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Abstract—Current research in the recognition of American
Sign Language (ASL) has focused on perception using video
or wearable gloves. However, deaf ASL users have expressed
concern about the invasion of privacy with video, as well as the
interference with daily activity and restrictions on movement pre-
sented by wearable gloves. In contrast, RF sensors can mitigate
these issues as it is a non-contact ambient sensor that is effective
in the dark and can penetrate clothes, while only recording
speed and distance. Thus, this paper investigates RF sensing as
an alternative sensing modality for ASL recognition to facilitate
interactive devices and smart environments for the deaf and hard-
of-hearing. In particular, the recognition of up to 20 ASL signs,
sequential classification of signing mixed with daily activity, and
detection of a trigger sign to initiate human-computer interaction
(HCI) via RF sensors is presented. Results yield %91.3 ASL
word-level classification accuracy, %92.3 sequential recognition
accuracy, 0.93 trigger recognition rate.

Index Terms—ASL, sign language, RF sensing, micro-Doppler,
deep learning

I. INTRODUCTION

Many technologies for human-computer interaction (HCI)
have been designed for hearing individuals and depend upon
vocalized speech, precluding users of American Sign Lan-
guage (ASL) in the Deaf community from benefiting from
these advancements. Although there has been much research
related to technologies for the deaf or hard of hearing (HoH)
over the past three decades, much of this work has fo-
cused on the translation of sign language into voice or text
using camera-based or wearable devices. Although sensor
augmented gloves [1]-[3] have been reported to typically yield
higher gesture recognition rates than camera-based systems
[4]-[6], they cannot capture the intricacies of sign languages
presented through head and body movements. In contrast,
video can capture facial expressions; but require adequate light
and a direct line-of-sight to be effective.

Equally significant to these sensing limitations is the per-
spectives the Deaf community towards these sensing tech-
nologies. In a focus group we conducted with 7 Deaf par-
ticipants [7], we found that deaf ASL users felt frustrated
by wearable gloves, which they described as inaccurate and
invasive, while concerned with video-based surveillance in the

home. They also expressed excitement towards the potential to
one day have Deaf-friendly personal assistants or non-invasive
technology-augmented smart environments.

In these regards, RF sensors bring important advantages.
RF sensors are non-contact and completely private, fully
operational in the dark, and not affected by the color, fabric, or
texture of clothes and presence of accessories, such as jewelry
or watches. Not only can they provide a sensing capability
when video or wearables are not effective, but they can also
provide direct measurement of signing kinematics via the
micro-Doppler (mD) signature [8] and range-Doppler maps.
In previous work [7], we have found that machine learning
can be used on RF sensor data to distinguish native ASL
signing from copysigning by hearing individuals. This is also
known as “imitation” signing, to emphasize the linguistic and
kinematic differences that are observable in the RF data [9].
It has been reported that it can take learners of sign language
at least 3 years to produce signs in a manner that is perceived
as fluent by native signers [10]. Because it is much easier
to recruit hearing participants than deaf participants, many
studies on ASL recognition (e.g. [6], [11]-[13]) have used
imitation signing data, despite its differences from native ASL
data.

This paper offers four key contributions to ASL recognition
and RF signal classification:

1) The gap between imitation and native signing is bridged
using domain adaptation, and shown to boost word-level
recognition accuracy of 20 signs from 46.2% to 88%.

2) Design of a physics-aware, multi-branch generative ad-
versarial network (MB-GAN) [14] for RF mD signature
synthesis is shown to surpass imitation-to-native adapta-
tion results, yielding a word-level recognition accuracy
of 91.3%.

3) Sequential classification of a continuous RF data stream,
which includes daily activities mixed in with 4-word
length signing sequences is accomplished with 92.3%
accuracy.

4) Trigger sign recognition for “waking” an RF-enabled
ASL-sensitive HCI is demonstrated with 0.93 trigger



recognition rate.

II. EXPERIMENTAL DATASETS AND PRE-PROCESSING
A. RF ASL Datasets

The RF data of ASL (ASL-R) used in this study were
acquired by a TI AWR1642BOOST 77 GHz frequency mod-
ulated continuous wave (FMCW) transceiver. Measurements
were made of both native signing from deaf or child-of-deat-
adult (CODA) participants fluent in ASL, and imitation signing
from hearing participants mimicking copysigning videos of
fluent signers.

e 20-word Native ASL-R Dataset: 980 samples (49 per
class) from 5 deaf/CODA participants were acquired at
bandwidth settings of 750 MHz and 4 GHz.

e 20-word Imitation ASL-R Dataset: 1550 samples from 10
hearing copysigners were acquired at bandwidth settings
of 1.5 GHz and 4 GHz.

o Sequential Mixed Motion Dataset: Sequences of four
ASL signs (YOU (Y), HELLO (H), CAR (C), PUSH (P))
in different orders mixed with different daily activities
(walking, sitting, standing, folding laundry, and ironing)
were continuously recorded for a duration of 30 seconds.
While imitation signing gestures were enacted about 1.5
m from the RF sensor, daily activities were performed at
varying distances. A total of 195 samples were recorded
of 65 iterations of 3 different sequences were enacted by
4 hearing participants.

Note that participants were presented with a random ordering
of single-word signs (see Table 1) to foster independence in
each repetition of the signs. Figure 1 shows samples of the
word-level and sequential ASL RF mD signatures.

B. RF Data Representations

The received signal of an RF sensor is a complex I/Q time
series, from which line-of-sight distance and radial velocity
maybe computed. The amplitude and phase of those complex
data are related to the electromagnetic scattering and kine-
matics of the motion being observed. The mD signature is
the time-frequency transform of the I/Q data, and is often
computed as the square modulus of the Short-Time Fourier
Transform (STFT) of the continuous-time input signal. It
reveals the distinct patterns caused by micro-motions, small
rotations or vibrations, such as generated during gesturing and
daily activity. The STFT itself is computed using Hanning win-
dows with 50% overlap to reduce sidelobes in the frequency
domain and convert the 1D complex time stream into a 2D uD
signature. Reflection from static objects can be removed using
moving target indicator (MTTI) filters whereas sensor noise and
artifacts can be mitigated using thresholding.

Range-Doppler (RD) maps are generated by applying 2D
Discrete-Time Fourier Transform (DTFT) on the raw data
matrix over the coherent processing interval (CPI). Thus, for
each pulse, a RD map can be computed, resulting in a slow-
time sampling rate of 3200 Hz for a pulse repetition interval
(PRI) of 0.3 ms.

III. WORD-LEVEL ASL RECOGNITION

Compilation of large datasets for training state-of-the-art
deep neural networks is difficult when human subjects are
involved, not only because of the time involved in measuring
numerous iterations of each class, but also because it can be
difficult to recruit participants, especially if from a minority
population, such as the Deaf community. In previous work [7],
20 native ASL signs were classified with an accuracy of 72.5%
using minimum-redundancy maximum-relevance (mnRMR) se-
lection of 150 handcrafted features extracted from a five
node multi-frequency RF sensor network and a random forest
classifier. To surpass this performance with just a single sensor,
recent advances in deep learning, which have yielded great
advances in related fields [15], can be applied. However, deep
neural networks (DNNs) rely on large amounts of training data
to learn the underlying representations of each class.

One possible approach could be to try to address the data
scarcity problem by training the DNN on imitation data, while
testing on native ASL data. Unfortunately, this approach is not
effective because imitation signing does have kinematic flaws
that render them distinguishable from native ASL signing.
This is evidenced not only by their differentiability using a
support vector machine classifier [7], but also by the poor
classification approach attained when deep learning is applied.
When a convolutional neural network (CNN) is pre-trained on
imitation data and fine tuned with 80% of the native ASL-R
dataset, only 46.15% accuracy was attained when testing on
the remaining 20% of native ASL-R data.

Consequently, in this study we compare two alternative

(a) 20-Word ASL-R Dataset
20 ASL Words

MD Signatures

Native i ok Breath Engineer Help Push
Car Friend Hospital Walk
Come Go Knife Well
Drink Health Lawyer Write
Earthquake Hello Mountain ~ You

(b) Sequential Mixed Motion Dataset

Seq. 1 Walking (10) - Sitting (2) - YHCP (12) - Standing Up (3)
Seq. 2 Sitting (2) - CPHY (12) - Folding Laundry (10) - Standing Up (3)
Seq. 3 Sitting (2) - HCPY (12) - Ironing (10) - Standing Up (3)

1000 (c) MD signatures for Seq. 2

Frequency (Hz)
o

o 5 10 15 20 25 30
Time (sec)

Fig. 1. RF datasets: (a) 20-word ASL-R dataset, (b) table of sequential signing
gestures and (c) sequential mixed motion data sample.



approaches to training under low sample support: 1) adversar-
ial domain adaptation to transform imitation signing data to
resemble true native samples, and 2) synthetic training sample
generation using generative adversarial networks (GANs).

A. Transformation of Imitation to “Fake Native” Data

There are various approaches for image-to-image translation
in the literature. We found that the CycleGAN [16] architecture
offered better performance when compared to alternatives,
such as Travel GAN [17]. CycleGAN translates an image
from a source domain A to a target domain B by forming
a series connection between two GANs to form a “cycle™
the first GAN tries to synthesize “fake native” from the
imitation data, while the second GAN works to reconstruct the
original sample, synthesizing “fake imitation” samples. Thus,
the network tries to minimize the cycle consistency loss, i.e.
the difference between the input of the first GAN and the
output of second GAN. An example of the input imitation
signature and resulting fake native signature is shown in Figure
2. In this study, 25% of the imitation ASL-R data and 40%
of the native ASL-R data was reserved for testing, while the
remaining was used during training.

The resulting fake native signatures were then used to pre-
train a three-layer convolutional autoencoder (CAE), which
has been shown to surpass transfer learning in efficacy on
small RF datasets [18], [19]. In each layer, a filter concatena-
tion technique [20] is employed in which a filter size of 3 x 3
and 9 x 9 were concatenated to take advantage of multilevel
feature extraction. After training the CAE model, the decoder
was removed and two fully connected layers with 128 neurons
followed by a dropout of 0.55 were added after flattening the
output of the encoder. At the end, a softmax layer with 20
nodes is employed for classification. As shown in Figure 2,
when 80% of the native ASL-R data is utilized an accuracy
of 88% is achieved.

Finetuning accuracy for cycleGAN transformed data

Imitation Fake Native

10 20 30 40 50 60 70 80
% of test samples as Fine tuning samples

Fig. 2. CycleGAN Results.

B. Synthetic Training Data Generation

Although GANs have resulted in amazing results for com-
puter vision applications, GAN-synthesized RF micro-Doppler
signatures have been shown to exhibit significant kinematic
errors [21]. This causes the generation of synthetic samples
that do not correspond to any physically realizable motion.

One way to reduce such kinematically impossible samples
is to amplify adherance of synthetic samples to the envelope
of the signature. The envelope represents the fastest moving
points on the body, and, in the case of signing and hand
gestures, this corresponds to the maximum velocities attained
by the hand in motion. Envelope features can be emphasized
by incorporating the envelope as an additional, second branch
in the discriminator of the GAN, resulting in a multi-branch
GAN (MB-GAN) architecture [14]. This has been shown to
result in closer correspondence between the synthetic data and
the real RF measurements.

In this study, an MB-GAN with 8 convolutional layers is
constructed. Each layer is followed by batch normalization
with 0.9 momentum and a ReLU activation function. The
main branch of the discriminator is a 6-layer CNN where
each layer followed by a Leaky-ReLU activation function. In
the secondary branch, three 1D-convolutional layers are with
the envelope as input. Afterwards, the outputs of the dense
layer is concatenated with the flattened output of the main
discriminator. This architecture is shown in Figure 3.
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Fig. 3. MB-GAN Architecture.

A total of 10,000 synthetic samples for 20 ASL signs
were generated using MB-GAN trained on 75% of the native
ASL-R samples. Using these MB-GAN synthesized samples
to pre-train the same CAE architecture mentioned earlier, a
classification accuracy of 91.3% was achieved with only 30%
of the native ASL-R samples used in fine-tuning. This is a 3%
increase in accuracy relative to pre-training on CycleGAN-
transformed ‘“fake native” data. Moreover, this result was
attained with much fewer native ASL-R samples in fine-
tuning: just 30% rather than 80%.

IV. SEQUENTIAL CLASSIFICATION

Although there has been much work on sequential clas-
sification [22] and trigger word spotting [23], [24], [25] in
the speech recognition literature, there have been few stud-
ies of sequential classification of continuous RF data time
streams [26], [27]. Moreover, these studies focus exclusively
on gross body motion classification. This study is to the best
of our knowledge the first to consider heterogeneous motion
sequences, with fine-scale signing gestures mixed with daily
activities.



Our approach consists of a two stage procedure. First, we
decide whether there is a moving target in the line-of-sight
of the radar using range-weighted energy (RWE) plots, which
are obtained from RD maps and a short time average over
long time average (STA/LTA) based motion detector. Only
the samples identified as movements are then classified. Thus,
this approach minimizes computational load by eliminating
irrelevant data with no motion - a common occurrence in daily
living scenarios.

The RWE value of a RD map can be calculated by dividing
each pixel intensity value by its range and summing all of the
range weighted pixel values up. In this way, when there is a
moving target close to the RF sensor, there will be a peak in
the RWE plot and it can be detected by the motion detector.

A. STA/LTA Based Motion Detector

STA/LTA is one of the most broadly used algorithms in
motion detection applications. The algorithm continuously
keeps track of the average value changes in leading (short)
and lagging (long) windows, and the system gets triggered if
the STA/LTA ratio goes below a pre-defined threshold. The
algorithm has four parameters: short window length, long
window length, detection window length, and threshold value.
Although the selection of these parameters depends on the
application (i.e. desired false alarm rate (FAR), false rejection
rate (FRR)), in this study, we empirically optimized them. The
detection window is used to select samples to send to the
classifier. Figure 4 shows how these windows are positioned.
The FRR and FAR are defined as

T-D F
FRR = T FAR—T (1
where T is the total number of triggers in the test dataset,
D is the detected number of triggers and F' is the number of
misdetections.

B. Sequential Classification of Motion Segments

Classification of time series data is done using RD maps.
After motion detection with the detector, RD map samples
in the detection window goes into a time-distributed (TD)
2D convolutional neural network (CNN) which is followed
by a bidirectional LSTM (Bi-LSTM) layer and a TD softmax
layer. The TD wrapper allows us to apply a layer to each
temporal slice. As a result, we can obtain a prediction for
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Fig. 4. STA/LTA based motion detector.
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Fig. 5. Trigger detection of the word HELLO.

each frame using softmax layer with TD wrapper. 80% of each
participant’s data are used for training and 20% for testing.
This results in an overall accuracy of 92.3%.

V. TRIGGER SIGN DETECTION

The problem of trigger sign recognition has not yet been
adequately addressed in the literature relating to RF sensing.
For speech triggered devices, Apple Siri [28] employs a cumu-
lative score aggregation (CSA) algorithm, which ensures the
system is triggered only when the phrase is fully completed.
In this study, we track the signing process by recording the
activation value of the output node of the target class - in this
case, HELLO. If activation values are directly used to trigger
the system, the system gets triggered at the very beginning of
the signing, potentially causing high FA rates since different
signs may have a resemblance in initial pattern. This problem
is mitigated by CSA, as illustrated in Figure 5. Scores of
the last 1.5 seconds of data are accumulated to calculate the
cumulative score. Notice that CSA triggers upon completion
of the sign, as desired. When the detection threshold is set to
90% of the maximum achievable score, using the activation
values as scores has FRR of 0.18 and FAR of 0.03, while CSA
method’s FRR stays as low as 0.07 and FAR becomes 0. Thus,
trigger recognition rate for the word HELLO can be calculated
as 1 —0.07—-0=0.93.

VI. CONCLUSION

This paper has presented word-level ASL recognition and
trigger sign detection results using a 77 GHz FMCW RF
sensor. In particular, the recognition of up to 20 ASL signs,
sequential classification of signing mixed with daily activity,
and detection of a trigger sign to wake a device via RF sensors
has been demonstrated. A physics-aware, multi-branch GAN
was designed to synthesize samples for training a three-layer
CAE for classification of native ASL RF signatures with an
accuracy of 91.3%. Sequential classification of continuous
data streams of signing interwoven with daily activities was
accomplished with 92.3% accuracy, while a trigger sign was
detected at a rate of 0.93.
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