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Abstract—Over the years, there has been much research in
both wearable and video-based American Sign Language (ASL)
recognition systems. However, the restrictive and invasive nature
of these sensing modalities remains a significant disadvantage
in the context of Deaf-centric smart environments or devices
that are responsive to ASL. This paper investigates the effi-
cacy of RF sensors for word-level ASL recognition in support
of human-computer interfaces designed for deaf or hard-of-
hearing individuals. A principal challenge is the training of deep
neural networks given the difficulty in acquiring native ASL
signing data. In this paper, adversarial domain adaptation is
exploited to bridge the physical/kinematic differences between
the copysigning of hearing individuals (repetition of sign motion
after viewing a video), and native signing of Deaf individuals
who are fluent in sign language. Domain adaptation results
are compared with those attained by directly synthesizing ASL
signs using generative adversarial networks (GANs). Kinematic
improvements to the GAN architecture, such as the insertion of
micro-Doppler signature envelopes in a secondary branch of the
GAN, are utilized to boost performance. Word-level classification
accuracy of 91.3% is achieved for 20 ASL words.

Index Terms—ASL, sign language, gesture recognition, RF
sensing, radar, micro-Doppler, deep learning

I. INTRODUCTION

Over the past three decades, most ASL recognition research
as focused on the use of wearable and camera-based [1]–[3]
sensors, including RGB-D [4], [5] cameras, such as Kinect
or Leap Motion [6]. However, camera-based technologies are
ineffective in the dark and raise privacy concerns due to
constant video monitoring, whereas wearable sensors, such as
sensor augmented gloves [7], [8], EMGs [9], and IMUs [10]
capture motion that is highly localized to the body part upon
which they are worn. Thus, they cannot capture the subtle,
rapid changes in the motion trajectories of multiple articulators
(hands, head and body) in sign languages [11]; and multiple
on-body sensors [12] are required to achieve higher accura-
cies. This, in turn, limits the signer’s freedom in conducting
daily activities. The limitations of current technologies have
motivated the exploration of non-invasive sensing modalities
that can perceive the natural language - sign language - of
the Deaf community for the purposes of environment control,
remote health, and security.

In this context, RF sensors are uniquely desirable because
they are non-contact, can operate in the dark or through-the-
wall, protect privacy, and collect fine-grained spatiotemporal
data that will aid in ASL understanding: namely, the micro-
Doppler signature [13], which is reflective of the time-varying
velocity profiles of articulator motion. In recent years, the
micro-Doppler signatures has been exploited in a variety of
applications including fall detection [14], gait abnormality
recognition [15], concussion detection [16], physical therapy
and rehabilitation [17], non-contact measurement [18] of heart
rate [19], and respiration [20] as well as detection of related
conditions, such as sleep apnea [21] or sudden infant death
syndrome [22]. The unique capability of RF sensors to cap-
ture the rapid progression of dynamic sign sequences in a
non-contact fashion has led to its recent proposal for ASL
recognition with Wi-Fi [23] and low-cost, short-range radar
systems [24].

In prior work [24]–[26], we showed that RF sensor data
can capture linguistic features characteristic of signing, such
as co-articulation, and a greater amount of information, as
measured by fractal complexity of motion, relative to daily
activities and gestures . This is reflective of the communica-
tive properties of language [27], [28], and underscores the
need to distinguish ASL recognition from gesture recognition.
While gesture is typically comprised of simple, unidirectional
strokes, sign language discourse is a complex signal, with
information density and grammatical structure equivalent to
those of spoken languages.

This is especially significant when it is considered that many
of the studies in the literature (e.g. [6], [23], [29]) have relied
on the copy-signing of hearing participants to benchmark the
classification performance of deep neural networks. Our prior
work [26] has shown that copy-signing is discriminable from
native signing using machine learning. On one hand, this is
not surprising because kinematic and rhythmic differences can
be observed between copy-signers and native signers - both
visually and in the RF data. Indeed, it has been reported
that it can take learners of sign language at least 3 years
to produce signs in a manner that is perceived as fluent by
native signers [30]. But, because the training of deep neural



networks (DNNs) relies on massive amounts of data [31] and
because it is much easier to recruit hearing participants than
deaf participants, ASL recognition studies have relied upon
copy-signing, despite its kinematic spatiotemporal differences
from native ASL signing.

This paper compares the efficacy of two different ways to
address the problem of limited native signing data for training
deep models: domain adaptation and data synthesis. More
specifically, the paper offers three key contributions:

1) Analysis of optimal RF transmit waveform parameters
to ensure accurate kinematic capture of ASL with RF
sensors.

2) Transformation of copy-signing data to better resemble
native signing data, and thus improve model training.
This approach is shown to boost word-level recognition
accuracy of 20 signs from 46.2% to 88%.

3) RF micro-Doppler signature synthesis using a multi-
branch generative adversarial network (MB-GAN) [32].
This approach is shown to surpass that of domain
adaptation, yielding a word-level recognition accuracy
of 91.3%.

In Section II, the experimental datasets, data processing and
optimal system parameters are presented. Section III describes
domain adaptation from imitation to native using cycleGAN
[33], while section IV presents the data synthesizing using
Wasserstein GAN (WGAN) and Multi-Branch Discriminator
GAN (MBGAN) along with their respective classification
performance. Finally, in Section V, conclusions and future
work are discussed.

II. EXPERIMENTAL DATASETS

A. RF ASL Datasets

The RF data of ASL (ASL-R) used in this study were
acquired by a TI AWR1642BOOST 77 GHz frequency mod-
ulated continuous wave (FMCW) transceiver. Measurements
were made of both native signing from deaf or child-of-deaf-
adult (CODA) participants fluent in ASL, and copy-signing
from hearing participants based on videos of fluent signers.
To find the suitable RF transmitter settings that can effectively
capture fine grain finger motions in mD representation, data
were collected for different bandwidths:

• 20-word Native ASL-R Dataset: 980 samples (49 per
class) from 5 deaf/CODA participants were acquired at
bandwidth settings of 750 MHz and 4 GHz.

• 20-word Copy-signing ASL-R Dataset: 1550 samples
from 10 hearing copy-signers were acquired at bandwidth
settings of 1.5 GHz and 4 GHz.

Participants were presented with a random ordering of single-
word signs, listed in Table 1 to foster independence in each
repetition of the signs, and avoid consistent coarticulation.

B. RF Data Processing

The received signal of a radar unit is a complex I/Q time
series, from which line-of-sight distance and radial velocity
maybe computed. The amplitude and phase of those complex

TABLE I
20-WORDS ASL-R DATASET

Breath Car Come Drink
Earthquake Engineer Friend Go

Health Hello Help Hospital
Knife Lawyer Mountain Push
Walk Well Write You

data can be related to the electromagnetic scattering and
kinematics of the target being observed. The micro-Doppler
signature, or spectrogram, is found from the square modulus
ofthe Short-Time Fourier Transform (STFT) of the continuous-
time input signal. It reveals the distinct patterns caused by
micro-motions, such as hand gestures and human activity.
The STFT itself is computed using Hanning windows with
50% overlap to reduce sidelobes in the frequency domain
and convert the 1D complex time stream into a 2D mD
signature. Reflection from static objects can be removed using
moving target indicator (MTI) filters, whereas sensor noise and
artifacts were mitigated using a thresholding algorithm.

The mD signatures for native signing versus copy-signing
signatures are illustrated in Figure 1a. Notice that some
kinematic differences can be visually observed between the
signatures. For example, the peak Doppler is higher, indicating
a faster movement, by the copy-signer, while tandem motions
not normally done by native signers are erroneously done by
the copy-signer. Indeed, it is not uncommon to see an incor-
rect number of repetitions, simplified handshapes and motion
trajectories, and fluctuating cadence/tempo in the production
of signs by copy-signers. Consequently, the feature space of
copy-signing and native signing are different enough to allow
for their discrimination with machine learning [26].

C. Optimal RF transmitter parameters

Data was collected over 500 coherent processing intervals
(CPI) with transmitter bandwidth of 750 MHz, 1.5 GHz and
4 GHz. For each bandwidth setting, two different chirp rate

Fig. 1. mD signature for the ASL word BREATH; (a) Native and copy-signing
(imitation) spectrograms (b) Spectrograms with 128 and 255 chirps per CPI
at 4 GHz transmit bandwidth.



settings were compared: 128 chirps per CPI and 255 chirps per
CPI. In each case, the number of ADC samples was 256. It was
observed that, with 128 chirps being transmitted per CPI, the
signatures appear smeared across Doppler, with some vertical
lines, unrelated to kinematics, also appearing, as shown in
Figure 1(b). In contrast, when 255 chirps are transmitted per
CPI, the mD signatures are more distinct, with no spurious
artifacts. This is due to the improved Doppler resolution that
occurs with increased dwell time. Therefore, we found that
operating the TI 77 GHz FMCW transceiver with a bandwidth
of 4 GHz and 255 chirps per CPI is an optimal settings for
the acquisition of ASL.

III. DISTRIBUTION TRANSFORMATION THROUGH
CYCLEGAN

Compilation of large datasets for training state-of-the-art
deep neural networks is difficult when human subjects are
involved, not only because of the time involved in measuring
numerous iterations of each class, but also because it can be
difficult to recruit participants, especially if from a minority
population, such as the Deaf community. In previous work
[26], 20 native ASL signs were classified with an accuracy
of 72.5% using minimum-redundancy maximum-relevance
(mRMR) selection of 150 handcrafted features extracted from
a five node multi-frequency RF sensor network and a random
forest classifier. To surpass this performance with just a
single sensor, recent advances in deep learning, which have
yielded great advances in related fields [31], can be applied.
However, deep neural networks (DNNs) rely on large amounts
of training data to learn the underlying representations of each
class.

One possible approach could be to try to address the data
scarcity problem by training the DNN on copy-signing data,
while testing on native ASL data. Unfortunately, this approach
is not effective because copy-signing does have kinematic
characteristics that render them distinguishable from native
ASL signing. This is evidenced not only by their discriminabil-
ity using a support vector machine classifier [26], but also by
the poor classification accuracy attained when deep learning
is applied. When a convolutional neural network (CNN) is
pre-trained on copy-signing data and fine tuned with 80% of
the native ASL-R dataset, only 46.15% accuracy was attained
when testing on the remaining 20% of native ASL-R data.

Consequently, two approaches are pursued in this paper: 1)
using adversarial learning to bridge the gap between copy-
signing and native signing and to transform copy-signing
data to resemble true native samples, and 2) synthesis of RF
signatures for training using a kinematically-enhanced multi-
branch GAN (MBGAN). These approaches and signal pre-
processing are summarized in Figure 2.

A. Imitation to native domain translation

There are various approaches for image-to-image translation
in the literature. We found that the CycleGAN [33] architecture
offered better performance when compared to alternatives,
such as TravelGAN [34]. CycleGAN translates an image from

Fig. 2. ASL recognition system Flowchart.

Fig. 3. CycleGAN Architecture for imitation to fake native transformation

a source domain A to a target domain B by forming a
series connection between two GANs to form a “cycle”: the
first GAN tries to synthesize “fake native” from the copy-
signing data, while the second GAN works to reconstruct the
original sample, synthesizing “fake imitation” samples. Thus,
the network tries to minimize the cycle consistency loss, i.e.
the difference between the input of the first GAN and the
output of second GAN. The functional building blocks of
cycleGAN architecture is shown in Figure 3 and an example
of copy-signing signature and resulting fake native signature
is shown in Figure 4. In this study, 25% of the copy-signing
ASL-R data and 40% of the native ASL-R data was reserved
for testing, while the remaining was used during training. The
resulting fake native signatures were then used to pre-train a
three-block convolutional autoencoder (CAE).



Fig. 4. (a)CycleGAN transformed native-like sample ’Breath’; (b)Fine-tuning
accuracy with CAE trained on CycleGAN transformed native-like samples.

B. Classification Results with Transformed Data

Convolutional Autoencoders (CAEs) have been shown to be
effective when small, yet reasonable, amounts of real data are
available for training [35]. A deep three-block convolutional
autoencoder (CAE) first uses unsupervised pre-training to
initialize the network near a good local minima. In each block,
a filter concatenation technique [36] is employed in which
a filter size of 3 × 3 and 9 × 9 were concatenated to take
advantage of multilevel feature extraction. After training the
CAE model, the decoder was removed and two fully connected
layers with 128 neurons followed by a dropout of 0.55 were
added after flattening the output of the encoder. At the end, a
softmax layer with 20 nodes is employed for classification.

To classify CycleGAN transformed data, the CAE was
trained with CycleGAN generated native like samples (output
of GAN 1) and tested with real native ASL samples. As shown
in Figure 4, when 80% of the native ASL-R data is utilized an
accuracy of 88% is achieved. One noticeable thing from the

accuracy plot of Figure 4 is, the performance is not that great
when the fine tuning samples are less, This indicates that,
even after transforming the imitation data to native domain
using CycleGAN, there are still significant difference between
native samples and fake native samples. The performance only
increases when more native ASL samples are being used as
fine tuning data.

IV. DATA SYNTHESIS WITH GANS

A. Data Generation

Another approach for dealing with the problem of limited
training data is to generate synthetic samples from a small
amount of native ASL samples using GANs. In general, the ar-
chitecture of GANs consists of two competing neural networks
i.e., generator and discriminator playing a min-max game.
The generator network samples a predefined latent space and
upsamples via transposed or deconvolutional layers to produce
a synthetic image whereas the discriminator network takes
that synthetic images as input and attempts to classify them
as being real or fake. As the discriminator gets increasingly
better, the gradient vanishes, meaning there is no gradients
to update the loss during the training process. Wasserstein
GAN (WGAN) [37] treats this vanishing gradient problem by
applying a gradient penalty (GP) after every gradient update on
the discriminator/critic function and hence the name WGAN-
GP comes up. To provide a more stable training process, with
proven convergence of the loss function, WGAN-GP uses
a new loss function derived from the Wasserstein distance;
as the asymmetric Kullback–Leibler (KL) divergence causes
buggy results when the intention is just to measure the
similarity between two equally important distributions and
the Jenson–Shannon divergence fails to provide a meaningful
value when two distributions are disjointed [38].

However, with the WGAN generated signatures, it was
observed that there is a lack of kinematic fidelity in a
significant percentage of signatures generated [32]. Many of
these samples have features that are deviant from the typical
properties of micro-Doppler, such as high frequency com-
ponents disconnected from the low-frequency micro-Doppler,
negative micro-Doppler corresponding to motion in the reverse
direction etc. To maintain critical kinematic features of the
data and to better capture gross properties of the micro-
Doppler signature in adversarial learning process, MBGAN
was proposed in [32] that incorporated the signature’s envelope
as an additional, second branch into the discriminator of a
Wasserstein GAN (WGAN).

The generator model in MBGAN is a DCNN with 8
convolutional layers, each layer being followed by a batch
normalization with momentum 0.9 and RELU activation func-
tion. On the other hand, the main Branch of discriminator is
a 5 layer DCNN where each layer followed by a leaky-RELU
activation function and in second branch, 3 1D convolutional
layer is used on envelope before it has been concatenated
with the flattened output of main discriminator branch. This
architecture is shown in Figure 5.



Fig. 5. MBGAN Architecture.

To generate synthetic data, Both WGAN and MBGAN were
trained with 75% of native ASL samples and a total of 10000
synthetic samples across 20 classes were generated for both
of them .

B. Classification Results with Synthetic Data

The CAE model described in previous section has been
trained seperately with the synthetic data generated from
WGAN and MBGAN. As the performance is tested on native
ASL samples, all the synthetic data have been utilized to train
the CAE classifier. When tested with native ASL samples, a
classification accuracy of 74.28% and 80.82% were achieved
respectively for WGAN and MBGAN across all the 20 classes.
By fine tuning with 30% native samples, the performance
increases for both WGAN and MBGAN to 86% and 91.30%
respectively. The results are tabulated on Table II and the
confusion matrix for MBGAN and WGAN are shown in
Figure 6. Finally, a flowchart summarizing all the steps from
data collection to native ASL words classification is shown in
Figure 2.

TABLE II
CLASSIFICATION PERFORMANCE FOR GAN GENERATED DATA

GAN Data Test Data Accuracy Finetuning Accuracy
WGAN Native samples 74.28% 86%

MBGAN Native samples 80.82% 91.30%

V. CONCLUSIONS

This paper has presented two approaches for word-level
ASL recognition when few native samples are available for
model training. Many ASL recognition studies rely on copy-
signers due to the ease with which hearing participants can
be recruited versus Deaf participants. However, copy-signing
and native signing data have significant kinematic differences,
which precludes copy-signing data from being used when
conducting linguistic studies or to directly train a classifier
of native signing data. This paper compared the ability of RF
sensors to capture signing kinematics for different transmit
waveform parameters, and compared the efficacy of training

Fig. 6. WGAN (top) and MBGAN (bottom) Confusion matrix

with copy-signing data transformed to resemble native signing
data, versus synthesis of RF signatures using adversarial
learning. A physics-aware, multi-branch GAN was found to
yield to most effective training dataset, for which a three-block
CAE yielded a classification accuracy of 91.3% on 20 native
ASL RF micro-Doppler signatures. The results demonstrate
the potential of ASL recognition with non-invasive, remotely
operable RF sensors, especially when limited native signing
data is available.
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