
ACCEPTED TO IEEE SENSORS JOURNAL 1

Multi-Frequency RF Sensor Fusion for Word-Level
Fluent ASL Recognition

Sevgi Z. Gurbuz, Senior Member, IEEE, M. Mahbubur Rahman, Emre Kurtoglu, Evie Malaia,
Ali C. Gurbuz, Senior Member, IEEE, Darrin J. Griffin, and Chris Crawford

Abstract—Deaf spaces are unique indoor environments de-
signed to optimize visual communication and Deaf cultural
expression. However, much of the technological research geared
towards the deaf involve use of video or wearables for American
sign language (ASL) translation, with little consideration for
Deaf perspective on privacy and usability of the technology.
In contrast to video, RF sensors offer the avenue for ambient
ASL recognition while also preserving privacy for Deaf signers.
Methods: This paper investigates the RF transmit waveform
parameters required for effective measurement of ASL signs
and their effect on word-level classification accuracy attained
with transfer learning and convolutional autoencoders (CAE).
A multi-frequency fusion network is proposed to exploit data
from all sensors in an RF sensor network and improve the
recognition accuracy of fluent ASL signing. Results: For fluent
signers, CAEs yield a 20-sign classification accuracy of %76 at
77 GHz and %73 at 24 GHz, while at X-band (10 Ghz) accuracy
drops to 67%. For hearing imitation signers, signs are more
separable, resulting in a 96% accuracy with CAEs. Further, fluent
ASL recognition accuracy is significantly increased with use of
the multi-frequency fusion network, which boosts the 20-sign
fluent ASL recognition accuracy to 95%, surpassing conventional
feature level fusion by 12%. Implications: Signing involves finer
spatiotemporal dynamics than typical hand gestures, and thus
requires interrogation with a transmit waveform that has a rapid
succession of pulses and high bandwidth. Millimeter wave RF
frequencies also yield greater accuracy due to the increased
Doppler spread of the radar backscatter. Comparative analysis
of articulation dynamics also shows that imitation signing is not
representative of fluent signing, and not effective in pre-training
networks for fluent ASL classification. Deep neural networks
employing multi-frequency fusion capture both shared, as well
as sensor-specific features and thus offer significant performance
gains in comparison to using a single sensor or feature-level
fusion.

Index Terms—American sign language, gesture recognition,
radar micro-Doppler, RF sensing, deep learning, autoencoders
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MOST indoor environments designed by hearing indi-
viduals present a variety of challenges to Deaf in-

dividuals, who primarily perceive the world through visuo-
spatial awareness. American Sign Language (ASL) is widely
used in the Deaf community as a visual-kinetic mode of
communication, which requires direct visual observation of
other signers to be effective. Thus, Deaf spaces [1] - indoor
environments designed to optimize Deaf cultural expression -
involve modifications, such as a higher number of windows,
increased lighting, furniture re-arrangements and even open-
ings in windows that allow clear sightlines, to improve visual
accessibility between signers.

Research on sensing technologies for the Deaf has primarily
focused on the use of video [2], [3] or wearable devices [4],
[5] for ASL translation and facilitating the understanding of
hearing individuals of Deaf communications. The objective
of this work, however, is to instead focus on machine under-
standing of ASL as a means for better designing technology
to serve the Deaf community. Through the involvement of
community partners, such as the Alabama Institute of the Deaf
and Blind (AIDB), we aim to reflect a Deaf-centric approach to
ASL recognition, which reflects Deaf perspectives. Wearable
devices are intrusive, restrict natural hand usage, and burden
Deaf individuals based on “hearing” perceptions of deafness as
a disability, as opposed to a unique sub-culture of American
society. Video-based technologies, such as video-based cell
phone communication apps, are often used by the Deaf to
great benefit; however, in the context of smart environments,
where video would offer constant opportunity for surveillance,
cameras elicit significant concern over privacy.

In contrast, radio frequency (RF) sensors can operate even
in the dark, in a non-contact fashion. RF sensors only record
the range and velocity profiles of the signing motion, and, thus,
even if hacked, completely protect the privacy of the individual
(e.g. face) and environment (no visual background informa-
tion). Although RF sensing cannot offer complete perception
of sign language, which also involves facial expressions and
hand shapes, RF sensors are responsive to the kinematics and
position of the hands. Radar point clouds [6] may be extracted
from multi-channel RF sensors, however, transmit waveform
bandwidth bounds slant range resolution, while the number
of channels limits azimuth resolution. This results in spatially
and temporally sparse point clouds that are not effective in
capturing hand shape or motion dynamics. Alternatively, the
short-time Fourier transform (STFT) can be used to compute
the spectrogram of the RF sensor returns, which reveals the
unique patterns of micro-Doppler [7] frequency resulting from
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signing. In recent prior work [8]–[10], we showed that the
RF micro-Doppler signatures are effective in capturing both
linguistic and kinematic properties of signing. Handcrafted
features were extracted from the micro-Doppler signatures
obtained from an RF sensor network and utilized to classify
20 ASL signs with %72.5 accuracy [10].

This paper explores the effect of various RF sensor transmit
waveform parameters and the fluency of ASL users on the per-
formance attained by deep learning based approaches to RF-
based ASL recognition. Over the past five years, a significant
body of work on RF sensor-based gesture recognition [11]–
[13] has emerged in the literature. While some researchers
have used “sign language gestures” to test gesture recognition
approaches, in fact, signing possesses a much greater degree of
complexity and nuance [14], [15]. Due to the communicative
and linguistic nature of the signal, signing presents addi-
tional challenges relating to fine-grained temporal dynamics
and linguistic parameters, such as prosody (e.g. pauses and
suprasegmental components, such as phrase-final lengthening
[16]) and grammatical structure. Moreover, the signing of
hearing imitation signers is distinguishable from that of fluent
ASL signers [10], exhibiting greater kinematic variation, more
erratic cadence and significant signing errors. Thus, both the
transmit waveform parameters can affect the extent to which
the RF sensor accurately captures motion during signing.

Although some studies, e.g. [17]–[21], of ASL recognition
have employed hearing imitation signers or ASL learners,
perhaps due to the greater ease in recruiting a larger number
of participants, the intended benefactor of Deaf spaces are
fluent ASL signers. Thus, in this paper, we investigate the per-
formance of transfer learning and convolutional autoencoders
in the classification of fluent ASL signing and show that 1)
the accuracy achieved by deep neural networks (DNNs) on
imitation signing data is overly optimistic (higher) than that
achieved with fluent ASL data; and that 2) imitation signing
data is not effective in pre-training networks intended to
classify fluent ASL signing data. Furthermore, we compare the
performance achieved with RF sensors with different transmit
waveform, center frequency, pulse repetition frequency (PRF),
and bandwidth. Finally, we propose a multi-frequency DNN
for fusing the simultaneous measurements of three RF sensors
transmitting at different frequencies, boosting accuracy relative
to that achieved with feature-level fusion.

The paper is organized as follows. In Section II, a de-
scription of the RF sensor network and acquired datasets is
given. Section III examines the variation in DNN classification
accuracy across different transmit waveforms for both fluent
and imitation signing. In Section IV, the design of the multi-
frequency fusion DNN is presented, and results are compared
with that obtained from alternative fusion approaches. Section
V concludes the paper with a discussion of main implications.

II. RF MEASUREMENTS OF ASL

Three different RF sensors are utilized in this work: 1) the
TI IWR1443BOOST 76 GHz - 81 GHz automotive short-
range radar (SRR) sensor, which has frequency modulated
continuous wave (FMCW) tranmissions; 2) the Ancortek

Fig. 1. Summary of RF sensor parameters and ASL signs in study.

2400AD transciever, which transmits FMCW with a center
frequency of 24 GHz; and 3) the Xethru X4M03 ultra-wide
band (UWB) impulse radar with a transmission frequency
range of 7.25 - 10.2 GHz. Measurements were acquired with
77 GHz automotive radar at two different bandwidths, namely,
750 MHz and 4 GHz, while the 24 GHz radar was operated
with a bandwidth of 1.5 GHz, and the Xethru radar had a
bandwidth of 3 GHz. While the bandwidth of the 77 GHz
sensor is adjustable, the 24 GHz sensor allows for selection
among only three possible bandwidths, 1.5 GHz being the
heighest, and the bandwidth of the Xethru sensor is fixed.

The three sensors were placed side by side, directly facing
the participants, at an elevation of 0.91 m from the ground.
Participants sat on a chair directly facing a computer monitor,
which was placed immediately behind the radar systems, and
used to relay prompts indicating the signs to be articulated.
The radar systems were positioned at a distance of 1.2 - 1.5
meters from the participant. The output transmission power
of the RF sensors are 4.3 mW, 100 mW, and 40 mW for the
Xethru 10 GHz UWB, Ancortek 24 GHz FMCW, and TI 77
GHz FMCW transceivers, respectively. These levels are lower
than those incurred during cell phone usage, e.g. 250 mW
to 2 W [22], and are further reduced by propagation losses
proportional to 1/r2, where r is the distance between the
sensor and user. This study was approved by the Institutional
Review Board (IRB) of the University of Alabama.

A total of 6 fluent ASL users took part in the study of whom
3 were Deaf and 3 were a Child-of-Deaf Adult (CODA). A
total of 15 hearing participants, who did not know sign lan-
guage, also participated. Hearing participants were first tutored
for about 10-15 minutes on how to articulate the desired signs.
During the experiment, hearing participants were prompted
with a copy-signing video were a CODA articulated the sign
and afterwards the participant was expected to repeat the same
sign. Participants were presented a random ordering of single-
word signs to foster independence in the repetition of the signs.
The 20 signs considered in this study were selected using the
ASL-LEX [23] database (http://asl-lex.org), choosing words
that are higher frequency, but not phonologically related to
ensure a more diverse dataset. The specific ASL signs used
as well as the number of samples acquired for different radar
waveform types and transmit parameters are listed in Fig. 1.
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III. INFLUENCE OF RF TRANSMIT WAVEFORM
PARAMETERS AND FLUENCY ON ASL RECOGNITION

The signal received by a radar is, in general, weighted
summation of time-delayed, frequency-shifted versions of the
transmitted signal from multiple scatterers. In many practical
scenarios, it has been shown that the scattering from the human
body can be approximated using the superposition of returns
from K points on the body [24]. Thus,

x[n] =
K∑
i=1

aiexp

{
− j

4πfc
c

Rn,i

}
, (1)

where Rn,i is the range to the ith body part at time n, fc is
the transmit center frequency, c is the speed of light, and the
amplitude ai is the square root of the power of the received
signal as given by the radar range equation [25]. Thus, RF
sensors provide a complex-time series of measurements in the
form x[n] = I[n] + jQ[n].

Typically, this data stream is re-shaped into a 2D matrix
for each RF receive channel, so that the columns represent
fast-time, e.g. range samples, and the row represents slow-
time, e.g. pulse number. The range between the radar and any
scattering point is found from the round-trip travel time, while
the radial velocity of motion, vr, is given by computation of
the Doppler shift,

fD =
2vrft
c

(2)

where ft is the instantaneous transmit frequency. In addition,
the range and velocity estimates obtained from RF sensors are
independent measurements.

A. RF Data Pre-Processing
The kinematic behavior of the signer is captured by the fre-

quency modulations in the phase of the received signal. Micro-
motions [7], e.g. rotations and vibrations, result in micro-
Doppler (µD) frequency modulations centered about the main
Doppler shift, which is caused by translational motion. Signing
results in a time-varying pattern of micro-Doppler frequencies.
Each sign generates its own unique patterns, which can be
revealed through time-frequency analysis. The micro-Doppler
signature, or spectrogram, is found from the square modulus of
the Short-Time Fourier Transform (STFT) of the continuous-
time input signal x(t) and can be expressed in terms of the
window function, h(t), as

S(t, ω) =
∣∣∣ ∫ ∞
−∞

h(t− u)x(u)e−jωtdu
∣∣∣2. (3)

Ground clutter from stationary objects, such as furniture
and the walls, will appear in the micro-Doppler signature
as a band centered around 0 Hz. Based on earlier studies
[10], we found that for the 10 GHz and 24 GHz RF sensors,
performance is improved with removal of the ground clutter
via high pass filtering. At 77 GHz, however, the elimination of
low-speed signal components during clutter filtering results in
performance degradation [10]. Thus, a 4th-order Butterworth
high pass filter was applied only to the 10 GHz and 24 GHz
RF sensor data. Samples of the micro-Doppler signatures for
fluent ASL signers as acquired from the different RF sensors
are shown in Figure 2.

B. Transmit Frequency

The transmit frequency has a significant impact on the
perception of micro-motions by the RF sensor. As revealed
by Eq. 2, the higher the transmit frequency, the greater a
Doppler shift is observed. For movements such as signing,
where the finer-scale motion is involved both temporally and
spatially, transmission at higher frequencies has great benefits:
even small movements result in observable Doppler shifts,
resulting in greater detail in the time-frequency representation,
i.e. the micro-Doppler signature of the motion. Both the 77
GHz and 24 GHz FMCW sensors appear to acquire much
crisper µD signatures in comparison to the 10 GHz UWB
radar. For example, for the sign WALK as illustrated in Fig. 2,
the number of times that the hand waves back and forth can
only be clearly counted in 77 GHz and 24 GHz data.

C. FMCW Transmit Waveform Parameters

An ideal FMCW waveform may be specified using three
parameters: 1) the pulse duration, τ , 2) the bandwidth, β,
and 3) the number of pulses transmitted, N . The range
resolution, ∆R, is dependent upon the waveform bandwidth as
∆R = cβ/2, while the velocity resolution, ∆v, is a function
of the total coherent duration that the radar interrogates the
target, i.e. dwell time, as computed from ∆v = λ/Nτ , where
λ is the wavelength of the transmit waveform. Thus, the greater
the bandwidth, the better the range resolution; and the higher
the transmit frequency, the shorter the wavelength and better
the velocity resolution. Because signing can be quite dynamic
with rapid progressions, keeping the pulse duration as short
as possible would be an advantage as this also increases
the sampling rate across Doppler frequency. Moreover, the
maximum unambiguous velocity depends upon the pulse du-
ration (which for FMCW equals the pulse repetition interval):
−1/τ < fD < 1/τ , where fD is as defined in Eq. 2.
The shorter the pulse duration, the greater is the maximum
unambiguous velocity that can be measured.

In real FMCW transmitters, however, additional parameters
factor into the specification of the transmit waveform, as
shown in Figure 3. For example, due to the finite switching
time of the transceiver, there is a short duration between the
transmission of each pulse, known as idle time, tidle. In the
user interface of the TI 77 GHz sensor, not just the idle time,
but also a frame period, T , can be specified. The term frame
is borrowed from video processing literature, but, in this case,
refers to the 2D range-Doppler map that is computed from
returns received from N pulses transmitted over a coherent
processing interval (CPI). An inter-frame period, tif , can also
be specified in the user interface to allow for a time delay
between successive CPIs. Thus, the duty cycle, d, of the entire
transmission can be defined as

d =
N × tchirp

T
, (4)

where tchirp is the chirp cycle time.
For the purposes of sign language recognition, we recom-

mend that the transmit waveform not only have the minimum
possible pulse duration and maximum possible bandwidth,
but also a duty cycle as close as possible to 100%; e.g.,
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Fig. 2. Comparison of example micro-Doppler signatures for fluent ASL signing as measured by various RF sensors. The 77 GHz signatures are shown for
the high PRF of 6400 Hz.

Fig. 3. TI 77 GHz mmWave Studio chirp design parameters.

Fig. 4. Minimum and maximum values of waveform parameters when other
parameters are selected as follows: # of ADC samples: 256, ADC sampling
frequency: 6.25 kbps. (Min/max T depends on N and τ .)

minimum idle time and inter-frame period. The minimum and
maximum values that each parameter may be assigned in TI
mmWaveStudio are listed in Fig. 4. To see the effect of the
duty cycle, and in particular, the inter-frame period on the
acquired ASL data, consider the RF signatures acquired under
two different settings for hearing imitation and fluent signer,
shown in Fig. 5:

Fig. 5. Comparison of the µD spectrograms for ”BREATH” and their envelope
statistics for fluent and imitation signers.

• Mode A: 77 GHz, β = 750 MHz, PRF = 3.2 kHz, τ =
60µs, N = 128, d = 51.2%, T = 40ms, tidle = 100µs,
tif = 18.8ms.

• Mode B: 77 GHz, β = 4 GHz, PRF = 6.4 kHz, τ =
50µs, N = 256, d = 96%, T = 40ms, tidle = 100µs,
tif = 0.3ms.

Notice that when the waveform has a low duty cycle,
and, hence, a significant inter-frame period, the signatures are
effected by vertical streaking across Doppler, which corrupts
the measurement. This is made more evident when the peak
and mean of the upper and lower envelopes are compared
across the two modes for both imitation and fluent signing. The
peak values of the upper envelope and the minimum values
of the lower envelope, i.e. the extreme velocities, are greater
in the data from the corrupted Mode A waveform versus that
from the pristine Mode B data.

Due to the erratic nature of imitation signing, which results
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Fig. 6. Comparison of the effect of different RF transmit modes on the feature
spaces of imitation and fluent signing data.

in greater micro-Doppler frequency diversity, the streaking
effect appears to impact imitation signing more severely than
fluent signing. This can also be seen by comparing the degree
of overlap in the feature space spanned by fluent and imitation
signing data for the two different transmit waveforms, Mode
A and Mode B, as shown in Fig. 6. Principal Component
Analysis (PCA) was used for feature extraction [26], while
the T-distributed Stochastic Neighbor Embedding (t-SNE) [27]
algorithm was used to visualize the feature spaces. The t-
SNE visualization reveals that while in imitation signing data
the differing transmit waveforms result in a tangible shift in
the centroid and extent of the imitation signing feature space,
fluent signing is not as affected by mode and the feature space
spanned by both modes predominantly overlap.

D. Imitation Signing versus Fluent Signing

Studies of sign language have shown that it can take ASL
learners at least 3 years to produce signs in a manner that is
perceived as fluent by other fluent signers [28]. Visualizations
of feature space as given by t-SNE can also be used to
compare the extent to which imitation signing statistically
resembles fluent signing. Consider Fig. 7, which shows the
overlap between the feature spaces of imitation and fluent
signing data for Mode A and Mode B. The overlap is greater
when the Mode B transmit waveform parameters are utilized;
but, in both cases, there is a significant discrepancy between
the feature spaces of imitation signing versus fluent signing.

This discrepancy can be quantified by considering the ability
of support vector machines (SVM) to classify imitation signing
versus fluent signing using PCA. With a Mode A transmit
waveform, SVM is able to distinguish imitation signing from
fluent signing with an accuracy of %96. With a Mode B
transmit waveform, which is optimized for spatiotemporal
parameters of signing, the acquired signatures are pristine,
and the accuracy to distinguish drops to %76. This level of
capability to distinguish between fluent and imitation signers
is still a high percentage, and reinforces the main point that
imitation signing is not representative of fluent signing.

Thus, ASL recognition algorithms should not be validated
using imitation signing data. Even in the context of ASL-
sensitive human-computer interfaces (HCI), it should be re-
membered that the target audience for such technologies is the
Deaf community and broader population of ASL users, who

Fig. 7. Comparison of the overlap between the feature spaces of imitation
signing and fluent signing data for Mode A and Mode B.

are fluent signers. Just as speech recognition systems would
never be designed using vocalizations from non-speakers, so
should ASL recognition systems not be evaluated using the
imitation data of hearing non-signers.

E. Single-Sensor Classification Accuracy

Although DNNs have yielded great improvements in perfor-
mance in many fields, including RF micro-Doppler signature
classification [29], they rely on large amounts of training data
to learn the underlying representations. However, RF sensing
typically involves much fewer samples than in computer vision
due to the cost and time to acquire data from human subjects.
Several approaches have been proposed for addressing the
training of DNNs when the amount of training data is limited:
e.g., transfer learning and unsupervised pre-training. In prior
work [30], [31], the efficacy of these methods on micro-
Doppler signatures for human activities was investigated.
Among pre-trained networks, VGGNet [32] was found to be
more effective than GoogleNet [33], while the performance
of CAEs surpassed that of VGGNet and convolutional neural
networks (CNN) when the amount of training data exceeded
600 samples. Thus, the single-sensor classification accuracy
for each sensor, imitation signing and fluent signing were
compared for transfer learning using VGGNet and a CAE.

1) VGGNet: VGGNet is a 16-layer convolutional neural
network (CNN), which uses 3×3 convolutional filters in each
layer. Volume size is reduced using max pooling, with the
convolutional layers followed by two fully-connected layers
having 4096 nodes per layer and a softmax classifier. A slight
modification to VGGNet was made in this work by utilizing
global average pooling in the final layer, rather than max
pooling. The two dense layers use ReLU activation functions,
with each followed by 50% dropout. A batch size of 8, epoch
number of 120, learning rate of 10−4, momentum of 0.9, and
the ADAM [34] optimizer were utilized.

VGGNet was initially pre-trained using 1.2 million optical
images from the ImageNet [35] database. This results in
improved initialization of the network weights relative to
random initialization, while also reducing the number of RF
samples required during training. Real RF data samples are
thus only used for fine tuning and testing.
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Fig. 8. Comparison of classification accuracy for imitation signing and fluent
signing using various RF sensors.

2) CAE: In this work, a three-layer CAE that employs
multilevel feature extraction was utilized. A total of 128
convolutional filters with two different sizes (64 3× 3 and 64
9× 9) were applied and their outputs concatenated. After use
of unsupervised pre-training to initialize network weights, the
decoder was removed and replaced with two fully-connected
layers having 128 neurons per layer. Dropout of 55% was
added after flattening the output of the encoder. A softmax
layer with 20 nodes was employed for classification.

3) Results: The recognition accuracy of 20 signs were com-
pared across all RF sensors for imitation signing versus fluent
signing. Only Mode B imitation signing data was utilized in
these assessments, given the distinct differences demonstrated
in Figure 6. In the case of fluent ASL data, both Mode A and
Mode B data were utilized with equal proportions in training
and test datasets. A ratio of 80% to 20% was used between
training and test sets. The Synthetic Minority Over-sampling
TEchnique (SMOTE) [36] was applied to equalize the number
of real RF samples used for training when comparing imitation
and fluent signing recognition accuracy. Results are tabulated
in Figure 8.

In all cases, the CAE slightly outperforms transfer learning
from ImageNet with VGGnet. At 77 GHz, the imitation sign-
ing recognition accuracy (96%) achieved significantly exceeds
that of fluent signing (76%) by 20%. While this at first glance
may seem surprising, a visualization of the distribution of each
sign, illustrated in Figure 9 shows in fact how distinctly group
each sign is in 77 GHz imitation signing data. At 24 GHz,
the imitation signing recognition accuracy still exceeds that of
fluent signing, but with a lesser difference of just 5%. This
is primarily because of the greater detail in the signatures of
the 77 GHz sensor, which exhibits a greater Doppler shift for
a given velocity than the other sensors. As the coarseness of
the micro-Doppler signatures increase, the classification accu-
racy decreases. This indicates that investigation into higher-
frequency resolution time-frequency transforms may lead to
tangible gains for ASL recognition applications. Moreover,
these results reveal that the use of imitation signing to evaluate
ASL recognition algorithms can lead to over optimistic results,
so that even if the objective were purely for ASL-sensitive user
interfaces, as opposed to translation, which encompasses the

Fig. 9. Illustration of distribution of each ASL class for imitation signing
(left) and fluent signing (right).

richness of language, fluent ASL data should always be used
for testing.

F. Imitation Signing Data as a Source for Pre-Training
Given the high classification accuracies of imitation signing

data, it may be thought, however, that one way of mitigating
the burden of acquiring fluent signing data could be by
pre-training networks on imitation signing data as opposed
to alternative, entirely unrelated sources of data, such as
ImageNet. Pre-training with imitation signing data, however,
results in significantly poorer network initialization: the bot-
tleneck classification accuracy obtained by pre-training the
CAE with the imitation signing samples is just 24%. Imitation
signing data misleads the network in its understanding of
the kinematic characteristics of each class due to the many
signing errors and differences in tempo. A better solution is
to instead illuminate the signer with RF sensors transmitting
across multiple frequencies, which allows for the extraction of
unique features at each frequency. This approach is discussed
next.

IV. MULTI-FREQUENCY FLUENT ASL RECOGNITION

Because there is no overlap in the transmit frequency bands
of the three RF sensors compared in this work, all sensors
may be simultaneously operated and used to illuminate the
participant. Various types of fusion can then be utilized to
increase the performance afforded by each sensor individually.
In decision fusion, the received return from each sensor is first
separately classified and then an overall decision made through
majority voting. In feature level fusion, separate networks are
used to extract features from each sensor, concatenated, and
then supplied a classifier. Cross-modal fusion networks [37],
[38] aim to capture both share features in the data, while
also separately extracting features specific to each modality.
This approach is particularly well-suited for fusion in RF
sensor networks because the common observations will result
in shared target-specific features, while the phenomenological
difference across frequency create sensor-specific differences
in the data.

Thus, a multi-frequency fusion network is designed that
consists of sensor-specific layers and shared layers. We com-
pare two approaches towards training the network: 1) end-to-
end training, and 2) two-step modality tuning. In end-to-end
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Fig. 10. Block diagrams for proposed and compared fusion approaches.

Fig. 11. Comparison of fusion results.

training, all network weights are optimized in a supervised
fashion. In modality tuning, the shared layers are initially
frozen while the modality specific layers are trained. By freez-
ing the shared layers of the network, a high-level representa-
tion is transferred to the other modalities. Essentially, with
this approach, the network is being fine-tuned for a modality
as opposed to a task. After training the network for each
modality for a fixed number of iterations, the shared layers are
unfrozen and the entire network is trained jointly, allowing the
incorporation of information from the other modalities without
overfitting modality specific representations.

Fig. 11 shows the results for the various fusion methods in
comparison to the proposed multi-frequency fusion DNN with
and without modality tuning, illustrated in Fig. 10. All results
are shown for training and testing with fluent ASL signing
data. The highest classification accuracy of 95% is achieved
with the multi-frequency fusion DNN trained with modality
tuning, which provides a 12% increase in accuracy relative to
the same DNN with all layers trained simultaneously, 16%
increase relative to feature-level fusion, and 20% increase
relative to decision fusion.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This work illustrates the potential of RF sensing for recog-
nition of fluent ASL signs at a high (>95%) accuracy. It
is significant that these results were obtained using only
kinematic information captured by the micro-Doppler signa-
tures of the signs. In future work, we plan to investigate

further performance improvements enabled by fusion with
spatial information provided by multi-channel radars, namely,
slant range and direction-of-arrival, as reflected in the range-
Doppler map and range-angle representations of the RF data.
Moreover, although the currently possible radar point cloud
spatial resolutions are too coarse for hand shape recognition,
advancements in commercially available multi-channel radar
transceivers could one day make this possible. Indeed, the
proposal of RF sensing for silent lip reading and voice
recognition [39], [40] suggests another interesting way mouth
movements perceived by RF sensors could be exploited for
ASL recognition.

While this work has examined the recognition of indepen-
dently articulated signs, in natural settings, device triggering
could be embedded within connected discourse or daily ac-
tivities resulting in gross body movements, such as walking
or picking up an object. Thus, future work should consider
not just sensor positioning within a room, but also sequential
recognition in continuous, long duration recordings. We are
currently working to integrate the RF sensors used in this
work with edge computing platforms to develop an indoor
test bed for more realistic studies of ASL recognition in smart
environments.

A second important conclusion of this work is to underscore
the importance of testing algorithms on fluent signing, which
has been demonstrated through visualization of the feature
space of imitation signing versus fluent signing and compari-
son of their respective recognition accuracies. The difference
in representation of fluent vs. imitation signing by principal
components emphasizes the gap in quantitative understanding
of sign articulation, and importance of careful calibration
of sensors to ensure appropriate spatiotemporal resolution in
the data that would allow capture of lingustic features in
continuous fluent signing.

We believe that it is essential for research on technologies
benefiting the Deaf community to be conducted in partnership
with the Deaf community [41], [42]. As essential as the
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involvement of Deaf participants and fluent signers is, the
development of community partnerships and the conduct of
joint research with Deaf researchers are critical to ensure that
the developed technology addresses the concerns and problems
of the Deaf community as the primary audience/beneficiary.
Although the scope of this work is limited to recognition of
individual signs, in the future we plan to work with Deaf
community partners on the development of non-invasive sign
language recognition technologies under more natural settings
as a means for opening to door to the design of smart Deaf
spaces.

ACKNOWLEDGMENT

The authors would like to thank Dr. Caroline Kobek-
Pezzarossi from Gallaudet University, Washington D.C. and
Dr. Dennis Gilliam from AIDB for their support of this
research. This work was funded in part by the National
Science Foundation (NSF) Cyber-Physical Systems (CPS)
Program Awards #1932547 and #1931861, NSF Integrative
Strategies for Understanding Neural and Cognitive Systems
(NCS) Program Award #1734938. Human studies research
was conducted under UA Institutional Review Board (IRB)
Protocol #18-06-1271.

REFERENCES

[1] K. Tsymbal, “Deaf space and the visual world - buildings that speak:
An elementary school for the deaf,” Ph.D. dissertation, 2010.

[2] A. Mittal, P. Kumar, P. P. Roy, R. Balasubramanian, and B. B. Chaud-
huri, “A modified lstm model for continuous sign language recognition
using leap motion,” IEEE Sensors Journal, vol. 19, no. 16, pp. 7056–
7063, 2019.

[3] O. Koller, N. C. Camgoz, H. Ney, and R. Bowden, “Weakly supervised
learning with multi-stream cnn-lstm-hmms to discover sequential paral-
lelism in sign language videos,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 42, no. 9, pp. 2306–2320, 2020.

[4] J. Galka, M. Masior, M. Zaborski, and K. Barczewska, “Inertial motion
sensing glove for sign language gesture acquisition and recognition,”
IEEE Sensors Journal, vol. 16, no. 16, pp. 6310–6316, 2016.

[5] B. G. Lee and S. M. Lee, “Smart wearable hand device for sign
language interpretation system with sensors fusion,” IEEE Sensors
Journal, vol. 18, no. 3, pp. 1224–1232, 2018.

[6] K. Qian, Z. He, and X. Zhang, “3d point cloud generation with
millimeter-wave radar,” Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., vol. 4, no. 4, Dec. 2020.

[7] V. Chen, The Micro-Doppler Effect in Radar, 2nd Ed. Boston: Artech
House, 2019.

[8] S. Gurbuz, A. Gurbuz, C. Crawford, and D. Griffin, “Radar-based
methods and apparatus for communication and interpretation of sign
languages,” in U.S. Patent Application No. US2020/0334452 (Invention
Disclosure filed Feb. 2018; Provisional Patent App. filed Apr. 2019.),
October 2020.

[9] S. Z. Gurbuz, A. C. Gurbuz, E. A. Malaia, D. J. Griffin, C. Crawford,
M. M. Rahman, R. Aksu, E. Kurtoglu, R. Mdrafi, A. Anbuselvam,
T. Macks, and E. Ozcelik, “A linguistic perspective on radar micro-
doppler analysis of american sign language,” in 2020 IEEE International
Radar Conference (RADAR), 2020, pp. 232–237.

[10] S. Z. Gurbuz, A. C. Gurbuz, E. A. Malaia, D. J. Griffin, C. S. Crawford,
M. M. Rahman, E. Kurtoglu, R. Aksu, T. Macks, and R. Mdrafi,
“American sign language recognition using rf sensing,” IEEE Sensors
Journal, vol. 21, no. 3, pp. 3763–3775, 2021.

[11] Z. Zhang, Z. Tian, and M. Zhou, “Latern: Dynamic continuous hand
gesture recognition using fmcw radar sensor,” IEEE Sensors Journal,
vol. 18, no. 8, pp. 3278–3289, 2018.

[12] Y. Sun, T. Fei, X. Li, A. Warnecke, E. Warsitz, and N. Pohl, “Real-time
radar-based gesture detection and recognition built in an edge-computing
platform,” IEEE Sensors Journal, vol. 20, no. 18, pp. 10 706–10 716,
2020.

[13] Z. Wang, Z. Yu, X. Lou, B. Guo, and L. Chen, “Gesture-radar: A
dual doppler radar based system for robust recognition and quantitative
profiling of human gestures,” IEEE Transactions on Human-Machine
Systems, vol. 51, no. 1, pp. 32–43, 2021.

[14] J. D. Borneman, E. Malaia, and R. B. Wilbur, “Motion characteriza-
tion using optical flow and fractal complexity,” Journal of Electronic
Imaging, vol. 27, no. 5, p. 051229, 2018.

[15] E. Malaia, J. D. Borneman, and R. B. Wilbur, “Assessment of informa-
tion content in visual signal: analysis of optical flow fractal complexity,”
Visual Cognition, vol. 24, no. 3, pp. 246–251, 2016.

[16] E. Malaia and R. B. Wilbur, “Kinematic signatures of telic and atelic
events in asl predicates,” Language and speech, vol. 55, no. 3, pp. 407–
421, 2012.

[17] J. Huang, We. Zhou, H. Li, and W. Li, “Sign language recognition
using 3d convolutional neural networks,” in 2015 IEEE International
Conference on Multimedia and Expo (ICME), 2015, pp. 1–6.

[18] C. Sun, T. Zhang, and C. Xu, “Latent support vector machine modeling
for sign language recognition with kinect,” ACM Trans. Intell. Syst.
Technol., vol. 6, pp. 20:1–20:20, 2015.

[19] C. Chuan, E. Regina, and C. Guardino, “American sign language recog-
nition using leap motion sensor,” in 2014 13th International Conference
on Machine Learning and Applications, 2014, pp. 541–544.

[20] B. Fang, J. Co, and M. Zhang, “Deepasl: Enabling ubiquitous and non-
intrusive word and sentence-level sign language translation,” in Proc. of
the 15th ACM Conf. on Embedded Network Sensor Systems, 2017.

[21] Y. Ma, G. Zhou, S. Wang, H. Zhao, and W. Jung, “Signfi: Sign language
recognition using wifi,” Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., vol. 2, no. 1, Mar. 2018.

[22] P. Joshi, D. Colombi, B. Thors, L. Larsson, and C. Törnevik, “Output
power levels of 4g user equipment and implications on realistic rf emf
exposure assessments,” IEEE Access, vol. 5, pp. 4545–4550, 2017.

[23] N. Caselli, Z. Sehyr, A. Cohen-Goldberg, and K. Emmorey, “Asl-lex:
A lexical database of american sign language,” Behavior Research
Methods, vol. 49, 05 2016.

[24] P. van Dorp and F. Groen, “Human walking estimation with radar,” IET
Radar, Sonar and Navigation, vol. 150, pp. 356–365(9), October 2003.

[25] M. Richards, Fundamentals of Radar Signal Processing. New York:
McGraw-Hill Education, 2014.

[26] B. Erol and M. G. Amin, “Radar data cube processing for human activity
recognition using multisubspace learning,” IEEE Trans. on Aerospace
and Electronic Systems, vol. 55, no. 6, pp. 3617–3628, 2019.

[27] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, 2008.

[28] J. S. Beal and K. Faniel, “Hearing l2 sign language learners,” Sign
Language Studies, vol. 19, no. 2, pp. 204–224, 2019.

[29] S. Z. Gurbuz and M. G. Amin, “Radar-based human-motion recognition
with deep learning: Promising applications for indoor monitoring,” IEEE
Signal Processing Magazine, vol. 36, no. 4, pp. 16–28, 2019.
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