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Abstract—The ubiquity of crowdsourcing has reshaped the
static sensor-enabled data sensing paradigm with cost efficiency
and flexibility. Still, most existing triangular crowdsourcing sys-
tems only work under the centralized trust assumption and suffer
from various attacks mounted by malicious users. Although
incorporating the emerging blockchain technology into crowd-
sourcing provides a possibility to mitigate some of the issues,
how to concretely implement the crucial components and their
functionalities in a verifiable and privacy-aware manner remains
unaddressed. In this paper, we present BRPC, a blockchain-
based decentralized system for general crowdsourcing. BRPC in-
tegrates the confident-aware truth discovery algorithm to provide
task requesters with reliable task truths while evaluating each
worker’s data quality. To mitigate biased evaluation of malicious
requesters, we propose a privacy-aware verification protocol
leveraging the Threshold Paillier Cryptosystem, with which a
certain number of workers can collaboratively verify the evalua-
tion results without knowing any sensory data. Furthermore, we
define the three roles of a user and elaborate a comprehensive
reputation evaluation model enforced by smart contracts for
its trustworthy running. Financial and social incentives are
both offered to motivate users’ honest participation. Finally, we
implement a prototype of BRPC and deploy it on the Ethereum
blockchain. Theoretical analyses and experiment results show its
security and practicality.

Index Terms—Crowdsourcing, blockchain, truth discovery,
verifiability, privacy.

I. INTRODUCTION

HE past few years have witnessed the rapid development

and huge commercial value of crowdsourcing in the Inter-
net of Things (IoT) era. As a significant part of sharing econ-
omy, crowdsourcing has become a leading paradigm which
leverages the crowds, e.g., smartphone users, to solve some
tough problems, such as large-scale data sensing/collection
in IoT and more specialized services. After successful com-
pletion, the requesters get their tasks done. Meanwhile, the
crowds (i.e., workers) can earn rewards as compensation
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for their work. Apparently, crowdsourcing brings a win-win
situation for both task requesters and workers. Due to these
remarkable benefits, numerous crowdsourcing applications
have emerged and gained considerable attention in different
fields such as environment monitoring, healthcare assistance,
transportation, and business.

Traditionally, the crowdsourcing model involves three roles:
task requesters, workers, and a centralized crowdsourcing
platform, where the requesters can post tasks and the workers
are able to search available tasks and work on them. Such a
centralized crowdsourcing model is easy for system manage-
ment and has been prevalent in existing crowdsourcing appli-
cations. However, due to its trust-based centralization, many
issues [1] cannot be circumvented, including single point of
failure, vulnerable to Sybil attacks, DDoS attacks, data privacy
disclosure [2], and the notorious “false-reporting” and “free-
riding” behaviors [3]. Although cryptography-based privacy
preservation ([4]-[7]) and anonymous reputation management
model [8], [9] were proposed to solve part of these problems,
they are still limited to the centralized setting and would fail
to work once the centralized trust is broken.

Recently, the blockchain technology has exhibited promise
in constructing decentralized crowdsourcing systems, due to
its inherent advantages like decentralization, transparency, and
tamper-resistance. Some researches attempted to build general
blockchain-assisted frameworks ([1], [10]-[12]) with no fine-
grained implementation of some modules or having not fully
addressed some crucial concerns in crowdsourcing, e.g., fine-
grained data quality evaluation with truth and privacy guaran-
tees, reliable and efficient reputation assessment, and fairness
offered to all participants. Recently, a series of researches
like blockchain-based quality and reputation evaluation ([13]-
[18]), truth discovery/selling ([19], [20]), truthful incentive
mechanism ([21], [22]), and anonymous crowdsourcing ([23]-
[27]) have been investigating some of the above key issues.
Despite their nontrivial contributions, these prior solutions still
suffer from the following limitations.

First, existing works using simple methods such as majority
voting [1], [23], [24] and cluster median [13] to aggregate the
sensory data and decide the task truths only provide coarse-
grained data evaluation, which are not accurate enough and fail
to capture the differences in worker reliabilities. To deal with
malicious users, those relying on miners or workers to evalu-
ate/verify data quality [14], [21], [28] are at the expense of data
privacy, as the sensory data is exposed to the miners/workers.
Using smart contracts can ensure reliable data evaluation but
prior schemes are limited to simple data integrity evalua-
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tion [1] or prone to tolerate costly zero-knowledge proofs (
[23], [24]). Moreover, solutions assigning evaluation to the
task requesters either fail to consider the malicious behaviors
of requesters [18] or have technical flaws in the verification
method [15]. It is a non-trivial challenge to provide a trustwor-
thy (i.e., computation verifiable) and accurate data evaluation
approach against malicious users without compromising the
workers’ data privacy in blockchain-based crowdsourcing, due
to the transparent characteristic of blockchain and the costly
on-chain computations especially for cryptographic operations.
Second, using blockchain for reputation management indeed
enables a decentralized evaluation and storage of trust values
(free from the above drawbacks of centralized management),
and meanwhile provides public access to a global trust view
for users to choose qualified workers or preferred tasks posted
by the reliable requesters. However, existing blockchain-based
reputation assessment/management is mainly based on the
user’s behaviors as a worker, neglecting the user’s other roles
such as task requester or verifier. Additionally, the reputation is
updated as long as a task is completed, which would inevitably
bring considerable burden for blockchain with increasing
tasks. Developing a comprehensive reputation assessment
model with efficient updates in blockchain-powered crowd-
sourcing systems is the second research challenge. Last but
not least, most incentive mechanisms adopted quality-aware
reward strategies. Their coarse-grained and inaccurate/biased
quality evaluation will impair the reputation assessment ac-
curacy, which is unfair to workers. Such social unfairness
may lead to unfairness in reward distribution. The key to
ensuring dual fairness lies in addressing the aforementioned
two challenges. To the best of our knowledge, there has been
no prior work addressing these challenges adequately.

Motivated by this, we leverage the Blockchain technology
to build a Reliable, Privacy-aware, and fair decentralized
Crowdsourcing system, called BRPC. Apart from the generic
blockchain-based crowdsourcing framework, we focus on
elaborating how a fine-grained data quality evaluation with
accurate truth inference can be verified correctly on encrypted
data (the first challenge). For the second challenge, we capture
the different roles of a user to formulate a novel reputation
evaluation model, which is efficient to update based on a batch
of tasks and avoids the frequent on-chain reputation updates.
On this basis, an incentive strategy is devised to reward or
penalize users, which entitles the users’ dual fairness. The
main contributions of our work are summarized as follows.

« We present a general decentralized crowdsourcing sys-
tem, named BRPC, via blockchain. In contrast to exist-
ing blockchain-based frameworks, BRPC dives into the
concrete crowdsourcing modules and key functionalities
against curious and even malicious participants. BRPC
achieves system reliability, user privacy, accurate truths,
and financial-social fairness of all users.

« Based on BRPC, we employ a confident-aware truth
discovery algorithm to estimate the task truths meanwhile
evaluating the data quality of each worker. Task requesters
are entitled to evaluate the reliability of the workers based
on the inferred truths. Notably, we propose a privacy-

aware computation verification protocol based on the
Threshold Paillier Cryptosystem to avert incorrect/biased
evaluation from the malicious requesters. Furthermore, a
three-role-based reputation assessment is developed and
enforced by smart contracts for its trustworthy execution.
Besides social fairness, BRPC also realizes financial
fairness with our quality-aware reward allocation and
misbehavior-oriented punishment strategies.

« We implement a prototype of BRPC over Ethereum. The
experiment results demonstrate its validity and effective-
ness with an affordable overhead.

The remainder of this paper is organized as follows. In
Section II, we introduce background knowledge. Section III
states the research problem. Section IV describes our proposed
BRPC system in detail. The security analysis and experimental
evaluations are presented in Section V and Section VI, respec-
tively. Section VII reviews some related work. We conclude
this paper in Section VIIL

II. BACKGROUND

Blockchain & Smart Contract. A blockchain is essentially
a replicated, immutable, and distributed ledger maintained by a
P2P network with a specific consensus mechanism. Each block
aggregates a sequence of transactions and is chained to the
previous block via a cryptographic hash function. The salient
features of blockchain include decentralization and anonymity,
transparency and immutability, and distributed consensus.

A smart contract is a kind of self-executing and self-verified
digital contract programmed on the blockchain securely, which
can be verified by the blockchain nodes. It can be triggered by
certain events to carry out predefined functions in the contract.

Confidence-Aware Truth Discovery. In crowdsourcing ap-
plications, truth discovery (TD) algorithms effectively solve
conflicts among the sensory data submitted by multiple work-
ers, and provide truthful information about sensing tasks.
Unlike some simple methods such as taking the majority as the
“truth”, TD captures the different reliability levels of workers,
which works by iteratively estimating the truths via weighted
aggregation over sensory data among workers and updating the
reliability degrees of different workers in the form of weights,
until some convergence criterion is reached.

In this paper, aiming at the generic crowdsourcing scenarios,
we resort to the representative confidence-aware TD algorithm
(CATD) [29] which exhibits better accuracy performance and
considers the ubiquitous long-tail phenomenon in crowdsourc-
ing tasks. The rationale behind CATD lies in that if a worker
is more reliable, the probability that he gives trustworthy
information is higher, and the worker who provides trustwor-
thy information is more reliable. Additionally, if a worker
takes more tasks, it is more likely that the worker’s weight
estimation is closer to his true reliability degree, i.e., the
confidence of weight estimation is higher. In contrast, if a
user only takes a few tasks, the weight estimation confidence
is low. WL.O.G,, let 7 and U be the set of sensing tasks
and workers, respectively. The sensory data submitted by a
worker U; € U for a task 7; € 7 is represented by x; and the
estimated truth for task 7; is xj.. The detailed iterative process
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in CATD mainly consists of two sub-steps: truth estimation
and weight estimation.

1) Truth Estimation: Given all workers’ sensory data and
the weight w; for each worker U;, the estimated truth for each
task 7; is computed as
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where (Ll]’.* denotes the set of workers participating in task 7;.
2) Weight Estimation: Given all workers’ sensory data and
the estimated truth x’;, the weight for each worker U; is
estimated as
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weight. Speciﬁcally, x denotes the Chi-squared distribution
and « is the significance level (a small constant). 7y, repre-
sents the set of tasks chosen by U; in the current time slot.

The above iterative procedure does not terminate until some
predefined criterion is met, such as reaching a maximum
number of iterations /. Note that, we use CATD algorithm
as a building block as it provides a more accurate truth
finding solution as demonstrated in [29]. Based on this, we can
conduct a fine-grained and reliable data quality evaluation for
the workers. Since a worker’s weight indicates the reliability
of data he submitted, we use it to quantify the data quality,
and use worker weight and data quality interchangeably in the
latter scheme description (see Section IV-B).

Threshold Variant of Paillier Cryptosystem. In [30],
Paillier proposed a new probabilistic asymmetric encryption
scheme for public key cryptography. The scheme is known as
its attractive additive homomorphic property. Given a public
key pk = (g,n) (where g € Zr,) and ciphertexts of two
messages m1, my € Z,, we can derive the ciphertext of m+m.
Concretely, the homomorphic properties are as follows.

where y

Epx(my +ma) = Epi(my) - Epr(m2), 3)
Epk(a-my) = Epr(m)?, “4)

where E(my) =g r] mod n2, r € Z;z, and a is constant
from set N.

In this paper, we use the threshold variant of the Paillier
Cryptosystem to cater for our scenario requirements, with
which the ciphertext of worker weight can be jointly decrypted
by a sufficient number (i.e., no lower than the threshold)
of workers. With this idea, the correctness of the quality
evaluation can be ensured by the joint cooperation among
workers. Take (#, N)-Threshold Paillier Cryptosystem as an
example, there are N shares of the private key sk, which are
shared among N entities and each entity has a private key share
(also called a piece). For N pieces sk, sk2, ... sk, at least
t pieces are required to collaboratively recover the plaintext
encrypted by pk. The decryption process contains two steps:
share decryption at each entity and share combination for
plaintext recovery. Due to space limitations, we refer the
readers to [31] for details.

III. PROBLEM STATEMENT

In this section, we provide a formal definition of the
blockchain-based reliable and privacy-aware crowdsourcing
problem. Before that, we first present the BRPC system model,
and then describe the security threats and security goals.

A. System Model

As illustrated in Fig. 1, BRPC consists of four kinds of roles:
task requesters, workers, blockchain nodes, and a decentralized
database. The detailed description is as follows.

Blockchain Nodes

Task details aon
Task Decentralized Database Workers
Requesters
Fig. 1. System architecture.
Task Requesters, identified by R ={R|,R;,..., Ry}, are

task owners who create tasks, recruit a certain number of
workers, and reward workers according to their contributed
data quality. To efficiently find the qualified workers and
stimulate worker’s participation, each task with a task identifier
contains a task specification, including task time/location, task
category, sensing object, data evaluation algorithm, worker’s
minimum reputation, number of workers, and task budget.
Note that, considering the scalability bottleneck of blockchain,
as in prior researches [1], [14], [23], [24], we choose to
store the task details in the decentralized storage, and only
record the task hash on the blockchain. Moreover, to prevent
requester’s false-reporting attacks, a certain amount of deposit
is locked in a designated account when posting tasks, which
cannot be redeemed by the requesters before a designated time.
Workers, represented by U={U,,U,, ...,Un}, are mobile
users who carry powerful mobile devices and compete for
different tasks to get rewards. Each worker can search the on-
chain tasks and has opportunities to accept tasks as long as he
is qualified to work on. If a qualified worker wants to execute
a task, he is required to make a deposit on the blockchain as
a prevention against Sybil or DDoS attacks. Once assigned,
workers collect sensory data and send them to the blockchain.
Similarly, we combine on-chain storage with off-chain storage
(encrypted data) to relieve the blockchain cost. After the
data is evaluated by the requesters, each worker earns the
corresponding rewards. Meanwhile, workers executing the
same task can collaboratively verify the correctness of the
requester’s evaluation. Note that, in the crowdsourcing process,
a worker can also act as a task requester, and vice versa.
Blockchain Nodes are network peers maintaining identical
replicas of the blockchain. Specifically, miners verify transac-
tions, organize all the verified transactions with a Merkle Hash



IEEE INTERNET OF THINGS JOURNAL, VOL. ** NO. **, MAY 2021

Tree, and compete for generating new blocks. Task requesters
and workers can act as miners if they join in the mining work.
In this paper, we consider a public blockchain like Ethereum.

Decentralized Database is a decentralized storage system
which employs service peers (e.g., peers in IPFS) to offer
storage/computation services by renting out their resources.

In BRPC, w.l.o.g., we assume that time is divided into time
slots 71,73, ..., and there are C task categories, denoted by
C =1{1,2,...,C}, with different difficulty degrees (indicated
by different weights in reputation evaluation). In a time slot
T;, each task requester R; € R posts a set of tasks ‘7;;,_ =
{71, 72, ..., T} with task category ¢ € C. Each task 7; € T}
specifies a budget B; to collect data from n; workers whose
global reputation and task expertise reputation values are no
lower than 5}. and 8?, respectively.

Let ﬂl.l be the set of users performing R;’s tasks in time
slot T;. We denote the set of tasks chosen by worker U; € ‘Lll.l
and the set of tasks published by requester R; in 7; as 72}7_ and

7;?11-’ respectively. We have 7;]1j - 7}11, Each worker U; € (Ul.l
submits the encrypted sensory data and R; obtains the original
data after decryption. Due to the diverse reliabilities of workers
and the uncertainty of task truths, our first issue is to let
R; discover the most trustworthy information from multiple
sensory data and evaluate the reliability of each worker in
completing this kind of tasks, i.e., data quality. Considering the
possible unreliable evaluation from malicious requesters, the
next issue is how to offer a privacy-aware verifiable scheme to
ensure the evaluation correctness and the fairness of incentives.
Last, since each user may act in multiple roles in different
phases, it is a crucial problem to comprehensively model
these roles and develop a reliable and decentralized reputation
assessment method with efficient update.

B. Threat Model

The security threats are mainly from the internal attackers.
Specifically, task requesters may be curious about the true
identities of workers and vice versa. Moreover, they may want
to learn the sensory data of other requesters’ tasks. Similarly,
the blockchain nodes may be curious about the sensory data
of specific tasks or data submitted by specific workers.

More seriously, task requesters and workers may behave
maliciously to maximize their profits. On one hand, malicious
requesters may want to collect sensory data without giving
payments, or giving unfair rewards to the workers. For exam-
ple, for two workers submitting data with the same quality,
a malicious requester may give an unknown worker lower
rewards while giving an acquainted worker higher rewards.
Additionally, they may misreport high-quality data as low-
quality data (biased/incorrect evaluation), or even repudiate
the fact of obtaining the sensory data (false-reporting). On the
other hand, malicious workers may attempt to earn rewards
with no/less effort (free-riding). They may forge data or submit
low-quality data. Moreover, they may create multiple fake
identities (Sybil attack) to request tasks for more rewards, or
purposely do not submit data on time after choosing many
tasks (DDoS), resulting in an insufficient data collection and
discouraging the requesters’ participation. Some malicious

workers may collude with each other to submit low-quality
data, try to infer the private key of each requester, or misreport
the verification results.

In this paper, we assume that the tasks submitted by a
requester in a time slot are executed by at least ¢+ workers,
in which there are fewer than ¢ colluding workers. These are
the basic security requirements in (¢, N)-Threshold Paillier
Cryptosystem. Additionally, we assume that task requesters
and workers have a limited amount of money and the amount
of deposit is more than the rewards. For blockchain security,
we assume that the majority of blockchain nodes are honest,
and attackers do not have the power to control the blockchain.

C. Design Goals

In light of the above security threats, we elicit the following
security requirements for our BRPC system.

1) Privacy Protection. For identity privacy, the true identi-
ties of requesters and workers should not be revealed to any
other system entities. For data privacy, we aim to protect the
confidentiality of sensory data. Only the requester can obtain
the plaintexts and the estimated ground truths of his tasks.

2) Reliability. From the system’s perspective, single point
of failure should be mitigated. From the user’s perspective,
we should guarantee that the task requesters are able to
obtain reliable truths for their tasks. To prevent malicious
requesters from deliberately misreporting the data quality, we
need to offer a verifiable computation solution to validate the
correctness of data quality. Moreover, for reputation evaluation
of users, we should ensure that the whole evaluation process
is public and the correctness is publicly verifiable.

3) Dual Fairness. We consider two kinds of fairness:
transaction (i.e., financial) fairness and evaluation (i.e., social)
fairness. For the former, requesters should be able to get their
deposit back only if the corresponding rewards are given to
the workers and their data quality evaluation is correct. The
rewards earned by the workers should depend on the submitted
data quality (higher quality means more rewards) and workers
can get their deposit back only if they follow the designated
protocol. Moreover, workers as verifiers can earn equivalent
rewards if they correctly report the verification results. For
the latter, the evaluation methods of data quality and user
reputation are disclosed to the public. All joined workers can
verify the data quality in their joined tasks. The trust evaluation
should comprehensively consider the different roles of a user.

IV. BLOCKCHAIN-BASED CROWDSOURCING PROTOCOL

In this section, we formalize the BRPC system and show
how it works to address the reliability, privacy, and fairness
challenges in existing crowdsourcing systems.

A. Overview

At a high level, the entire crowdsourcing process of BRPC
consists of five phases, as shown in Fig 2. In Phase 1, the
system parameters are initialized and each user (worker/task
requester) needs to be registered in the system for later
participation. In task publication (Phase 2), any requester with
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task requirements posts tasks with a deposit to the BRPC
system via a smart contract in the form of transactions.
With the on-chain task state information, workers can query
available/valid tasks and are eligible to participate in the tasks
if their reputation values satisfy a qualification check function.
Similarly, a predefined amount of money from the workers is
locked as deposit once the task execution is confirmed. To
enable the following privacy-aware verification on the worker
side, the requester distributes his private key shares to the
participating workers before data submission (Phase 3).

Storage

Requaers Blockchain Workers

Y

Register @ Register ]

Post tasks with £
deposit #  ~—/— i ] Task details
AN
Query tasks
Receive Tasks with
- deposit #
Distribute key shares i g
C Submit data Encrypted datar% ,
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Read original: ciphertexts
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Broadcast evaluation
results €
o

2
©
S

o

©

T Rewards & deposit F

Decrypt, evaluate
data quality
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I Reputation
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Fig. 2. The interactive process among entities in BRPC.

With all encrypted data submitted, the requester will turn
to the CATD algorithm to infer the task truths and evaluate
the data quality of each worker after decryption. Meanwhile,
workers are incentivized to cooperatively verify the correctness
of the evaluation results. For remuneration, each worker is first
rewarded according to the quality of their contributed data.
Moreover, workers and task requesters will earn extra rewards
or lose the deposit, depending on their benign/malicious be-
haviors (Phase 4). Finally, BRPC uses the smart contract to
enforce reliable reputation evaluation and update (Phase 5).

B. Protocol Details

1) System Initialization: This phase consists of two steps:
setup and user registration.

In the setup step, we assume that parameters such as the
duration of each time slot, C and the corresponding weight
of each category ¢ € C are set by a bootstrap program in
BRPC. Moreover, the system also sets the user’s initial global
reputation and expertise reputation regarding different task
categories, based on the average reputation level of humans.
To depict the task process, a set of task states S ={Pending,
Available, Unavailable, QEvaluating, Completed, Canceled}
is predefined in a task smart contract (TSC).

In the registration, task requesters and workers register in
the BRPC system as users. Specifically, each user i will obtain
a key pair (pk;, sk;) and a public address A;, i.e., pseudonym.
The initial global and expertise reputation values of i are

yi 1 and 7’;'6,1’ c € C. When i registers, a user smart contract
(USC) is invoked which records A; and his corresponding
information including global and expertise reputation values.
This information will be updated at the end of each time slot.

2) Task Publication: In this phase, each requester R; € R
posts a series of tasks ‘7}1 ={7,7,...,Tm} to BRPC in T;
via transactions. Specifically, each task 7; € 7;;,li, Jj € [1,m]
contains the following information:

Tj :{Tid, Ci» Ai, Sdeadline> Pacadiines Tdeadiines Pkis

) - (5)
gj,&,n;, Bj + Dy, checkQ, QEvaluate},

where T;; denotes the task identifier and c; is the category
of current tasks posted by R;. Moreover, Sgeqdrine 18 the data
submission deadline. Pgeqq1ine is the proving deadline before
which the correctness of data quality evaluation should be
verified. Tyeqaiine is the task deadline before which task 7;
should be completed (each task ends with reward allocation).
pk; is the public key of R;. The global and expertise rep-
utation thresholds are 8} and 83, respectively. The deposit

D;?.- committed by R; for task 7; consists of two parts: the
first part is used to prevent false-reporting attacks and the
second part is used to reward workers (or verifiers) who
participate in the correctness verification process (i.e., as an
incentive to motivate workers’ participation in verification).
Function checkQ: & x ¥ — bool checks if the worker is
qualified to perform task 7; based on his reputation, and
QEvaluate : w xx — x* specifies the CATD algorithm. Note
that, once a task is submitted by the requester, it is initiated
with Pending and is waiting for miners’ confirmation. The state
switches to Available when the task is recorded on-chain.

3) Task Receiving and Data Submission: Any worker Uy €
U can find available tasks by querying the task state in TSC
and has a chance to execute their interested tasks if they are
qualified. For each task 7; € ‘7;{1_, checkQ(e,y) — bool
determines if y§, > &} and y;’, = &}. Once a qualified
WQI‘kCI’ Uy confirms to execute 7;, a certain amount of deposit
Dl]Jk will be locked, in which part deposit is used to tackle
worker’s misbehaviors (free-riding, Sybil attack, and DDoS)
and another part is used as reward to motivate workers to
act as verifiers. If the account balance of Uy is less than
Z){] , he cannot execute the task. The state of 7; switches
into Unavailable when n; workers confirm 7;.

R; queries the task state in TSC, if each of his posted task
T € 7;eli is Unavailable, R; queries all participating workers,
ie., lell Next, R; splits his private key sk; into |'L(ll | shares

u!
skl.l,sk?,...,skl! ’l. We can observe that |’Lll.l| < Z;-”:lnj
since each worker may take tW(l) or more tasks. Subsequently,
ul . .
R; encrypts sk},skf,...,skl! ! with workers’ public keys
pki,pka, ..., pkqu, respectively, and sends the encrypted

1
key shares {Epk_,.(sk{ )} e to the corresponding workers via
a secure channel. After that, each worker decrypts with his
private key and obtains the key share. Note that, this key share
distribution ensures that every participating worker is able to
join in later evaluation verification and partially decrypts the

ciphertext with his assigned key share.
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According to the task requirements, each worker Uy € (Lll.l
collects sensory data x;? and sends E (x;?) to the decentral-
ized database while the corresponding hash is stored on the
blockchain. Anyone can get Ey, (xk) but only R; can per-
form decryption Dy, (E i, (xk)) Note that if U successfully
submits the encrypted data before Sdeadline, the part deposit
(for tackling worker’s misbehaviors) of D’ Ui will be refunded
to Uy. Otherwise, it will be deducted and used to reward the
verifiers later. The state of 7; transits to QFvaluating when
the hash of n; ciphertexts are recorded on the blockchain.

4) Data Quality Evalulclltion and Reward Allocation: With
k=1.7; €T,
Ui € (Llll for task 7; € T U, Ri performs the CATD algorithm
and iteratively updates the weight of each worker and the
estimated task truths until 7,,, is satisfied. After that, R;
derives the estimated truth x’; for each task 7; € ‘7Z}k and the
estimated weight/reliability wy of each worker Uy, € "th.l in slot
T; according to Eqs. (1) and (2). Moreover, wg is broadcasted
to the network for worker-side verification.

all sensory data {xk} submitted by each worker

Blockchain Nodes

é 4. Record true weights and allocate rewards

3. Broadcast
verification results

1. Broadcast
worker weights §

Wi, Wa, - Wyt ’("

Fig. 3. An example of workers’ joint verification.

Fig. 3 illustrates an example of workers’ joint verification
of requester-side data quality evaluation. After obtaining the
weights broadcasted (Step 1), each worker Uy € ‘Llll finds
the encrypted sensory data| qurI(‘)m the decentralized database.
k:l,‘rje‘7zk
run Algorithm 1 to perform privacy-aware verification (Step 2
in Fig. 3), in which each derived ciphertext E, (d f) (Line 12
in Algorithm 1) is partially decrypted using the key share. The
corresponding result is broadcasted to the other participating
workers. For example, as depicted in Fig. 3, U; broadcasts
the partially decrypted ciphertext C; to the other workers and
meanwhile he also receives information from others (each
worker can query the on-chain recorded requester-task and
task-worker information and find other workers working for
the same requester. The verification group is composed of
these workers and each worker only accepts information from
other workers in the same verification group).

Being aware of {E pk; (xj?)} , the workers can jointly

Algorithm 1: Privacy-aware computation verification
of worker’s data quality

k7

Inpllt {[ ]pk }k Lt E‘T’ { kl 1 k=1 " Inax, Wi,

rounding factor L
Output: Verification results f.

1 // Worker side;
Iﬂ |

2 {wp}y o {kllkl‘foreachUke‘L{l,
3 for I = 1 to Iux do
4 /I Estimated truth update;
5 for j =11t m do
6 Epi (L - wixk) = Epy, (xj?)"""ﬁc for each
Uk € (L[*;
7 Epr (L ZUke(L(* k) =
nUke'L(* pk; (L wkxf)
L
=7
—_~ > et W
8 E]Jk,j (xj) = Epk[(L . ZUk E(L(;f w;cxf) Yietl; s

9 /I Estimated weight update;
10 | fork=1r1 I(Llll do

1 Ep (%) = Epg, (xk)L Epr, (%)~ for each
T € 7_1 5

12 Ck = kk(Epk (d ));

13 Broadcast Cy to other workers in ﬂl,

14 Once Uy receives other ¢ — 1 partial decrypted

ciphertexts Cy,Cy, ...,C;_1, he combines
them with his own C; and recovers 523‘ for
each 7; € ‘Tl

[
15 wy = T, ” (d"/LZ)Z’

16 for k =1 to |U!| do

17 if w, == wy then

18 | fi=1;

19 else if cu 7& wy then
20 L fi =

For Algorithm 1, specifically, each worker’s weight is
initialized with his latest expertise reputation regarding task
category c¢; (Line 2, set it to 7k1 if [ = 1). Next, the
estimated truths and weight updates are iteratively performed
on encrypted data for [,,,, times. Concretely, the encrypted
estimated truth for task 7; is derived as E, (X7) where
)?J". = L -x% and L is a scaling factor to deal with frac-
tional data (Line 8). In Section VI, we will show that the
accuracy of our result is not compromised if a proper L is
chosen. In the following weight update phase, the encrypted
difference between L -xj? and F; is first calculated, denoted
by E pki(gf) (Line 11). Since Paillier Cryptosystem does not
have multiplicative homomorphic property, it is hard to derive
Epki((c@?)z) by a single worker based on E (dj?). Instead,
we let each worker Uy decrypt Epkl.(c}z?) using his partial
private key (i.e., pre-assigned key share)'skf, and the partial
decrypted ciphertext Cy is broadcasted to other workers in U ll .
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Leveraging (t, |ﬂl|) Threshold Paillier Cryptosystem, as long
as Uy gets ¢t — 1 partial decrypted ciphertexts, he can recover
df and compute each worker’s weight w; (Line 15), which
will be utilized as input of the next iteration. After reaching
Inax, Uy obtains the final weights and compares them with
wg (broadcasted by R;), if they are equivalent, the verification
result f; is set to 1, otherwise, it is set to 0. Before Pgeqdiine,
Up € ﬂl.l signs fj,j € [l,lﬂill] using skx and broadcasts
the verification result (Step 3 in Fig. 3). Concretely, if f; =
1, Uy broadcasts (Ax,A;, Aj, 1, Sigsk, (h(1]|A;||Aj))). Oth-
erwise, (Ax,A;, A;,0, w}, Sigsk, (h(0] |Ai||Aj||w}))) is broad-
casted. Note that the later includes the correct weight of U;
(ie., w}). All blockchain nodes can verify the integrity of
the verification messages and miners can upload the correct
weights to the blockchain. Although some workers may col-
lude with each other and report incorrect verification results
either to conceal R;’s misbehavior or slander honest requesters,
such misbehaviors can be easily identified as we assume that
the majority of the verification workers are honest. Solutions
dealing with massive malicious workers are out of the scope
of this paper and will be investigated in our future work.

When Pgeqaiine arrives, if all signatures are valid and there
are no zeros with respect to R;, each task budget B;,j €
[1,m] is redeemed and the number of rewards assigned to
each worker Uj € (L{;‘ for each task 7; € 7& is:

(.8, 1eT!,
g] — ZUke'ZIJ’f Wi J J Uk (6)

0 Tj¢7£}k.

From Eq. (6), we can observe that if Uy contributes data to
task 7;, he earns rewards proportionally to his data quality wy.
Otherwise, nothing is rewarded. Therefore, the total number
of rewards given by R; to Uy is Z lfk

Moreover, the first part deposit of Dzje,- is returned to R;
while another part is evenly distributed among the verifiers as
rewards. In this case, the number of correct quality evaluation
is |7lll| for R;, which is regarded as a reputation evaluation
factor. In contrast, if there exists a message containing zero
regarding R;, the rewards allocation is based on the evaluation
results broadcasted by the most verifiers. Once R; gives the
wrong quality evaluation, Z)J will not be refunded and will be
used as verification rewards Addltlonally, as a task requester,
the reputation of R; would be affected. Similarly, for verifiers,
if they report incorrect verification results, they would get
no rewards. Moreover, their reputation would degrade as a
verifier. After reward allocation, the task is completed. In the
above four phases, if the requester cancels the task or the task
is expired, the task state will be canceled.

5) Reputation Evaluation/Update: We take the different
roles of users into account and assign different weights to
aggregate a user’s global reputation. Moreover, we also exam-
ine the reliability of a user as a worker executing tasks with
distinct categories and build an expertise reputation model.
W.o.l.g., in T;, we assume that as a worker, Uy receives tasks
posted by a set of requesters R’ C R. Meanwhile, as a

requester, Uy publishes a set of tasks assigned to n workers.

In data quality evaluation, let w , be the estimated weight
of U, who performs tasks for R; e R in 77, and the global
weight of Uy as a worker is:

= > ae Wi, (7)

RiER'

where a, is the weight of task category c;.

When Uy, acts as a requester, we assume that Uy correctly
evaluates and broadcasts the estimated weights of 1, workers.
Hence, the reliability of Uy as a requester is y; = nx/n.
Similarly, as a verifier, if Uy joins in A verifications, out of
which Ay verifications are correct, the reliability of Uy as a
verifier is v} = Ax/A. Comprehensively, the global reputation
value of Uy can be modeled using the following equation.

vi, = (=B o1y + o2y +o3v) +BYE s ®)

where pj, p» and p3 denote the proportion of Uy’s reliability
as a worker, a requester, and a verifier, respectively. Moreover,
p1+p2+p3 = 1. B is the weight of historical global reputation.

As for Uy’s expertise reputation regarding task category c,
it is modeled as the user’s weight in executing such type of
tasks and can be updated as follows.

= BIwWi +BWi - )

The aforementioned reputation evaluation and update will
be conducted via smart contract for each time slot. Note
that, the smart contract is executed by the blockchain nodes,
and the correctness of execution results can be validated by
each node on the public blockchain. Finally, the miners can
compete for adding the reputation values to the blockchain
(i.e., consensus process). The correctness of related parameters
of the reputation evaluation function in the smart contract is
also guaranteed. For example, the reliability computation of
a user acting as a worker can be verified by the participating
workers as illustrated in Algorithm 1 and is further confirmed
by the blockchain nodes with the broadcasted information. The
number of correct evaluations and verifications as a requester
and a verifier is also broadcasted to the network and verified
accordingly. Hence, the correct reliability evaluation for dif-
ferent roles and the trusted execution of the smart contract
ensure the trustworthiness of the final reputation values.

72,1 =

V. SECURITY ANALYSIS

In this section, we will show that our proposed BRPC
system can achieve the security goals stated in Section III-C.

Theorem 1. BRPC ensures the privacy of requesters and
workers throughout the entire crowdsourcing phase, under the
assumption that fewer than t workers are corrupted out of
|'L(l’ | participating workers.

Proof. In BRPC, the true identities of users are protected
by the use of pseudonyms, i.e., Ethereum account addresses.
For data privacy, each sensory data x* is encrypted with the
requester’s public key pk;, and then stored in the decentralized
database. Although everyone can retrieve E (xj?) based on
the on-chain metadata/hash, it is infeasible to infer the corre-
sponding plaintext based on the semantic security of the public
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. l . . .
key encryption. Moreover, for |U;| pa.rtlclpatmkg workers,
corrupted workers cannot recover the plaintexts x; and xj. as
at least ¢ shares are needed for successful recovery. O

Theorem 2. BRPC achieves both system and user reliabilities.
For a participating worker set U l.l, as long as t honest workers
(i.e., verifiers) exist and there are fewer than t collusive
workers, our protocol can ensure the correctness of data
quality and user reputation evaluation without relying on a
trusted third party.

Proof. Due to the decentralized characteristics of blockchain,
the single point of failure can be effectively prevented, which
offers system reliability. For data quality evaluation of re-
questers, QEvaluate is included in each task and is open
to all entities. By running QEvaluate, R; derives the weight
wy for each worker U, € (Lll.l and obtains the task truths.
wy is then broadcasted for worker-side verification. Based on
Algorithm 1, it is observed that a);( will be derived without
revealing each sensory data as long as ¢ honest workers
contribute their decrypted shares and there are fewer than
t collusive workers in the remaining verifiers. Furthermore,
the comparison between w; and wj would validate the re-
liability of data quality evaluated by R;. There may exist
some malicious workers individually or collusively reporting
incorrect verification results, but the final verification result
is determined by the majority of honest verifiers. In other
words, fewer than half of the verifiers cannot deviate the results
even if they are all collusive. Hence the number of collusive

1
verifiers n., should satisfy Eq. (10). Since when ¢t > @, Ney

. Ut . ..
is bound to be less than % even if |(L{l.l| workers join the

verification process, the correctness of data quality verification
can be guaranteed with fewer than ¢ collusive workers.

t < —‘(uill
2 9

nev < Vg e (10)
- t > -

Moreover, we use smart contracts for reputation evaluation,
in which the reputation values are anchored to the blockchain.
Hence, the reliability depends on the trusted execution of smart
contracts (blockchain security and immutability). O

Theorem 3. Financial fairness between the task requester and
the worker as well as social fairness among the users are both
realized, as long as each user is rational in participation.

Proof. From the financial perspective, task requesters and
workers need to deposit money on the blockchain before
participation. On one hand, for a requester R; posting task 7;,
he needs to deposit 8; which is allocated to the participating
workers as long as R; obtains the original sensory data.
Additionally, he needs to make another deposit DI’Q[ consisting
of two parts. The first part can only be redeemed when the
quality evaluation of R; is verified to be correct, or it will be
allocated to the honest verifiers. Besides, such honest verifiers
will also earn extra rewards from the remaining money of
D;e,-' On the other hand, for a worker Uy performing task 7;,
he obtains rewards proportional to the data quality as long as
the contributed sensory data is submitted in time. Otherwise,
Ui will get nothing and also lose the first part of his deposit

Z){], As such a deposit is much more expensive than the
rewards and each worker has limited money, a rational worker
will not take the risk to launch free-riding, Sybil, and DDoS
attacks. If Uy honestly follows the designated protocol, the first
part of D{]k will be refunded. Similar to R;, the second part
also works as rewards for honest verifiers. In other words, task
requesters and workers jointly use a partial deposit to stimulate
workers to join in verification, which is fair in finance.

From the social perspective, we entitle the task requesters to
evaluate data quality meanwhile ensuring that all participating
workers can collaboratively verify the correctness in case of
the requester’s misbehaviors. The quality evaluation algorithm
QEvaluate is public. Moreover, the reputation evaluation al-
gorithm takes the three different social roles of a user into con-
sideration, which is enforced by the smart contract. Obviously,
users with good performance, such as submitting high-quality
data, honestly reporting verification results, or evaluating data
quality, will get a high reputation and are qualified to take
more tasks. In contrast, malicious users reporting unreliable
data/evaluation or verification results, mounting Sybil/DDos
attacks will get a low reputation (or lose deposit) and may
be filtered when requesting tasks. Therefore, BRPC achieves
social fairness with the unified and immutable evaluation
method and the correct evaluation results. m}

VI. EXPERIMENTS

A. Simulation Setup

We implemented BRPC over Ethereum and realized the
functionalities of the key phases in crowdsourcing with smart
contracts. Specifically, the USC and TSC were written in So-
lidity and were deployed to a local simulated network Ganache
on a laptop with Intel Core i5-3210M CPU (2.50GHz) and 8G
RAM. For user-side computations, we implemented the CATD
algorithm using Java programming language.

Initially, 20 workers and 1 requester were registered with
an initial reputation value 0.5. The requester had 10 tasks in
default during each time slot. We used a synthetic dataset in
our experiment. Follow the simulated data distribution in [29],
all sensory data was generated from a normal distribution with
a random mean u € [20,40) (represents the ground truth) and
variance o> € [1,2). The length of each sensory data (and
worker weight) is set to 8 bytes (double type). We set the byte
length of the verification result f; to 1. For each Ethereum
account address and signature in the broadcast information,
we follow the Ethereum default setting, i.e., 20-byte address
and 65-byte signature, respectively. We require that each task
is executed by at least one worker, and each worker performs
at least one task. Under this premise, each worker randomly
determines whether to contribute data to the tasks. We choose
the same significance level @ = 0.05 as in CATD [29]. For
cryptographic parameters, we set the public key to 512 bits
to achieve sufficient security. It can be set to other values,
depending on the security demand. Theoretically, a 1024-bit
key can achieve 80-bit security levels [32]. The threshold ¢
was set to half of the number of the participating workers.
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We integrated the Paillier Threshold Encryption package! into
CATD to implement worker-side verification.

Since gas usage is a crucial concern on Ethereum, we tested
the gas usage and ether cost incurred under different number
of posted tasks and submitted data to show the practicality
of BRPC. In addition, we evaluated the accuracy of BRPC
in truth discovery by taking the commonly used standard
root of mean square error RMSE as the accuracy metric.
On the one hand, we set the scaling factor L in the range
from 10 to 10° to show its impact on the accuracy of CATD
on unencrypted and encrypted data. In line with [29], we
chose Median as the baseline for comparison on simulated
data. On the other hand, we compared RMSE in different
number of iterations and observed the convergence perfor-
mance. Meanwhile, the corresponding verification cost, in-
cluding worker-side computation and user-side communication
cost, was also measured to evaluate its efficiency. From a high-
level perspective, we compare our BRPC with some existing
blockchain-based crowdsourcing schemes regarding specific
functionalities and properties in Table I. Noticeably, no scheme
can ensure computation verifiability against malicious users
for fine-grained data evaluation and TD without sacrificing the
data privacy. Due to the lack of functionalities and unrealized
properties in prior literature, it is intractable to perform an
empirical and quantitative comparison with BRPC in a fair
way. Therefore, we only focus on the qualitative contrast.

B. Simulation Results

Gas Consumption. We deployed USC and TSC in Ganache,
which consumes 431180 and 1530840 gas, respectively. The
corresponding cost is 0.0086236ETH and 0.0306168ETH,
leading to a total of $6.13 transaction fee when referring to the
average ETH price $156.45 in Jan. 2020 (when we conducted
the experiment). Such cost is not a big concern as the smart
contracts were deployed only once.

Fig. 4 depicts the gas cost in the primary phases of BRPC
versus the number of data records written into the blockchain.
Our result shows a linear increase with more users registered,
more tasks posted/accepted, and more data submitted. This is
because gas cost is closely related to the size of data recorded
on the blockchain and the type of computation operations.
For the same phase with the same operations, the gas will be
increased when more data records are written. However, we
notice that task publishing requires more gas, about 10700000,
i.e., $33.48 when compared to other phases for 50 written
data records. The reason is that besides the task identifier,
the task requester also needs to store other information on-
chain for later task matching and reward allocation. Moreover,
the budget and deposit transfer results in additional gas cost.
For other phases, user registration and data submission have a
similar number of written data, whereas accepting a task only
needs to determine whether to add the requested workers into
the task’s worker list and charge the worker’s deposit. Hence
the former two phases present comparable gas cost, while task
accepting is the most gas-efficient phase with only around
2500000 ($7.8). The cost is acceptable as crowdsourcing tasks

Thttp://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/.
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generally come with enough reward budget for incentives.
According to Amazon Mechanical Turk (AMT) policy, the
requester needs to pay a 20% fee on the reward and bonus
amount he pays workers and will be charged an additional 20%
fee on the reward more if he has more than 10 tasks. Moreover,
there is an additional fee for using the masters or premium
qualifications. For more than 10 tasks with $100 rewards, at
least $40 service fee is charged. In contrast, requesters in
BRPC only need to pay the transaction fee independent of
the reward amount, which saves the service cost and caters
for practical large-scale crowdsourcing scenarios.

We then evaluate the gas cost generated for reward payment
and user reputation update, respectively. As illustrated in
Fig. 5, the gas cost scales linearly when the requester gives
rewards to more workers (including rewarding verifiers and
refunding deposit), and the reputation values of more workers
are updated. This is in accord with that in Fig. 4 for similar
reasons. In contrast to money transfer, it is more expensive to
update the worker’s reputation ($7.3). Although the ETH price
fluctuates a lot depending on the marketplace, we can see that
the transaction fee is acceptable as the cost to ensure privacy,
reliability, and fairness in the decentralized crowdsourcing.

Accuracy & Convergence. We report the impact of L on
the accuracy of our encrypted CATD, which also affects the
correctness of the verification result. As shown in Fig. 6, we
observe that the difference in L does not affect the accuracy
of CATD and Median at the requester (refer to R-Plaintext in
the figure), in which CATD outperforms Median with a lower
RMSE. On the encrypted data, CATD yields a slightly higher
RMSE when L is small while Median presents a comparable
RMSE with that in the plaintext. This is reasonable as the
median of the encrypted sensory data is a one-time rounded
number of the original median in the plaintext. In contrast,
most fractional parts of sensory data and intermediate results
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TABLE I
COMPARISON BETWEEN OUR BRPC AND EXISTING BLOCKCHAIN-BASED SCHEMES

Schemes [ DP |  Fine-grained DE | Comp. verifiability | TD method | Reputation model | Reputation UC | Dual fairness
[1] v X (Integrity, H/L) X Majority voting Single role O(ml) X
[10] v X (Integrity) v — Single role — X
(111, [151, [33] | ¢ X (Integrity) X — — — X
[13] X | X (Integrity, H/M/L) X Cluster median Single role — X

X
[14] X (Integrity, [1.100]) X — Two roles o(ml) X
[17] v X (Integrity) X — Single role O(ml) X
[18] v v X Weighted averaging Single role O(ml) X
[21] X v v EM — — X
[23], [24] v X (Integrity) 4 Majority voting — - X
BRPC v v v CATD Three roles o) v

! DP and DE denote data privacy and data evaluation, respectively; Comp. denotes computation, EM and UC denote expectation maximization and update
cost, respectively; H, M, and L denote three kinds of coarse-grained data quality, i.e., high, medium, and low quality.
2 ¢/and Xdenote a realized and an unrealized property, respectively; — means that this property is unmentioned.

3

are removed for computations on integers in encrypted CATD
(i.e., multi-time rounding operations). However, when L is
1000 or higher, the worker-side encrypted CATD (refer to
W-Encrypted) achieves nearly the same RMSE as that at
the requester, which is still better than the Median. We can
guarantee the accuracy of the worker-side verification as long
as L is large enough. Hence, unless otherwise specified, we
set L to 10* for Algorithm 1. For convergence performance,
Fig. 7 presents the evolution of RMSE with the number of
iterations in different CATD settings. As observed, the impact
of L on the accuracy is consistent with the result in Fig. 6.
Moreover, the algorithm can reach convergence with the least
RMSE when the number of iterations is 3. Therefore, we can
quickly derive the estimated truth and worker’s weight in a
few iterations without degrading the estimation accuracy.

User-side Verification Cost. We sample five sets of data
with different number of workers and tasks, i.e., 20 x 10, 20 x
20,30 x 20,40 x 20,50 x 20. Fig. 8 reports the worker-side
verification time in three iterations. It is observed that the
number of submitted data (112, 223, 309, 440, 528) in our
random participation is more than half of the quantity of
all-worker participation. Recall that each iteration consists
of truth update and weight update, we denote the two key
components: share decryption and share combination in weight
update as SD and SC, respectively. Fig. 8 shows that the
SD operation scales linearly as more data is involved and
is much more expensive than others. This is reasonable as
each worker needs to partially decrypt E g, (&?), Tj € 7&,
Ui € (Lll.l, which is exactly the number of submitted data.
Moreover, each partial decryption includes one expensive
modular exponentiation operation. In contrast, the truth update
cost scales with m, and SC only needs to perform a one-time
share combination with one modular multiplication operation
and one modular exponentiation operation. For the entire
privacy-aware verification, the worker-side time cost is nearly
2600ms when 50 workers and 20 tasks are involved.

Furthermore, we plot the requester-side and worker-side
communication cost in three iterations in Table II, which
is measured by the data bytes sent by each entity under

m denotes the number of tasks posted by a requester in a time slot; / denotes the number of time slots.

different numbers of workers and tasks in the verification
phase. Recall that the requester only needs to broadcast the
workers’ weights to the network while each worker needs to
broadcast the partially decrypted ciphertext for each c?lk and
the verification information. The worker-side communication
cost is more expensive than that on the requester side. It entails
209307 bytes (=204KB) for verification communication with
50 workers and 528 data submissions, which is insignificant
in current network communication. Under a preset number
of iterations, the associated communication complexity is
0(|fu§|) and O(I([/Iill X |‘7;]ll_|), respectively. It is worth noting
that the cost reported in Table II includes the bytes of the
Ethereum address and signature information.
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Fig. 8. Worker-side verification cost.

TABLE 11
USER-SIDE COMMUNICATION COST IN JOINT VERIFICATION (BYTES)
Worker-task number | 20x10 | 20x20 30x20 40%x20 50x20
(# of submissions) (112) (223) (309) (440) (528)
Requester-side 245 245 325 405 485
Worker-side 45783 87255 122691 174255 | 209307

VII. RELATED WORK
A. Centralized Crowdsourcing Services

Existing crowdsourcing systems commonly rely on a cen-
tralized platform to provide the essential crowdsourcing ser-
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vices such as worker selection, task allocation, data evaluation,
truth discovery [34], incentive provision [35], and reputation
management. With privacy considerations, privacy-aware task
allocation [36], [37], privacy-preserving and truthful incentive
mechanisms [38], secure truth discovery protocols [39], and
anonymous reputation assessment models [8] were separately
investigated. However, they only work in a centralized setting
with fully trusted or honest-but-curious server model.

B. Decentralized Crowdsourcing Services

Li et al. [1] first proposed a blockchain-based decentralized
framework CrowdBC for general crowdsourcing systems. A
framework FLUID was designed in [10] to provide transparent
incentive mechanisms and enabled workers to share their
profiles among different platforms. To mitigate the secu-
rity threats from malicious participants, Gu et al. [11] pro-
posed a blockchain-based participant management framework
CrowdChain for fog-assisted crowdsensing. However, these
aforementioned works only offer fundamental frameworks for
blockchain-based crowdsourcing while not specifying some
key components such as reliable data quality evaluation,
accurate reputation assessment, and fair incentive provision.

For data quality and user reliability issues, An et al.
[13] modeled a crowdsensing quality control method via
blockchain. The data quality is controlled with consideration
of matching degree and quality grading evaluation. WorkerRep
[14] was developed to build trust on a crowdsourcing platform
using blockchain. However, the sensory data is revealed to the
evaluators. Edge computing was integrated with blockchain
into crowdsourcing [18], [40], in which the requester was
considered trusted for local reputation computation [18]. Al-
though Zhang et al. [15] claimed that any worker can verify
the correctness of evaluation and reward allocation without
knowing the sensory data, their verification method via com-
paring two ciphertexts had flaws since two ciphertexts may
be different even if they have the same plaintext. From the
perspective of privacy and incentive, Wang et. al [21] de-
signed a blockchain-based incentive mechanism which relied
on the miners to verify the data quality. Aside from that,
[25] focused on the location privacy in crowdsensing. To
overcome data disclosure and identity breach, a private and
anonymous decentralized crowdsourcing system ZebralLancer
[23], [24] was proposed. Moreover, a hybrid blockchain
crowdsourcing platform zkCrowd [33] was improved to relieve
the performance bottleneck. Despite the customized privacy
protection the fundamental functions of smart contracts and
zero-knowledge proofs are still far away from successful and
practical implementations.

VIII. CONCLUSION

In this paper, we present a blockchain-based reliable and
privacy-aware system, named BRPC, for generic crowdsourc-
ing. In contrast to prior work on crowdsourcing frameworks,
BRPC further illustrates how the key functionalities are re-
alized with curious and even malicious entities. We provide
an efficient data quality evaluation method based on CATD
and propose a privacy-aware computation verification protocol

to detect incorrect evaluations of the malicious requesters.
Moreover, we consider the different roles of a user and
establish a multi-dimensional reputation model with a reliable
computation and efficient update. Both social and financial
fairness are achieved with our rewarding/punishment solution.
Security analysis and experimental results over Ethereum val-
idate the predefined goals and show its application potential.
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