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Proposal for a continuous wave laser with linewidth
well below the standard quantum limit
Chenxu Liu 1,2,3✉, Maria Mucci1,2, Xi Cao1,2, M. V. Gurudev Dutt1,2, Michael Hatridge1,2 & David Pekker 1,2✉

Due to their high coherence, lasers are ubiquitous tools in science. We show that by engi-

neering the coupling between the gain medium and the laser cavity as well as the laser cavity

and the output port, it is possible to eliminate most of the noise due to photons entering as

well as leaving the laser cavity. Hence, it is possible to reduce the laser linewidth by a factor

equal to the number of photons in the laser cavity below the standard quantum limit. We

design and theoretically analyze a superconducting circuit that uses Josephson junctions,

capacitors and inductors to implement a microwave laser, including the low-noise couplers

that allow the design to surpass the standard quantum limit. Our proposal relies on the

elements of superconducting quantum information, and thus is an example of how quantum

engineering techniques can inspire us to re-imagine the limits of conventional quantum

systems.
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The key property of a laser, which is crucial to its applica-
tions in quantum optics, quantum information, and
metrology, is its high coherence or narrow linewidth. The

main components of a laser, depicted in Fig. 1, are (1) one or
more atoms with an inverted population (also called the gain
medium), (2) an atom-cavity coupler, (3) a lasing cavity, and (4) a
cavity-output coupler and an output channel (transmission line).
The standard quantum limit (SQL) for the phase coherence time
was first introduced by Schawlow and Townes1, who showed that
the minimum possible laser linewidth is determined by the
linewidth of the laser cavity divided by twice the number of
photons in the cavity. This raises the question whether it is
possible to surpass this limit? Previous work on laser theory2,
quantum-cascade lasers3, superradiant lasers4, and number-
squeezed lasers5 has focused on the gain medium (1) and the
atom-cavity coupler (2). Specifically, in Ref. 2, Wiseman showed
theoretically that by using Susskind–Glogower operators6 to
couple the gain medium to the laser cavity, it is possible to
eliminate pump noise, but not loss noise7. This decreases the
minimum laser linewidth, though only by a factor of two.

At optical frequencies, the inherent light-matter coupling is
rather weak and consequently optical devices tend to be only
weakly nonlinear. Over the past two decades, significant progress
has been made on building strongly nonlinear optics. At optical
frequencies, using small-size high-Q optical cavities coupling to
atoms, strong coupling can be achieved in cavity QED system by
reducing the optical mode volume8–11. On the other hand, at
microwave frequencies, circuit QED achieves extremely strong
light-artificial atom interactions by utilizing the extreme non-
linearity and small size (compared to microwave-frequency
photons) of Josephson junctions12. Circuit QED devices include
the various flavors of superconducting quantum computing
platforms with components like fluxonium13 and transmon
qubits14,15, resonant cavities, microwave waveguides, and quan-
tum limited parametric amplifiers16,17. There is also experimental
precedent for building conventional lasers using superconducting
circuits with linear couplers18–20, as well as devices based on
parametrically driven, weakly nonlinear oscillators21,22.

In a very recent work, Baker et al.23 pointed out that it should
be possible to reduce the linewidth of a laser by a factor of ~〈n〉2

below the SQL, where 〈n〉 is the mean photon number inside the
cavity. They called this new limit on laser linewidth the "Hei-
senberg limit.” Furthermore, Baker et al. proposed a microwave

circuit in which photon gain and loss processes were engineered
using a pair of "photon treadmills” to add and remove photons
from the microwave laser (maser) cavity. Baker’s photon tread-
mill proposal represents a substantial increase in complexity, as
this maser requires multiple, pulsed light sources that make the
maser’s linewidth a direct tradeoff against complex controls.

In the present work, we begin by showing that simple engi-
neering of both the cavity-output coupling, in addition to the
atom-cavity coupling (see Fig. 1), can be used to suppress the
phase noise in the lasing cavity. Although our simple engineering
results in a decrease of the laser linewidth by a factor ~〈n〉 below
the SQL, as compared with ~〈n〉2 obtained by Baker et al., it
provides us with useful notions for how to construct lasers that
operate well below the SQL using only static couplers that do not
require coherent light pulses. Using these notions, we establish
our main result: a blueprint for building a maser in which
Josephson junctions and linear inductors are used to construct
nonlinear coupling circuits. These coupling circuits approximate
the behavior of Susskind–Glogower operators for a range of
cavity photon occupancies. We show that by using these circuits
to couple the laser cavity to both the gain medium and the output
port, it is possible to suppress the linewidth of the resulting maser
beyond the SQL by a factor of 〈n〉−1.098. Although we do not
achieve the proposed “Heisenberg limit” of 〈n〉2 reduction, our
scheme requires only a single, continuous, incoherent pump and
is thus a much simpler light source to control. We believe that
this is an important advantage for the development of sub-SQL
lasers at optical frequencies as well as for applications of these
devices both at microwave and optical frequencies.

Result
Overview of the results. The starting point for our exploration is
a proposal due to Wiseman2 for reducing laser spectral linewidth.
The laser linewidth, coming from the phase noise of the laser
light, has two equal contributions from both the atom-pump
process and the cavity loss process7. In ref. 2, Wiseman proposed
using “bare“ (so called because they lack a photon number scaling
pre-factor) raising and lowering operators

ê ¼ ∑
i
ij i iþ 1h j êy ¼ ∑

i
iþ 1j i ih j; ð1Þ

which were first introduced by Susskind and Glogower6, to couple
atoms of the gain medium to the resonant cavity of the laser. As

Fig. 1 Schematic of the superconducting Josephson laser. The laser is composed of: an artificial two-level atom (transmon qubit) that is incoherently
pumped from the ground to the excited state at the rate Γp, an atom-cavity (a-c) coupling circuit, a laser cavity made of an LC resonator, a cavity-
transmission line (c-tl) coupling circuit, and an output transmission line. The coupling circuits come in three flavors: (1) conventional: linear inductors, (2)
Susskind–Glogower bare operator (SGBO) couplers, and (3) Approximate Bare Operator Coupling Circuits (ABOCC). As the SGBO scheme is a purely
theoretical construct, it is represented by the a-c coupling Hamiltonian and the photon loss operator.
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these operators commute with the phase ϕ̂ of the optical field in
the cavity (which can be verified by observing that ê ¼ eiϕ̂),
Wiseman’s proposal eliminates pump noise and therefore reduces
the minimum linewidth by a factor of two (labeled DST2) below
the SQL, also known as the Schawlow–Townes (ST) limit (labeled
DST)2,24, i.e.,

DST2 ¼ 1
2
DST; DST ¼ Γc

4hni ; ð2Þ

where Γc is the cavity linewidth and 〈n〉 is the mean photon
number inside the cavity.

Our first result is a simple argument that establishes the result
that was presented by Baker et al.23, that it is possible to surpass
the SQL on laser linewidth by manipulating both that the atom-
cavity and the cavity-output channel couplings. We show that the
application of Wiseman’s scheme to both couplings can be used
to eliminate both the pump and the cavity loss noise. However,
we must also add some conventional loss to the laser in order to
stabilize it, the result is a linewidth that is 〈n〉 times narrower
than the ST limit. Having a mathematical scheme for building an
ultranarrow linewidth laser, we still need an experimentally viable
method for building bare operators.

Our second, and main, result is an Approximate Bare Operator
Coupling Circuit (ABOCC), composed of Josephson junctions
and inductors, that approximates the desired coupling Hamilto-
nian over a range of cavity photon occupancies. For laser
applications, our ABOCC is an attractive alternative to previous
proposals to build bare operators that relied on adiabatic rapid
passage2,25–29 as it does not require additional drives. We argue
that an ABOCC laser, in which couplers are ABOCCs, is a
practical laser design that achieves the ultranarrow linewidth
promised by Susskind-Glogower bare operator (SGBO) laser (see
Fig. 1). In the remainder of this paper, we first calculate the
behavior of the purely theoretical SGBO laser compared to an
ideal conventional laser, and then describe the physically
realizable ABOCC in detail and describe the potential perfor-
mance of a laser based on pair of ABOCCs.

In order to compare the linewidth D of different laser designs
to the ST limit DST we need to generalize the ST formula for the
cases in which the cavity-transmission line coupler is not linear.
We do so by replacing the cavity linewidth Γc by the ratio of the
laser luminosity to the energy of the photons in the cavity
Γc→ Pout/(ℏωc〈n〉) in Eq. (2) thus obtaining the formula

DST ¼ Pout
4_ωchni2

: ð3Þ

For conventional lasers, Eq. (3) is identical to the standard ST
linewidth formula. To ensure that each type of laser is performing
at its optimal, we fix the mean photon number in the cavity and
minimize the ratio D/DST by tuning the laser parameters. For
example, for the case of the conventional laser, we tune the atom-
cavity coupling strength ratio g/Γc and the atom incoherent pump
rate ratio Γp/Γc.

In Fig. 2 we plot the optimum laser linewidth, relative to the ST
limit, as a function of the average number of photons in the laser
cavity for three types of lasers: the conventional laser, the SGBO
laser, and the ABOCC laser. All data in this figure were obtained
numerically using the spectral method to analyze the master
equation (see Methods). We observe that for the conventional
laser, the ratio D/DST approaches unity as n becomes large. At the
same time, we observe that the laser linewidth for the SGBO laser
as well as the ABOCC laser is significantly narrower and goes as
D ~DST/〈n〉.

Suppressing the loss noise. We start by extending Wiseman’s
strategy for decreasing the laser linewidth to make the SGBO
laser. Following Wiseman, we replace the linear inductive cou-
pling between the atom and the cavity by the bare operator
coupling

H
SGBOð Þ
a-c ¼ g2 σ̂þêþ σ̂�êþ

� �
; ð4Þ

where ê and êy are defined in Eq. (1). We extend Wiseman’s
scheme by setting the cavity loss super-operator to be

L̂ SGBOð Þ
c-tl ¼ ΓeD½̂e� þ ΓcD½̂c�; ð5Þ

where Γe controls the rate of loss by the bare operators, while Γc
controls the rate of the conventional loss mechanism. This
extension can be thought as a form of bath engineering. A small
amount of conventional loss is essential for stabilizing the laser as,
without it, neither the rate at which photons are pumped into the
cavity, nor the rate at which photons leave the cavity depends on
the number of photons in the cavity, and hence the laser becomes
unstable.

We can achieve this tremendous reduction in linewidth as the
bare operator couplings allow photons to enter and leave the laser
cavity without inducing phase noise (and hence they do not
directly contribute to the linewidth). On the other hand, the
photon number operator is conjugate to the phase operator, and
therefore in the presence of only bare operator couplings, the
distribution of photon numbers in the cavity becomes infinitely
broad. Adding conventional loss makes the photon number
distribution have finite width, thereby stabilizing the laser at the
cost of introducing phase noise. While both the conventional and
the bare operator loss are contributing to the laser luminosity,
only the conventional loss is contributing to the laser linewidth,
and therefore the ratio of the SGBO laser linewidth DSGBO to the
generalized ST limit can be approximated by

DSGBO
DST

� hniΓc
2 Γe þ hniΓc
� � : ð6Þ

Here, the factor of 2 in the denominator accounts for the
elimination of pump noise, similar to the laser proposed in ref. 2.

Fig. 2 Laser linewidth as a function of the average number of photons 〈n〉
in the laser cavity for conventional, Susskind–Glogower Bare Operator
(SGBO), and Approximately Bare Operator Coupling Circuit (ABOCC)
lasers. The laser linewidth is in units of the generalized Schawlow–Townes
linewidth. Engineering of the atom-cavity coupling and the photon loss
allows both the SGBO and the ABOCC lasers to achieve a linewidth
significantly narrower than the best conventional laser. The dots represent
the numerically calculated linewidth ratio. The dashed blue line represents
D/DST= 1, the expected linewidth for the conventional laser in the 〈n〉→∞

limit. The orange and green dashed lines are linear fits on the log-log scale
of the linewidth ratio versus the mean photon number 〈n〉 of the SGBO and
ABOCC laser, respectively. The SGBO laser D/DST ~ 〈n〉−0.914 (orange) and
ABOCC laser D/DST ~ 〈n〉−1.098 (green). The black dashed line is a guide to
the eye with D/DST ~ 〈n〉−1.
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In Fig. 3a we plot the linewidth ratio DSGBO/DST as a function of
Γc〈n〉/Γe, the ratio between power emitted by conventional and
bare operator loss while keeping the mean photon number fixed
(see Methods). We observe that as we decrease Γc〈n〉/Γe, the ratio
DSGBO/DST first follows Eq. (6), then saturates at a point that
depends on the number of photons in the cavity, and then begins
increasing again. The origin of saturation and increase can be
understood by looking at the distribution of photon numbers in
the laser cavity.

When Γc〈n〉/Γe is large, conventional loss dominates and the
distribution of photon numbers in the cavity has a width � ffiffiffiffiffiffiffihnip
(Fig. 3b). As Γc〈n〉/Γe decreases, the distribution of photon numbers
in the cavity broadens (Fig. 3c). This continues until the distribution
width Δn becomes roughly half of 〈n〉, at which point the linewidth
saturates and the photon distribution becomes universal (Fig. 3d).
As Γc〈n〉/Γe is decreased even further, the photon number
distribution becomes even broader (Fig. 3e) and the probability to
have no photons in the cavity becomes appreciable. The state with
no photons in the cavity does not have a well-defined phase.
Consequently, the occupation of this state dominates the broad-
ening of the laser linewidth for small Γc〈n〉/Γe.

Engineering the ABOCC coupling circuits. We now take on the
challenge of engineering the ABOCC laser using circuit QED
devices. In the ABOCC laser system, we use a transmon qubit as a
pumping atom (Fig. 1). We use bath engineering to achieve an
incoherent drive on the transmon qubit to achieve population
inversion (see Supplementary Note 1). The transmon qubit is
modeled by a two-level system. The microwave cavity is modeled
as a LC resonator, which couples to the transmon qubit and the
output transmission line through two ABOCCs to mimic the SG
operators.

We start with the atom-cavity coupling. The key property of
the ê operator is that the matrix element jhn� 1ĵejnij ¼ 1 is
independent of n, while for the standard photon annihilation
operator ĉ, jhn� 1ĵcjnij ¼ ffiffiffi

n
p

. We have come up with the
coupling circuit, depicted in Fig. 1, composed of an RF-SQUID (a
Josephson junction shunted by a linear inductor) with an
additional π junction to ground (the π junctions could be made
from, for example, a second RF-SQUID that is flux-biased). The
linear inductor in the RF-SQUID provides the linear coupling
between the atom and the laser cavity (the cavity and the
transmission line). The Josephson junction provides the non-
linear coupling, whose strength is controlled by the Josephson

critical current of the junction. By tuning the critical current and
the linear inductance, the Boson amplification factor (

ffiffiffi
n

p
factor)

can be largely suppressed within some photon number range.
The ABOCC coupling the atom to the cavity is described by the

Hamiltonian

HðABOCC Þ
a-c ¼ ϕ20δ̂

2

2La-c
� EJ:a-c cos δ̂ þ EJ:c cos φ̂c; ð7Þ

where δ̂ ¼ φ̂a � φ̂c and φ̂a and φ̂c are the superconducting phase
operators of the transmon and the cavity; ϕ0=Φ0/2π; EJ:a-c=Φ0IJ:a-c
and La-c are the Josephson energy and the linear inductance of the
RF-SQUID part of the ABOCC and EJ:c is the Josephson energy of
the π junction. After quantizing the microwave cavity field, applying
Baker–Campbell–Hausdorff (BCH) formula and rotating wave
approximation, the atom-cavity coupling induced by ABOCC is

HðABOCC Þ
a-c ¼ g σ̂þÂc;m0

þ σ̂�Â
y
c ;m0

� �
; ð8Þ

where σ̂ are the Pauli operators for the atomic degree of freedom, the
atom-cavity coupling strength g is controlled by the critical current
(IJ:a-c) of the Josephson junction in the ABOCC and the normal-
ization parameter N of the ABOCC cavity operator Âc;m0

, Âc;m0
is

an effective cavity photon annihilation operator,

Âc;m0
¼ 1
N

2ϕ20~φa~φc
La-cEJ:a-c

c

 

� sin ~φa
� �

e�
~φ2c
2 ∑

1

n¼0

ð�1Þn~φ2nþ1
c ðcyÞncnþ1

n!ðnþ 1Þ!

� ð9Þ

and ~φa,c ¼ 1
ϕ0

ffiffiffiffiffiffiffiffiffi
_Za,c

2

q
and N is a normalization factor that ensures

that hm0jAc;m0
jm0 þ 1i ¼ 1.

The operator Âc;m0
is designed to work when there are m0

photons in the laser cavity, where m0 depends on the transmon
and cavity impedances (see inset of Fig. 4a and methods). In
Fig. 4a we plot the matrix element hnjÂc;m0

jnþ 1i as a function
of n/m0. We observe that the matrix element has a plateau,
centered on n=m0, around which it is independent of n. The
plateau is obtained by combining the sinusoidal current phase
relation of the Josephson junction with the linear current phase of
the inductor in the coupling circuit (see methods). On this
plateau, Âc;m0

behaves approximately like the bare operator ê. In
Fig. 4a the matrix element traces with different m0s are

Fig. 3 The linewidth and the photon distribution of the Susskind–Glogower Bare Operator (SGBO) laser. a Minimum laser linewidth can be achieved by
tuning the ratio of power emitted by conventional (〈n〉Γc) and bare operator (Γe) loss for different cavity occupancies. The dotted line represents Eq. (6).
Photon number distributions are shown in b–e for four cases: conventional loss is dominant (b); intermediate conventional loss (c); minimum linewidth (d);
and conventional loss is very weak (e). The lines in all subfigures are for the SGBO laser with 〈n〉= 100 (blue), 300 (orange), 500 (green), 700 (salmon),
and 900 (purple).
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indistinguishable. This indicates that the range of ns over which
Âc;m0

behaves like ê also scales with m0.
We introduce another ABOCC to engineer the nonlinear

coupling between the laser cavity and the transmission line
(bath). After applying BCH fomular and RWA, we further
assume that the transmission line field can be treated as a
Markovian bath and trace out the bath degrees of freedom (see
Method). After tracing out the bath, the effective nonlinear loss
for the cavity field can be expressed in the Lindblad form as
follows:

L̂ABOCCc-tl ¼ Γ1D½B̂c;m0
�; ð10Þ

where the rate constant

Γ1 ¼ N 2 E
2
J:c�tl

_2
_Ztl
2ϕ20

� �
1
ωc

ð11Þ

the nonlinear cavity operator

B̂c;m0
¼ 1

N Ctle�~φ2
c=2 ∑

1

n¼0

ð�1Þn~φ2nþ1
c

n! � ðnþ 1Þ! cy
� �n

cnþ1

�

þ 2ϕ20~φc

Lc-tlEJ:c�tl
c

!
;

ð12Þ

and Ztl is the transmission line characteristic impedance, ωc is the

frequency of the cavity, Ctl ¼

exp � 1
ϕ20

_Ztl
4π

� �
1þ θ

ωc
þ θ2

2ω2
c
þ O θ3

ω3
c

� �h i
and θ≪ ωc is the band-

width of the transmission line, N is a normalization constant (see
Supplementary Note 4).

The ABOCC laser, in which we use ABOCCs for both atom-
cavity and cavity-transmission line couplings, is stable and does
not require conventional loss like the SGBO laser. To tune up the
ABOCC laser we first choose the desired number of photons in
the cavity and then set the impedances of the inverted transmon
qubit, the cavity, and the transmission line so that both ABOCCs
have the desired value of m0. Next, we vary the transmon qubit’s
inverting incoherent pump strength Γp (see30,31 and Supplemen-
tary notes for how to implement this drive) and the atom-cavity
coupling strength g while fixing the cavity-transmission line
coupling strength in order to minimize the ratio DABOCC/DST (see
Fig. 4b).

The general performance characteristics of the ABOCC laser
are very similar to those of the SGBO laser. Both have a linewidth
that is a factor of 1/〈n〉 narrower than the generalized ST limit
(see Fig. 2). At the optimal operating point, both have a photon

distribution in the cavity with a width that scales with 〈n〉3/4 as
opposed to 〈n〉1/2 for conventional lasers (see Figs. 3d and 4c and
Supplementary Note 6). There is, however, a difference in the
shape of the distributions. In the case of the SGBO laser, the
photon distribution width is limited by occupation of the empty
state. On the other hand, in the ABOCC laser, it is limited by the
width of the plateau on which the operator Âc;m0

behaves like the
bare operator (see Fig. 4a).

Discussion
We pause to comment on what is a laser and what are the crucial
ingredients for building a sub-SQL laser. We start by asking what
are the key properties a laser: is it a lasing threshold? is it sti-
mulated emission? or is it turning broad-band pump light into
narrow linewidth output light? Both the device in ref. 23 and our
device can be thought of as single-atom masers, in which just one
atom as opposed to a collection of atoms is used to pump the
resonant cavity. There is considerable literature on the properties
of conventional single-atom lasers and masers and whether these
devices should be considered to be true lasers though they do not
have a lasing threshold10,32–38. However, we concentrate on
single-atom lasers as a more technically tractable approach to the
problem of constructing a sub-SQL device. Instead, the crucial
point is abandoning both stimulated emission and conventional
photon loss from the resonant cavity, which are the key features
of both conventional and single-atom laser, in favor of quantum-
engineered atom-cavity and cavity-output couplings. While the
sub-SQL masers proposed here and in ref. 23 do not have a lasing
threshold nor employ stimulated emission, they do share the
crucial property that they can take noisy input light and turn it
into ultranarrow output light as required by refs. 2,37.

Our results raise the question: given our demonstrated ability
to greatly exceed the SQL, what is the ultimate quantum limit on
the linewidth of a laser? Baker et al. argue that the ST limit
divided by 〈n〉2, which the authors call the Heisenberg limit, is the
ultimate limit on laser linewidth23,39. Our laser circuit already far
exceeds the ST limit, operating at the geometric mean of the ST
and the Heisenberg limit. However, in passive nonlinear optical/
microwave systems, there appears to still be some room for future
improvements. Specifically, in contrast to ref. 23, where the pho-
ton number noise scales as 〈n〉, our proposed ABOCC laser shows
〈n〉3/4 scaling. We speculate that by further optimizing the cou-
pling circuits, it should be possible to realize photon number
noise that scales with 〈n〉 and laser linewidth that approaches the
Heisenberg limit.

In summary, we have shown that by engineering the photon
loss operator, it is possible to build a laser that is 〈n〉 times

Log

Fig. 4 The Approximately Bare Operator Coupling Circuit (ABOCC) operator and the linewidth and photon distribution of the ABOCC laser. a The
matrix element hnjÂc;m0

jnþ 1i as a function of the photon number in the cavity shows a plateau on which the matrix element is independent of the photon
number thus approximating the bare operator. The matrix elements, which we computed for cavity impedance Zc= 50Ω (blue), 40Ω (orange), 30Ω
(green), 20Ω (salmon), 15Ω (purple), and 10Ω (brown) which controls m0 as shown in the inset (the impedance of the qubit was set to Za= 47.71Ω),
appear almost indistinguishable after re-scaling the photon number by m0. b Tuning the ABOCC laser by varying the pump power Γp and the atom-cavity
coupling strength g that is controlled by IJ:a-c. c The photon number distributions of the optimum linewidth point at m0= 1600 (blue), 1500 (orange), and
1400 (green). All three lines appear to collapse after appropriate re-scaling of both axes.
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narrower than the SQL, where 〈n〉 is the number of photons in
the laser cavity. We have also developed a realistic roadmap for
constructing this type of laser using standard circuit QED com-
ponents: capacitors, inductors, and Josephson junctions. These
are exactly the same components that are used in a wide variety of
superconducting quantum information devices. The device we
propose could be an ultra-coherent, cryogenic light source for
microwave quantum information experiments.

Furthermore, the photon field in the cavity of the proposed
laser is highly squeezed (see Supplementary Note 6) with the
photon number distribution width scaling with the photon
number (as opposed to the square-root of the photon number
that is observed in conventional lasers). The proposed device can
be thought of as approaching the Heisenberg limit on phase
estimation. We envision that the proposed device could be
modified to provide designer quantum light that is an important
resource for continuous variable/linear optical quantum
computing40–42, readout of quantum states in superconducting
quantum computers43,44, quantum metrology45–48, and quantum
communication49–52. In addition to being an interesting source of
quantum light for quantum information experiments, the pro-
posed device also shows how even well-understood quantum
optical objects such as lasers can be re-imagined with the tech-
niques of quantum information and the tools of superconducting
circuits.

Methods
Eigenspectrum method to solve laser linewidth. To describe the lasers we use
the master equation

_ρ ¼ L̂a½ρ� �
i
_
½Ha-c; ρ� �

i
_
½Hc; ρ� þ L̂c-tl½ρ�: ð13Þ

The Hamiltonian Ha-c describes that atom-cavity coupling and the super-operator
L̂c-tl½ρ� describes loss of cavity photons to the transmission line. The super-

operator L̂a½ρ� ¼ � iωa
2 ½σz ; ρ� þ ΓpD½σþ�ρ describes the artificial atom, where σz is

the atom Pauli matrix and D½σþ�ρ ¼ σþρσ� � 1
2 ðσ�σþρþ ρσ�σþÞ describes the

action of the incoherent pump. The incoherent drive on the transmon qubit is
achieved through bath engineering. We couple a SNAIL qubit, which has third-
order nonlinearity to achieve two-photon pumping process, to the transmon qubit.
We drive the two-photon process that pumps both SNAIL and transmon qubits
from their ground states to the first excited state. The SNAIL qubit also couples to a
lossy cavity, which makes the SNAIL qubit to have a fast population decay back to
the ground state. Therefore, the transmon qubit experiences an effective incoherent
drive from its ground state to the excited state (see Supplementary Note 1). The
Hamiltonian Hc= ωcc†c describes the cavity energy levels, where c is the photon
annihilation operators in the cavity and we set ωc= ωa.

To obtain the linewidth of the laser we numerically find the eigenspectrum of
the time evolution super-operator defined by the right hand side of Eq. (13). The
master equation Eq. (13) can be thought of as an eigenvalue problem of the super-
operator. The spectrum of eigenvalues has one zero eigenvalue λ0= 0, which
corresponds to the steady-state solution of the laser system, and a number of
negative eigenvalues that correspond to the decaying modes. The laser linewidth
can be calculated by the Fourier spectrum of the two-time correlation function of
the light field, which consists of a linear combination of decaying exponentials with
the decay time set by these negative eigenvalues. Almost all of the weight is carried
by the eigenstate with the largest nonzero eigenvalue of the super-operator (see
Supplementary Note 3 for details). We use this largest nonzero eigenvalue of the
super-operator to estimate the laser linewidth.

Optimizing SGBO laser. To optimize the SGBO laser (Fig. 3a): (1) we work in the
strong atom-cavity coupling regime by fixing g2 ¼ 1000

ffiffiffiffiffiffiffiffiffiffi
ΓPΓe

p
. In this regime we

estimate the mean photon number to be 〈n〉 ~ (Γp− 2Γe)/(2Γc). (2) We tune Γp/Γe
and Γc/Γe to optimize the laser linewidth while fixing the mean number of photons
in the cavity.

Deriving ABOCC nonlinear cavity operators. The ABOCC coupling the atom to
the cavity is described by the Hamiltonian in Eq. (7). Note that the nonlinear atom-

cavity coupling is given by cos δ̂ term, which can be expanded as follows:

cos δ̂ ¼ 1
2
e�

~φ2c
2 e�i~φa σ̂x ei~φc c

y
ei~φcc

�
þ ei~φa σ̂x e�i~φcc

y
e�i~φcc

� ð14Þ

where we assume the atom is a two-level system, whose operators can be expressed

using Pauli operators, i.e., φ̂a ¼ ~φaσ̂x , and ~φa,c ¼ 1
ϕ0

ffiffiffiffiffiffiffiffiffiffi
_Za,c

2

q
. This term induces a

nonlinear self-energy of the cavity field cosð~φaÞ cos φ̂c that can be canceled by
tuning the critical current of the π-junction in ABOCC. The rest of the terms with
the cavity operators can be expanded using the BCH formula, and applying the
rotating wave approximation we obtain Eq. (8).

The nonlinear coupling between the cavity and transmission line through
ABOCC is analyzed using similar method. At first, the free field of the transmission
line is quantized (see Supplementary Note 2 for details)16. The ABOCC coupling
Hamiltonian is in the similar form of Eq. (7), except the phase difference operator

δ̂c-tl ¼ ~φc ĉþ ĉy
� �þ i∑

k
~φtlðkÞ b̂k � b̂

y
k

� �
: ð15Þ

where ~φtlðkÞ ¼ 1
ϕ0

ffiffiffiffiffiffiffi
_Ztl
2

q ffiffiffiffiffi
vp
lωk

q
is the transmission line quantization constant, vp, Ztl,

and l are the wave speed, the characteristic impedance, and total length of the
transmission line, respectively.

Because of the nonlinear nature of the cavity-transmission line coupling, there
are multi-photon exchange processes, which can be seen from the expanding the
cosðδ̂c-tlÞ terms in the coupling Hamiltonian. We re-order the expanded terms by
the number of transmission line (bath) operators, which is also the number of
photon exchange between the cavity and the transmission line. We assume the
transmission line is a vacuum bath and apply RWA and Markov approximation to
trace out the transmission line degrees of freedom, all the terms in different orders
in the coupling Hamiltonian give decay channels, which are represented by
different Lindblad operators. The first-order terms in the Hamiltonian give the
leading order among these decay channels (see Supplementary Note 4). We focus
on the leading order and ignore the higher-order terms. The first-order term gives
the Lindblad operator given in Eq. (10) with loss constant and nonlinear cavity
operator in Eqs. (11) and (12).

Data availability
The data used for generating all the figures in both the main manuscript and the
supplementary notes are generated by the codes.

Code availability
The code written in this study have been deposited in the Zenodo under https://doi.org/
10.5281/zenodo.501616853.
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