there is separation of the persistence diagrams.

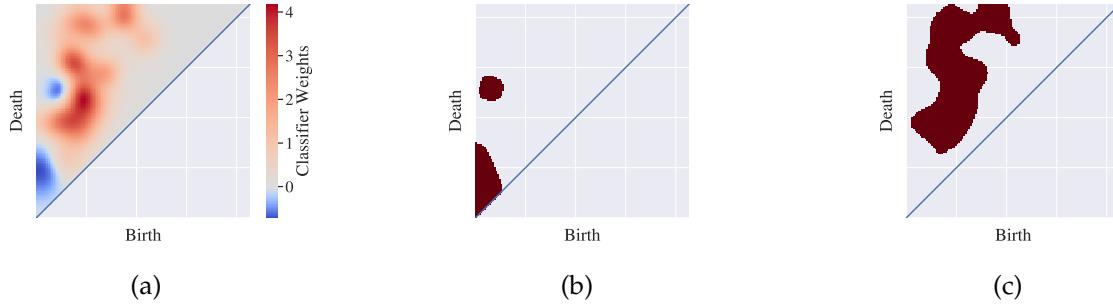


Figure 23: Masks highlight the areas of the PD that are important in distinguishing Class 1 from Class 2. We perform inverse analysis on these areas to visualize what features of the original data distinguishing classes. (a) Weights from SVM classification in the space of PDs. The areas of the diagram that distinguish Class 2 are in red and the areas of the diagram that distinguish Class 1 are in blue. (b) PD mask for Class 1. (c) PD mask for Class 2.

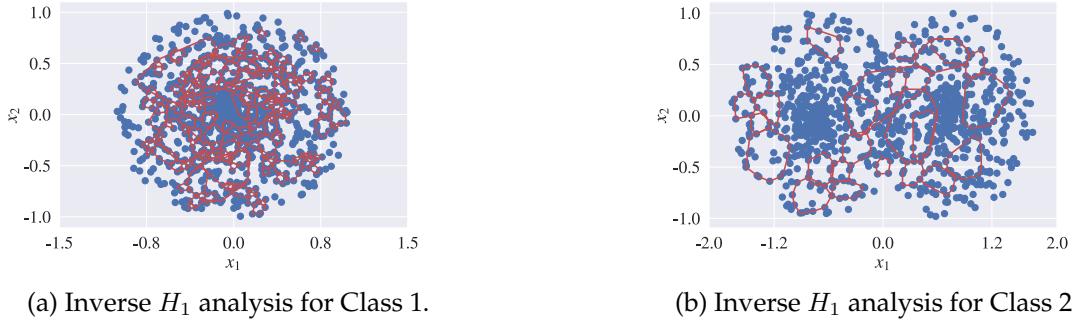


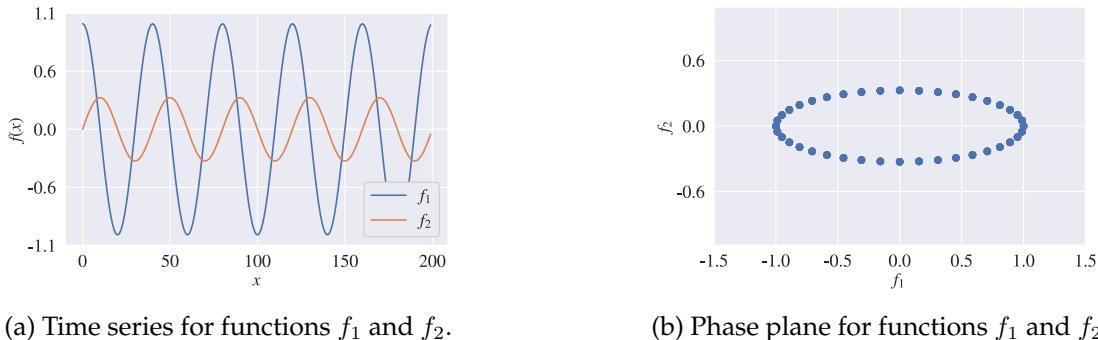
Figure 24: Inverse analysis based on classification weights for Class 1 and Class 2. The analysis reveals that the classifier is separating the classes based on the presence of large cycles in Class 2 and the larger number of smaller cycles in Class 1.

inverse analysis for a sample of Class 1 and Class 2 is shown in Figure 24. For Class 2 we see larger separation between points and larger holes that persist for a longer period of the filtration. In Class 1 we see that the separation between points is smaller, resulting in smaller loops that are formed early and die quickly.

6.2 Topology of Time-Series and Phase-Planes

Persistence homology has seen applications in the area of time series analysis [59, 65, 69, 54, 36]. A simple example of the application of persistence homology is the analysis of the topology of phase-planes generated by a dynamical system. An example for two state variables f_1, f_2 is shown in Figure 25. The phase plane for functions f_1 and f_2 is created by plotting the two functions against each other (Figure 25b). The phase plane for this periodic system defines an ellipse, which is easy to characterize (e.g., in terms of its axes). We can add complexity to the topology of the phase plane by perturbing the dynamical system. For example, by adding a perturbation, we change the phase-plane to that shown in Figure 26. The topology of the new plane cannot be fully characterized using simple ellipsoids.

The analysis of the phase plane topology through an epsilon ball filtration allows us to differentiate the dynamics of the perturbed and unperturbed systems. We compare their PDs in Figure 27 and 28; the unperturbed system contains a single highly persistent cycle while the perturbed system contains four cycles that are less persistent.



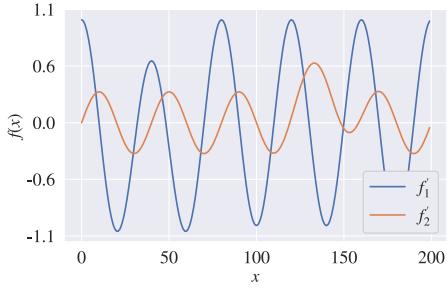
(a) Time series for functions f_1 and f_2 .

(b) Phase plane for functions f_1 and f_2

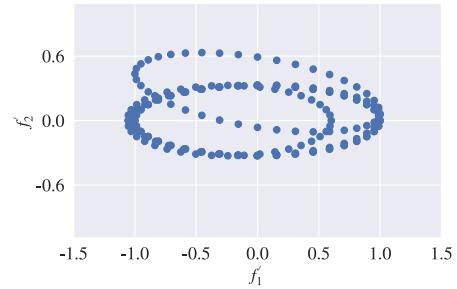
Figure 25: Phase plane for periodic orbit with two states. The plane is represented as cloud points from the edge of an ellipse and is ideal for a geometric analysis.

We can also use persistent homology within a *sliding windowing method* to detect when a change has occurred in the dynamics of a system (e.g., for fault detection). This concept is illustrated in Figure 29 where we only show 4 windows for illustrative purposes; here we can see that the first, second, and fourth windows have similar topology while the third window has a different topology. We compare the PDs of each window in Figure 29; the PDs clearly reveal that the phase plane of the third window is different. This example demonstrates that the geometry of time series are highly informative and can capture the behavior of the system with minimal information. The small windows used in this example immediately demonstrate the cyclic/periodic nature of the time series and show a large difference in shape when a perturbation occurs. Many current methods require a large amount of information to model the given system via statistics or machine learning methods [43, 38, 17].

Another common perturbation of a system is *noise*; an important observation here is that noise usually has the effect of introducing local effects to a trajectory but does not distort the overall topology of the trajectory. This is illustrated in Figure 30, where we can see that the ellipse shape of the

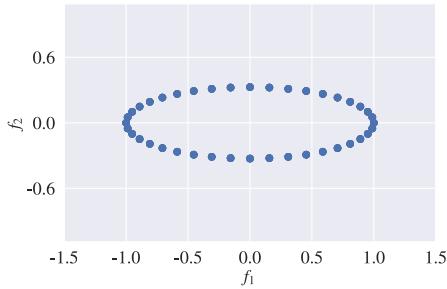


(a) Timer series for functions f'_1 and f'_2 .

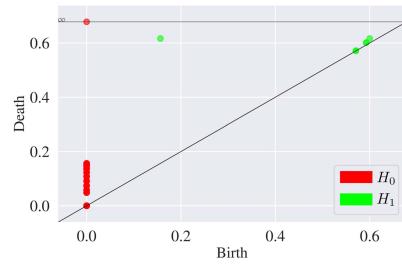


(b) Phase plane for functions f'_1 and f'_2

Figure 26: Phase plane for perturbed periodic orbit with two states. The geometry of the plane can no longer be represented as an ellipse, but still represents a sampling from a more complex geometric object.

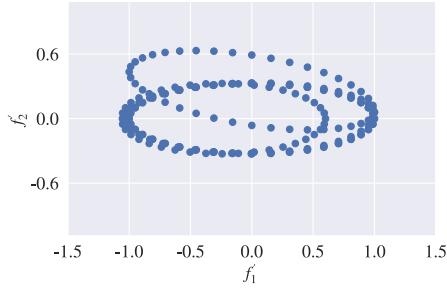


(a) Phase plane of functions f_1 and f_2

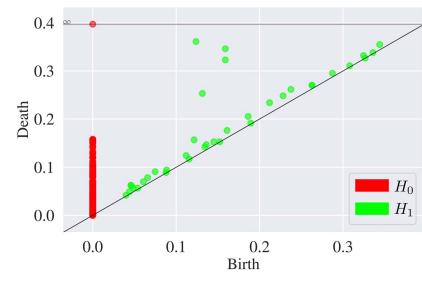


(b) Persistence Diagram of the phase plane.

Figure 27: PD for the phase plane reflects the presence of a single, persistent loop in the diagram. The persistence diagram captures the important geometric aspects of the data.



(a) Phase plane of functions f'_1 and f'_2



(b) Persistence diagram of the phase plane.

Figure 28: PD for the phase plane reflects the presence of four loops. The persistence diagram captures the important geometric aspects of the phase plane without having to fit a complex geometric model to the data.

phase plane is retained. In other words, the topology of the phase plane is stable in the presence of noisy perturbations. In a real system, one may wish to characterize whether noise-free and noisy systems exhibit similar dynamics. One way to do this is to perform persistent homology calculations

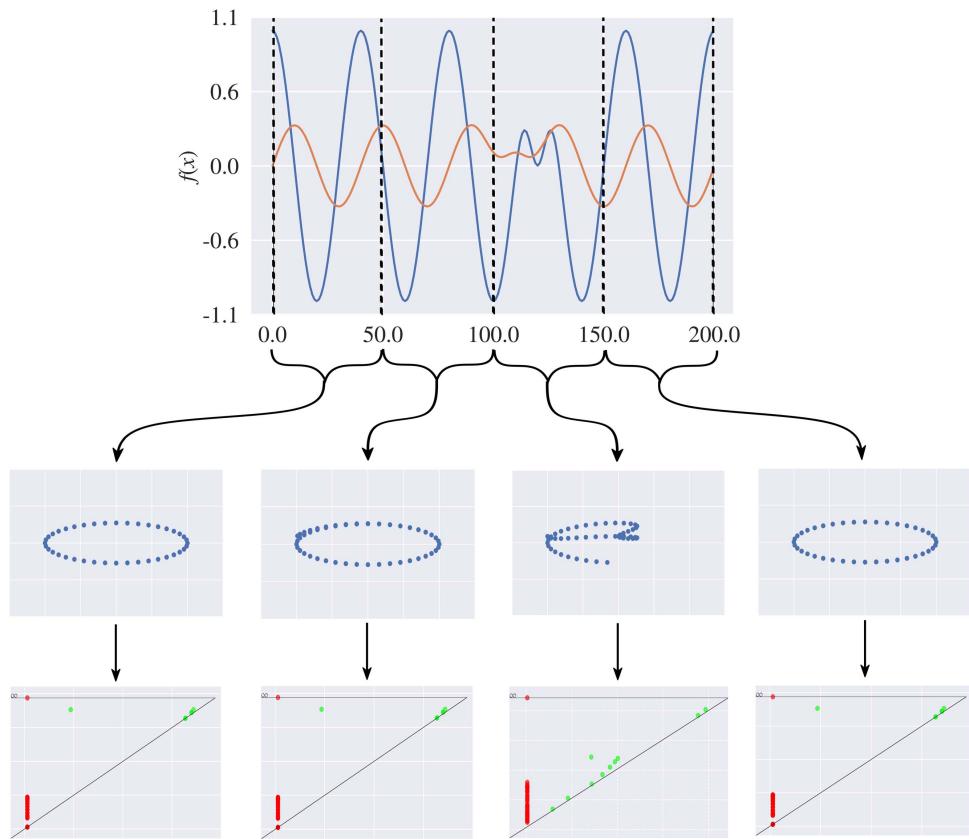
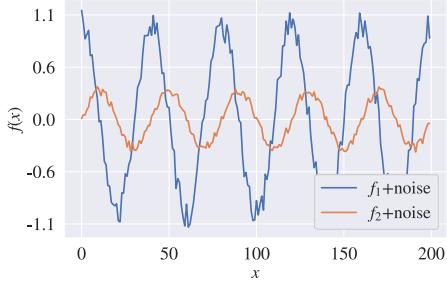
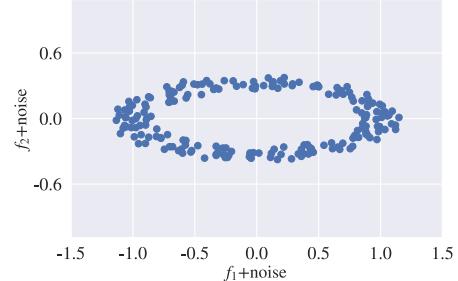


Figure 29: Sliding window method applied to time series. The first, second, and fourth windows have phase planes with similar topologies while the third window has an obvious shift (which introduces a change in the topology of its plane). This change in topology is captured by the persistence diagrams.

on both phase planes and to compare the resulting PDs. We show the results of this analysis in Figure 31; the PDs reveal that both phase planes contain a persistent cycle (which indicates that they have phase planes with similar topologies). Features created by noise are shown at the bottom of the diagonal (these features have short persistence). These results demonstrate the stability of PDs [18], which is an important concept in TDA. These results also highlight that TDA is a powerful tool for the classification of time series [65], identification of periodic orbits and shifts [56], and for change point detection [29]. The paper of Perea [54] provides an excellent overview of TDA in signal processing.

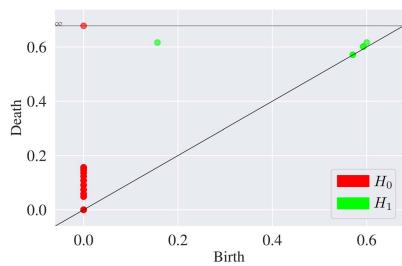


(a) Time series with added Gaussian noise.

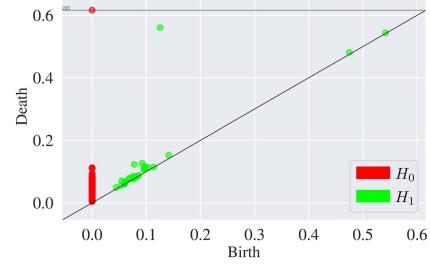


(b) Phase plane representation.

Figure 30: Phase plane for noisy f_1 and f_2 shows a similar topology to the noiseless counterparts.



(a) PD for functions f_1 and f_2



(b) PD for functions f_1 and f_2 with added noise

Figure 31: Persistence diagrams for noisy and noiseless functions. Note that the dominant feature (cycle) persists.

6.3 Topology of 2D Scalar Fields

In this example we use TDA to analyze the topology of 2D scalar fields over a discrete n by n domain U . We generate data by applying propagating a random field $\{u_{i,j} : u_{i,j} \in \mathcal{U}(0, 1)\}$ using the dynamic 2D diffusion equation (6.32) and we obtain the final steady-state field. We generate fields with different textures by using different diffusion coefficients D and independent, random initializations. The resulting fields are used as the datasets; illustrative examples for different diffusion coefficients are shown in Figure 32. Here, the blue color are points of small intensity (small values of $u_{i,j}$) while the red color are points of high intensity. We see that small coefficients generate textures that are more granular while large coefficients generate smoother textures. Our goal is to characterize the geometry of the fields to investigate if their underlying structure can be correlated to the diffusion

coefficient. In our analysis, we represent the scalar field as a function (in 3D), as shown in Figure 33. This functional representation of the field reveals that low and high intensity points define critical points of the function. This also reveals that the field has complex topological features (many critical points with no obvious patterns are present).

$$\frac{u_{i,j}^{(n+1)} - u_{i,j}^{(n)}}{\Delta t} = D \left[\frac{u_{i+1,j}^{(n)} - 2u_{i,j}^{(n)} + u_{i-1,j}^{(n)}}{(\Delta x)^2} + \frac{u_{i,j+1}^{(n)} - 2u_{i,j}^{(n)} + u_{i,j-1}^{(n)}}{(\Delta y)^2} \right] \quad (6.32)$$

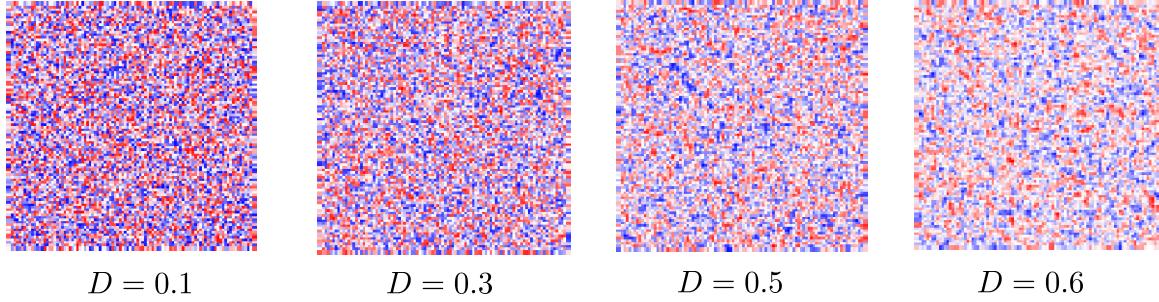


Figure 32: Samples from 2D scalar fields with their corresponding diffusion coefficient (D) value, where red represents high intensity values and blue represents small intensity values.

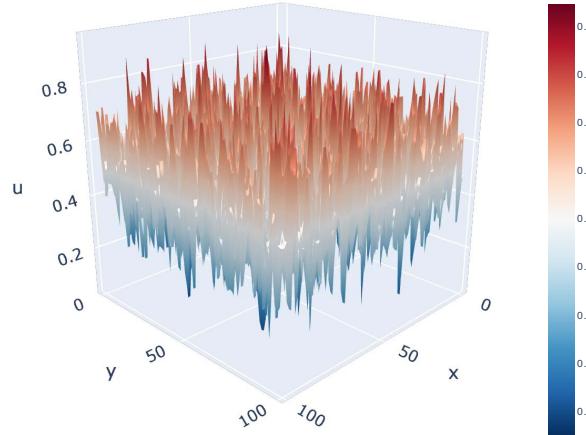


Figure 33: 3D-functional representation of a scatter field with diffusion coefficient $D = 0.6$. The function is treated as a cubical complex and the filtration is performed over the scalar value.

To illustrate the benefits of using TDA against other techniques, we investigate whether the structure of the dataset can be revealed by direct application of PCA [33] and diffusion maps [22]. This is a simple, naive comparison but will demonstrate that the datasets have nontrivial structure. The projection of the data onto the first two principal components is shown in Figure 34a. Here, we highlight the points based on the associated diffusion coefficient. We also apply the diffusion maps, which is a nonlinear dimensionality reduction technique, and we obtain similar results (see Figure 34b). From these results we see that the features extracted by PCA and diffusion maps do not correlate to the diffusion coefficient.

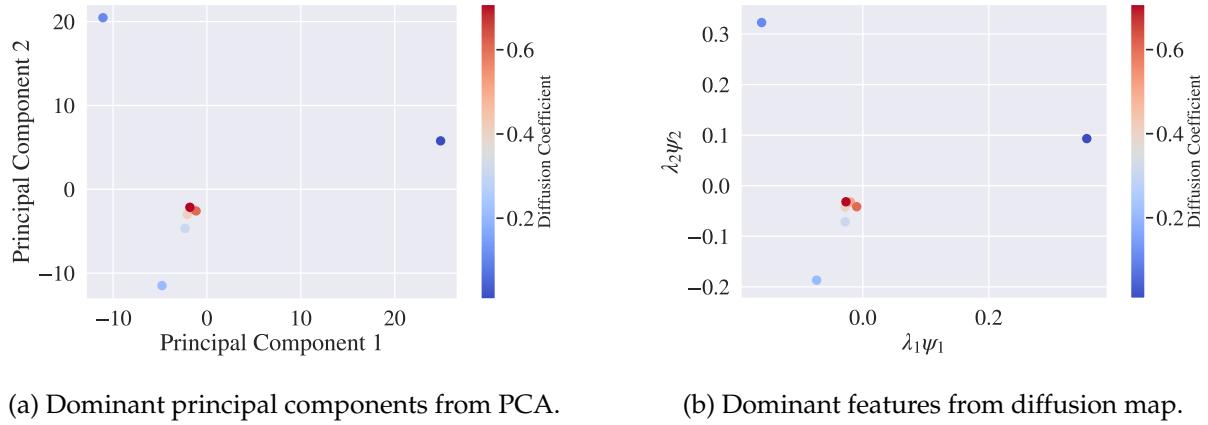


Figure 34: Dimensionality reduction for the 2D dimensional scalar fields using PCA and diffusion maps.

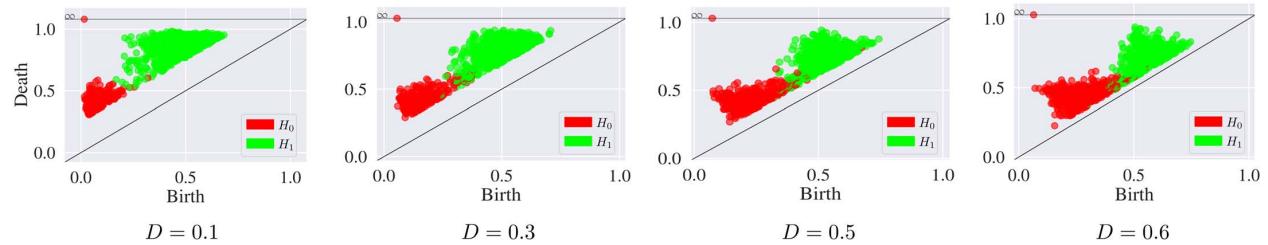


Figure 35: Evolution of PDs with the diffusion coefficient. A dependence of the topology with the diffusion coefficient emerges.

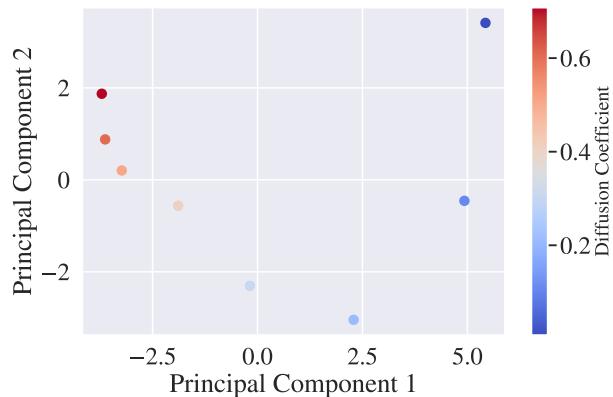


Figure 36: PCA performed on the PD for two-dimensional scalar fields. This reveals that the geometry of the dataset is directly related to the diffusion coefficient.

We now apply TDA to the 3D field functions and extract persistence diagrams. Example persistence diagrams for H_0 and H_1 are shown in Figure 35. We see that there is a visual shift in the PDs as we increase the diffusion coefficient. This seems to indicate that the PDs vary continuously with the diffusion coefficient. To verify this, we vectorize the PDs and apply PCA to the vectorized diagrams. The projection of the vectorized PDs onto the dominant principal components is shown in Figure 36. It is clear that there is a continuous dependence of the PD on the diffusion coefficient (it forms a continuous manifold). This result provides another demonstration of the stability of persistence diagrams and on how topology varies continuously under perturbations. Specifically, stability indicates that small changes in a given function (f, g) results in bounded changes in the associated persistence diagrams (PD_f, PD_g). Thus, because our perturbations to each function are based on changes in D , we can guarantee that the distance between PDs is bounded by the size in the perturbation in the diffusion coefficient (i.e., the distance is not arbitrary).

6.4 Topology of Images

We now illustrate how to use TDA to analyze images. Specifically, we analyze the optical response of liquid crystal sensors to air contaminants, in particular dimethyl methylphosphonate (DMMP) [62, 60]. We analyze the spatial response of a sensor in the presence of DMMP and in the presence of humid nitrogen (nitrogen + water), which we will refer to as water. The sensor responds to both DMMP and water, but there are subtle spatial differences in the optical response of the sensor to these different environments. The working principle of these sensors relies on a change in orientation of liquid crystal molecules in a film when exposed to an air contaminant (analyte). The change in orientation results in optical fields with different spatial and color features (see Figure 37). We use TDA to investigate if the topological features of these patterns present a dependence on the air environment. Such information can be used to design sensors (i.e., we can calibrate the sensor by correlating the optical response to the presence of DMMP).

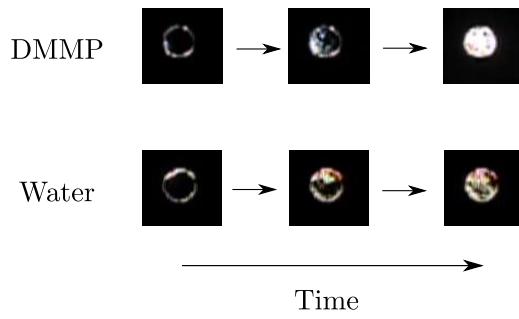


Figure 37: Optical patterns for a liquid crystal sensor when exposed to DMMP or water.

Each optical micrograph is an image, taken from the endpoint of the sensor response, with three channels (*Red*, *Green*, and *Blue*). We project these three channels onto a single grayscale channel by computing the total intensity of each pixel in the image. The conversion of the image to a single channel allows us to treat the image as a cubical complex over which we can perform a simple Morse filtration (level sets defined in terms of intensity, as done in the previous diffusion field example). A grayscale image was used to simplify the computations; however, more complicated approaches could be taken to deal with the three color channels. In order to understand the important of the information contained in the Morse filtration analysis, we apply a linear SVM to the vectorized per-

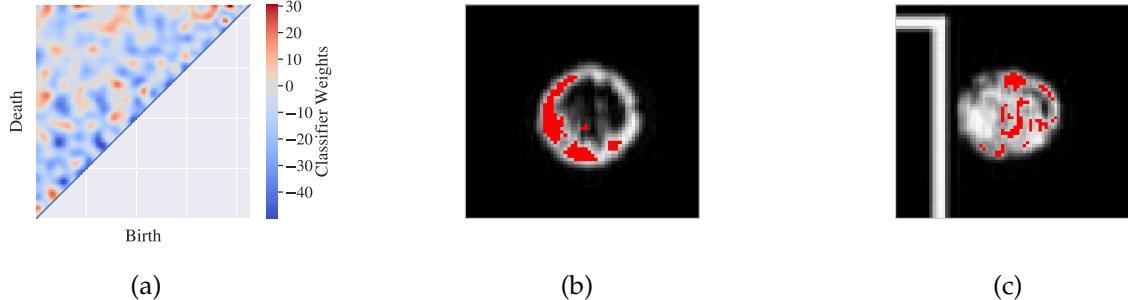


Figure 38: (a) Areas corresponding to optimal weights from linear SVM classification. The areas of the PD that distinguish DMMP are shown in red and the ones that distinguish water are shown in blue. Inverse analysis based on SVM weights for (b) DMMP and (c) water responses. Note that the camera artifact in (c) has no highlighted areas, demonstrating that the extracted features are physically relevant.

sistence diagrams associated to our images. We find that the topological features of the images gives us a classification accuracy of $85 \pm 2\%$ (for a dataset of more than 1,000 images). In order to identify the characteristic features for the responses at high and low concentration, we utilize the classification weights of the linear SVM model. The classification weights are visualized in Figure 38. We apply a masking method to identify the portions of the persistence diagram that are critical for defining whether a response pattern is a result of high or low concentration. We can use these masked areas to identify the features of the images that separate the high concentration patterns from the low concentration patterns. To visualize the geometric differences between the patterns associated with DMMP and water, we again utilize the `Homcloud` software to perform the inverse analysis via volume optimal cycles. Here, we focus on inverse analysis for the H_1 homology group. The results of this analysis for a couple of sample images is found in Figure 38. Inverse analysis reveals that, when the sensors are exposed to water, the pattern exhibits many small distinct clusters; in contrast, when the sensor is exposed to DMMP, there are few large clusters. This shows how inverse analysis allows us to pinpoint topological features of the image that drive classification. The ability to classify as well as extract meaningful information from the topology of the images provides an important advantage over machine learning methods. The work of Smith, Cao, and co-workers demonstrate that machine learning models can be used to classify the responses of these sensors with higher accuracy, but provide minimal interpretability. Interpretability is needed to understand the physics of these sensors which can improve the sensitivity, and broaden the applicability, of the sensors [62, 13].

6.5 Topology of Probability Density Functions

The analysis of the shape of probability density functions is typically done using summarizing statistics (e.g., moments such as skewness and kurtosis) or through parametric techniques (fitting a parametric model such as a Gaussian mixture to the data) [68]. These models are powerful in their simplicity but might not be flexible enough to capture complex features of density functions (particularly in high dimensions). In this example we explore the shape of complex density functions by using topological techniques. We use an experimental flow cytometry dataset to illustrate how this can be done. The flow cytometry dataset was obtained through the FlowRepository [63] (Repository ID:

FR-FCM-ZZC9). This dataset represents a temporal study of the kinetics of gene transcription and protein translation within stimulated human blood mononuclear cells through the quantification of proteins (CD4 and IFN- γ) and mRNA (CD4 and IFN- γ) [66]. In our study, we focus on the evolution of the concentration of CD4 mRNA and IFN- γ mRNA in a given cell which is measured via a flow cytometer. At each time point in the study, a number of cells ($\sim 15,000$) are passed through the flow cytometer, each one of these cells provides a vector of scalar values $x \in \mathbb{R}^n$ corresponding to each measurable variable. In this case we set $n = 2$ as we are only utilizing the scalar values that represent the measure of both CD4 mRNA and IFN- γ mRNA, samples of these distributions are found in Figure 39. From this we obtain a 2D scatter field. We have restricted ourselves to two dimensions for illustrative purposes, but this same analysis can be conducted for a point cloud of higher dimensions, accounting for all variables measured by a flow cytometer. The goal in this analysis is to use TDA to quantify the temporal evolution of the shape of the scatter field during the kinetic response of human blood mononuclear cells during stimulation. This approach provides an alternative to traditional parametric or heuristic methods such as gating, which are difficult to tune as they are highly sensitive to potential noise and outliers in the data. The gate selection may also require complicated multivariate mixture models to identify the correct gating values [42].

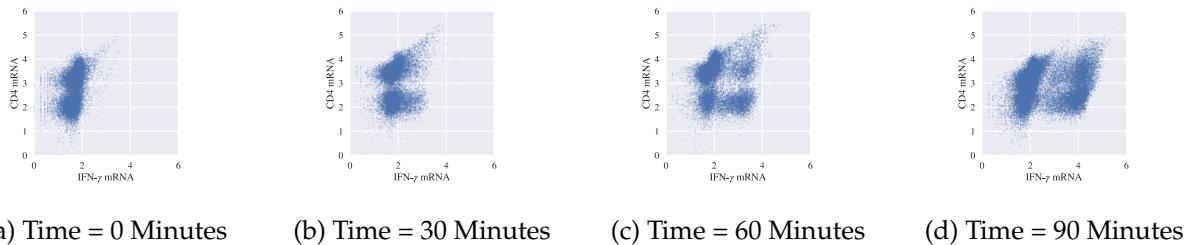


Figure 39: Deformation of a 2D scatter field over time.

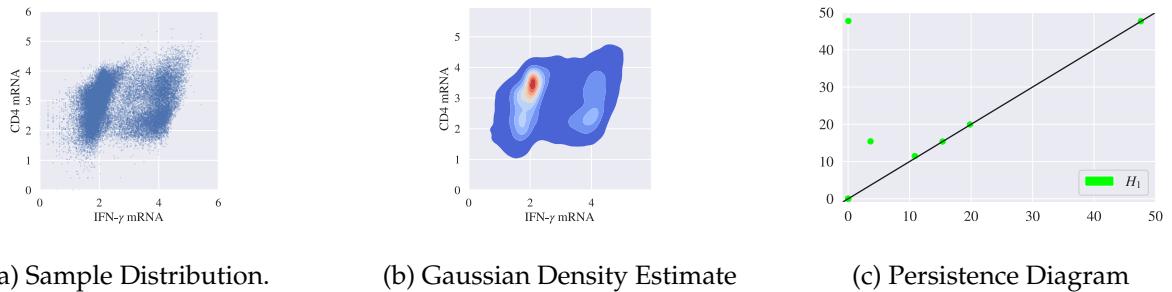


Figure 40: Processing of the flow cytometry scatter field. The raw data is first smoothed via a Gaussian kernel and then the smoothed diagram is processed via a Morse filtration.

In order to analyze the topology of the scatter fields, we utilize Gaussian kernel smoothing [61]. The work of [8] demonstrates that provided a large enough sample, the homology of the Gaussian kernel density estimate derived from a sample is equivalent to the homology of the true density. Figure 40 shows the Gaussian kernel smoothing of a flow cytometry scatter plot. An example persistence diagram for the function is shown in Figure 40. As in the case of the diffusion example, in 3D we can represent the scatter field as a continuous function (in this case a probability density function). This probability density function (Figure 41a) can be analyzed using Morse filtration. Our goal in this



Figure 41: (a) Scatter field as a probability density function in 3D; Morse filtration is performed using level sets of the probability density. (b) Wasserstein distance between the persistence diagrams as a function of time. There is a clear continuous evolution of the Wasserstein distance that characterizes the change in topology.

analysis is to quantify the time evolution of the probability density functions during stimulation. Our strategy consists of computing the Wasserstein distance (w_d) between the persistence diagram of a given time point to the persistence diagram of the sample at time zero [16]. Specifically, given flow cytometry samples X_1 , X_2 and the time zero sample X_0 as well as their corresponding persistence diagrams PD_1 , PD_2 , PD_0 and time points $T_0 \leq T_1 \leq T_2$, we observe that:

$$w_d(PD_1, PD_0) \leq w_d(PD_2, PD_0) \quad (6.33)$$

From Figure 41b, we can see that the distance exhibits a strong dependence on time. This suggests that there exists a continuous mapping between the persistent diagram and time (the topological deformation is continuous with respect to time). This again reveals the continuity of the persistence diagrams (of topology) to perturbations. These results highlight how topological data analysis provides a quantifiable approach to characterize complex probability density functions and their evolution over time.

6.6 Topology of 3D Fields

We now illustrate how to use TDA to analyze the topology induced by 3D point clouds. Specifically, we study datasets generated by molecular dynamics (MD) simulations [20, 67]. The dataset under study analyzes the influence of the 3D liquid-phase environment formed by molecules of a solvent, co-solvent, and a reactant on reactivity [20]. The reactivity is quantified via a *kinetic solvent parameter* σ that is obtained from experiments. Experiments suggest that reactivity is influenced by hydrophilicity of the solvent. The main hypothesis is that, as the solvent concentration is increased, the water in the system is concentrated around the solvent molecule, and that molecules with high hydrophilicity are able to take advantage of this effect. In order to study this hypothesis, molecular dynamics computations were performed in [20]. The data output of an MD simulation has both spatial and temporal dimensions. Each simulation gives atomic positions $X_t \in \mathbb{R}^{M \times 3}$ (M is the number

of species) at multiple times t (measured in nanoseconds). In our analysis, we utilize a 3D point cloud of water molecule positions that result from a time average of 100 nanoseconds. An example of this point cloud (visualized as a field) is provided in Figure 42. Each density field is labeled with a reactivity σ obtained from experiments. Recent work by Chew and co-workers has analyzed the 3D density by using 3D convolutional neural networks (CNNs) and has shown that the features extracted from the CNN are strongly correlated to reactivity [20]. CNNs are highly effective tools but require a large number of parameters ($\sim 160,000$ in this case) and are difficult to interpret. Our goal is to study if the topology of the 3D density can be characterized in a more straightforward manner and to explore whether topology changes in correlation with reactivity.

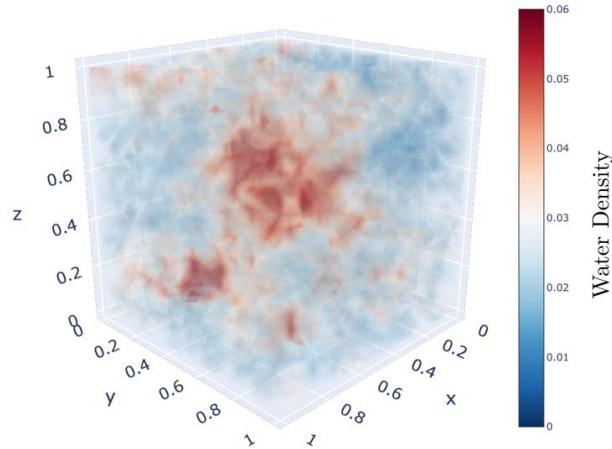


Figure 42: Visualization of 3D water density field generated by MD simulation.

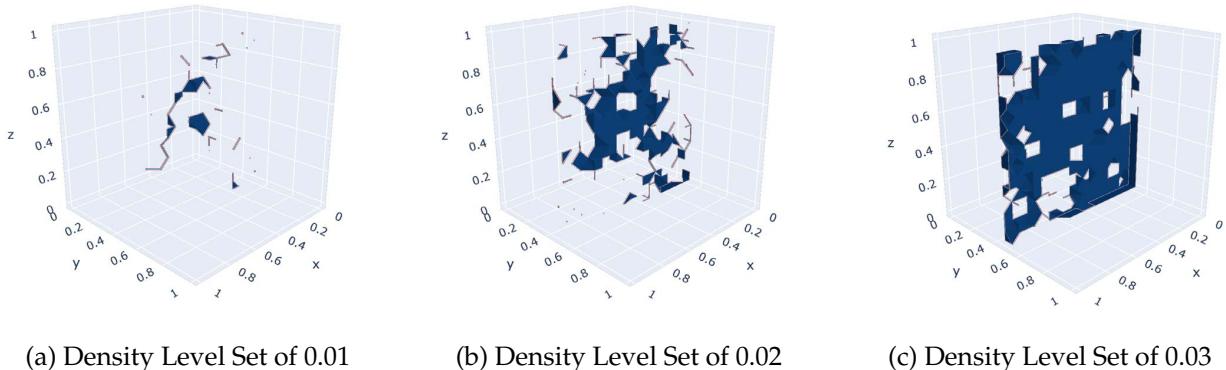


Figure 43: Slices of 3D water density field as filtration proceeds for different density values. The filtration reveals the presence of voids in the data associated with high concentrations of water molecules.

To perform our analysis, we treat the 3D point cloud as a continuous field (function). Here, we perform a Morse filtration and treat the data as a 3D cubical complex (a voxel). The filtration will be done by exploring levels sets for the water density. Note that this is a filtration in a higher dimension than our previous examples for the diffusion field and for liquid crystal sensors. The main focus of this approach is to capture the clustering of water near hydrophilic molecules, and the lack of clustering near non-hydrophilic molecules. We visualize the water density filtration in Figure 43 via

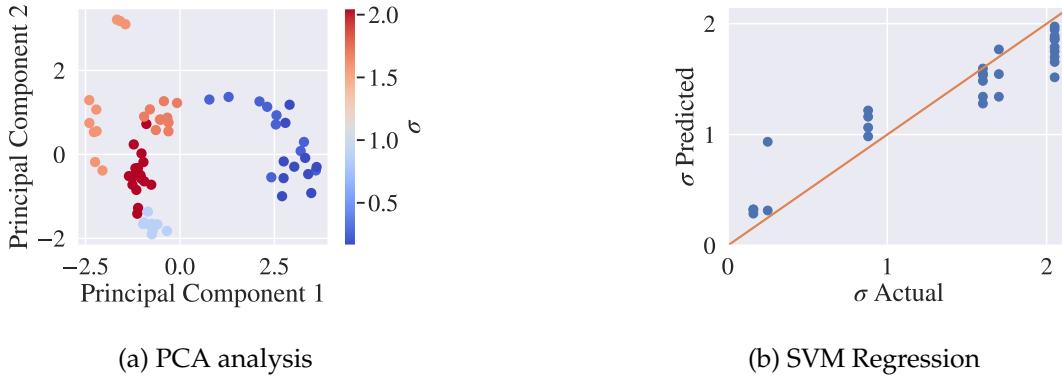


Figure 44: (a) PCA analysis on persistence diagrams for MD simulations. The analysis reveals strong dependence of reactivity σ . (b) Regression plot for SVM with a radial basis function. The predictions over 5-fold cross validation yield an MSE of 0.07 ± 0.003 .

a 2-dimensional slice. We can see that voids in the data are generated as we increase the filtration value. The voids represent areas of high water density which is precisely what we wish to quantify. From these filtrations, we produce persistence diagrams focused on H_2 (since this homology group quantifies these voids). The persistent diagrams are then vectorized via the persistence image and we use PCA reduction to visualize them (see Figure 44a). We use SVM regression with a radial basis kernel to predict reactivity as a function of the persistence diagrams (see Figure 44b).

The PCA projection reveals that there is strong dependence of the reactivity on the topology. This suggests that the information gained via persistent homology extracts informative features of the 3D field that explain reactivity. This also suggests that a simple regression method (as opposed to a complex neural network) would be effective at predicting the reactivity. In order to test this hypothesis, the experimental dataset with 70 points is split into train/test sets with 49/21, points to build the SVM regression model. A 5-fold cross validation is performed to estimate the performance of the SVM regression. We found that this model captures the trend of reactivity well; moreover, this simple model yields a mean square error of $0.07 \pm .003$ (Figure 44). These results are relevant because they indicate that it is possible to predict experimental reactivity directly from MD simulations.

7 Conclusions

Topological data analysis (TDA) provides a set of powerful methods and tools for understanding the underlying geometry of data. These techniques represent data such, as point clouds and functions, as geometric objects and explores these objects in terms of basic geometric features. We have shown that TDA offers a number of important theoretical properties (such as stability), offers flexibility to extract features from different types of data, and how these extracted features can be exploited using statistical and machine learning techniques. In particular, we demonstrate the capability of TDA in characterizing the shape of 2-dimensional point clouds and distributions without parameter estimation (Sections 6.1, 6.5). We also utilize TDA in understanding the phase space of coupled time series, and how it can be used to detect anomalies based upon the geometry of the time series alone (Section 6.2). The TDA methodology also provides a new perspective on the analysis of continuous data, such as an image, as a manifold embedded in higher dimensional space. This perspective allows for

the analysis of the geometric and topological structure of data such as 2-dimensional images (Section 6.3,6.4) or 3-dimensional density fields from MD simulations (Section 6.6). The TDA field is in rapid development from both a theoretical and applied perspective. Moreover, there are easily accessible software packages to conduct scalable computations (such as such as Gudhi [44], Homcloud [52], Javaplex-Matlab [2] and R-TDA [26]). We believe that TDA can bring a new geometric and topological perspective to challenging problems in chemical engineering.

Acknowledgements

We acknowledge funding from the U.S. National Science Foundation (NSF) under BIGDATA grant IIS- 1837812 and also acknowledge partial support from the NSF through the University of Wisconsin Materials Research Science and Engineering Center (DMR-1720415). We acknowledge the Dioscouri Center for Topological Data Analysis for providing expert advice on Topological Data Analysis. We thank Alex Chew and Prof. Reid Van Lehn for providing datasets on MD simulations and thank Prof. Nicholas Abbott for providing the liquid crystal dataset.

References

- [1] Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman, Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images: A stable vector representation of persistent homology. *The Journal of Machine Learning Research*, 18(1):218–252, 2017.
- [2] Henry Adams, Andrew Tausz, and Mikael Vejdemo-Johansson. Javaplex: A research software package for persistent (co) homology. In *International Congress on Mathematical Software*, pages 129–136. Springer, 2014.
- [3] Paul Alexandroff. Über den allgemeinen dimensionsbegriff und seine beziehungen zur elementaren geometrischen anschauung. *Mathematische Annalen*, 98(1):617–635, 1928.
- [4] Madjid Allili, Konstantin Mischaikow, and Allen Tannenbaum. Cubical homology and the topological classification of 2d and 3d imagery. In *Proceedings 2001 international conference on image processing (Cat. No. 01CH37205)*, volume 2, pages 173–176. IEEE, 2001.
- [5] Francis J Anscombe. Graphs in statistical analysis. *The American Statistician*, 27(1):17–21, 1973.
- [6] Ulrich Bauer and Michael Lesnick. Induced matchings of barcodes and the algebraic stability of persistence. In *Proceedings of the thirtieth annual symposium on Computational geometry*, pages 355–364, 2014.
- [7] Andrew J Blumberg, Itamar Gal, Michael A Mandell, and Matthew Pancia. Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces. *Foundations of Computational Mathematics*, 14(4):745–789, 2014.
- [8] Omer Bobrowski, Sayan Mukherjee, Jonathan E Taylor, et al. Topological consistency via kernel estimation. *Bernoulli*, 23(1):288–328, 2017.

- [9] Peter Bubenik. Statistical topological data analysis using persistence landscapes. *The Journal of Machine Learning Research*, 16(1):77–102, 2015.
- [10] Peter Bubenik, Gunnar Carlsson, Peter T Kim, and Zhi-Ming Luo. Statistical topology via Morse theory persistence and nonparametric estimation. *Algebraic methods in statistics and probability II*, 516:75–92, 2010.
- [11] Peter Bubenik and Paweł Dłotko. A persistence landscapes toolbox for topological statistics. *Journal of Symbolic Computation*, 78:91–114, 2017.
- [12] Mickaël Buchet, Yasuaki Hiraoka, and Ippei Obayashi. Persistent homology and materials informatics. In *Nanoinformatics*, pages 75–95. Springer, Singapore, 2018.
- [13] Yankai Cao, Huaizhe Yu, Nicholas L Abbott, and Victor M Zavala. Machine learning algorithms for liquid crystal-based sensors. *ACS sensors*, 3(11):2237–2245, 2018.
- [14] Gunnar Carlsson. Topology and data. *Bulletin of the American Mathematical Society*, 46(2):255–308, 2009.
- [15] Gunnar Carlsson, Afra Zomorodian, Anne Collins, and Leonidas J Guibas. Persistence barcodes for shapes. *International Journal of Shape Modeling*, 11(02):149–187, 2005.
- [16] Mathieu Carriere, Marco Cuturi, and Steve Oudot. Sliced wasserstein kernel for persistence diagrams. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70*, pages 664–673. JMLR. org, 2017.
- [17] Philip K Chan and Matthew V Mahoney. Modeling multiple time series for anomaly detection. In *Fifth IEEE International Conference on Data Mining (ICDM'05)*, pages 8–pp. IEEE, 2005.
- [18] Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J Guibas, and Steve Y Oudot. Proximity of persistence modules and their diagrams. In *Proceedings of the twenty-fifth annual symposium on Computational geometry*, pages 237–246, 2009.
- [19] Frédéric Chazal, Vin De Silva, Marc Glisse, and Steve Oudot. The structure and stability of persistence modules. *arXiv preprint arXiv:1207.3674*, 21, 2012.
- [20] Alex K Chew, Shengli Jiang, Weiqi Zhang, Victor M Zavala, and Reid C Van Lehn. Fast predictions of liquid-phase acid-catalyzed reaction rates using molecular dynamics simulations and convolutional neural networks. 2019.
- [21] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. *Discrete & Computational Geometry*, 37(1):103–120, 2007.
- [22] Ronald R Coifman and Stéphane Lafon. Diffusion maps. *Applied and computational harmonic analysis*, 21(1):5–30, 2006.
- [23] Robert D Cook et al. *Concepts and applications of finite element analysis*. John Wiley & sons, 2007.
- [24] Herbert Edelsbrunner and John Harer. *Computational topology: an introduction*. American Mathematical Soc., 2010.

- [25] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and simplification. In *Proceedings 41st annual symposium on foundations of computer science*, pages 454–463. IEEE, 2000.
- [26] Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, and Clément Maria. Introduction to the R package tda. *arXiv preprint arXiv:1411.1830*, 2014.
- [27] Robert Ghrist. Barcodes: the persistent topology of data. *Bulletin of the American Mathematical Society*, 45(1):61–75, 2008.
- [28] Robert W Ghrist. *Elementary applied topology*, volume 1. Createspace Seattle, 2014.
- [29] Marian Gidea and Yuri Katz. Topological data analysis of financial time series: Landscapes of crashes. *Physica A: Statistical Mechanics and its Applications*, 491:820–834, 2018.
- [30] David Günther, Jan Reininghaus, Hubert Wagner, and Ingrid Hotz. Efficient computation of 3D Morse–Smale complexes and persistent homology using discrete Morse theory. *The Visual Computer*, 28(10):959–969, 2012.
- [31] Allen Hatcher. *Algebraic topology*. Cambridge Univ. Press, Cambridge, 2000.
- [32] Takashi Ichinomiya, Ippei Obayashi, and Yasuaki Hiraoka. Persistent homology analysis of craze formation. *Physical Review E*, 95(1):012504, 2017.
- [33] Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent developments. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 374(2065):20150202, 2016.
- [34] Daniel M Kan. Abstract homotopy. *Proceedings of the National Academy of Sciences of the United States of America*, 41(12):1092, 1955.
- [35] Peter M Kasson, Afra Zomorodian, Sanghyun Park, Nina Singhal, Leonidas J Guibas, and Vijay S Pande. Persistent voids: a new structural metric for membrane fusion. *Bioinformatics*, 23(14):1753–1759, 2007.
- [36] Firas A Khasawneh, Elizabeth Munch, and Jose A Perea. Chatter classification in turning using machine learning and topological data analysis. *IFAC-PapersOnLine*, 51(14):195–200, 2018.
- [37] Miroslav Kramár, Rachel Levanger, Jeffrey Tithof, Balachandra Suri, Mu Xu, Mark Paul, Michael F Schatz, and Konstantin Mischaikow. Analysis of kolmogorov flow and rayleigh–bénard convection using persistent homology. *Physica D: Nonlinear Phenomena*, 334:82–98, 2016.
- [38] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. Generic and scalable framework for automated time-series anomaly detection. In *Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining*, pages 1939–1947, 2015.
- [39] Hyekyoung Lee, Moo K Chung, Hyejin Kang, Bung-Nyun Kim, and Dong Soo Lee. Discriminative persistent homology of brain networks. In *2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro*, pages 841–844. IEEE, 2011.

- [40] Hyekyoung Lee, Hyejin Kang, Moo K Chung, Bung-Nyun Kim, and Dong Soo Lee. Persistent brain network homology from the perspective of dendrogram. *IEEE transactions on medical imaging*, 31(12):2267–2277, 2012.
- [41] Yongjin Lee, Senja D Barthel, Paweł Dłotko, Seyed Mohamad Moosavi, Kathryn Hess, and Berend Smit. High-throughput screening approach for nanoporous materials genome using topological data analysis: application to zeolites. *Journal of chemical theory and computation*, 14(8):4427–4437, 2018.
- [42] Kenneth Lo, Ryan Remy Brinkman, and Raphael Gottardo. Automated gating of flow cytometry data via robust model-based clustering. *Cytometry Part A: the journal of the International Society for Analytical Cytology*, 73(4):321–332, 2008.
- [43] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long short term memory networks for anomaly detection in time series. In *Proceedings*, volume 89, pages 89–94. Presses universitaires de Louvain, 2015.
- [44] Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The gudhi library: Simplicial complexes and persistent homology. In *International Congress on Mathematical Software*, pages 167–174. Springer, 2014.
- [45] Justin Matejka and George Fitzmaurice. Same stats, different graphs: generating datasets with varied appearance and identical statistics through simulated annealing. In *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems*, pages 1290–1294, 2017.
- [46] John Willard Milnor, Michael Spivak, and Robert Wells. *Morse theory*, volume 1. Princeton university press Princeton, 1969.
- [47] Konstantin Mischaikow and Vidit Nanda. Morse theory for filtrations and efficient computation of persistent homology. *Discrete & Computational Geometry*, 50(2):330–353, 2013.
- [48] James R Munkres. *Elements of algebraic topology*. CRC Press, 2018.
- [49] Takenobu Nakamura, Yasuaki Hiraoka, Akihiko Hirata, Emerson G Escolar, and Yasumasa Nishiura. Persistent homology and many-body atomic structure for medium-range order in the glass. *Nanotechnology*, 26(30):304001, 2015.
- [50] Marc Niethammer, Andrew N Stein, William D Kalies, Paweł Pilarczyk, Konstantin Mischaikow, and Allen Tannenbaum. Analysis of blood vessel topology by cubical homology. In *Proceedings. International Conference on Image Processing*, volume 2, pages II–II. IEEE, 2002.
- [51] Ippei Obayashi. Volume-optimal cycle: Tightest representative cycle of a generator in persistent homology. *SIAM Journal on Applied Algebra and Geometry*, 2(4):508–534, 2018.
- [52] Ippei Obayashi. *HomCloud*, 2020 (accessed September 24, 2020). https://www.wpi-aimr.tohoku.ac.jp/hiraoka_lab/homcloud/index.en.html.
- [53] Travis E Oliphant. Python for scientific computing. *Computing in Science & Engineering*, 9(3):10–20, 2007.

- [54] Jose A Perea. Topological time series analysis. *Notices of the American Mathematical Society*, 66(5), 2019.
- [55] Jose A Perea, Anastasia Deckard, Steve B Haase, and John Harer. Sw1pers: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data. *BMC bioinformatics*, 16(1):257, 2015.
- [56] Jose A Perea and John Harer. Sliding windows and persistence: An application of topological methods to signal analysis. *Foundations of Computational Mathematics*, 15(3):799–838, 2015.
- [57] Henri Poincaré. *Analysis situs*. Gauthier-Villars, 1895.
- [58] Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel for topological machine learning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4741–4748, 2015.
- [59] Lee M Seversky, Shelby Davis, and Matthew Berger. On time-series topological data analysis: New data and opportunities. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pages 59–67, 2016.
- [60] Rahul R Shah and Nicholas L Abbott. Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals. *Science*, 293(5533):1296–1299, 2001.
- [61] Simon J Sheather. Density estimation. *Statistical science*, pages 588–597, 2004.
- [62] Alexander D Smith, Nicholas L Abbott, and Victor M Zavala. Convolutional network analysis of optical micrographs for liquid crystal sensors. *The Journal of Physical Chemistry C*, 2020.
- [63] J Spidlen, K Breuer, C Rosenberg, N Kotecha, and RR Brinkman. A resource of annotated flow cytometry datasets associated with peer-reviewed publications. *Cytometry Part A*, 81(9):727–731, 2012.
- [64] Bernadette J Stolz, Heather A Harrington, and Mason A Porter. Persistent homology of time-dependent functional networks constructed from coupled time series. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 27(4):047410, 2017.
- [65] Yuhei Umeda. Time series classification via topological data analysis. *Information and Media Technologies*, 12:228–239, 2017.
- [66] Dennis Van Hoof, Woodrow Lomas, Mary Beth Hanley, and Emily Park. Simultaneous flow cytometric analysis of ifn- γ and cd4 mrna and protein expression kinetics in human peripheral blood mononuclear cells during activation. *Cytometry Part A*, 85(10):894–900, 2014.
- [67] Theodore W Walker, Alex K Chew, Huixiang Li, Begenur Demir, Z Conrad Zhang, George W Huber, Reid C Van Lehn, and James A Dumesic. Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. *Energy & Environmental Science*, 11(3):617–628, 2018.
- [68] Eric Walter and Luc Pronzato. Identification of parametric models. *Communications and control engineering*, 8, 1997.

- [69] Yuan Wang, Hernando Ombao, and Moo K Chung. Topological data analysis of single-trial electroencephalographic signals. *The annals of applied statistics*, 12(3):1506, 2018.
- [70] Kelin Xia, Xin Feng, Yiyi Tong, and Guo Wei Wei. Persistent homology for the quantitative prediction of fullerene stability. *Journal of computational chemistry*, 36(6):408–422, 2015.
- [71] Kelin Xia and Guo-Wei Wei. Persistent homology analysis of protein structure, flexibility, and folding. *International journal for numerical methods in biomedical engineering*, 30(8):814–844, 2014.
- [72] Afra Zomorodian. Topological data analysis. *Advances in applied and computational topology*, 70:1–39, 2012.
- [73] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. *Discrete & Computational Geometry*, 33(2):249–274, 2005.