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Abstract: The objective of this work is to predict the morphology and material properties of1

crosslinking polymers used in aerospace applications. We extend the open-source dybond plugin2

for HOOMD-Blue to implement a new coarse-grained model of reacting epoxy thermosets and use3

the 44DDS/DGEBA/PES system as a case study for calibration and validation. We parameterize the4

coarse-grained model from atomistic solubility data, calibrate reaction dynamics against experiments,5

and check for size-dependent artifacts. We validate model predictions by comparing glass transition6

temperatures measurements at arbitrary degree of cure, gel-points, and morphology predictions7

against experiments. We demonstrate for the first time in molecular simulations the cure-path8

dependence of toughened thermoset morphologies.9
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1. Introduction13

Lightweight composites are increasingly used as alternatives to metal components of aircraft,14

especially over the last decades. Initially reserved for the most demanding aerospace applications, such15

as fighter aircraft, composite components are now prevalent in commercial aircraft, including 50% of the16

weight of the Boeing 787 [1]. This proliferation is enabled by improvements in composite formulations17

and processing, yet there exist significant opportunities to improve the reliable manufacturing of18

composite aerospace parts. Specifically, control of the thermoset matrix nanostructure (morphology)19

during the curing is currently underdeveloped and improvements could drastically increase the20

reliability and reduce the time and energy costs of part fabrication [2–4]. The challenge lies in21

understanding how morphology depends on the conditions experienced by the part during curing,22

and which morphologies have sufficient material properties for specific applications. Improved ability23

to predict properties from morphologies and morphologies from processing will enable:24

1. Predicting how deviations from process specifications impact performance.25

2. Composite formulations optimized for manufacturing requirements.26

3. Temperature schedules (termed cure profiles) optimized for speed and reproducibility.27

Embedding fibers in a matrix of polymers serves to support the fibers and transfers loads between28

them, providing the attractive bulk mechanical properties of fiber-based composites. The main chemical29

components of a thermoset are an epoxy species, an amine species, and sometimes a toughening agent.30
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Here we focus on the epoxy bisphenol A diglycidyl ether (DGEBA), amine 4,4’-diaminodiphenyl31

Sulfone (44DDS) mixed with toughener Poly(oxy-1,4-phenylsulfonyl-1,4-phenyl) (PES), a toughened32

thermoset found in aerospace applications (Figure 1). Thermoset manufacturers recommended cure33

profiles for matrix formulations based on cure requirements of the crosslinked polymer. Recommended34

cure profiles are empirically determined and are not necessarily the most efficient paths to sufficiently35

cured parts.36

Figure 1. Coarse-grained representations of 44DDS (A), DGEBA (B), and PES (C) repeat units. The
amines (A) can bond to up to four epoxies (B), which can each bond to up to two amines. All toughener
molecules are linear 10-mers of C.

Temperature deviations away from a desired cure profile increase the probability that the37

morphology and material properties of a part are compromised, and these parts must undergo material38

review to confirm whether this is the case. Material review involves the creation of a sample volume39

cured with the same temperature deviation as the original part, which then undergoes mechanical40

testing. Throwing away the deviant part and curing a new one usually costs less time and effort41

than replicating the deviation and validating the sample volume, which is wasteful in the cases of42

sufficiently strong deviants. Avoiding this waste would be possible if the sensitivity of mechanical43

properties to cure profile deviations were more fully understood.44

Computer simulations are needed for making sense of cure profile sensitivity because the45

parameter space combinatorics prohibit experimental enumeration, compounded by the impracticality46

of obtaining atomic-level detail of each cured morphology. Formulating a thermoset includes choosing47

the chemistry and proportions of epoxy, crosslinker, toughener, and additives compounds, resulting48

in combinatorial explosion of candidate formulations. Further, each formulation can result in a wide49

range of morphologies that depend upon cure profile, the number of which adds another factor to50

the intractability of enumeration. Models for thermoset curing implemented in computer simulations51

provide a proxy for part fabrication that are faster and less expensive to perform, and can provide52

insight into how atomic-level structure evolves and impacts proprerties. Further, modern GPU53

hardware enables sensitivity analysis and optimizing cure profiles for desired morphologies because54

screenings of independent formulations and cure profiles can be performed in parallel.55

Computationally predicting morphology requires models that faithfully capture the56

thermodynamics and kinetics of the crosslinking reaction between amine and epoxy molecules, and57

resulting phase separation of any tougheners present. Doing so is challenging because reactions58

dynamics occur at fast (1× 10−12 s) and small (1× 10−10 m) scales, while morphology evolution occurs59

at slow (1× 102 s) and large (1× 10−6 m) scales. Accurately simulating the cross-linking of the epoxy60

and amine species is crucial when modeling these systems as the bonding network influences the61

properties of the thermoset [5,6], in particular the relationship between the glass transition temperature62

Tg and cure fraction α described by the DiBenedetto equation [5,7–13]. Atomistic molecular dynamics63

(MD) simulations with temperature-independent bonding models have been successfully deployed to64

generate crosslinked nanostructures and glass transition temperatures Tg, but are limited to simulation65

volumes around (13 nm3) [14–18]. The work of Li, Strachan, and coworkers [14,15] demonstrates66

atomistic simulations of DGEBA reacted with 44DDS, 33DDS, and other crosslinkers to predict67

mechanical properties including Tg, density, modulus, and expansion coefficients. In the case of68
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Tg for 44DDS/DGEBA, the atomistic simulations performed overpredict Tg,sim = 525 K compared69

to DSC experiments Tg,exp = 450 K at 92% cure, though no empirical fitting is performed and70

cooling-rate-dependent corrections help explain the discrepancy [14,15]. Khare and Phelan investigate71

similar, untoughened DGEBA (2-mers) and 44DDS and predict 489 K≤ Tg,sim(α = 100%) ≤ 556 K,72

depending on cooling rate [18].73

Coarse-grained approaches demonstrate the ability to access substantially larger simulation74

volumes and time scales than atomistic approaches, and mapping atomistic degrees of freedom75

into crosslinked networks enables calculation of material properties [19–22]. In both Refs. [20]76

and [22], one-site dissipative particle dynamics (DPD) models are used to represent reacting monomers77

of 44DDS/DGEBA and DGEBA/DETA, respectively. In both cases, experimentally reasonable78

Tg are calculated after backmapping, and the case is made for large system sizes for observing79

toughener microstructure [20] and sufficient structural relaxation [22]. Langeloth et al. develop80

a coarse-grained model of intermediate resolution to study toughened DGEBA/DETA and show81

significant discrepancies in Tg(α)CG < Tg(α)AA. Earlier this year Pervaje et al. develop another82

intermediate-resolution coarse-grained model of reacting thermosets parameterized by SAFT-γ Mie83

calculations, which includes temperature-dependent reactions and a novel bonding algorithm [23].84

Applied to polyester-polyol resins, Tg predictions from the coarse model are in agreement with85

experiments [23]. While the exact details and experimental validations depend on the themoset86

formulation and the force fields used, multiscale approaches that use coarse models to access long87

times, large volumes, and high cure fractions 0.9 < α < 0.95 and atomistic simulations for mechanical88

property calculations have begun spanning the 1̃2 orders of magnitude between reaction dynamics89

and phase separation.90

However, to predict how thermoset microstructure depends on cure profiles,91

temperature-dependent reaction models are necessary. In our prior work developing epoxpy [24], we92

implented such a reaction model with DPD coarse-grained simulations. Here, we extend epoxpy and93

focus on simulation workflows for parameterizing, validating, and exploring materials behaviors94

of reacting thermosets with 44DDS/DGEBA toughened with PES as a case study. While prior95

studies [14,15,18,20–23,25,26] have included or implemented (1) Reaction rates calibrated against96

experimentally observed reaction models, (2) Microphase separation of toughener, or (3) Tg(α)97

validated against experiments, this work is distinguished by the inclusion of all three simultaneously,98

and crucially (4) We demonstrate for the first time structural sensitivity to cure profile.99

2. Model100

Spherical simulation elements (“beads”) are used to represent monomers of amine 44DDS (A),
epoxy DGEBA (B), and each repeat unit of PES (C) 10-mers (Figure 1). Non-bonded interactions are
modeled with the 12-6 Lennard-Jones (LJ) potential

VLJ(r) =4ε [(σ

r
)

12
− (σ

r
)

6
] r < rcut

=0 r ≥ rcut

where the parameters σ represent “size” of simulation elements and ε sets the magnitude of the
potential energy minimum between two simulation elements. Throughout this work σ is used as the
dimensionless length scale and σA = σB = σC = σ = 1 nm. We note that the relatively hard-core repulsion
of the LJ potential prevents chain crossing that is commonplace in DPD simulations, with impacts on
network structure and Tg calculations. Energy scales ε calculated from cohesive energy calculations
described in Section 4.1.1 and are summarized in Table 1. Interactions between dissimilar simulation
elements (“cross” interactions) are obtained using Lorentz-Berthelot (LB) mixing rules applied in prior
DGEBA studies [27–29], where

εAB =
√

εAεB (1)
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and
σAB =

σA + σB

2
. (2)

Harmonic potentials are used to model bond stretching between pairs of bonded simulations elements.101

Harmonic angle potentials are used to model bending among triplets of bonded PES (type C) simulation102

elements, but no angle potentials are used for epoxy-amine triplets. No dihedral or improper103

constraints are implemented here.104

Table 1. Interaction strengths (εij) determined by cohesive energy calculations.

(A) 44DDS (B) DGEBA (C) PES

(A) 44DDS 0.9216 0.9600 0.9026
(B) DGEBA 1.0000 0.9402
(C) PES 0.8840

Bond formation between amine and epoxy simulation elements is modeled through the stochastic
creation of harmonic bonds between A and B beads that are sufficiently close by an activated process
with probability of bond formation

p = e
− EaΥ

kBT , (3)

where Ea is activation energy and bond-order factor Υ = 1.0 if the bond being proposed is the first105

bond to form for either bead and Υ = 1.2 otherwise.106

By design, the energy scale for modeling pairwise interactions is distinct from the energy scale for107

modeling bond formation, which are both distinct from the energy scale for modeling vitrification.108

This modeling choice facilitates the empirical bridging of timescales that is the focus of the present109

work through exploitation of temperature-time superposition [6]. We report dimensionless simulation110

temperatures T = kBTK

ε throughout this work, where kB is Boltzmann’s constant, TK is temperature in111

Kelvin, and ε is an energy unit for either pairwise interactions, bonding reactions, or vitrification. These112

energy scales span about three orders of magnitude, with εpair = ε = 2.1× 10−22 J, εrxn = 1.78× 10−19
113

J, and εvit = 6.63× 10−21 J. The pairwise energy scale is derived from cohesive energy described in114

Section 4.1.1, the reaction energy scale is set from experimental measurements of activation energy [30],115

and the vitrification energy scale is set by equating the dimensionless Tsim
g (α = 1) to an experimental116

measurement of Texp
g (α = 1) = 480 K [31].117

3. Methods118

Simulations of curing epoxy thermosets (with and without toughener) are implemented with119

the open source dynamic bonding plugin “dybond” [32] written for the HOOMD-blue [33] molecular120

dynamics engine. Data storage, retrieval, and job submission is done with the signac[34,35] framework.121

System initialization is performed with mBuild [36]. Plots are created using matplotlib[37] and all122

scripts used for job submission and data analysis are available at this repository [38]. We use the123

bonding algorithm as outlined in our previous work [24]. Briefly, every τB molecular dynamics124

steps we attempt to form nB possible bonds where center-to-center distance between an epoxy and125

amine simulation element is r ≤ 1.0σ and with probability as in Eqn. 3. Here, nB = 0.005nT , where126

nT is the total number of bonds that can be formed, equal to four times the number of A beads for127

the stoichiometric mixtures of A and B. Simulation element positions and velocities are integrated128

forward in time according to Langevin equations of motion with drag coefficient γ = 4.5 and step size129

δt = 0.01. Random initial configurations are used for each independend simulation run. We calculate130

the toughener (PES-PES, C-C) structure factor S(q) for simulation snapshots using the “diffract” utility131

described in Ref. [39], enabling identification of any periodic domain features that could indicate132

phase separation. Unless otherwise noted, simulation parameters summarized in Table 2 are used133

throughout.134



Version September 30, 2020 submitted to Polymers 5 of 17

Table 2. Fiducial simulation parameters. Note that in the present CG model, monomer% and volume%
are equivalent but are not identical to corresponding experimental fractions.

Parameter Value

Bond equilibrium (A-B,C-C) (ro) 1.0 σ

Bond force constant (A-B,C-C) (k) 100 εpair

σ2

Angle equilibrium (C-C-C) (θ0) 109.5○

Angle force constant (C-C-C) (kangle) 25 εpair

σ2

Non-bonded interaction cutoff rcut 2.5 σ
Number density (ρn = N/V) 1.0
Activation Energy (EA) 3.0 εrxn
Bonding distance maximum 1.0 σ
Secondary bond weight (Υ) 1.2
Enthalpy of Reaction (∆Trxn) 0.0
Bond Period (τB) 1.0
Maximum attempted bonds (nb) 0.005nT
Langevin drag (γ) 4.5
%monomers 44DDS:DGEBA:PES 20:40:40
Cure temperature (T) 3.0
Step size (δt) 0.01

Glass transition temperatures are calculated directly from coarse-grained simulation volumes as135

described in section 4.3.3 of Ref. [40]. Briefly, snapshots of simulations that have reached a specified136

degree of cure α are used to initialize new simulations that are instantaneously quenched across a137

range of temperatures to identify Tg, below which the self-diffusion coefficient D vanishes (Figure 2).138

Figure 2. Tg prediction workflow: Snapshots at specified α are copied from a curing simulation to
initialize instantaneous quenches across candidate low temperatures to identify where the self-diffusion
coefficient D vanishes.

Diffusion coefficients D = dMSD
6dt are measured directly from quenched trajectories, where MSD

is the mean-squared displacement averaged over “B” (DGEBA) simulation elements. We employ
piecewise regression to identify the discontinuity in D(T). Calculations of Tg(α) are validated against
theory by measuring the R-squared fit of the DiBenedetto equation [41] modifed by Pascault and
Williams [13]

Tg(α) =
λα(Tg1 − Tg0)
1− α(1− λ)

+ Tg0, (4)

where λ is chemistry specific and represents the non-linear relationship between Tg and degree of cure139

and varies from 0 to 1 [13], Tg0 is the glass transition temperature at zero percent cure, and Tg1 is the140
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glass transition temperature at one hundred percent cure (α = 1). We set λ = 0.5 for its quality of fit141

here, and note it is larger than λ from prior work on 44DDS/DGEBA (0.34 [42]—0.38 [43]).142

4. Results143

The 6064 independent MD simulations performed in this work fall into three categories:144

1. Setup145

2. Validation146

3. Exploration147

In total, approximately 15,000 GPU-hours of simulation time are performed over about three months.148

Descriptions of analysis and simulation methods specific to each type of simulation are included in the149

appropriate subsections that follow.150

4.1. Setup simulations151

We perform 33 all-atom simulations to determine coarse-grained forcefield parameters, 4480152

coarse-grained simulations to calibrate reaction kinetics, and 1448 coarse-grained simulations check153

for finite-size effects before peforming validation and exploration studies.154

4.1.1. Forcefield parameterization155

We perform 33 all-atom MD simulations to calculate cohesive energies ecoh of amine 44DDS (A),
epoxide DGEBA (B), and toughener PES (C) moieties to parameterize their non-bonded interactions of
their coarse-grained simulation elements εi. In liquids, ecoh represents the energy required to separate
molecules from the liquid state into isolated molecules in the vapor phase

ecoh = Ebulk − Eisolated (5)

and is calculated from the difference in average molar potential energies E between bulk and isolated156

molecules [24,44]. Cohesive energies have been used to estimate macroscopic miscibility [45] and157

parameterize coarse LJ models [44] and we do the same in the present work. We use the OPLS-2005158

force field and NPT simulations at P = 1 atm, and simulate 11 temperatures equally spaced over159

T ∈ [273, 600] K. Each simulation volume is initialized with 500 molecules (monomers of DGEBA160

and 44DDS, 10-mers of PES) at a density of 1 g/cm3. After equilibration, densities in agreement161

with experiments of 0.8-1.14 g/cm3 (DGEBA), 1.3-1.1 g/cm3 (44DDS), and 1.3-1.2 g/cm3 (PES) are162

observed. Averaging over temperatures, we calculate ecoh for DGEBA, 44DDS and PES monomers163

as 30.36 kcal/mol, 27.98 kcal/mol and 26.84 kcal/mol respectively. We de-demensionalizes pairwise164

interactions in the coarse-grained models by normalizing by the DGEBA cohesive energy, resulting in165

the interaction potentials of Table 1.166

4.1.2. Reaction kinetics calibration167

Two parameters are tuned to calibrate reaction kinetics: The maximum number of bonds attepted168

per bonding step nB and the number of time steps between bonding steps τB. Reaction calibration169

is important for two primary reasons: First, the higher the ratio of nB/τB, the faster simulations can170

cure to higher α, which saves time. Therefore, the largest nB/τB that replicates experimental reaction171

dynamics optimizes computational throughput. Second, validating first-order reaction dynamics lays172

the foundation for exploratory simulations with self-accelerated reactions. We perform 20 independent173

coarse-grained simulations of 44DDS/DGEBA/PES at each of 224 combinations of (nB, τB, T) to174

identify the combinations that best fit a first-order reaction model from experimental data [30]. Each175

simulation has N = 50000 (10000 A, 20000 B, and 2000 10-mer chains of C) coarse simulation elements176

and is cured isothermally at T ∈ {0.2, 0.5, 1.0, 2, 3, 4, 5, 6}. Reaction parameters are sampled over the177

sets nB ∈ {2.5× 10−5, 5× 10−5, 1× 10−4, 1× 10−2}× nT (where nT is the total number of bonds that can be178
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formed, 40,000 here) and τB ∈ {1, 2, 10, 20, 40, 80, 100}. We find nB = 2.5× 10−5nT = 1.0 and τB = 1.0 here,179

and use nB = 2.5× 10−5nT for other system sizes.180

4.1.3. Finite Size Effects181

Here we investigate the effect of small system sizes on the prediction of glass transition182

temperatures and morphology.183

4.1.4. Glass Transition - small systems184

We perform curing simulations and Tg(α) calculations of small N = 500 volumes and find185

deviations relative to N = 50, 000 predictions of Tg(α). For each N = 500 and N = 50, 000,186

DGEBA/44DD/PES blends are cured isothermally at T = 3. Simulation snapshots at intervals α ∈187

{0, 0.3, 0.5, 0.7} are used to initialize new trajectories that are quenched to T = {0.05, 0.15 . . . , 2.95, 3.0}.188

Three independent quenches are performed for each of the 60 quench temperatures. Tg calculated189

from the quenches and the DiBenedetto fits are presented in Figure 3. While the smaller systems

Figure 3. Tg(α) calculations and DiBenedetto fits for N = 500 (orange) and N = 50, 000 volumes of
coarse-grained 44DDS/DGEBA/PES show the smaller system sizes result in noiser Tg predictions.

190

are noisier, the qualitative trend in Tg(α) is not without value, as these predictions can be used for191

estimates bounds of Tg that will lower the computaitonal cost of measuring the glass transition in192

larger systems.193

4.1.5. Morphology - small systems194

We next apply our model to study the domain sizes of PES toughener that evolve over the195

course of curing. We use the PES-PES structure factor to quantify the domain size of the PES196

toughener. We expect sufficiently large system sizes to demonstrate PES domain sizes independent197

of simulation volume, but to find volumes below which microphase separation cannot be resolved.198

Three replicates of system sizes with N ∈ {5× 104, 8× 104, 1× 105, 2× 105, 4× 105, 6× 105, 8× 105, 1× 106}199
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are cured isothermally to 90% with fiducial parameters shown in Table 2 and simulations were run200

for 1× 107 ∆t. The resulting structure factors S(q) are summarized in Figure 4 and local maxima in201

S(q) (red dots) indicate PES domains with a characteristic spacing of 26± 2 nm emerge in N ≥ 2× 105
202

systems. Importantly, cubic simulation volumes below N = 2× 105 are too small to resolve these 26

Figure 4. Finite size effects: PES-PES structure factor in α = 0.9 simulations shows emergence of a
0.236± 0.019 nm−1 (26± 2 nm) feature (dashed green line), too large to resolve in simulations where
N ≤ 2× 105. The color bar indicate system size (N). The blue star indicate half of the box length.

203

nm PES features, as the half-box-length (blue stars) for these volumes are smaller than 26 nm (recall204

conversion factor l = 2π
q between lengths l and wavenumbers q). Note that in the too-small volumes,205

no local maxima (red dots) are observed, and S(q) appears to diverge at low q. Therefore, for studies206

of microphase separation in 44DDS/DGEBA/PES, system sizes of at least N = 2× 105 are necessary.207

More broadly, microphase separation on length scales larger than half the periodic box length manifest208

as macrophase separation because local maxima in S(q) cannot be resolved for q < π
L for box length L.209

4.2. Validation simulations210

Validation simulations comprise 1424 coarse-grained MD simulations for calculating gel points,211

glass transition temperatures, and morphology of toughened 44DDS/DGEBA/PES and untoughened212

44DDS/DGEBA blends.213

4.2.1. Gel-point validation214

Isothermal curing simulations of the fiducial N = 50, 000 toughened 44DDS/DGEBA/PES215

volumes are performed to predict gelation. The gel-point is dependent on the underlying bonding216

network that forms as the amine and epoxy react, and is therefore a useful metric for validation in217

addition to Tg and S(q). We calculate the gel-point by examining at what degree of cure α the molecular218

weight of the largest and second largest chain diverge. We use the NetworkX [46] python package to219

measure the size of molecules as curing proceeds.220

We sample 26 independent isothermally cured (T = 3), toughened volumes spanning cure fractions221

from α = 0% to α = 92.4% and find the gel-point measured by molecular mass at αgel = 60% (Figure 5, in222

good agreement with theory and experiments. Flory-Stockmayer theory of gelation [47,48] predicts that223

gelation of 44DDS/DGEBA (a bifunctional monomer and a tetrafunctional monomer) at αgel = 58% [49].224

Flory-Stockmayer theory is known to underpredict the cure fraction at gelation, as steric hindrance225
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prevents functional groups reacting with equal probability [50]. Experiments of 44DDS/DGEBA curing226

measure αgel > 50% [51] and αgel = 60% [52].227

Figure 5. Divergence of the largest (blue) and second-largest (orange) molecular mass indicates gelation,
here calculated at α = 60%, in agreement with theory (58%) and experiments (60%). Error bars denote
standard deviations of 3 independent samples, except the 90% cure case, which have 2 samples.

4.2.2. Glass Transition Validation228

A total of 1770 coarse-grained MD simulations are performed to validate predicted Tg(α) against229

experimental data and theoretical fit to the DiBenedetto equation. First, three independent isothermal230

curing simulations are performed for N = 50, 000 systems at the fiducial simulation paramaters.231

Independent snapshots from α = 0 to α = 0.9 at intervals of dα = 0.1 are taken from each curing232

simulation to initialize independent quenches (Figure 2.) These 30 independent snapshots representing233

the full range of cure fractions are each quenched in independent simulations to each of the 40234

dimensionless temperatures from 0.05 to 2.0 at intervals of dT = 0.05, plus each of the 15 temperatures235

from 2.1 to 3.5 in intervals of dT = 0.1, plus T ∈ {3.6, 4.0, 4.5, 5.0}. From these simulations we focus on236

α ∈ {0, 0.3, 0.5, 0.7} for determining fits to the DiBenedetto equation, and temperatures 0.1 < Tquench < 2.5237

for identifying glass transition temperatures.238

We use piecewise regression to identify Tg from diffusivity measurements from each of the239

aforementioned simulations (Figure 6a), and fit with the DiBenedetto equation (Figure 6b). We240

validate against experiments of 44DDS/DGEBA by setting the extrapolated dimensionless value241

of Tg(α = 1) = 1.32 equal the experimental measurement 480 K and then checking intermediate242

α = 0.4 predictions. Here, our predicted Tg(α = 0.4) = 320 K is 6.7% higher than the experimental243

interpolation of 300 K for PES-toughened 44DDS/DGEBA [31], and 6.5% higher than the experimental244

interpolation of 310 K for the untoughened system [53] (Figure 6b). Several other untoughened epoxy245

systems which have a similar epoxy/amine chemistry also shows a similar trend in the DiBenedetto246

equation where the Tg(α = 0.4) ≈ 300 K [49,53,54]. It is also known from experiments that the uncured247

44DDS/DGEBA/PES system is completely miscible and flows at room temperature. Both conditions248

(Tg(α = 0) < 293 K, and Tg(α = 0.4) ≈ 300 K) are satisfied by the current model.249

4.2.3. Morphology validation250

To validate predictions of microphase separated morphology we first perform 3 independent251

curing simulations at T = 3 of the fiducial simulations (Table 2) at each of 5 system sizes (N =252

{4× 105, 6× 105, 8× 105, 1× 106}). These sizes are chosen because N = 4× 105 corresponds to cubic253

simulation volumes with side length L = 74 nm, far larger than needed to measure 26 nm periodic254

features with Fourier-based S(q) analysis (see Section 4.1.5). As in the simulations for understanding255

minimum simulation sizes, we measure the structure factor S(q)–specifically the wave number of256
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(a) (b)

Figure 6. (a) Diffusivities measured from quenches of 44DDS/DGEBA/PES as a function of cure
fraction and temperature. Green lines indicate linear fits of mid-T diffusivities used to calculate Tg,
which are indicated by stars. (b) Tg(α) (blue symbols) and the DiBenedetto fit (blue curve) from (a).
The simulated Tg at low and high cure fractions shows close agreement with Tg values measured from
an experimental 44DDS/DGEBA system [53] (open black diamonds) and 44DDS/DGEBA/PES [31]
(open cyan diamonds).

any local maxima—to quantify microphase separation and when systems reach steady states. A257

representative time evolution of S(q) is shown in Figure 7(a) for an N = 1× 106 system, which reaches258

steady state after 7× 106 steps. Figure 7(b) shows a representative N = 1× 106 morphology after259

achieving steady state. The average PES-PES S(q)measured for fiducial systems with N ≥ 4× 105 has260

a local maximum at qmax = 0.235± 0.020 nm−1, corresponding to feature spacings of 26.6± 2.5 nm.261

In experiments by Rosetti et al. [55], chemically similar DGEBF/44DDS toughened with PES262

is observed to undergo increasing reaction-induced phase separation that increases with increasing263

cure temperature. Nonfunctional PES, most similar to the system studied here, remains mixed at a264

cure temperature of 363 K, phease separates into 250 nm domains when cured at 403 K, and 400 nm265

domains when cured at 423 K. The length scales of nonfunctional PES phase separation we predict266

here are smaller than those reported in Ref. [55], but we observe the same qualitative trend of larger267

domain sizes with higher cure temperatures in the cure-path-dependent simulations forthcoming268

in Section 4.3.2. Phenoxy-functionalized PES, which can participate in crosslinking, is observed by269

Rosetti et al. that smaller PES nodular domains phase separate (40 nm at 4033 K and 150 nm at 423270

K). Smaller PES-rich domains are observed in experiments with a tri-functional epoxy, 44DDS, and271

functionalized PES, around 20 nm [56]. To fully resolve phase separation of 250 nm domains, (500 nm)3
272

simulation volumes are needed, a factor of 5 larger than the largest volumes cured here. In summary,273

the simulations presented here demonstrate toughener phase separation on length scales smaller than274

similar-but-not-equivalent experiments, and N = 1× 106 systems corresponding to (100 nm)3 volumes275

can routinely be cured to α = 0.9 in one week.276

4.3. Exploration simulations277

Exploration simulations are performed to measure the effect of including reaction enthalpy (80278

simulations) and the dependence of cure profile on final morphologies (23 simulations).279

4.3.1. Enthalpy Experiment280

With temperature-dependent reaction rates in the present model, we perform nonisothermal281

reaction simulations of otherwise fiducial systems to investigate what models of reaction enthalpy are282
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Figure 7. (A) PES-PES structure factor evolution for N = 1× 106 is used to quantify equilibration. Red
symbols indicate the wavenumber qmax of a local maximum in S(q).

sufficient for modeling self-accelerated first-order reaction kinetics. In the present case we assume the283

change in energy associated with the crosslinking reaction is instantaneously distributed among all284

simulation degrees of freedom, corresponding to an increase in temperature where ∆Hrxn = Cv∆Trxn for285

heat capacity Cv in the NVT ensembles studied here. We perform simulations with per-bond ∆Trxn =286

0.0, 1× 10−6, 1× 10−5, 1× 10−4 in addition to the same nB and τB ranges described in Section 4.3.1.287

Results summarized in Figure 8 validate first-order reaction kinetics are accurately modeled when288

∆T ≤ 1× 10−6, and that ∆T = 1× 10−4 is sufficiently large for self-accelerated first-order kinetics to289

always beat first-order kinetic fits to concentration profiles. Unlike the isothermal simulation cases290

where ∆T = 0 and reaction kinetics become more accurate as A is decreased, in the self-accelerated291

first-order kinetic models there exist optimal A ≈ 1. In sum, the present model permits straightforward

Figure 8. Quality of fit for first-order (FO) and self-accelerated first-order (SAFO) reaction models
as a function of∆Trxn and A = nB

τB
validate FO kinetics are most accurate for ∆T = 0, and that SAFO

kinetics best fit the concentration profiles when ∆T = 1e− 4. Error bars show standard error in R2 value
averaged across cure temperatures T = 0.5, 1.0, 2.0, 4.0, 6.0 kT

292

modeling of self-accelerated reactions through the inclusion of a per-bond change in temperature that293

is validated against kinetic models.294
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4.3.2. Sensitivity to Cure Profile295

The final studies in this work investigatethe dependence on structure of nonisothermal cure296

profiles meant to be representative of industrial temperature schedules. We first perform 17 simulations297

of otherwise fiducial N = 5× 104 volumes that step up from T = 2.0 to T = 3.5 instantaneously at time298

t1 ranging between 1.5× 104 steps and 4× 106 steps. We next perform 3 replicate simulations of299

N = 4× 105 volumes that each experience two changes in temperature: From T1 = 1.0 up to T2 = 2.0300

at t1 = 1× 105 steps, followed by a quench down to T3 = 1.2 at either t2 = 2× 106 steps or t2 = 9.5× 106
301

steps. Except for the instantaneous temperature changes described above, the simulations performed302

in this section are all isothermal. We calculate the time of gelation and S(q) to quantify structure.303

Results from the temperature steps from T = 2 to T = 3.5 are summarized in Figure 9, and304

demonstrate that gelation before 1e6 steps have elapsed is independent of initial time when t1 < 2× 105.305

Inset in Figure 9b are the cure profiles on semilog axes with open squares indicating gelation times,306

which are summarized in the main plot. The delay in gelation with longer times at low T is expected

(a) (b)

Figure 9. (a) Temperature profiles where the initial ramp up time (t1) is varied. (b) Time to gelation is
not affected by t1 < 2× 105 ∆t. t1 time denotes the time at which the cure temperature is ramped up
and held constant.

307

because the more time spent at higher temperature, the faster curing occurs, and the faster gelation308

will occur. Bicontinuous microphase separated morphologies are observed for all simulations here,309

but no measurable differences in periodic length scales are observed. These results demonstrate that310

modifying the cure profile enables control over how quickly systems gel.311

The final 6 simulations of N = 4× 105 volumes are cured isothermally at T1 = 1 for 1× 105 steps312

before being instantaneously heated to T2 = 2. Three simulations are quenched to T3 = 1.2 before313

gelation at t2 = 2× 106 steps, and held there until a total of 3e7 steps have elapsed. The other three314

simulations are quenched to T3 = 1.2 after gelation at t2 = 9.5× 106 steps, and held there until a total of315

1e7 steps have elapsed. Note that Tg(α = 0.87) = 1.2, so systems with α < 0.87 will be above the glass316

transition temperature at all points during these cure profiles. Temperature schedules, gel points, and317

cure profiles for these pre- and post-gelation quenches are summarized in Figure 10. The temperature318

set points correspond to T1 = 365 K, T2 = 730 K, and T3 = 438 K. T2 is chosen such that it is much higher319

than Tg(α = 1.0) = 480 K, facilitating diffusion especially before gelation. We analyze morphologies320

with final cure fraction α = 0.855 for both pre-gelation (blue data) and post-gelation (orange) quenches,321

neither of which is ever below its glass transition temperature.322
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(a) (b)

Figure 10. Temperatures profiles (a) and curing profiles (b) for t2 < tgel (t2 = 2 × 106 ∆t) and t2 > tgel
(t2 = 9.5× 106 ∆t). The hollow squares show gel point. T2 is chosen to be higher than and T3 is chosen
to be slightly lower than the Tg of the fully cured system (Tg(α = 1.0) = 480 K).

Figure 11. PES-PES structure factor shows difference in morphology as a result of varying t2 of the
“Step” curing profile. Both simulation volumes are cured to α = 0.855. Error bars represent standard
error from the three replicate simulations. The length scales of microphase separation are much smaller
in the pre-gelation quench (blue), whereas S(q) diverges around qL/2 = 0.17 nm−1, indicating a higher
degree of phase separation that is apparent in the more distinct clumping of the inset visualizations.

Average S(q) for the pre- and post-gelation cures are shown in Figure 11. Two features of the S(q)323

stand out: First, the length-scales of phase separation are smaller for the pre-gelation quench. Second,324

there is higher variance in the measured S(q) in the pre-gelation quenches.325

The observations of increased phase separation in the post-gelation quench are consistent326

with experiments demonstrating increased phase separation with higher cure temperatures [31,53].327

These observations are also consistent with two different mechanistic explanations: (1) Higher328

temperatures increases curing rates, which increase reaction-induced phase separation, and (2)329

Quenching pre-gelation keeps the morphology from being kinetically arrested, and so the tougheners330

can more easily mix and distribute in the unvitrified volume if thermodynamically favorable.331

These results demonstrate that thermoset volumes with identical cure fractions can have significant332

cure-path-dependent microstructures.333

5. Conclusions and Outlook334

We demonstrate a coarse-grained model of toughened epoxy thermosets that335
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1. Offers straightforward forcefield parameterization.336

2. Can capture first-order and self-accelerated first order reaction dynamics.337

3. Is validated against experimental gel points, glass transition temperatures, and morphology for338

44DDS/DGEBA/PES blends.339

4. Does not require backmapping for Tg calculation.340

5. Can cure million-particle volumes (corresponding to 31-million atoms and (100 nm)3 periodic341

boxes) to α = 0.9 in under one week.342

6. Demonstrates for the first time sensitivity of morphology to cure profile.343

In sum, the present work represents progress towards efficient prediction of the morphology and344

properties of realistic toughened thermosets and provides template workflows for calibrating models345

to specific formulations and cure profiles. These functionalities offer opportunity to develop a deeper346

understanding of aerospace-grade thermosets and more reliable manufacturing processes.347

The main shortcomings of this work are the degree of validation against experimental Tg and348

morphology. While the low and high cure fractions matched experimental glass transition temperatures349

for 44DDS/DGEBA, the curvature of our DiBenedetto fit was smaller than observed in experiments.350

We expect subsequent work in improved Tg detection from diffusivity data, calculation of Tg from351

back-mapped morphologies to provide better predictions of Tg across the full spectrum of cure352

fractions. While we recognize experiments characterizing toughener phase separation on the 10 nm353

- 50 nm length scales are challenging, additional work in this area would provide key datasets to354

validate against. Alternatively, applying the workflows presented here to thermoset formulations with355

small-scale phase separation characterized would be a information-rich extension of this work. Finally,356

this work sets the stage for investigations that simultaneously calibrate the energy scales of monomer357

interactions, reaction kinetics, vitrification to experimental curing profiles that measure the degree to358

which hour-long curing profiles can accurately be predicted by a few billion steps of a coarse-grained359

model.360
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AAMD All-Atom Molecular Dynamics
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DPD Dissipative Particle Dynamics
FO first order
LB Lorentz-Berthelot
LJ Lennard-Jones
MD molecular dynamics
PES Poly(oxy-1,4-phenylsulfonyl-1,4-phenyl)
PRM piecewise regression method
SAFO self-accelerated first order
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