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Abstract—A method for mapping quadratic unconstrained
binary optimizations expressed as nearest neighbor stencils onto
contemporary quantum annealing machines is developed. The
method is shown to be scalable in providing higher utilization
of annealing hardware resources than prior work. Applying the
technique to the problem of determining an effective fuel loading
pattern for nuclear reactors shows that densely mapped quantum
stencils result in higher fidelity solutions of optimization problems
then the sparser default solutions. These results are likely to
generalize to quadratic unconstrained binary optimizations that
can be expressed as dense quantum stencils, thereby improving
optimization results obtained from noisy quantum devices.

Index Terms—quantum annealing, noisy intermediate-scale
quantum computing, topology graph embeddings

I. INTRODUCTION

Quantum computing has been realized on a set of first-

generation hardware devices with systems that are publicly

accessible. Two paradigms dominate the field: (1) gate-based

quantum computers from manufacturers such as the IBM Q,

Rigetti’s Aspen, or IonQ, using superconducting transmons

or ion tube technology [1], [2]; and (2) quantum annealing

devices from D-Wave using RF-Squids [3]. Both types of sys-

tems are available in the cloud and can be programmed using

Python, e.g., via IBM’s Qiskit in the IBM Q Experience [4],

Rigetti’s Forest DSK in their Quantum Cloud Services [2],

Ion Q’s API, and D-wave’s Ocean Software [5] accessible via

the cloud through D-Wave Leap [6]. The latter three are also

accessible via AWS through Amazon Braket [7].

It has been shown that adiabatic quantum computing, in

its general form, can solve the same problems as gate-based

(universal) quantum computing. However, this requires at least

two degrees of freedom for 2-local Hamiltonians [8]–[10]. D-

Wave supports 2-local Ising Hamiltonians with a single degree

of freedom in their system, which restricts its application area.

Nonetheless, computationally hard optimization problems can

be expressed as 2-local Isings, which has the potential to

solve problems orders of magnitude faster than classical algo-

rithms [11], [12]. A diverse range of applications from com-

puter science to chemistry has been utilizing these capabilities

for computationally hard problems [12]–[16]. Any problem

first has to be transformed into a 2-local Ising Hamiltonian and

then to a quantum unconstrained binary optimization (QUBO)

before it is subsequently mapped onto a qubit annealing

topology with couplers between qubits [17], [18]. This process

of embedding a QUBO representation of dependent variables

onto a quantum topology of interconnected qubits is itself

a challenging graph mapping problem that is NP hard, such

that heuristic algorithms often require long computation time

before they find a solution [19]. The scalability of applying

optimization problems to quantum annealing is often limited

by the inefficiency of such mapping problems.

This work contributes a novel approach for embedding

QUBO structures into annealer topologies for a specific class

of problems. When the Ising formulation itself is highly

regular, certain properties of the target embedding graph can be

exploited to provide a hierarchical approach. A novel method

is develop to specifically target “quantum stencils”. First, a

local subset of the problem is embedded in a highly connected

“unit cell” of the target topology. Second, the higher-order

dependencies are systematically resolved by constructing a

regular pattern connecting unit cells symmetrically with each

other. The key to success is often a dual “unit cell” that fuses

these steps together, i.e., unit cells with alternating mappings

(or even alternating rows of coupler mappings) are realized.

The resulting embedding has the potential to scale up to full

topology size depending on the relation of problem shape vs.

target topology shape.

This work further contributes a novel application area of

quantum annealing. As a nuclear reactor operates, the fuel

depletes and a portion of the core must be replaced peri-

odically. During the refueling, the placement and number of

fuel assemblies greatly affects the operation and economics

of the reactor core. The problem here is to determine the

placement of fuel assemblies to meet design constraints and

maximize output efficiency. This problem is formulated as a

2-local Ising Hamiltonian in this paper and then transformed

into a QUBO before being subjected to quantum annealing

to obtain close to optimal results with low computational

overhead. The resulting QUBO is exposed to D-Wave’s default

embedding algorithm, which fails to find a solution. Instead,

the newly developed quantum stencil embedding is shown

to provide a space efficient solution. Subsequent quantum

annealing provides operationally efficient fuel replacement

patterns as indicated by the overall energy of the annealing

process.

Overall, the novel approach of quantum stencil embeddings

has the potential to generalize to other stencil patterns and

different target topologies of quantum qubit interconnects. Its

application to the fuel loading problem may further provide

an alternative to solve another optimization problem with low

computational complexity.









cells are utilized and 2 qubits per cell remain unused. For

noisy hardware devices, utilizing fewer resources to represent

a problem has the potential to reduce error, which would give

Pegasus an advantage. However, if problem domains are not

quadratic but resemble a rhombus relative to the diagonals

of the Pegasus graph, all cells may even be used for a total

qubit utilization of 75%. Notice that the four additional local

couplings within the unit graph were key for Pegasus to

provide an advantage over Chimera.

III. APPLICATION TO OPTIMIZING FUEL LOADING WITHIN

NUCLEAR REACTORS

We apply our quantum stencil embedding method to a real-

world problem encountered in optimization of fuel loading

patterns in nuclear reactors. We first describe the problem,

and then provide a QUBO formulation of it.

A. The Fuel Loading Problem for Pressurized Water Reactors

When refueling nuclear reactors, the location of fuel assem-

blies within the core determines the power distribution in the

core, the cycle lifetime, and the economics of the fuel cycle.

Efficient core designs, that meet all of the design constraints

and reduce the number of fresh fuel assemblies needed, can

save the utility millions of dollars in fuel costs at each cycle.

For this study, we consider a reactor core based on the

APR1400 pressurized water reactor (PWR) design [40]. The

core consists of 241 fuel assemblies arranged on a circular

grid, as shown in Figure 9. The core is designed with quarter-

core rotational symmetry, so only 61 of the 241 possible

locations are unique.

Fig. 9: APR1400 reactor core layout.

We will consider a simplified problem where there are only

two fresh fuel types allowed in the core, either low enrichment

or high enrichment. In addition, we will assume that the center

assembly is always low enrichment, so there are a total of 60

degrees of freedom in our problem. It is desirable to have an

even split of 30 low and 30 high enrichment fuel assemblies

to support subsequent fuel cycles. (In the next cycle, the low

enriched bundles will be discharged, and new high enriched

bundles will be added.) Even with the constraint of only using

fresh fuel with two enrichments, there are over 1017 potential

valid loading patterns to evaluate. Optimization algorithms,

such as Simulated Annealing [41], have been applied to solve

this problem, but significant room for improvement exists.

The selection of a loading pattern is motivated by a desire

to 1) minimize the maximum local power peaking factor

(with a hard upper limit of 2.2) and 2) maximize the cycle

length. Thus, the cost function that the loading pattern seeks

to minimize can be stated as

E = −0.12Bu+ Fq + 2H(Fq − 2.2),

where H is the Heaviside step function, Bu is the cycle

exposure in units of GWd
MT

and Fq is the maximum local power

peaking factor.

The SIMULATE-3 reactor core simulator [42] is a high-

fidelity multiphysics solver that can be used to model the

reactor and determine the cost function for each loading

pattern. However, given the large number of available loading

patterns, it is not feasible to perform a brute force search of

all possible loading patterns; thus, optimization methods are

desired.

The specific physics of loading pattern optimization for light

water reactors (LWRs) is a good match for stencil optimization

problems. By formulating it as a 2D Ising model, with only

nearest-neighbor connectivity and at most 2nd order terms, it

can map efficiently to D-Wave. The sparse connectivity and

lack of need for representation of higher order terms allows for

the entire 60 degrees of freedom to be mapped to the D-Wave

architecture.

B. Ising Formulation

The 2D Ising model is considered a potentially appropriate

model for the problem due the short neutron mean free path in

LWRs. A fuel assembly is approximately 10 mean free paths

across, so the interactions between assemblies are dominated

by short-term effects. Thus, ground state solutions generated

on D-Wave may correspond to optimal loading patterns as

determined by the core simulator.

The 2D Ising model energy (physics sign convention) is

E = −

N∑

i

hisi −

N∑

i<j

Jijsisj .

Reformulated as a 2D Ising problem with an inverted sign

convention, D-Wave can solve for this problem as

E =

N∑

i

hisi +

N∑

i<j

Jijsisj .

The 2D Ising to be embedded onto D-Wave was generated

using several steps. First, 15,000 random loading patterns

with 30-30 fuel assembly design splits (30 high enrichment

and 30 low enrichment fuel assemblies) in the quarter-core

geometry were processed in SIMULATE-3 for a single cycle

depletion calculation. Next, 3,000 target loading patterns with





from a modified training algorithm. The (modified, re-weighs

to posterior Boltzmann distribution) training algorithm (which

assumes the physics sign convention) seeks to minimize what

is known as an interaction screening operator (ISO, S) at each

vertex given the set of M = 18, 000 samples.

Si(Ji, hi) =

M∑

m=0

e−βEme−
∑

j 6=i
Jijsisj−hisi

(Ĵi, ĥi) = [lnSi(Ji, hi) + λ ‖Ji‖ 1]

An analysis of the original algorithm showed that the

closer the tuning parameter λ was to 1, the fewer samples

the algorithm would need to ensure accuracy, but that the

closer the tuning parameter was to 0, the more likely the

quadratic coefficients would not vanish. It was determined that

a selection of λ = 0 was appropriate: An analysis of the first

3,000 samples followed by analyses with each additional batch

of 3,000 samples showed that for this particular model, the

values were somewhat insensitive to the number of samples.

Additionally, raising the tuning parameter even as high as

λ = 0.1 caused the coupling coefficients to vanish. This

was deemed unacceptable due to the desire to capture the

interaction effect between adjacent assemblies.

For the training process, conventions of s = −1 for

the lower-enrichment fuel assembly and s = +1 for the

higher-enrichment fuel assembly were assumed. For inverse

temperatures of β = 1 and β = 10 the 2D Ising was

trained. These relatively low values for β were selected in

order that the recovered Boltzmann distribution have physical

meaning. In reality, the appearance of a spin configuration

is more likely for those closer to the ground state energy.

Only when the temperature is very high, is a random sampling

procedure justified. Random sampling must be performed as

the associated energy of a loading pattern is not known a priori.

In order to account for the observed differences in energy

levels, the factor e−βEm was added to the original ISO term.

For β = 1 the magnitude of the error in the 2D Ising

surrogate cost function compared with SIMULATE-3 was on

average 2.44 while for β = 10 it was 5.78. In addition to the

larger error, a cursory examination of the 2D Ising model map

for β = 10 appears to show saturation/clipping of parameter

values. An optimal value for the inverse temperature was

searched for. For β = 2.5 the average error magnitude was

1.15.

Fig. 13: Inverted 2D Ising model, β = 1

Figures 14 and 16, which reflect the shape of the bottom-

right quartile of the fuel core, represent the 2D Ising surrogate

Fig. 14: 2D Ising surrogate (for SIMULATE-3) accuracy, β =
1

Fig. 15: Figure 6. Inverted 2D Ising model, β = 2.5

prediction (cell weights blue, inter-cell couplings green) com-

pared to actual SIMULATE-3 result while Figures 13 and 15

present a graphical representation of the 2D Ising model map

with the signs flipped (to the D-Wave sign convention) from

the traditional physics convention. From Figures 14 and 16

both the low-fidelity and high-fidelity results are correlated up

to a SIMULATE-3 cost function value of about 9 and then

afterwards they remain correlated, but less so. This change

in behavior may be due to imposing a hard constraint of

Fig. 16: Figure 7. 2D Ising surrogate (for SIMULATE-3)

accuracy, β = 2.5



Fq = 2.2. Lastly, for both inverse temperature values the

surrogate tends to underpredict the actual value of the cost

function. Thus, the inability to estimate the cost function

ground state prevents the construction of a high accuracy

surrogate for lower energies.

On the other hand, from Figures 13 and 15, while the 2D

Ising does not capture the problem in great detail, some of

its qualitative features align with traditional loading pattern

designs. The qubit coupling terms are nearly strictly positive.

Thus, the reactor system is by and large antiferromagnetic. The

coupling terms also tend towards 1 closer to the center of the

reactor core. This is consistent with traditional loading pattern

design. The reactor core being antiferromagnetic corresponds

to dissimilar assemblies being placed adjacent to each other

— a checkerboard design. Checkerboard patterns are also

typically preferable closer to the center of the core, away from

the problem boundary. Checkerboard patterns help to reduce

power peaking, which is especially of concern closer to the

center of the core as the boundary effect of some assemblies

not being entirely surrounded by other assemblies vanishes.

Additionally, from both Figures 13 and 15 the qubit bias terms

are positive at the center of the core, trends towards 0 and the

negative further from the center of the core and then trends

towards flipping back to positive on the outermost periphery

of the core. The linear coefficient behavior on the outermost

ring of the reactor indicates a preference for lower-enrichment

fuel at that location. This is as expected in order to improve

(i.e., reduce) the neutron leakage (and thus increase the cycle

length). Additionally, the behavior on the interior of the core,

favoring lower-enrichment closer to the center and favoring

higher-enrichment fuel closer to the core periphery (but not

on the periphery itself), is consistent with traditional IN-OUT

loading patterns. These patterns balance the higher-enrichment

fuel assemblies with increased geometric attenuation further

from the core center. This allows again for the flattening of

the core power profile.

C. QUBO Formulation

The trained 2D Ising coefficients must be converted to the

correct quadratic unconstrained binary optimization (QUBO)

problem format. First, as stated before, all of the signs on both

linear and quadratic coefficients are flipped. Next, all of the

quadratic coefficients are generated:

Qij = 4Jij

Then (slightly more complex) all of the linear coefficients

are generated:

Qi = 2hi −
1

2

∑

i<j

Qi

Now, the QUBO problem may be solved:

f(x) =
∑

i

Qixi +
∑

i<j

Qijxixj

This conversion is fairly straightforward. Discrete problems

with higher-order terms or denser connectivity may also be

converted to QUBOs with an increased number of qubits.

As earlier, future attempts to the loading pattern optimization

problem should use higher order terms to increase surrogate fi-

delity. Additionally, the D-Wave solution will be unconstrained

with no guarantee of a 30-30 split in the fuel assembly designs.

In order to introduce an energy penalty for designs that do

not meet this constraint, a fully-connected graph would be

required [44]. However, we decided to assess if training the

2D Ising model with only 30-30 batch splits would implicitly

guide ground state solutions towards this constraint.

IV. IMPLEMENTATION

Our embeddings of the quantum annealing stencils for

the reactor core loading problem were realized on a D-

Wave 2000Q device (DW 2000Q 6). This specific device,

as many others, has manufacturing defects in terms of dead

qubits, specifically seven qubits at the time of experimentation.

These qubits and any of their couplers need to be excluded

from an embedding. By default, D-Wave uses the minor

miner algorithm to find an embedding on the subset of good

qubits [18]. Unfortunately, this algorithm failed to produce

any valid mapping for our fuel loading QUBO of 60 fuel

assemblies. The minor miner algorithm uses a set of heuristics

with seed randomization to greedily place edges and qubits one

by one such that “some space” is left for future placement

of more edges/qubits. Apparently, this results in mapping

attempts that are too sparse to fit within the subset of good

qubits on the DW 2000Q 6 device.

Our embedding explicitly utilizes a dense and dual mapping

into the unit cell, and then globally connects unit cells of four

particles with one another. This local/global embedding com-

bined with the idea of dual embeddings is key to success. It

is also an indication that D-Wave may benefit from geometric

embeddings within local unit cells before global embeddings

are considered for structured QUBOs, i.e., where two-local

interactions follow a common pattern.

Our embedding further takes into account the list of dead

qubits available via the Ocean API. We search for a con-

secutive range of rows within the Chimera graph with only

good qubits large enough to fit our dense embedding. A 8x9

embedding (or 2x9 in terms of unit cell rows/columns) suffices

to fit our problem. For our dense mapping, a single dead qubit

renders an entire cell with its corresponding row and column

useless. In other words, routing around dead qubits (and their

unit cell) is infeasible with our dense Chimera embedding as

we utilize all qubits of a unit cell.

In case of the DW 2000Q 6 device, three pairs of dead

qubits belong to the same cell for a total of four unusable cells

and two failed cells in the same row. This amounts to a total

loss of three rows and four columns or (3+ 4)× 16− 4 = 63
cells with eight qubits each, i.e., almost 25% of their cells

cannot be utilized.

In general, sparser embeddings with symmetry and duality

can be constructed to address this problem. In fact, our Pegasus



mapping is sparser as it only utilizes 75% of the qubits in a

unit cell, and these qubits can be relocated within a cell, i.e.,

cells with one or sometimes two dead qubits can still be used.

However, if multiple global connectors are affected, routing

around an entire unit cell has prohibitive cost for our relatively

dense embeddings, and symmetry would render an entire cell

row and column useless. Notice that alternate algorithms exist

to consider dead qubits and couplers, but they tend to consider

specialized graphs rather symmetric graph structures [45].

V. EVALUATION

We performed evaluations of our models on the D-Wave

2000Q platform with the inverted 2D Ising model (β = 1)

formulated as a QUBO. We specified the maximum number

of samples (10,000) for the experiment and then searched the

result space for ≈50%/50% load patterns (equivalent to 30/30

±1 low/high enriched assemblies). These runs provided 396,

302, 244, and 188 results, for repeated runs, with lowest ener-

gies of -4.9958, -5.0531, -5.0219, -5.0485, respectively. These

best balanced loading patterns in terms of power efficiency of

the nuclear reactor have very similar shape, depicted as a 2D

layout in Fig. 17, where 1/0 denote low/high fuel enrichments.

1 1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 1

1 1 1 0 0 0 0 1

0 1 1 0 1 0 0

0 0 1 0 0 1

0 0 0 1

(a) E=-4.9958

1 1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 0 1 0

1 1 1 1 1 0 0 0

0 1 1 0 0 0 1 1

0 0 1 0 0 0 0

0 0 0 0 1 1

0 0 0 0

(b) E=-5.0531

Fig. 17: Lowest Energy for 50%/50% Patterns of 2 Runs

In general, the energy of the QUBO solution varies between

-1.5704 and -5.3252, with the lowest energy pattern depicted

in Figure 18, which has an unbalanced load pattern. The idea

of balancing patterns is an economical one to aid in the fuel

loading of subsequent cycles. All patterns have in common

a concentration of low enriched assemblies in the center of

the core (in the upper left corner of the quarter core). The

placement of low enriched fuel in the center will tend to

decrease the core power peaking (Fq in the cost function).

1 1 1 1 1 1 0 0 1

1 1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0 1

1 1 1 1 1 0 1 0

1 1 1 1 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 1

Fig. 18: Pattern for a 34/26 split with E=-5.0531

VI. RELATED WORK

Early work on qubit embeddings generically considered

simple graph topologies [46] and resulted in the development

of an embedding algorithm, TRIAD, specifically geared at

triangular clique embeddings [17]. D-Wave’s minor miner

embedding algorithm places an edge/vertex at a time leaving

“enough space” for future placements, combined with initial

randomization, to provide a sparse enough partial mapping

that future placements are likely to succeed [18]. Other work

exploits maximal minor embeddings to support cliques, which

is very specific in terms of combining dense local and global

constraints, and has even been developed to “patch” connec-

tions around dead qubits [45]. Another approach utilizes a

greedy algorithm that considers a biclique virtual topology

abstraction as a mapping target, which realizes odd cycles

cleverly that can only be realized with ancillas for Chimera

graphs [47]. The Pegasus graph supports odd cycles without

ancillas, i.e., it is not clear if the biclique virtual topology

provides a benefit here. In contrast to these approaches, our

work focuses an a dense hierarchical embedding strategy,

where local unit graphs are first regularized, often with dual

mappings, before they a stitched together globally. It is not

greedy but rather follows a constructive structural design

pattern that scales well.

VII. CONCLUSION

This work contributes a novel, scalable method for map-

ping QUBOs onto topological qubit structures of quantum

annealing devices, theoretically up to full topology size. Opti-

mization problems specified as quantum stencils are shown to

be efficiently mapped onto contemporary quantum annealing

devices.

The work further provides a solution to the fuel loading

problem of nuclear reactors. When formulated as an optimiza-

tion problem matching a two-local Ising Hamiltonian, a QUBO

formulation is derived that matches the quantum stencil shape.

Experiments with a 2000Q D-Wave device show that efficient

solutions for such problem domains can be obtained with

our topological embedding method while default embedding

algorithms fail to provide a solution.

Quantum stencils are particularly appealing for regular,

repeating global structures. Global embeddings benefit from

geometric similarity to the problem shape, otherwise density is

sacrificed but flexibility is gained to route around dead qubits,

as seen for the Pegasus topology. These findings provide inspi-

ration for improving D-Wave’s current embedding approach,

i.e., by providing a more constructive geometric approach

as an alternative. The findings may also provide inspiration

for consideration of future graph topologies of RF-Squids

or even for connecting superconducting transmons, e.g., by

trading off the amount of crossing and non-crossing couplers,

which support remote, multi-hop chains vs. local connectivity,

respectively.



VIII. FUTURE WORK

Quantum stencils generalize in that they provide embed-

dings for QUBOs of arbitrary problem domains. The nuclear

reactor fuel loading problem itself features a 2D problem

abstraction that provides a natural representation mapping onto

D-Wave topologies. 3D problems would be harder to map to

current topologies, i.e., a 3D interconnect would be preferable,

particularly one that extends beyond a depth of three as

given by the Pegasus graph. Qubit utilization could further be

improved for 2D and 3D mappings with small changes in the

intra- and inter-cell routing, but without increasing the degree

of connectivity per qubit (see Section II). Furthermore, the fuel

loading problem is simplified as global constraints are omitted

in the quantum model and only checked classically within the

solution space provided by the quantum device. Supporting

global constraints natively within the quantum device would

require a second interconnect, where most (if not all) qubits are

connected to a single “central” qubit, which may not easily be

realized with superconducting transmons, but might be more

feasible with ion traps.

Further work must take place to evaluate the methodology

established here with traditional approaches. First, it should be

remembered that the 2D Ising is ultimately a surrogate for the

real problem and that eventually, all solutions to the 2D Ising

should be evaluated using the higher-fidelity SIMULATE-3

code system. Next, alternate solvers to the 2D Ising should be

investigated and have their solution quality compared to that of

D-Wave, given an equal number of generated solutions [48].

With consideration given to the cost of creation of the 2D

Ising surrogate, 2D Ising solvers should be compared with

traditional engineering approaches that directly manipulate the

SIMULATE-3 input and do not require the creation of a 2D

Ising surrogate model.

Extensions to other types of reactor designs should also be

investigated. While it may be obvious that D-Wave’s perfor-

mance in designing loading patterns for MOX-fueled reactors

would be equal to its performance for UO2-fueled reactors

as presented here, it is not. The effect of vanishing quadratic

(coupling) coefficients could be significant due to the smaller

neutron mean free path in MOX-fueled reactors. Additionally,

denser connectivity (such as diagonal interactions between as-

semblies) and higher-order terms (such as interactions centered

at the corners rather than the sides of assemblies that may

require quadratic or cubic terms, which need to be decomposed

to quadratic terms) should be considered in surrogate modeling

fidelity. Lastly, efforts should be made to investigate reactor

re-loading problems requiring a very dense connectivity (such

as in many fast reactor designs, where the neutron mean

free path is on the order of the size of fuel assemblies) and

reloading patterns that feature more than two fuel levels (this

is more realistic), which requires solving the generalized Potts

model [49]. Modeling of boiling water reactors (BWRs) on D-

Wave will likely require a computational cost intermediate of

PWRs and fast reactors due to the still small neutron mean

free path combined with the fuel assemblies being of larger

number and smaller size.
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