PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

23

signac: Data Management and Workflows for
Computational Researchers

Bradley D. Dice*™, Brandon L. Butler’™, Vyas Ramasubramani®, Alyssa Travitz!, Michael M. Henry!l, Hardik Ojha**,
Kelly L. Wang(][, Carl S. AdorfS, Eric Jankowski”, Sharon C. Glotzer T

Abstract—The signac data management framework (https://signac.io) helps
researchers execute reproducible computational studies, scales workflows from
laptops to supercomputers, and emphasizes portability and fast prototyping.
With signac, users can track, search, and archive data and metadata for file-
based workflows and automate workflow submission on high performance com-
puting (HPC) clusters. We will discuss recent improvements to the software’s
feature set, scalability, scientific applications, usability, and community. Newly
implemented synced data structures, features for generalized workflow execu-
tion, and performance optimizations will be covered, as well as recent research
using the framework and changes to the project’s outreach and governance as
a response to its growth.

Index Terms—data management, data science, database, simulation, collabo-
ration, workflow, HPC, reproducibility

Introduction

Scientific research addresses problems where questions often
change rapidly, data models are always in flux, and compute
infrastructure varies widely from project to project. The signac
data management framework [ADRGI18] is a tool designed by
researchers, for researchers, to simplify the process of prototyp-
ing and then performing reproducible scientific computations. It
forgoes encoding complex data files into a database in favor of
working directly on file systems, providing fast indexing utilities
for a set of directories. Using signac, a data space on the file
system can be initialized, searched, and modified using either a
Python or command-line interface. By its general-purpose design,
signac is agnostic to data content and format. The companion
package signac-flow interacts with the data space to generate
and analyze data through reproducible workflows that scale from
laptops to supercomputers. Arbitrary shell commands can be run
by signac-flow as part of a workflow, making it as flexible as a
script in any language of choice.

1 These authors contributed equally.

x Corresponding author: bdice@umich.edu, butlerbr@umich.edu

Department of Physics, University of Michigan, Ann Arbor

x Corresponding author: bdice @umich.edu, butlerbr@umich.edu

§ Department of Chemical Engineering, University of Michigan, Ann Arbor
I Macromolecular Science and Engineering Program, University of Michigan,
Ann Arbor

Il Micron School of Materials Science and Engineering, Boise State University
s Department of Chemical Engineering, Indian Institute of Technology
Roorkee

11 Biointerfaces Institute, University of Michigan, Ann Arbor

Copyright© 2021 Bradley D. Dice et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

This paper will focus on developments to the signac frame-
work over the last 3 years, during which features, flexibility,
usability, and performance have been greatly improved. The core
data structures in signac have been overhauled to provide a power-
ful and generic implementation of synced collections, that we will
leverage in future versions of signac to enable more performant
data indexing and flexible data layouts. In signac-flow, we have
added support for submitting groups of operations with conditional
dependencies, allowing for more efficient utilization of large HPC
resources. Further developments allow for operations to act on
arbitrary subsets of the data space via aggregation, rather than sin-
gle jobs alone. Moving beyond code development, this paper will
also discuss the scientific research these features have enabled and
organizational developments supported through key partnerships.
We will share our project’s experience in continuously revising
project governance to encourage sustained contributions, adding
more entry points for learning about the project (Slack support,
weekly public office hours), and participating in Google Summer
of Code in 2020 as a NumFOCUS Affiliated Project. Much of
the work has been carried out in conjunction with the Molecular
Simulation Design Framework (MoSDeF) [CMI"21], a National
Science Foundation Cyberinfrastructure for Sustained Scientific
Innovation (CSSI) effort.

Structure and implementation

With signac, file-based data and metadata are organized in folders
and JSON files, respectively (see Figure 1). A signac data space,
or workspace, contains jobs, which are individual directories asso-
ciated with a single primary key known as a state point stored in a
file signac_statepoint. json in that directory. The JSON
files allow signac to index the data space, providing a database-
like interface to a collection of directories. Arbitrary user data may
be stored in user-created files in these jobs, although signac also
provides convenient facilities for storing simple lightweight data
or array-like data via JSON (the "job document") and HDF5 (the
"job data") utilities. Readers seeking more details about signac are
referred to past signac papers [ADRG18], [RAD " 18] as well as
the signac website! and documentation?.

This filesystem-based approach has both advantages and dis-
advantages. Its key advantages lie in flexibility and portability.
The serverless design removes the need for any external running
server process, making it easy to operate on any filesystem. The

1. https://signac.io
2. https://docs.signac.io

https://signac.io
mailto:bdice@umich.edu, butlerbr@umich.edu
mailto:bdice@umich.edu, butlerbr@umich.edu
https://signac.io
https://docs.signac.io

24

> signac (core) £
WORKSPACE

JOoB JOoB

JoB

JoB

JoB JoB

TJors

signac-flow

N
signac_statepoint.json
N
signac_job_document.json

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

T . 7,
Initialize jobs 725°% 27

9 pr = signac.init_project("MyProject") 4
10 pr.open_job({"a": 1}).1init()

0)]

JOoB

N
signac_statepoint.json
TN
signac_job_document.json

B results.txt

|ﬂ plot.png

Run simulation

13 @Project.operation

14 def simulate(job):
15 # Run simulation 27

Analyze data
25 @Project.operation
26 def analyze(job):

Make results.txt 73

Visualize data

71 @Project.operation
72 def visualize(job):
Make plot.png

— project.py

Fig. 1: Overview of the signac framework. Users first create a project, which initializes a workspace directory on disk. Users define state points
which are dictionaries that uniquely identify a job. The workspace holds a directory for each job, containing JSON files that store the state
point and job document. The job directory name is a hash of the state point’s contents. Here, the init . py file initializes an empty project

and adds one job with state point { "a" :

1 }. Next, users define a workflow using a subclass of signac-flow’s F1owPro ject. The workflow

shown has three operations (simulate, analyze, visualize) that, when executed, produce two new files results.txt and plot.png in the

Jjob directory.

design is also intrinsically distributed, making it well suited for
highly parallel workflows where multiple processes concurrently
read or write file-based data stored in job directories. Conversely,
this distributed approach precludes the performance advantages
of centralized data stores with persistent indexes in memory.
Typically, the signac approach works very well for projects up
to 100,000 jobs, while significantly larger projects may have wait
times that constrain interactive usage. These limits are inherent
to signac’s use of small files for each job’s state point, but the
framework has been aggressively optimized and uses extensive
caching/buffering to maximize the achievable throughput within
this model.

The framework is a strong choice for applications meeting one
or more of the following criteria:

« input/output data is primarily file-based

« prototype research code where data schemas may change
or evolve

« computations will use an HPC cluster

« the amount of computation per job is large

e parameter sweeps over a range of values (with values on a
grid or dynamically determined by e.g. active learning)

« heterogeneous data (not all jobs have the same keys present
in their state points)

For example, M. W. Thompson et al. in [TMS'] used
396 jobs/state points to execute computer simulations of room-
temperature ionic liquids with GROMACS [PPS'], [LHvdS],
[HKvdSL], [AMS™] simulations. The study investigated 18 com-

positions (by mass fraction) and 22 unique solvents from five
chemical families (nitriles, alcohols, halocarbons, carbonyls, and
glymes), with a state point for each pairing of mass fraction and
solvent type.

Users working with large tabular data (e.g. flat files on disk or
data from a SQL database) may prefer to use libraries like pandas
[pdt20], [McK], Dask [Teal6], [Rocl5], or RAPIDS [Teal8]
that are specifically designed for those use cases. However, it is
possible to create a signac project with state points corresponding
to each row, which may be a good use of signac if there is file-
based data affiliated with each row’s parameters.

Code examples of features presented in this paper can be found
online?.

Applications of signac

The signac framework has been cited 54 times, according to
Google Scholar, and has been used in a range of scientific
fields with various types of computational workflows. Some of
these studies include quantum calculations of small molecules
[GG18], 4,480 simulations of epoxy curing (each containing
millions of particles) [TAH" 18], inverse design of pair poten-
tials [AADGI18], identifying photonic band gaps in 151,593
crystal structures [CADG21], benchmarking atom-density repre-
sentations for use in machine learning [MVG™21], simulating
fluid flow in polymer solutions [PHMTNI19], design of optical
metamaterials [HCVM20], and economic analysis of drought

3. https://github.com/glotzerlab/signac-examples

https://github.com/glotzerlab/signac-examples

SIGNAC: DATA MANAGEMENT AND WORKFLOWS FOR COMPUTATIONAL RESEARCHERS 25

risk in agriculture [RD20]. To date, signac users have built
workflows utilizing a wide range of software packages includ-
ing simulation tools such as Cassandra and MoSDeF-Cassandra
[SMRM*17], [DMD"21], foyer [KST"], GROMACS [PPS'],
[LHvdS], [HKvdSL], [AMS™"], HOOMD-blue [AGG], [GNA™],
[BLBVRJAASCG20], mBuild [KSJT], MIT Photonic Bands
[JJ01], Quantum-ESPRESSO [GBB ' 09], Rigorous Coupled Wave
Analysis (RCWA) [LF12], and VASP [KF96], machine learning
libraries including Keras [CT15], scikit-learn [PVG'11], and
TensorFlow [AAB'15], and analysis libraries for postprocessing
data such as freud [RDH"20], librascal [MVG™21], MDAnalysis
[MADWBI11], MDTraj [MBH " 15], and OVITO [Stu]. Much of
the published research using signac comes from chemical en-
gineering, materials science, or physics, the fields of many of
signac’s core developers and thus fields where the project has had
greatest exposure. Computational materials research commonly
requires large HPC resources with shared file systems, a use
case where signac excels. However, there are many other fields
with similar hardware needs where signac can be applied. These
include simulation-heavy HPC workloads such as fluid dynamics,
atomic/nuclear physics, or genomics, data-intensive fields such
as economics or machine learning, and applications needing fast,
flexible prototypes for optimization and data analysis.

While there is no "typical" signac project, factors such as com-
putational complexity and data sizes offer some rough guidelines
for when signac’s database-on-the-filesystem is appropriate. For
instance, the time to check the status of a workflow depends on the
number of jobs, number of operations, and number of conditions
to evaluate for those jobs. Typical signac projects have 100 to
10,000 jobs, with each job workspace containing arbitrarily large
data sizes (the total file size of the job workspace has little effect
on the speed of the signac framework). To give a rough idea of
the limits of scalability, signac projects can contain up to around
100,000 jobs while keeping common tasks like checking workflow
status in an "interactive" time scale of 1-2 minutes. Some users that
primarily wish to leverage signac-flow’s workflows for execution
and submission may have a very small number of jobs (< 10). One
example of this would be executing a small number of expensive
biomolecular simulations using different random seeds in each
job’s state point. Importantly, projects with a small number of
jobs can be expanded at a later time, and make use of the same
workflow defined for the initial set of jobs. The abilities to grow
a project and change its schema on-the-fly catalyze the kind of
exploration that is crucial to answering research questions.

The workflow submission features of signac-flow inter-
operates with popular HPC schedulers including SLURM,
PBS/TORQUE, and LSF automating the generation and sub-
mission of scheduler batch scripts. Directives are set through
Python decorators and define resource and execution requests for
operations. Examples of directives include number of CPUs or
GPUs, the walltime, and memory. The use of directives allows
signac-flow workflows to be portable across HPC systems by
generating resource requests that are specific to each machine’s
scheduler.

Overview of new features

The last three years of development of the signac framework have
expanded its usability, feature set, user and developer documenta-
tion, and potential applications. Some of the largest architectural
changes in the framework will be discussed in their own sections,

namely extensions of the workflow model (support for executing
groups of operations and aggregators that allow operations to
act on multiple jobs) and a much more performant and flexible
re-implementation of the core "data structure" classes that syn-
chronize signac’s Python representation of state points and job
documents with JSON-encoded dictionaries on disk.

Data archival

The primary purpose of the core signac package is to simplify and
accelerate data management. The signac command line interface
is a common entry point for users, and provides subcommands for
searching, reading, and modifying the data space. New commands
for import and export simplify the process of archiving signac
projects into a structure that is both human-readable and machine-
readable for future access (with or without signac). Archival is
an integral part of research data operations that is frequently
overlooked. By using highly compatible and long-lived formats
such as JSON for core data storage with simple name schemes,
signac aims to preserve projects and make it easier for studies
to be independently reproduced. This is aligned with the princi-
ples of TRUE (Transparent, Reproducible, Usable by others, and
Extensible) simulations put forth by the MoSDeF collaboration
[TGM™*20].

Improved data storage, retrieval, and integrations

Data access via the shell: The signac shell command allows
the user to quickly enter a Python interpreter that is pre-populated
with variables for the current project or job (when in a project
or job directory). This means that manipulating a job document or
reading data can be done through a hybrid of bash/shell commands
and Python commands that are fast to type.

~/project $ 1ls

signac.rc workspace

~/project $ cd workspace/42b7b4f2921788e.../
~/project/workspace/42b7b4f2921788e... $ signac shell

Python 3.8.3
signac 1.6.0

Project: test

Job: 42pb7b4£2921788ealddac5566e6£06d0
Root : ~/project

Workspace: ~/project/workspace

Size: 1

Interact with the project interface using the
"project" or "pr" variable. Type "help (project)"
or "help(signac)" for more information.

>>> job.sp

{'a': 1}

HDFS5 support for storing numerical data: Many applications
used in research generate or consume large numerical arrays. For
applications in Python, NumPy arrays are a de facto standard
for in-memory representation and manipulation. However, saving
these arrays to disk and handling data structures that mix dic-
tionaries and numerical arrays can be cumbersome. The signac
H5Store feature offers users a convenient wrapper around the
hSpy library [Col13] for loading and saving both hierarchical/key-
value data and numerical array data in the widely-used HDF5
format [Gro21]. The job.data attribute is an instance of the
H5Store class, and is a key-value store saved on disk as
signac_data.h5 in the job workspace. Users who prefer to
split data across multiple files can use the job.stores API to
save in multiple HDFS5 files. Corresponding project .data and

26

project.stores attributes exist, which save data files in the
project root directory. Using an instance of H5Store as a context
manager allows users to keep the HDFS file open while reading
large chunks of the data:

with job.data:

closed) by indexing with %

my_array = job.data["my_array"]1[()]
Advanced searching and filtering of the workspace: The
signac diff command, available on both the command line
and Python interfaces, returns the difference between two or more
state points and allows for easily assessing subsets of the data
space. By unifying state point and document queries, filtering, and
searching workspaces can be more fine-grained and intuitive.

Data visualization and integrations

Integrating with the PyData ecosystem: Users can now sum-
marize data from a signac project into a pandas DataFrame
for analysis. The project.to_dataframe () feature exports
state point and job document information to a pandas DataFrame
in a consistent way that allows for quick analysis of all jobs’ data.
Support for Jupyter notebooks [KRKP"16] has also been added,
enabling rich HTML representations of signac objects.

Dashboards: The companion package signac-dashboard al-
lows users to quickly visualize data stored in a signac data space.
The dashboard runs in a browser and allows users to display
job state points, edit job documents, render images and videos,
download any file from a job workspace, and search or browse
through state points in their project. Dashboards can be hosted on
remote servers and accessed via port forwarding, which makes it
possible to review data generated on a remote HPC system without
needing to copy it back to a local system for inspection. Users can
quickly save notes into the job document and then search those
notes, which is useful for high throughput studies that require
some manual investigation (e.g. reviewing plots).

Performance enhancements

In early 2021, a significant portion of the codebase was profiled
and refactored to improve performance and these improvements
were released in signac 1.6.0 and signac-flow 0.12.0. As a result
of these changes, large signac projects saw 4-7x speedups for
operations such as iterating over the jobs in a project compared
to the 1.5.0 release of signac. Similarly, performance of a sample
workflow that checks status, runs, and submits a FlowProject with
1,000 jobs, 3 operations, and 2 label functions improved roughly
4x compared to signac-flow 0.11.0. These improvements allow
signac to scale to ~100,000 jobs.

In signac, the core of the Project and Job classes were
refactored to support lazy attribute access and delayed initializa-
tion, which greatly reduces the total amount of disk I/O by waiting
until data is actually requested by the user. Other improvements
include early exits in functions, reducing the number of required
system calls with smarter usage of the os library, and switching
to algorithms that operate in constant time, O(1), instead of linear
time, O(Njops). Optimizations were identified by profiling the
performance of common operations on small and large real-world
projects with cProfile and visualized with snakeviz [Dav].

Similarly, performance enhancements were also made in the
signac-flow package. Some of the optimizations identified include
lazy evaluation of run commands and directives, and caching of

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

job status information. In addition, the improvements in signac
such as faster iteration over large signac projects used in signac-
flow made signac-flow’s primary functions — checking project
status, executing operations, and submitting operations to a cluster
— significantly faster.

Improved user output

Workflow graph detection: The preconditions and postcon-
ditions of operations in a signac-flow FlowProject im-
plicitly define a graph. For example, if the operation "ana-
lyze" depends on the operation "simulate" via the precondition
@FlowProject.pre.after (simulate), then there is a
directed edge from "simulate" to "analyze." This graph can now
be detected from the workflow conditions and returned in a
NetworkX [HSS08] compatible format for display or inspection.

Templated status output: Querying the status of a signac-
flow project now has many options controlling the information
displayed and has been templated to allow for plain text, Mark-
down, or HTML output. In doing so, the output has also become
cleaner and compatible with external tools.

Enhanced workflows

Directives: Execution directives (or directives for short) provide
a way to specify required resources on HPC schedulers such as
number of CPUs/GPUs, MPI ranks, OpenMP threads, walltime,
memory, and others. Directives can be a function of the job as
well as the operation, allowing for great flexibility. In addition,
directives work seamlessly with operation groups, job aggrega-
tion, and submission bundling (all of which are described in the
following section).

Dynamic workspaces: The signac-flow package can now
handle workspaces where jobs are created as the result of oper-
ations on other jobs. This is crucial for optimization workflows
and iteratively sampling parameter spaces, and allows projects to
become more automated with some data points only run if a prior
condition on another data point is reached.

Executing complex workflows via groups and aggregation

Two new concepts in signac-flow provide users with significantly
more power to implement complex workflows: groups and aggre-
gation. A related third concept — bundling — which is not new, also
provides flexibility to users in their workflows, but exclusively
affects scheduler submission, not workflow definition. Figure 2
show a graphical illustration of the three concepts.

As the names of both groups and aggregation imply, the fea-
tures enable the "grouping” or "aggregating" of existing concepts:
operations in the case of groups and jobs in the case of aggregates.
The conceptual model of signac-flow builds on signac’s notions
of the Project and Job (the unit of the data space) through a
FlowProject class that adds the ability to define and execute
operations (the unit of a workflow) that act on jobs. Operations are
Python functions or shell commands that act on a job within the
data space, and are defined using Python decorator syntax.

project.py
from flow import FlowProject

@FlowProject.operation
@Flowproject.post.true("initial
def initialize (job):

ized")

perform necessary initialize steps
for ation
job.doc.initialized == True

SIGNAC: DATA MANAGEMENT AND WORKFLOWS FOR COMPUTATIONAL RESEARCHERS 27

Use
multiple jobs.

to operate on

@aggregator.groupby(...)
def make_chart(xjobs):
Plot grouped data

jobA1l
jobA2
jobA3

Use groups to combine associated
operations into a single submission.

Submit...

Submit once, run all.

simulate(job) process(job)

Submit again...

simulate(job)
analyze(job) analyze(job)
Submit again... visualize(job)

visualize(job)

jobA4

jobC1
jobC2
jobC3
jobC4

Use bundling to submit scripts that
execute multiple operations.

12 CPUs

—

Fig. 2: Aggregation, groups, and bundling allow users to build complex workflows. The features are orthogonal, and can be used in any
combination. Aggregation enables one operation or group to act on multiple jobs. Groups allow users to combine multiple operations into one,
with dependencies among operations resolved at run time. Bundling helps users efficiently leverage HPC schedulers by submitting multiple

commands in the same script, to be executed in serial or parallel.

if name == "_main__":

FlowProject () .main ()

When this project is run using signac-flow’s command line
API (python project.py run), the current state point is
prepared for simulation. Operations can have preconditions and
postconditions that define their eligibility. All preconditions must
be met in order for a operation to be eligible for a given job. If all
postconditions are met, that indicates an operation is complete
(and thus ineligible). Examples of such conditions include the
existence of an input file in a job’s workspace or a key in the
job document (as shown in the above snippet). However, this
type of conditional workflow can be inefficient when sequential
workflows are coupled with an HPC scheduler interface, because
the user must log on to the HPC and submit the next operation
after the previous operation is complete. The desire to submit
large and long-running jobs to HPC schedulers encourages users to
write large operation functions which are not modular and do not
accurately represent the individual units of the workflow, thereby
limiting signac-flow’s utility and reducing the readability of the
workflow.

Groups
Groups, implemented by the FlowGroup class and
FlowProject.make_group method, allows users to

combine multiple operations into a single entity that can be run or
submitted. Submitting a group allows signac-flow to dynamically
resolve preconditions and postconditions of operations as each
operation is executed, making it possible to combine separate
operations (e.g. for simulation and analysis and plotting) into a
single submission script that will execute eligible operations in
sequence. This allows users to write smaller, modular functions,

which may require a specific order of execution, without
sacrificing the ability to submit large, long-running jobs on HPCs.
Furthermore, groups are aware of directives and can properly
combine the directives of their constituent operations to specify
resources and quantities like walltime whether executing in
parallel or serial.

from flow import FlowProject

example_group = FlowProject.make_group (
name="example_group")

@example group.with_directives(
{"ngpu": 2,

"walltime": lambda job: Jjob.doc.hours_to_run})
@FlowProject.post.true ("simulated")
@FlowProject.operation
def simulate (job):

run simulation
job.doc.simulated = True
@example_group
@FlowProject.pre.after (simulate)
@FlowProject.post.true ("analyzed")
@FlowProject.operation
def analyze (job):
analyze simulation results
job.doc.analyzed = True

Groups also allow for specifying multiple machine specific re-
sources (CPU or GPU) with the same operation. An operation can
have unique directives for each distinct group to which it belongs.
By associating an operation’s directives with respect to a specific
group, groups can represent distinct compute environments, such
as a local workstation or a remote supercomputing cluster. The be-
low snippet shows an expensive_simulate operation which
can be executed with three different directives depending on how

28

it is written. If executed through cpu_group the operation will
request 48 cores, if gpu_group 4 GPUs, if neither then it will
request 4 cores. This represents the real use case where a user may
want to run an operation locally (in this case without a group), or
on a CPU or GPU focused HPC/workstation.

from flow import FlowProject

cpu_group = FlowProject.make_group (name="cpu")
gpu_group = FlowProject.make_group (name="gpu")

@cpu_group.with_directives ({"np": 48})
@gpu_group.with_directives ({"ngpu": 4})
@FlowProject.operation.with_directives ({"np": 4})
def expensive_simulate (job) :
expensive simulation run on CPUs or GPUs
pass
Aggregation

Users also frequently work with multiple jobs when performing
tasks such as plotting data from all jobs in the same figure. Though
the signac package has methods like Project.groupby,
which can generate subsets of the project that are grouped by
a state point key, there has been no way to use these "ag-
gregation” features in signac-flow for defining workflows. The
concept of aggregation provides a straightforward way for users
to write and submit operations that act on arbitrary subsets
of jobs in a signac data space through functions analogous
to Project.groupby. Just as the groups feature acts as an
abstraction over operations, aggregation can be viewed as an ab-
straction over jobs. When decorated with an aggregator, operations
can accept multiple job instances as positional arguments through
Python’s argument unpacking. Decorators are used to define ag-
gregates, encompassed in the @aggregator decorator for single
operations and in the argument aggregator_function to
FlowProject.make_group for groups of operations.

from flow import FlowProject

@aggregator

@FlowProject.operation

def plot_enzyme_activity (xjobs):
import matplotlib.pyplot as plt
import numpy as np

X = [job.sp.temperature for job in jobs]

y = [job.doc.activity for job in jobs]
fig, ax = plt.subplots/()
ax.scatter(x, vy)
ax.set_title(
"Enzymatic Activity Across Temperature")
fig.savefig("enzyme-activity.png")

Like groups, there are many reasons why a user might
wish to use aggregation. For example, a signac data space
that describes weather data for multiple cities in multi-
ple years might want to plot or analyze data that uses
@aggregator.groupby ("city") to show changes over
time for each city in the data space. Similarly, aggregating over
replicas (e.g. the same simulation with different random seeds)
facilitates computing averaged quantities and error bars. Another
example is submitting aggregates with a fixed number of jobs in
each aggregate to enable massive parallelization by breaking a
large MPI communicator into a smaller communicator for each
independent job, which is necessary for efficient utilization of
leadership-class supercomputers like OLCF Summit.

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Bundling

Finally, bundling is another way to use workflows in conjunction
with an HPC scheduling system. Whereas aggregates are con-
cerned with jobs and groups operations, bundling is concerned
with combining executable units into a single submission script.
This distinction means that bundling is not part of the workflow
definition, but is a means of tailoring batch scripts for different
HPC systems. Bundles allow users to leverage scheduler resources
effectively and minimize queue time, and can be run in serial
(the default) or parallel. Users enable bundling by passing the
command line argument —-bundle, optionally with another
argument ——parallel to run each command in the bundle in
parallel (the Python API has corresponding options as well). The
simplest case of a bundle is a submission script with the same op-
eration being executed for multiple jobs. Bundling is what allows
the submission script to contain multiple jobs executing the same
operation. By storing information about the generated bundles
during submission, signac-flow prevents accidental resubmission
just as in the unbundled case. While the example mentioned
above does not use either groups or aggregation, bundles works
seamlessly with both.

Cluster templates

The signac-flow software includes automatic detection and script
support for SLURM, PBS/TORQUE, and LSF schedulers. How-
ever, effective HPC utilization frequently relies on specific infor-
mation such as numbers of cores per compute node or designated
partitions for GPU or large memory applications. To this end,
signac-flow includes templates for a number of HPC clusters
including OLCF Summit and Andes, XSEDE [TCD™" 14] clusters
such as PSC Bridges-2, SDSC Comet, and TACC Stampede?2,
and university clusters such as the University of Michigan’s
Great Lakes and University of Minnesota’s Mangi. These cluster
templates change frequently as HPC systems are brought online
and later decommissioned. Users can create their own templates
to contribute to the package or use locally.

Synced collections: backend-agnostic, persistent, mutable
data structures

Motivation

At its core, signac is a tool for organizing and working with
data on the filesystem, presenting a Pythonic interface for tasks
like creating directories and modifying files. In particular, signac
makes modifying the JSON files used to store a job’s state points
and documents as easy as working with Python dictionaries.
Despite heavy optimization, when seeking to scale signac to ever-
larger data spaces, we quickly realized that the most significant
performance barrier was the overhead of parsing and modifying
large numbers of text files. Unfortunately, the usage of JSON files
in this manner was deeply embedded in our data model, which
made switching to a more performant backend without breaking
APIs or severely complicating our data model a daunting task.
While attempting to separate the signac data model from its
original backend implementation (manipulating JSON files on
disk), we identified a common pattern: providing a dictionary-
like interface for an underlying resource. Several well-known
Python packages such as h5py [Col13] and zarr [MjD"20] also use
dictionary-like interfaces to make working with complex resources
feel natural to Python users. Most such packages implement this
layer directly for their particular use case, but the nature of the

SIGNAC: DATA MANAGEMENT AND WORKFLOWS FOR COMPUTATIONAL RESEARCHERS 29

problem suggested to us the possibility of developing a more
generic representation of this interface. Indeed, the purpose of the
Python standard library’s collections.abc module to make
it easy to define objects that "look like" standard Python objects
while having completely customizable behavior under the hood.
As such, we saw an opportunity to specialize this pattern for
a specific use case: the transparent synchronization of a Python
object with an underlying resource.

The synced collections framework represents the culmination
of our efforts in this direction, providing a generic framework
in which interfaces of any abstract data type can be mapped
to arbitrary underlying synchronization protocols. In signac, this
framework allows us to hide the details of a particular file storage
medium (like JSON) behind a dictionary-like interface, but it can
just as easily be used for tasks such as creating a new, list-like
interface that automatically saves all its data in a plain-text CSV
format. This section will offer a high-level overview of the synced
collections framework and our plans for its use within signac, with
an eye to potential users in other domains as well.

Summary of features

We designed synced collections to be flexible, easily extensible,
and independent of signac’s data model. Most practical use cases
for this framework involve an underlying resource that may be
modified by any number of associated in-memory objects that
behave like standard Python collections, such as dictionaries or
lists. Therefore, all normal operations must be preceded by loading
from this resource and updating the in-memory store, and they
must be succeeded by saving to that resource. The central idea
behind synced collections is to decouple this process into two
distinct groups of tasks: the saving and loading of data from a
particular resource backend, and the synchronization of two in-
memory objects of a given type. This delineation allows us to,
for instance, encapsulate all logic for JSON files into a single
JSONCollection class and then combine it with dictionary-
or list-like SyncedDict/SyncedList classes via inheritance
to create fully functional JSON-backed dictionaries or lists. Such
synchronization significantly lowers performance, so the frame-
work also exposes an API to implement buffering protocols to
collect operations into a single transaction before submitting them
to the underlying resource.

Previously, signac contained a single JSONDict class as part
of its API, along with a separately implemented internal-facing
JSONList that could only be used as a member of a JSONDict.
With the new framework, users can create fully-functional, arbi-
trarily nested JSONDict and JSONList objects that share the
same logic for reading from and writing to JSON files. Just as
importantly, signac can now combine these data structures with
a different backend, allowing us to swap in different storage
mechanisms for improved performance and flexibility with no
change in our APIs. Since different types of resources may have
different approaches to batching transactions — for example, a
SQLite backend may want to exploit true SQL transactions, while
a Redis backend might simply collect all changes in memory
and delay sending memory to the server — synced collections
also support customizable buffering protocols, again via class
inheritance.

Applications of synced collections

The new synced collections promise to substantially simplify both
feature and performance enhancements to the signac framework.

Performance improvements in the form of Redis-based storage
are already possible with synced collections, and as expected they
show substantial speedups over the current JSON-based approach.
We have also exploited the new and more flexible buffering proto-
col to implement and test alternatives to the previous approach. In
certain cases, our new buffering techniques improve performance
of buffered operations by 1-2 orders of magnitude. Some of these
performance improvements are drop-in replacements that require
no changes to our existing data models, and we plan to enable
these in upcoming versions of signac.

The generality of synced collections makes them broadly use-
ful even outside the signac framework. Adding Pythonic APIs to
collection-like objects can be challenging, particularly when those
objects should support arbitrary nesting, but synced collections
enable nesting as a core feature to dramatically simplify this
process. Moreover, while the framework was originally conceived
to support synchronization of an in-memory data structure with
a resource on disk, it can also be used to synchronize with
another in-memory resource. A powerful example of this would
be wrapping a C or C++ extension type, for instance by creating
a SyncedList that synchronizes with a C++ std: :vector,
such that changes to either object would be transparently reflected
in the other. With synced collections, creating this class just
requires defining a conversion between a std: :vector and a
raw Python list, a trivial task using standard tools for exposing
extension types such as pybind or Cython.

At a higher level, synced collections represent an important
step in improving both the scalability and flexibility of signac. By
abstracting away details of persistent file storage from the rest of
signac, they make it much easier for the rest of signac to focus
on offering flexible data models. One of the most common use
cases of signac is creating data spaces with homogeneous schemas
that fit naturally into tabular data structures. In future iterations
of signac, we plan to allow users to opt into homogeneous
schemas, which would enable us to replace file-based indexes
with SQL-backed databases that would offer orders of magnitude
in performance improvements. Using this flexibility, we could
also move away from our currently rigid workspace model to
allow more general data layouts on disk for cases where users
may benefit from more general folder structures. As such, synced
collections are a stepping stone to creating a more general and
powerful version of signac.

Project evolution

The signac project has evolved from being an open-source project
mostly developed and managed by the Glotzer Group at the
University of Michigan, to being supported by over 30 contributors
and 8 committers/maintainers on 3 continents and with over 55
citations from academic and government research labs and 12
talks at large scientific, Python, and data science conferences.
The growth in involvement with signac results from our focus
on developing features based on user needs, as well as our efforts
to transition signac users into signac contributors, through many
initiatives in the past few years. Through encouraging users to
become contributors, we ensure that signac addresses real users’
needs. Early on, we identified that the framework had the potential
to be used by a wide community of researchers and that its
philosophy was aligned with other projects in the scientific Python
ecosystem. We have expanded signac’s contributor base beyond
the University of Michigan through research collaborations such

30

as the MoSDeF CSSI with other universities, sharing the frame-
work at conferences, and through the Google Summer of Code
(GSoC) program, which we applied to under the NumFOCUS
organization. Working with and mentoring students through GSoC
led to a new committer and significant work on the synced
collections and aggregation projects presented above. We provide
active support and open discussion for the contributor and user
community through Slack. In addition, we have started hosting
weekly "office hours" for in-person (virtual) introduction and
guided contributions to the code base. By pairing new contributors
with experienced signac developers, we significantly reduce the
knowledge barrier to joining a new project. Close interactions
between developers and users during office hours has led to
more features and documentation born directly out of user need.
Contributing to documentation has been a productive starting
point for new users-turned-contributors, both for the users and
the project, since it improves the users’ familiarity with the API as
well as addresses weak spots in the documentation that are more
obvious to new users.

In our growth with increasing contributors and users, we
recognized a need to change our governance structure to make
contributing easier and provide a clear organizational structure
to the community. We based our new model on the Meritocratic
Governance Model and our manager roles on Numba [LPS] Czars.
We decided on a four category system with maintainers, commit-
ters, contributors, and users. Code review and pull request merge
responsibilities are granted to maintainers and committers, who
are (self-) nominated and accepted by a vote of the project main-
tainers. Maintainers are additionally responsible for the strategic
direction of the project and administrative duties. Contributors
consist of all members of the community who have contributed in
some way to the framework, which includes adding or refactoring
code as well as filing issues and improving documentation. Finally,
users refer to all those who use signac in any capacity.

In addition, to avoid overloading our committers and main-
tainers, we added three rotating manager roles to our governance
model that ensure project management goes smoothly: triage,
community, and release. These managers have specific rotation
policies based on time (or release cycles). The triage manager
role rotates weekly and looks at new issues or pull requests and
handles cleanup of outdated issues. The community manager role
rotates monthly and is in charge of meeting planning and outreach.
Lastly, the release manager rotates with each release cycle and is
the primary decision maker for the timeline and feature scope
of package releases. This prevents burnout among our senior
developers and provides a sense of ownership to a greater number
of people, instead of relying on a "benevolent dictator/oligarchy
for life" mode of project leadership.

Conclusions

From the birth of the signac framework in 2015 to now, signac has
grown in usability, performance, and use. In the last three years,
we have added exciting new features such as groups, aggregation,
and synced collections, while learning how to manage outreach
and establish sustainable project governance in a burgeoning
scientific open-source project. We hope to continue expanding
the framework through user-oriented development, reach users
in research fields beyond materials science that routinely have
projects suited for signac, and welcome new contributors with
diverse backgrounds and skills to the project.

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

Installing signhac

The signac framework is tested for Python 3.6+ and is compatible
with Linux, macOS, and Windows. The software is available under
the BSD-3 Clause license. To install, execute

conda install -c conda-forge signac \
signac-flow signac-dashboard

or

pip install signac signac-flow signac-dashboard

Source code is available on GitHub*’ and documentation is hosted
online by ReadTheDocs®.

Acknowledgments

We would also like to thank NumFOCUS for providing helpful
advice on open-source governance, project sustainability, and
community outreach, as well as funding for the design of the
signac project logo.

This work was supported by the National Science Foundation,
Office of Advanced Cyberinfrastructure Awards OAC 1835612
and OAC 1835593. B.D. and B.B. acknowledge fellowship sup-
port from the National Science Foundation under ACI 1547580,
S212: Impl: The Molecular Sciences Software Institute [WDC18],
[KWBT18]. B.D. was also supported by a National Science
Foundation Graduate Research Fellowship Grant DGE 1256260
(2016-2019). V.R. acknowledges the 2019-2020 J. Robert Beyster
Computational Innovation Graduate Fellowship at the University
of Michigan. A.T. is supported by the National Science Foundation
under DMR 1707640. Software was deployed and validated and
benchmarked on the Extreme Science and Engineering Discov-
ery Environment (XSEDE) [TCD™"14], which is supported by
National Science Foundation Grant No. ACI-1053575 (XSEDE
award DMR 140129) and on resources of the Oak Ridge Leader-
ship Computing Facility which is a DOE Office of Science User
Facility supported under Contract No. DE-AC05-000R22725.

Author contributions

Conceptualization, B.D.D., B.L.B., V.R., A.T., M.M.H., H.O., and
C.S.A.; data curation, B.D.D., B.L.B., VR., A.T., MM.H., H.O,,
and C.S.A.; funding acquisition, E.J. and S.C.G.; methodology,
B.D.D,, B.LB., VR., AT, MMM.H., H.O., and C.S.A.; project
administration, B.D.D., B.L.B., V.R., A.T., M\M.H., H.O., and
C.S.A.; software, B.D.D., BL.B., VR.,, A T., MM.H., H.O., and
C.S.A.; supervision, S.C.G.; visualization, B.D.D., B.L.B., A.T,,
and K.W.; writing — original draft, B.D.D., B.L.B., VR., AT,
and H.O.; writing — review & editing, B.D.D., B.L.B., VR., AT,
M.M.H,, HO., KW,, CS.A., and S.C.G. All authors have read
and agreed to the published version of the manuscript.

REFERENCES

[AABT15] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon

4. https://github.com/glotzerlab/signac
5. https://github.com/glotzerlab/signac-flow
6. https://docs.signac.io/

https://github.com/glotzerlab/signac
https://github.com/glotzerlab/signac-flow
https://docs.signac.io/

SIGNAC: DATA MANAGEMENT AND WORKFLOWS FOR COMPUTATIONAL RESEARCHERS

[AADG18]

[ADRGI18]

[AGG]

[AMS™]

[BLBVRJAASCG20]

[CT15]

[CADG21]

[CMIt21]

[Coll13]
[Dav]

[DMD*21]

[GBB*09]

Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang
Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems. 2015. Software available from
tensorflow.org. URL: https://www.tensorflow.org/.
Carl S. Adorf, James Antonaglia, Julia Dshemuchadse,
and Sharon C. Glotzer. Inverse design of sim-
ple pair potentials for the self-assembly of com-
plex structures. The Journal of Chemical Physics,
149(20):204102-204102, November 2018. doi:10.
1063/1.5063802.

Carl S. Adorf, Paul M. Dodd, Vyas Ramasubramani,
and Sharon C. Glotzer. Simple data and workflow
management with the signac framework. Comput.
Mater. Sci., 146(C):220-229, 2018. doi:10.1016/
j.commatsci.2018.01.035.

Joshua A. Anderson, Jens Glaser, and Sharon C.
Glotzer. HOOMD-blue: A Python package for high-
performance molecular dynamics and hard particle
Monte Carlo simulations. 173:109363. doi:10.
1016/3j.commatsci.2019.109363.

Mark James Abraham, Teemu Murtola, Roland Schulz,
Szilard Péll, Jeremy C. Smith, Berk Hess, and Erik
Lindahl. GROMACS: High performance molecular
simulations through multi-level parallelism from lap-
tops to supercomputers. 1-2:19-25. doi:10.1016/
j.softx.2015.06.001.

Brandon L. Butler, Vyas Ramasubramani, Joshua
A. Anderson, and Sharon C. Glotzer. HOOMD-blue
version 3.0 A Modern, Extensible, Flexible, Object-
Oriented API for Molecular Simulations. In Meghann
Agarwal, Chris Calloway, Dillon Niederhut, and David
Shupe, editors, Proceedings of the 19th Python in
Science Conference, pages 24-31, 2020. doi:10.
25080/Majora-342d178e-004.

Francois Chollet et al. Keras, 2015. URL: https://keras.
io.

Rose K. Cersonsky, James Antonaglia, Bradley D.
Dice, and Sharon C. Glotzer. The diversity of three-
dimensional photonic crystals. Nature Communi-
cations, 12(1):2543, May 2021. doi:10.1038/
s41467-021-22809-6.

Peter T. Cummings, Clare McCabe, Christopher R.
Tacovella, Akos Ledeczi, Eric Jankowski, Arthi Jayara-
man, Jeremy C. Palmer, Edward J. Maginn, Sharon C.
Glotzer, Joshua A. Anderson, J. Ilja Siepmann, Jeffrey
Potoff, Ray A. Matsumoto, Justin B. Gilmer, Ryan S.
DeFever, Ramanish Singh, and Brad Crawford. Open-
source molecular modeling software in chemical en-
gineering focusing on the Molecular Simulation De-
sign Framework. AIChE Journal, 67(3):e17206, 2021.
doi:10.1002/aic.17206.

Andrew Collette. Python and HDF5. O’Reilly, 2013.
Matt Davis. snakeviz. URL: https://jiffyclub.github.io/
snakeviz/.

Ryan S DeFever, Ray A Matsumoto, Alexander W
Dowling, Peter T Cummings, and Edward J Maginn.
Mosdef cassandra: A complete python interface for
the cassandra monte carlo software. Journal of Com-
putational Chemistry, 2021. doi:10.1002/jcc.
24807.

Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Mat-
teo Calandra, Roberto Car, Carlo Cavazzoni, Da-
vide Ceresoli, Guido L Chiarotti, Matteo Cococ-
cioni, Ismaila Dabo, Andrea Dal Corso, Stefano
de Gironcoli, Stefano Fabris, Guido Fratesi, Ralph
Gebauer, Uwe Gerstmann, Christos Gougoussis, Anton
Kokalj, Michele Lazzeri, Layla Martin-Samos, Nicola
Marzari, Francesco Mauri, Riccardo Mazzarello, Ste-
fano Paolini, Alfredo Pasquarello, Lorenzo Paulatto,
Carlo Sbraccia, Sandro Scandolo, Gabriele Sclauzero,
Ari P Seitsonen, Alexander Smogunov, Paolo Umari,
and Renata M Wentzcovitch. QUANTUM ESPRESSO:
a modular and open-source software project for quan-
tum simulations of materials. Journal of Physics:

[GG18]

[GNAT]

[Gro21]

[HCVM20]

[HKvdSL]

[HSSO08]

[JJO1]

[KF96]

[KRKP™ 16]

[KSI*]

[KST*]

[KWBT18]

[LF12]

[LHvdS]

31

Condensed Matter, 21(39):395502, sep 2009. doi:
10.1088/0953-8984/21/39/395502.

Marco Govoni and Giulia Galli. Gw100: Comparison
of methods and accuracy of results obtained with the
west code. Journal of Chemical Theory and Computa-
tion, 14(4):1895-1909, 2018. doi:10.1021/acs.
jcte.7b00952.

Jens Glaser, Trung Dac Nguyen, Joshua A. Anderson,
Pak Lui, Filippo Spiga, Jaime A. Millan, David C.
Morse, and Sharon C. Glotzer. Strong scaling of
general-purpose molecular dynamics simulations on
GPUs. 192:97-107. doi:10.1016/3j.cpc.2015.
02.028.

The HDF Group. Hierarchical data format, version 5,
1997-2021. URL: https://www.hdfgroup.org/HDF5/.
Eric S. Harper, Eleanor J. Coyle, Jonathan P. Vernon,
and Matthew S. Mills. Inverse design of broadband
highly reflective metasurfaces using neural networks.
Physical Review B, 101(19):195104, May 2020. doi:
10.1103/PhysRevB.101.195104.

Berk Hess, Carsten Kutzner, David van der Spoel, and
Erik Lindahl. GROMACS 4: Algorithms for Highly
Efficient, Load-Balanced, and Scalable Molecular Sim-
ulation. 4(3):435-447. doi:10.1021/ct700301q.
Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.
Exploring network structure, dynamics, and function
using networkx. In Gaél Varoquaux, Travis Vaught,
and Jarrod Millman, editors, Proceedings of the 7th
Python in Science Conference, pages 11-15, Pasadena,
CA USA, 2008.

Steven G. Johnson and J. D. Joannopoulos. Block-
iterative frequency-domain methods for maxwell’s
equations in a planewave basis. Opt. Express, 8(3):173—
190, Jan 2001. doi:10.1364/0E.8.000173.

G. Kresse and J. Furthmiiller. Efficient iterative
schemes for ab initio total-energy calculations using a
plane-wave basis set. Phys. Rev. B, 54:11169-11186,
Oct 1996. doi:10.1103/PhysRevB.54.111609.
Thomas Kluyver, Benjamin Ragan-Kelley, Fernando
Pérez, Brian Granger, Matthias Bussonnier, Jonathan
Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout,
Sylvain Corlay, Paul Ivanov, Damidn Avila, Safia Ab-
dalla, and Carol Willing. Jupyter notebooks — a publish-
ing format for reproducible computational workflows.
In F. Loizides and B. Schmidt, editors, Positioning and
Power in Academic Publishing: Players, Agents and
Agendas, pages 87-90. IOS Press, 2016.

Christoph Klein, Janos Sallai, Trevor J. Jones, Christo-
pher R. ITacovella, Clare McCabe, and Peter T. Cum-
mings. A Hierarchical, Component Based Approach
to Screening Properties of Soft Matter. In Randall Q
Snurr, Claire S. Adjiman, and David A. Kofke, ed-
itors, Foundations of Molecular Modeling and Sim-
ulation: Select Papers from FOMMS 2015, Molecu-
lar Modeling and Simulation, pages 79-92. Springer.
doi:10.1007/978-981-10-1128-3_5.
Christoph Klein, Andrew Z. Summers, Matthew W.
Thompson, Justin B. Gilmer, Clare McCabe, Peter T.
Cummings, Janos Sallai, and Christopher R. Iacovella.
Formalizing atom-typing and the dissemination of force
fields with foyer. 167:215-227. doi:10.1016/7.
commatsci.2019.05.026.

Anna Krylov, Theresa L. Windus, Taylor Barnes, Eliseo
Marin-Rimoldi, Jessica A. Nash, Benjamin Pritchard,
Daniel G. A. Smith, Doaa Altarawy, Paul Saxe, Ce-
cilia Clementi, T. Daniel Crawford, Robert J. Harri-
son, Shantenu Jha, Vijay S. Pande, and Teresa Head-
Gordon. Perspective: Computational chemistry soft-
ware and its advancement as illustrated through three
grand challenge cases for molecular science. The
Journal of Chemical Physics, 149(18):180901, 2018.
doi:10.1063/1.5052551.

Victor Liu and Shanhui Fan. S4 : A free electromag-
netic solver for layered periodic structures. Computer
Physics Communications, 183(10):2233-2244, 2012.
doi:10.1016/j.cpc.2012.04.026.

Erik Lindahl, Berk Hess, and David van der Spoel.

https://www.tensorflow.org/
http://dx.doi.org/10.1063/1.5063802
http://dx.doi.org/10.1063/1.5063802
http://dx.doi.org/10.1016/j.commatsci.2018.01.035
http://dx.doi.org/10.1016/j.commatsci.2018.01.035
http://dx.doi.org/10.1016/j.commatsci.2019.109363
http://dx.doi.org/10.1016/j.commatsci.2019.109363
http://dx.doi.org/10.1016/j.softx.2015.06.001
http://dx.doi.org/10.1016/j.softx.2015.06.001
http://dx.doi.org/10.25080/Majora-342d178e-004
http://dx.doi.org/10.25080/Majora-342d178e-004
https://keras.io
https://keras.io
http://dx.doi.org/10.1038/s41467-021-22809-6
http://dx.doi.org/10.1038/s41467-021-22809-6
http://dx.doi.org/10.1002/aic.17206
https://jiffyclub.github.io/snakeviz/
https://jiffyclub.github.io/snakeviz/
http://dx.doi.org/10.1002/jcc.24807
http://dx.doi.org/10.1002/jcc.24807
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1021/acs.jctc.7b00952
http://dx.doi.org/10.1021/acs.jctc.7b00952
http://dx.doi.org/10.1016/j.cpc.2015.02.028
http://dx.doi.org/10.1016/j.cpc.2015.02.028
https://www.hdfgroup.org/HDF5/
http://dx.doi.org/10.1103/PhysRevB.101.195104
http://dx.doi.org/10.1103/PhysRevB.101.195104
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1364/OE.8.000173
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1007/978-981-10-1128-3_5
http://dx.doi.org/10.1016/j.commatsci.2019.05.026
http://dx.doi.org/10.1016/j.commatsci.2019.05.026
http://dx.doi.org/10.1063/1.5052551
http://dx.doi.org/10.1016/j.cpc.2012.04.026

32

[LPS]

[MADWBI11]

[MBH"15]

[McK]

[MjD*20]

[MVG*21]

[pdt20]

[PHMTNI19]

[PPST]

[PVGT11]

[RADT 18]

[RD20]

[RDH"20]

GROMACS 3.0: A package for molecular simulation
and trajectory analysis. 7(8):306-317. doi:10.
1007/s008940100045.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert.
Numba: A LLVM-based Python JIT compiler. In
Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, LLVM ’15, pages
1-6. Association for Computing Machinery. doi:
10.1145/2833157.2833162.

Naveen Michaud-Agrawal, Elizabeth J. Denning,
Thomas B. Woolf, and Oliver Beckstein. Mdanaly-
sis: A toolkit for the analysis of molecular dynamics
simulations. Journal of Computational Chemistry,
32(10):2319-2327, 7 2011. doi:10.1002/7cc.
21787.

Robert T. McGibbon, Kyle A. Beauchamp, Matthew P.
Harrigan, Christoph Klein, Jason M. Swails, Carlos X.
Hernandez, Christian R. Schwantes, Lee-Ping Wang,
Thomas J. Lane, and Vijay S. Pande. Mdtraj: A modern
open library for the analysis of molecular dynamics
trajectories. Biophysical Journal, 109(8):1528-1532,
2015. doi:10.1016/73.bp3.2015.08.015.
Wes McKinney. Data Structures for Statistical Com-
puting in Python. pages 56-61. doi:10.25080/
Majora-92b£f1922-00a.

Alistair Miles, jakirkham, Martin Durant, Matthias
Bussonnier, James Bourbeau, Tarik Onalan, Joe Ham-
man, Zain Patel, Matthew Rocklin, shikharsg, Ryan
Abernathey, Josh Moore, Vincent Schut, raphael dussin,
Elliott Sales de Andrade, Charles Noyes, Aleksandar
Jelenak, Anderson Banihirwe, Chris Barnes, George
Sakkis, Jan Funke, Jerome Kelleher, Joe Jevnik,
Justin Swaney, Poruri Sai Rahul, Stephan Saalfeld,
john, Tommy Tran, pyup.io bot, and sbalmer. zarr-
developers/zarr-python: v2.5.0, October 2020. doi:
10.5281/zenodo.4069231.

Félix Musil, Max Veit, Alexander Goscinski, Guil-
laume Fraux, Michael J. Willatt, Markus Stricker, Till
Junge, and Michele Ceriotti. Efficient implementa-
tion of atom-density representations. The Journal
of Chemical Physics, 154(11):114109, March 2021.
doi1:10.1063/5.0044689.

The pandas development team. pandas-dev/pandas:
Pandas, February 2020. doi:10.5281/zenodo.
3509134.

Michael P. Howard, Thomas M. Truskett, and Arash
Nikoubashman. Cross-stream migration of a Brow-
nian droplet in a polymer solution under Poiseuille
flow. Soft Matter, 15(15):3168-3178, 2019. doi:
10.1039/C8SM02552E.

Sander Pronk, Szilard Péll, Roland Schulz, Per Larsson,
Pir Bjelkmar, Rossen Apostolov, Michael R. Shirts,
Jeremy C. Smith, Peter M. Kasson, David van der
Spoel, Berk Hess, and Erik Lindahl. GROMACS 4.5:
A high-throughput and highly parallel open source
molecular simulation toolkit. 29(7):845-854. doi:
10.1093/bioinformatics/btt055.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825-2830, 2011.
Vyas Ramasubramani, Carl S. Adorf, Paul M. Dodd,
Bradley D. Dice, and Sharon C. Glotzer. signac: A
python framework for data and workflow management.
pages 152-159, 2018. doi:10.25080/Majora-
4aflf417-016.

David Rodziewicz and Jacob Dice. Drought Risk to

the Agriculture Sector. The Federal Reserve Bank of

Kansas City Economic Review, December 2020. doi :
10.18651/ER/v105n2RodziewiczDice.

Vyas Ramasubramani, Bradley D. Dice, Eric S.
Harper, Matthew P. Spellings, Joshua A. Anderson,
and Sharon C. Glotzer. freud: A software suite
for high throughput analysis of particle simulation

[Roc15]

[SMRM™17]

[Stu]

[TAH* 18]

[TCD*14]

[Teal6]

[Teal8]

[TGM*20]

[TMS*]

[WDCI18]

PROC. OF THE 20th PYTHON IN SCIENCE CONF. (SCIPY 2021)

data. Computer Physics Communications, 254:107275,
2020. doi:10.1016/j.cpc.2020.107275.
Matthew Rocklin. Dask: Parallel computation with
blocked algorithms and task scheduling. In Kathryn
Huff and James Bergstra, editors, Proceedings of the
14th Python in Science Conference, pages 130-136,
2015. doi:10.25080/Majora-7b98e3ed-013.
Jindal K Shah, Eliseo Marin-Rimoldi, Ryan Gotchy
Mullen, Brian P Keene, Sandip Khan, Andrew S
Paluch, Neeraj Rai, Lucienne L Romanielo, Thomas W
Rosch, Brian Yoo, et al. Cassandra: An open source
monte carlo package for molecular simulation, 2017.
doi:10.1002/jcc.26544.

Alexander Stukowski. Visualization and analysis of
atomistic simulation data with OVITO-the Open Visu-
alization Tool. 18(1):015012. doi:10.1088/0965—
0393/18/1/015012.

Stephen Thomas, Monet Alberts, Michael M Henry,
Carla E Estridge, and Eric Jankowski. Routine million-
particle simulations of epoxy curing with dissipative
particle dynamics. Journal of Theoretical and Compu-
tational Chemistry, 17(03):1840005, April 2018. doi:
10.1142/50219633618400059.

John Towns, Timothy Cockerill, Maytal Dahan, Ian
Foster, Kelly Gaither, Andrew Grimshaw, Victor Hazle-
wood, Scott Lathrop, Dave Lifka, Gregory D. Peterson,
Ralph Roskies, J. Ray Scott, and Nancy Wilkins-Diehr.
Xsede: Accelerating scientific discovery. Computing
in Science Engineering, 16(5):62-74, 2014. doi:
10.1109/MCSE.2014.80.

Dask Development Team. Dask: Library for dynamic
task scheduling, 2016. URL: https://dask.org.
RAPIDS Development Team. RAPIDS: Collection of
Libraries for End to End GPU Data Science, 2018.
URL: https://rapids.ai.

Matthew W. Thompson, Justin B. Gilmer, Ray A.
Matsumoto, Co D. Quach, Parashara Shamaprasad,
Alexander H. Yang, Christopher R. Iacovella, Clare
McCabe, and Peter T. Cummings. Towards molecular
simulations that are transparent, reproducible, usable
by others, and extensible (TRUE). Molecular Physics,
118(9-10):e1742938, June 2020. doi:10.1080/
00268976.2020.1742938.

Matthew W. Thompson, Ray Matsumoto, Robert L.
Sacci, Nicolette C. Sanders, and Peter T. Cum-
mings. Scalable Screening of Soft Matter: A Case
Study of Mixtures of Ionic Liquids and Organic Sol-
vents. 123(6):1340-1347. doi:10.1021/acs.
Jjpcb.8b11527.

Nancy Wilkins-Diehr and T. Daniel Crawford. Nsf’s
inaugural software institutes: The science gateways
community institute and the molecular sciences soft-
ware institute. Computing in Science Engineering,
20(5):26-38, 2018. doi:10.1109/MCSE.2018.
05329813.

http://dx.doi.org/10.1007/s008940100045
http://dx.doi.org/10.1007/s008940100045
http://dx.doi.org/10.1145/2833157.2833162
http://dx.doi.org/10.1145/2833157.2833162
http://dx.doi.org/10.1002/jcc.21787
http://dx.doi.org/10.1002/jcc.21787
http://dx.doi.org/10.1016/j.bpj.2015.08.015
http://dx.doi.org/10.25080/Majora-92bf1922-00a
http://dx.doi.org/10.25080/Majora-92bf1922-00a
http://dx.doi.org/10.5281/zenodo.4069231
http://dx.doi.org/10.5281/zenodo.4069231
http://dx.doi.org/10.1063/5.0044689
http://dx.doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.1039/C8SM02552E
http://dx.doi.org/10.1039/C8SM02552E
http://dx.doi.org/10.1093/bioinformatics/btt055
http://dx.doi.org/10.1093/bioinformatics/btt055
http://dx.doi.org/10.25080/Majora-4af1f417-016
http://dx.doi.org/10.25080/Majora-4af1f417-016
http://dx.doi.org/10.18651/ER/v105n2RodziewiczDice
http://dx.doi.org/10.18651/ER/v105n2RodziewiczDice
http://dx.doi.org/10.1016/j.cpc.2020.107275
http://dx.doi.org/10.25080/Majora-7b98e3ed-013
http://dx.doi.org/10.1002/jcc.26544
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1142/S0219633618400059
http://dx.doi.org/10.1142/S0219633618400059
http://dx.doi.org/10.1109/MCSE.2014.80
http://dx.doi.org/10.1109/MCSE.2014.80
https://dask.org
https://rapids.ai
http://dx.doi.org/10.1080/00268976.2020.1742938
http://dx.doi.org/10.1080/00268976.2020.1742938
http://dx.doi.org/10.1021/acs.jpcb.8b11527
http://dx.doi.org/10.1021/acs.jpcb.8b11527
http://dx.doi.org/10.1109/MCSE.2018.05329813
http://dx.doi.org/10.1109/MCSE.2018.05329813

	Introduction
	Structure and implementation
	Applications of signac
	Overview of new features
	Data archival
	Improved data storage, retrieval, and integrations
	Data visualization and integrations
	Performance enhancements
	Improved user output
	Enhanced workflows

	Executing complex workflows via groups and aggregation
	Groups
	Aggregation
	Bundling
	Cluster templates

	Synced collections: backend-agnostic, persistent, mutable data structures
	Motivation
	Summary of features
	Applications of synced collections

	Project evolution
	Conclusions
	Installing signac
	Acknowledgments
	Author contributions
	References

