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Abstract—RF sensing based human activity and hand gesture
recognition (HGR) methods have gained enormous popularity
with the development of small package, high frequency radar
systems and powerful machine learning tools. However, most
HGR experiments in the literature have been conducted on
individual gestures and in isolation from preceding and subse-
quent motions. This paper considers the problem of American
sign language (ASL) recognition in the context of daily living,
which involves sequential classification of a continuous stream
of signing mixed with daily activities. In particular, this paper
investigates the efficacy of different RF input representations
and fusion techniques for ASL and trigger gesture recognition
tasks in a daily living scenario, which can be potentially used
for sign language sensitive human-computer interfaces (HCI).
The proposed approach involves first detecting and segmenting
periods of motion, followed by feature level fusion of the range-
Doppler map, micro-Doppler spectrogram, and envelope for
classification with a bi-directional long short-term memory (BiL-
STM) recurrent neural network. Results show 93.3% accuracy in
identification of 6 activities and 4 ASL signs, as well as a trigger
sign detection rate of 0.93.

Index Terms—Sequential classification, trigger detection, RF
sensing, ASL recognition, gesture recognition

I. INTRODUCTION

Using RF sensing for human activity recognition has be-
come an emerging research area with multiple applications
like gait abnormality recognition [1]–[3], non-contact [4]
measurement of heart rate [5] and respiration [6], [7], fall
detection [8], [9] concussion detection [10], and hand gesture
recognition (HGR) [11]–[13], among others. Sign language
recognition (SLR) with wi-fi [14] or millimeter wave radar
[15] has been recently proposed, and is related to HGR, but
possesses a much greater degree of complexity and nuance,
due to the communicative/linguistic nature of the signal, which
brings additional challenges relating to temporal resolution
and complexity of the physical signal, as well as linguistic
parameters of the message, such as phonotactic constraints
(i.e. linguistically permissible handshapes and their combi-
nations), prosody (pauses and suprasegmental components
of articulation, similar to intonation in spoken languages),
pragmatic context, and grammatical structure. In prior work
[16], [17], we have shown that radar-measurements of ASL

can capture linguistic features, such as signal changes due to
coarticulation, and signer proficiency in comparison of native
vs. imitation signing - when a hearing individual attempts to
replicate signing motions based on video stimuli of signs.

Optical cameras [18], sensor-augmented gloves [19] and
motion capture (MOCAP) cameras/gloves [20], [21] have also
been used for SLR applications. Gloves may have greater
accuracy than video, but are not practical in daily life due
to the severe restrictions to natural motion they impose on the
user. Unlike video, radar does not provide any optical imagery
of the scene and therefore does not violate user privacy (even if
hacked), and are also effective when cameras are not, such as
in the dark and through the wall [22]. These advantages make
radar a promising sensor for the design of ASL-sensitive home
assistants or Deaf-centric smart environments.

The current popular approaches for personal assistance
services such as Amazon’s Alexa, Apple’s Siri and Google
Assistant mainly use speech as the medium for device control;
but, deaf or hard-of-hearing individuals cannot take the advan-
tage of any of these products. Radar-based SLR, however, has
the potential to enable access of the Deaf community to many
new advancements by facilitating the design of ASL-sensitive
human-computer interaction (HCI).

Most speech-driven devices function by first detecting a
trigger/wake-up word, followed by speech recognition to in-
terpret verbal commands. Similarly, an important practical
consideration in developing SLR for HCI with radar is being
able to detect a trigger sign in the context of daily living,
which involves many other unrelated motions. Although there
has been much research on trigger word detection [23], [24]
and sequential classification [25] in speech recognition litera-
ture, there are very limited number of radar-based sequential
classification works [26], [27].

This paper addresses the challenge of sequential classifica-
tion in daily scenarios for the purpose of trigger sign detection
and SLR recognition. Three different input representations
are computed from the raw I/Q radar data: range-Doppler
(RD) maps, micro-Doppler signatures, and their envelopes. In
Section II, the sequential mixed-motion dataset and its pre-
processing are described. In Section III, the efficacy of two



TABLE I
DESCRIPTION OF THE SEQUENCES

different sign detection techniques are compared to ascertain
whether there is any motion, and extract motion-related data
segments. Next, in Section IV, these segments are classified
using a fusion of the three input representations and a bi-
directional long short-term memory (Bi-LSTM) recurrent neu-
ral network. Details of the proposed trigger word detection
method are presented and compared with conventional trigger
detection approaches. Finally, the paper concludes in Section
VI with a discussion of future work.

II. DATA COLLECTION AND PRE-PROCESSING

For this study, data was acquired such that several daily
activities and signs are continuously recorded as 30 second
samples. A total of 4 participants enacted 6 different daily
activities (No/low movement (NM), walking, sitting, standing
up, folding laundry, ironing) and 4 ASL signs (YOU (Y),
HELLO (H), CAR (C), PUSH (P)). Although the participants
were not native signers, they practiced copysigning prior to
the recording from videos by native signers. The selected
ASL signs utilized familiar/iconic handshapes, and gross hand
motion, helping minimize error potential. Each participant
performed one of the three sequences listed in Table II. A total
196 samples were acquired, with 80% of each participant’s
data used for training and 20% for testing.

The RF data was acquired using a Texas Instrument’s
AWR1642BOOST frequency modulated continuous wave
(FMCW) radar with a transmit frequency of 77 GHz and a
bandwidth of 4 GHz, which resulst in a range resolution of
3.75 cm. When signing, the participant was located about 1.5
m directly in front of the radar, while daily activities were
conducted at varying distances within a 4 meters radius from
the radar.

The raw data acquired from RF sensor is a time-stream
of complex I/Q data. The data is then reshaped to form a
matrix in which the rows are populated with the fast-time
analog-to-digital converter (ADC) samples of the return from
a single pulse, and the columns are formed by stacking the
return from each pulse, thus representing slow-time samples.
From the slow-time / fast-time data matrix, we generated
three input representations for DNN models, namely range-
Doppler (RD) maps, micro-Doppler (µD) spectrograms and
spectrogram envelopes.

RD maps are computed by taking the 2D Discrete Fourier
Transform (DFT) of the data matrix corresponding to a co-
herent processing interval (CPI). A CPI of 128 pulses were
selected with the frame interval of 40 ms, so that each 30

Fig. 1. µD spectrogram of a SEQUENCE 3 sample.

second sample resulted in 750 RD maps being generated. This
results in a 3D time-series of RD maps, which shows how the
target’s radial velocity and range varies with time.
µD spectrograms are a time-frequency representation of

RF data. The µD spectrogram can be calculated from the
data matrix by taking the square modulus of the Short-Time
Fourier Transform (STFT) computed across slow-time. A
sample spectrogram is shown in Figure 1, where frequency is
proportional to target velocity and the intensity is proportional
to the power of the received radar signal.

The upper and lower envelopes of µD spectrograms pro-
vide significant information, as they represent the maximum
velocities attained during the signing. Envelope features of µD
spectrograms have shown to be [28] effective to provide in-
formation about different human activities. Upper, central and
lower envelopes are extracted using the technique proposed by
Van Dorp and Groen [29].

III. MOTION DETECTION

Unlike conventional one stage classification methods, we
propose dividing the processing of continuous RF data
into two stages: motion detection/segmentation, and segment
recognition. Thus, classification will be done only on those
periods of time during which motion is detected by the
signing detector. This approach allows us to eliminate a great
deal of the unnecessary computations, which stems from the
classification of large segments of data that do not contain any
motion in daily living scenarios.

Motion detection is done using Range-Weighted Energy
(RWE) plots obtained from RD maps with two different
detection methods: Cell Averaging Constant False Alarm Rate
(CA-CFAR) thresholding and the Short Time Average over
Long Time Average (STA/LTA) algorithm. RWE plots can be
computed by: 1) normalizing the intensity value of each pixel
by its range, and then 2) summing all range-weighted pixel
values to obtain the total energy of the RD map at each CPI.

A. CA-CFAR Based Trigger Detector

CA-CFAR is one of the most popular CFAR detectors. In
most cases, it is used as a baseline comparison method for
other CFAR techniques. In this work, we apply CA-CFAR
to RWE plots to detect peaks in the data which are caused
by movement along the radar line-of-sight. In the CA-CFAR



Fig. 2. RWE plot of a SEQUENCE 1 sample with (a) CA-CFAR and (b)
STA/LTA.

detector, the decision for a given cell (also called a cell under
test (CUT)) is given based on comparison with a threshold,
T , given by

T = aPn (1)

where a is a scaling factor (also called the threshold factor) and
Pn is the noise power estimate. The noise power is estimated
from leading and lagging neighboring cells.

From Eq. (1), it may be observed that the adaptive threshold
varies according to the data. Moreover, the desired probability
of false alarm (Pfa) rate can be kept at a constant level using
a proper threshold factor, a. The noise power estimate can be
computed as

Pn =
1

M

M∑
m=1

xm (2)

where M is the number of training cells and xm is the sample
in each training cell. The threshold, a, then can be written as

a =M(P
−1/M
fa − 1) (3)

In total, we used 20 training and 10 guard cells for detection
and the adaptive threshold was able to detect movement-
related peaks successfully, as shown in Figure 2a. After each
detection, a fixed 2 second detection window was applied to
select motion-related samples for classification.

B. STA/LTA Based Trigger Detector

The STA/LTA algorithm continuously keeps track of the
ratio between the average amplitude value in the leading
(short) and the lagging (long) window. A third detection
window is defined to choose how many preceding samples to
be send to the next stage upon detection. When the STA/LTA

TABLE II
CLASSIFICATION RESULTS

ratio goes below the pre-defined threshold value the system
will go into the trigger mode. In our case, the trigger stage
corresponds to sending samples in detection window to the
classifier. The algorithm has four parameters: length of short,
long and detection windows, and the threshold value, which
are illustrated in Figure 2b. As with the CA-CFAR based
detector, samples extracted using a 2 second detection window
are then sent to the classifier.

IV. SEQUENTIAL CLASSIFICATION

Classification of time series data is done using three differ-
ent input representations, namely RD maps, µD spectrograms
and envelopes of µD spectrograms.

In RD map classification we divided videos into 0.2
second windows in order to have a comparable in-
put shape with other input representations for fusion
which will be discussed in Section IV-B. Hence, the
input data has the shape of (batch size, time
samples, frames per window, width, height,
channels) where each window is a time sample, and simi-
larly the label data has the shape of (batch size, time
samples, number of classes). A time-distributed
3D convolutional neural network (CNN) followed by a bidirec-
tional LSTM (Bi-LSTM) layer has been used for classification.
While time-distributed layer applies the same nested layer
to every time sample, Bi-LSTM layer can capture the long
term dependencies amongst the time samples. In order to
obtain a prediction for each temporal slice, we returned the
sequences from the output of the LSTM layer and employed a
time-distributed softmax layer at the output. After movement
detection using two detectors, RD maps within the detection
window goes into the CNN classifier. Overall, 91.6% test-
ing accuracy is obtained using both the CA-CFAR and the
STA/LTA based detectors.

In µD spectrogram and envelope classification, we again
divided the time series data into 0.2 second non-overlapping
windows and those windows are used as time samples in the
input data. We employed time-distributed 2D & 1D CNNs
with Bi-LSTM layers, again followed by a time-distributed
softmax layer for spectrogram and envelope classification.
Similar to RD map classification, the input data are classified
after detection. While we obtain slightly better testing accuracy
for the µD spectrograms using the CA-CFAR based detector,
the STA/LTA based detector performs a lot better for envelope
classification with ∼3% improvement when compared to the
CA-CFAR method as can bee seen from Table II.



Fig. 3. Confusion matrices of detected samples (windows), where the confusion matrices in (a) belongs to the CA-CFAR detector and those in (b) belongs
to the STA/LTA detector, where 0: NM, 1: walking, 2: sitting, 3: standing up, 4: folding laundry, 5: ironing, 6: YOU, 7: HELLO, 8: CAR, 9: PUSH.

A. Decision Level Fusion

In order to examine the efficacy of decision level fusion,
hard majority voting method is applied. Mode of the pre-
dictions of the three aforementioned networks is used as the
final prediction for a given time sample. From Table II, it
may be observed that decision level fusion of multiple input
representations helps to mitigate the misclassification rate with
both detectors.

B. Feature Level Fusion

Feature level fusion refers to combining the feature spaces
of three input representations using a multi-input network.
This is done by taking the output of the LSTM layers of
individual networks and feed them into a concatenation layer.
Concatenation layer is then followed by a time-distributed
softmax layer for the final prediction. Weights of all the
layers are frozen before the concatenation since they have
already been trained and to prevent overfitting that might stem
from over-training. Details of the multi-input fusion DNN
architecture can be found in Figure 4.

It should also be noted that although envelopes do not
seem to perform as good as µD spectrograms and RD maps,
when they are fused with other the input representations, they
provide additional information about the limits on velocity.
In class #4 (folding laundry), envelopes give more accurate
predictions than other domains, as shown in Figure 3a-b. This
demonstrates the fact that different input representations can
contribute to the final decision (prediction) and improve the
performance as long as they contain useful information even
if they do not perform well by themselves.

V. TRIGGER WORD DETECTION

In speech recognition literature, trigger words with 3 to 4
syllables have been considered to be the most effective [30].
While trigger words less than 3 syllables will increase false
alarm rate (FAR), those more than 5-6 syllables will increase
the false rejection rate (FRR). ASL is a primarily monosyllabic

language [31]; however, syllable complexity and duration can
vary depending on the path complexity (single vs. reduplicated
motion), and whether the path dynamics is combined with
a change in handshape aperture, or handshape orientation
[32]. Given the range of sign types, we chose an average-
complexity sign HELLO as the trigger. As a monosyllabic sign
with motion component, it consists of three stages: raising
one hand to forehead, moving hand towards the conversation
partner (assume conversation partner is radar), and finally
retracting hand back to the original position.

The spotting of trigger sign with radar is quite similar
to wake-up word detection task in speech recognition. The
time series signal/input is continuously analysed in order to
locate the trigger/wake-up word. One method to do this is
using a cumulative score aggregating (CSA) approach, which
has also been used in Apple’s Siri [33]. The output of the
network model provides a distribution of scores/probabilities

Fig. 4. Feature level fusion network architecture.



Fig. 5. Trigger sign detection of word HELLO: (a) early trigger with the
activation value of the target node, (b) on-time trigger with the accumulated
score of the target node.

over classes for each time sample (window). We would like
to detect the trigger sign if the prediction confidence of the
model is high for the target class, and we would like to go
into trigger mode only when the trigger sign is fully complete.
For instance, if we consider the sign HELLO, the signing
process takes approximately between 1.5-2 seconds depending
on the participant’s signing rate [34]. If we directly use the
activation values of the target softmax node as scores, the
system gets triggered at the very beginning of the sign, which
can potentially cause high FAR when the dataset contains signs
with similar beginning patterns. For example, in the Figure 5a,
the system is triggered (exceeds the high threshold) at t=8.25,
while the sign finishes at t=9.65. To alleviate this problem, we
accumulate the scores of last 1.4 seconds of windows (1.4/0.2
= 7 windows). This way, we ensure that the cumulative trigger
score is maximized, hence the system is triggered only when
the trigger sign is fully completed (see the Figure 5b).

The threshold value is also crucial to accurate detection
and to preventing undesired false rejections and false alarms.
While higher threshold values eliminate the false alarms, at
the same time, they increase the number of false rejections.
In this work, we applied a second threshold (lower) instead of
a single threshold value to reduce the FRR. If the cumulative
score of the windows exceeds the lower threshold, but not the
higher one, the system goes into a sensitive stage for the next
1.4 seconds, and if the cumulative score stays above the lower
threshold in that duration, the system gets triggered without
any need for a second trial. In this work, we define FRR and
FAR as

FRR =
T −D

T
, FAR =

F

T
(4)

Fig. 6. False rejection rate of the word HELLO with and without the lower
threshold.

where T is the total number of triggers in the test dataset,
D is the detected number of triggers and F is the number of
misdetections. We also define two threshold values, τl and τh,
as

τl,h =W (1− (lnC)2ρl,h) (5)

where W is the number of windows whose scores are accu-
mulated which also defines the maximum cumulative score
can be achieved since the individual window scores can be
maximum of 1, C is the total number of classes and ρl,h are
the lower/higher threshold factors. From Figure 6, it can be
seen that applying the second threshold drastically reduces the
false rejections, especially with the lower threshold factors.
When we set the detection threshold to 90% of the maximum
achievable score, while using the activation values as scores
suffer from high FRR and FAR (0.18 and 0.03 respectively),
double-threshold CSA method’s FRR stays as low as 0.07 and
FAR becomes 0. Hence, the trigger recognition rate for the
word HELLO can be calculated as 1− 0.07− 0 = 0.93.

VI. CONCLUSION

This paper presents initial work on sequential classification
of continuous data streams of daily activities mixed with ASL
signs. This can be potentially used for the design of sign
language controlled, intelligent personal assistant systems.
We demonstrate that while different RF data inputs may
yield comparable performances, feature level fusion of them
gives the best classification performance with 93.2% testing
accuracy for 10 classes using a multiple input fusion DNN.

The issue of trigger sign recognition in a daily living
scenario is addressed and a CSA-based approach proposed
to mitigate the false alarms, which may stem from early trig-
gering of the system when the sign motion is not completely
finished or when the target class has a similar initial pattern as
that of another class. In order to reduce the FRR and thereby
improve the triggering capability of the system, we defined
a second threshold that allows the system to be triggered
even though the cumulative score does not exceed the higher



threshold but stays above the lower threshold for a certain
duration. One drawback of using a double threshold is that it
may increase the FAR if the network has high confidence for
the wrong classes. A complete trigger sign detection pipeline
is demonstrated for RF sensing and a detection rate of 0.93 is
achieved for the word HELLO. These results show the potential
of RF sensing to be used for sign language sensitive HCI
applications and personal assistance services.
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