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ABSTRACT

Understanding end-user video Quality of Experience (QoE) is im-
portant for Internet Service Providers (ISPs). Existing work presents
mechanisms that use network measurement data to estimate video
QoE. Most of these mechanisms assume access to packet-level
traces, the most-detailed data available from the network. However,
collecting packet-level traces can be challenging at a network-wide
scale. Therefore, we ask:“Is it feasible to estimate video QoE with
lightweight, readily-available, but coarse-grained network data?”
We specifically consider data in the form of Transport Layer Secu-
rity (TLS) transactions that can be collected using a standard proxy
and present a machine learning-based methodology to estimate
QoE. Our evaluation with three popular streaming services shows
that the estimation accuracy using TLS transactions is high (up to
72%) with up to 85% recall in detecting low QoE (low video quality
or high re-buffering) instances. Compared to packet traces, the es-
timation accuracy (recall) is 7% (9%) lower but has up to 60 times
lower computation overhead.
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1 INTRODUCTION

Last-mile Internet Service Providers (ISPs), especially cellular ISPs,
need to efficiently provision and manage their networks to meet the
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Figure 1: QoE inference steps

growing demand for Internet video [1, 19]. This network optimiza-
tion requires ISPs to have an in-depth understanding of end-user
video Quality of Experience (QoE). Understanding video QoE is,
however, challenging for ISPs as they generally do not have access
to applications at end-user devices. This is further exacerbated by
an increasing use of end-to-end encryption, significantly limiting
the information ISPs can obtain from the network traffic to estimate
video QoE. ISPs are thus constrained to rely on their limited view
of the network data to estimate video QoE metrics.

Video QoE estimation using network data primarily consists of
three steps: i) collecting network data using a monitoring tool, ii)
identifying video traffic and sessions from collected data, and iii)
estimating session QoE metrics using methods designed for this
purpose (see Figure 1). Prior work in this domain has mainly fo-
cused on designing QoE estimation mechanisms (step 3 in Figure 1)
with a goal to improve inference accuracy [12, 14, 17, 22, 24, 25].
In doing so, most of these mechanisms assume access to packet
traces, the most granular network data. However, collecting and
processing packet-level data from the entire network is challenging
because of the scale of ISP networks [10, 13]. At the same time,
it is important for ISPs to understand network-wide video perfor-
mance for efficient management and provisioning, especially in
the case of capacity-constrained and highly heterogeneous cellular
networks. This makes it challenging to use existing QoE estimation
mechanisms in practice.

One possible approach is to develop flexible telemetry systems
that provide the most useful metrics (e.g., HTTP transactions)
required for inference by in-network processing of the packet
data [8, 21, 28]. While this is a viable approach, it involves sig-
nificant modifications to the existing measurement systems and
has the following practical challenges, i) limited measurement re-
sources and budget with the constraint that the same network data
is often used for multiple purposes (e.g., security, performance), and
ii) limited flexibility since such tools are provided by vendors [37].

Given these challenges, we ask: ‘Is it feasible to detect video
performance issues with lightweight, readily-available but coarse-
grained network data?” Our question is motivated by the fact that
ISPs already collect coarse-grained data using standard telemetry
systems for different network management functions [23, 33, 35, 37].
We consider whether such data can be used by ISPs to estimate
coarse-grained QoE metrics (e.g., low, high) and thus to identify
parts of the network that underperform in a lightweight manner.
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Ultimately, this approach can enable adaptive video performance
monitoring wherein an ISP collects fine-grained data only from the
problematic locations for further diagnosis.

We specifically consider coarse-grained network data in the form
of Transport Layer Security (TLS) transactions. The data is clearly
lightweight as number of TLS transactions in a video session is
significantly smaller (by a factor of 1400 in our dataset) as compared
to packets. The data is also readily available as TLS transactions can
be collected using a transparent proxy (e.g., Squid [4]). In fact, most
cellular ISPs already use a transparent proxy for various network
management functions (e.g., traffic accounting, differentiation) and
such proxy has an off-the-shelf capability to report TLS transac-
tions [3]. Finally, video traffic can be easily identified (step 2 in
Figure 1) using the headers from TLS transaction data. Prior work
has used similar data to infer QoE for web traffic [30] and unen-
crypted video! [23]. A major challenge, however, is that the TLS
transaction data is coarse-grained. Thus, existing inference tech-
niques will not work on this form of data. Another challenge in
using this data is to delimit sessions? when a user watches back-to-
back videos from the same service. Accurate session identification
is important for accurate QoE estimation due to changes in stream-
ing patterns and the corresponding traffic within a session as it
progresses (see Section 2).

Therefore, we analyze the feasibility of using TLS transaction
data to detect video performance issues. Specifically, we consider
categorical estimation of key video QoE metrics [18, 20], namely,
video quality, re-buffering ratio and a combined QoE metric that
jointly considers the two individual metrics (Section 2). We first
develop a machine learning (ML)-based approach that builds on
previous work by adapting ML-based techniques to TLS transaction
data. We evaluate our methodology using data collected under
diverse emulated network conditions from three streaming services,
namely, YouTube, Netflix, and Hulu (anonymized in the paper). We
also compare the QoE estimation accuracy using TLS transaction
data against packet traces. Finally, we present a simple heuristic
to distinguish consecutive sessions from the same video service
leveraging TLS transaction arrival and server access patterns.

Our key findings are summarized below:

e The TLS transaction data can be used to estimate combined QoE
metric (Section 2) with an accuracy of up to 72% and detect low
QoE (low video quality or high re-buffering) instances with a
recall of 73%-85%.

o Compared to packet traces with an existing ML-based approach [12],
estimation using TLS transaction data has up to 7% (9%) lower
accuracy (recall), but it has 1400x lower memory overhead and
60x lower computation overhead.

o The session identification heuristic can accurately identify 89%
of the consecutive sessions.

2 TARGET QOE AND NETWORK DATA

Most of the Internet video is streamed using a class of techniques,
called HTTP-based Adaptive Streaming (HAS), that dynamically
adapt the video quality based on the network conditions. In HAS,
the video is divided into segments with each segment encoded

!For unencrypted video, a proxy provides HTTP transactions
2Qur definition of a session consists of streaming a single video
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into a pre-defined set of quality levels. The player at the client
downloads video segments by sending HT TP requests. The quality
of the segments is determined by the adaptation algorithm used in
the player [15, 16, 36]. Here we describe the HAS QoE metrics we
estimate and the network data used for their inference.

2.1 Target QoE metric

QoE in HAS is impacted by a variety of factors, namely, re-buffering,
video quality, startup delay, and quality variations [6, 18, 20, 26].
Existing inference approaches estimate these objective QoE met-
rics for a video session in two different ways: fine-granular and
per-session. The former estimates QoE metrics periodically within a
session while the latter provides estimates only once for the entire
session. The QoE estimation granularity of an approach is clearly
impacted by the granularity of the input network data. Given that
the data we use is coarse-granular, we consider categorical esti-
mates (i.e, low, medium, and high) of per-session video QoE metrics.
Such estimation enables ISPs to identify network locations with
video performance issues in a lightweight manner. Specifically, we
estimate the following key video QoE metrics [20]:
Re-buffering ratio (rr): It is defined as the stall time in proportion
to the total playback time and measures the severity of stalls in a
session. We classify rr into the following three categories: i) zero, if
there are no stalls, ii) mild, if 0 < rr < 2%, and iii) high, otherwise.
Video quality: In HAS, videos are typically encoded into discrete
quality levels with more bits typically required to encode higher
video quality. The quality levels tend to be same for a video service
(e.g., Netflix) and streaming protocol (e.g., HLS, DASH) combina-
tion3. We set thresholds and categorize the quality levels to low,
medium, and high (see Section 4). The video quality of a session
is defined as the majority category of the quality level played in a
session [34]. In case of a tie, we select the lower category.
Combined QoE: We estimate the combined QoE of a session by
jointly considering the individual QoE metrics. There are a number
of ways to combine the individual metrics [6, 36]. In this paper, we
use a simple approach of using the minimum category of the two
QOE metrics. E.g., if a session had zero re-buffering but low video
quality, its overall QoE is assigned to low. Our methodology can
also work for other combinations.

Thus, for each session we estimate the categorical values of video
quality, re-buffering ratio, and combined QoE.

2.2 Network data

ISPs typically collect different kinds of data from within their
network which includes network device-level data (e.g., SNMP
logs [29]) and aggregate statistics from passive traffic monitoring
(e.g., NetFlow [9] and Proxy data [4]). Clearly, device-level data
cannot be used to even identify video traffic, let alone assess its
QoE. Therefore, we consider aggregate network traffic data that
can be collected with standard monitoring tools for QoE inference.

Specifically, we consider encrypted network traffic data in the
form of TLS transactions collected using a transparent proxy (e.g.,
Squid [4]) that inspects the unencrypted TLS headers. A major chal-
lenge, however, is that the TLS transaction data is coarse-granular.

3Some videos may not be available at all quality levels. A service may use different
quality levels based on the content type (e.g, live, on-demand).
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Figure 2: TLS transactions with the corresponding HTTP transac-
tions within first 5 seconds of a Svc1 session. For clarity, only start
of the HTTP transactions is shown.

Figure 2 shows the TLS transactions within the first 5 seconds of
a sample session from Svcl with the corresponding HTTP trans-
actions?, considered important for QoE inference in the related
work [14]. Clearly, a single TLS transaction contains multiple and
variable number of HTTP transactions. We observed an average
of 12.1 HTTP transactions corresponding to every TLS transaction
for the Svcl sessions in our dataset (see Section 4).

It can also be challenging to correctly delimit session boundaries
using TLS transaction data if multiple videos from the same ser-
vice are watched back-to-back by a user. This is because the active
TLS transactions do not always end immediately once the player
is closed, but timeout after some duration, leading to overlapping
transactions for consecutive sessions. Therefore, a timeout-based
approach, wherein a session boundary is detected if there is no
more video traffic for a certain time, would not work. Inaccurate
session identification can lead to errors in QoE estimation due to dif-
ferences in buffering state and steady state network characteristics
in HAS [5]. Existing work suggests heuristic based on fine-granular
traffic size information [8] which will not work with TLS transac-
tion data due to its coarse-granularity.

Our goal is to analyze the feasibility of using such coarse-granular
but readily-available and lightweight data to estimate video QoE. We
consider two kinds of information available in a TLS transaction:
i) start and end time, and uplink and downlink size, and ii) Server
Name Indicator (SNI) field indicating the server hostname. We use
the former for QoE estimation and the latter for video traffic and
session identification.

We note that flow-level monitoring (e.g., NetFlow [9]) is another
popular measurement technique. In fact, flow record data with
size counters from Netflow is similar to TLS transaction data as
there is typically a single TLS transaction in a TCP connection.
Flow-level monitoring also provides an option of obtaining periodic
summaries from long flows. A major challenge, however, with
flow-level monitoring is identification of video traffic as it lacks
application-layer data. Existing work has suggested solutions like
augmenting flows with DNS information [7]. We consider using
flow-level data as a part of future work and focus on understanding
feasibility of using TLS transaction data for inference.

3 METHODOLOGY

We formulate the QoE estimation problem as a supervised machine
learning problem. This is similar in spirit to existing work designed
for packet data [11, 24]. We develop features specific to the coarse-
granular TLS transaction data based on the semantics of HAS. We

4The HTTP transactions are derived from packet traces [17].
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assume that the TLS transactions corresponding to video traffic
have already been identified (e.g., using SNI field) and grouped
into sessions. Later, we also present a heuristic to delimit TLS
transactions corresponding to consecutive sessions from the same
service. Here, we describe the three kinds of features constructed
from the sequence of TLS transactions of a session below:
Session-level: These features consist of metrics calculated for the
entire session. We calculate the session data rate, which is the total
data divided by the session duration, in both downlink (SDR_DL)
and uplink (SDR_UL) directions. In addition, we also log the ses-
sion duration (SES_DUR) and the number of TLS transactions per
second (TRANS_PER_SEC).

Transaction-level statistics: For a transaction, we already have
its downlink size (DL_SIZE), uplink size (UL_SIZE), and duration
(DUR). In addition, we calculate the following three metrics for
every transaction: i) Transaction Data Rate (T DR), which is obtained
by dividing the downlink data size by the transaction duration. Note
that TDR is not the same as network throughput as there can be idle
intervals in a TLS transaction with no network activity [5]. However,
it is still an indicator of network quality as, intuitively, TDR is high
if the available bandwidth was high. ii) Downlink-To-Uplink (D2U)
ratio, which is the ratio of the downlink data to the uplink data.
In HAS, the uplink data is typically an indicator of the number
of video segments requested [31]. Hence, D2U ratio represents
the amount of data downloaded per segment. This can be a useful
indicator of the video quality, and iii) Inter-arrival time (IAT) of the
transactions to capture patterns in arrival of transactions.

Thus, we have 6 metrics for each transaction. From these metrics,

we generate summary statistics, namely, minimum, median, and
maximum value leading to 18 features in total °.
Temporal Features: These features capture the temporal progress
of data transfer during a session. We divide the session into pre-
determined intervals each starting from the beginning of the session
and calculate the cumulative downlink (CUM_DL_XXs) and uplink
data (CUM_UL_XXs) in each of these intervals. For transactions
that only partially overlap with an interval, we get its share of down-
link and uplink data based on the extent of the overlap with the
interval®. This set of features can be useful in uncovering any tem-
poral variations which may have been masked out in the aggregate
transaction statistics.

We consider the following end-points for the intervals (in sec-
onds): {30, 60, 120, 240, 480, 720, 960, 1200}. We use a maximum
value of 1200 seconds as this is the maximum session duration in
our dataset (see Section 4). The rationale behind using fine-granular
intervals in the beginning is that a session is more likely to be im-
pacted by poor network quality in the beginning because of empty
video buffer. We explored other intervals (omitted due to lack of
space) but found the above to yield the highest accuracy. Regardless,
we consider these intervals as one of the hyperparameters of our
model and an ISP can determine the intervals based on the data
observed on their network for a service.

Thus, we use a total of 38 (4 + 18 + 16) features for each session
(summarized in Table 3) to estimate its QoE metrics.

SWe considered other statistics such as standard deviation and mean, but found them
to be highly correlated to one of the existing statistics.

OThis is an approximation as it is not possible to determine the data transmission
pattern within a transaction
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Features
SDR_DL, SDR_UL,
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Figure 3: Bandwidth traces statistics

4 EVALUATION

We evaluate the QoE estimation accuracy using TLS transaction
data and compare it with packet traces. We first describe the method-
ology used to collect the dataset for evaluation.

4.1 Data collection

We use a browser-based automation framework to collect data
for training and testing. The framework streams video sessions
under emulated network conditions and collects network data in
the form of packet traces and TLS transactions. We emulate network
conditions using publicly available bandwidth traces representing
a diversity of network environments including fixed broadband, 3G
and LTE [2, 27, 32]. Each session is streamed for a duration ranging
from 10-1200 seconds. Figure 3a and 3b show the distribution of
average bandwidth and duration of the traces, respectively.

Using the above methodology, we collect data for three popu-
lar streaming services which are denoted as Svcl, Svc2, and Svc3
(anonymized for confidentiality). We curate a list of 50-75 videos
for each service including content from different genres such as
animation, sports, and news, if available. The ground truth video
QoE metrics are collected per second by injecting Javascript func-
tions utilizing the HTML5 VipEo API to monitor re-buffering and
service-specific functions (determined manually) to monitor video
quality [8, 22]. The video quality levels are classified into one of
the three categories. We use resolution-based thresholds in Svcl
and Svc2 as these services had a unique resolution per quality level.
For Svc2, we classify video resolution of 360p or lower as low, 480p
as medium, and 720p or higher as high. The thresholds for Svcl
were 288p for low, 480p for medium, and remaining were tagged as
high. For Svc3, we observed only three quality levels in our dataset
and classify them into low, medium, and high. In practice, these
thresholds can be set by the ISP based on its target quality. We
use the per-second QoE information to obtain categorical values of
per-session video quality, re-buffering ratio, and combined QoE.

Overall we had 2,111 sessions for Svel, 2,216 for Svc2, and
1,440 for Svc3. We observe difference in ground truth QoE metrics
across services (see Figure 4) for sessions streamed under similar
network conditions. This can be attributed to differences in the
service design. We found that Svcl uses a larger video buffer (240s)
as compared to the other two services. Furthermore, Svcl player
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attempts to avoid re-buffering by quickly filling the buffer at the
expense of streaming at low video quality. However, the other two
services, especially Svc2, switch video quality only when the video
buffer runs low. Therefore, poor network conditions generally led
to low video quality in Svcl, whereas in Svc2 and Svc3 (although
to a lesser extent), it led to re-buffering.

4.2 Results

We use the Python Scikit library to train different machine learning
models and use 5-fold cross validation for evaluating accuracy. We
tested different ML-based models, namely SVM, k-NN, XGBoost,
Random Forest, and Multilayer Perceptron. Here, we present results
using Random Forest (others omitted due to lack of space) as it
yielded the highest accuracy.

Accuracy for different QoE metrics: Figure 5 shows the classifi-
cation accuracy of different QoE metrics in Svcl and Sve2. While
we report overall accuracy, and precision and recall values for low
QoE metric class, we particularly focus on the recall value as one
of our main goals is to correctly identify network locations with
video performance issues. Thus, it is important to identify the true
positives (low QoE sessions) with a high accuracy. ISPs can collect
additional data, such as fine-grained network traces or readily avail-
able radio metrics (for cellular networks) in the location, for further
fault diagnosis and management. For Svcl, the recall in identifying
low video quality sessions is 68%, while the recall is only 21% in
identifying high re-buffering (see Figure 5a). The trend is reversed
for Svc2 with 71% recall for high re-buffering and only 40% recall
for low video quality (see Figure 5b). The results are similar for
Sve3 with 63% recall for high re-buffering and 58% for low video
quality. In general, we observe that the accuracy metrics are high
for the QoE metric that is more likely to degrade with poor network
conditions in a video service. The accuracy metrics are high for the
combined QoE metric across all three services with 73%-85% recall
in identifying low combined QoE.

Table 2 shows the confusion matrix for the combined QoE metric
in Svcl. Most of the mis-classifications happen between neighbor-
ing classes (e.g., low classified as med). This is most likely due to
the model’s inability in classifying instances that are closer to the
class thresholds. Naturally, the error is higher for sessions with
medium QoE, while the sessions with low or high combined QoE
can be classified with a high accuracy across all three services.

Takeaway: The coarse-grained TLS transaction data can enable
ISPs to detect video performance issues aka low combined QoE
sessions with a high accuracy. In the remaining paper, we focus on
results pertaining to combined QoE.

Feature importance: We next evaluate the impact of different
kinds of feature on model accuracy. Table 3 shows the accuracy as
features are incrementally added to the model. The recall (accuracy)
is lowest when only session-level features are used and it improves
by 6%-12% (6%-11%) as features capturing the transaction statistics
and temporal distribution of data are added to the model. This
shows that despite being coarse-granular, TLS transactions within
a session can provide useful information about the QoE of a session.

Figure 6 shows the 10 most important features as reported by the
Random Forest model across the three services. There are 4 features
that appear in the top 10 list of all three services. These features
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Figure 5: Accuracy for different QoE metrics

are downlink session data rate (SDR_DL), median transaction data
rate (TDR_MED), median D2U ratio (D2U_MED), and the cumula-
tive downlink data in the first minute (CUM_DL_60s). TDR_MED
and SDR_DL represent the downlink data rate and hence capture
information about the available bandwidth. D2U_MED represents
the downlink to uplink data ratio and is likely to be higher when
the video quality is high and vice-versa. Finally, CUM_DL_60s rep-
resents the data downloaded in the beginning of the session when
the video buffer is usually low and when a session is more likely to
suffer if the network conditions are poor. We also observe differ-
ences across services with 8 features that appear in only one out
of the three services. This is likely due to the differences in service
design and TLS transaction mechanisms across services.

We also empirically illustrate the usefulness of transaction-level
statistics and temporal features by considering sessions that had
similar session-level features. Figure 7a presents a box plot of
CUM_DL_60s for Svcl sessions with duration between 2 and 3
minutes and downlink session data rate between 1400 kbps and
1600 kbps. The number of instances are displayed at the top of each
box. There is a clear difference in the distribution across low and
high QoE sessions. The 25th (50th) percentile of CUM_DL_60s for
low QOE sessions is 17 MB (21 MB), while it is 23 MB (24 MB) for
high QoE sessions. We found similar differences for D2U_med for
Svc2 sessions as shown in Figure 7b. We also find that the distribu-
tion of medium QoE sessions overlaps with the other QoE classes,
thus, indicating it is challenging to classify these sessions.

Takeaway: The analysis shows that in addition to session-level
metrics such as duration and downlink data rate, there are also
patterns within the TLS transactions of a session that differ based

on the session QoE. An ML-based approach can learn these patterns
to identify low QoE sessions.

Comparison with packet traces: We now compare the QoE esti-
mation accuracy from TLS transaction data against packet traces.
Multiple ML-based have been proposed in the related work to esti-
mate QoE using packet traces [8, 14, 17]. Most of them are designed
for real-time QoE inference and estimate metrics for every time
window T. A comparison with these approaches would require
estimation of per-session metrics from fine-granular estimation.
For simplicity, we consider an algorithm that directly estimates
per-session metrics. More specifically, we implement an algorithm
proposed by Dimopoulos et al. called ML16 [12]. The algorithm
uses features corresponding to video segments along with network
metrics such as packet retransmissions, loss, and RTT. Furthermore,
we use the feature set ML16 used for estimating video quality for
combined QoFE metric as it is a superset of the features used to
estimate re-buffering.

Table 4 shows the accuracy metrics with respective gains in
comparison to TLS transaction data. Using packet traces with ML16
results in an improvement of 5%-7% in overall accuracy and 4%-9%
in recall for low combined QoE. This is intuitive as packet traces
are highly fine-granular. Moreover, they can be used to derive infor-
mation about video segments downloaded in a session which are
fundamental to HAS and its QoE. We then compare the associated
memory and computation overhead. In our dataset, the average
number of packets per session in Svcl are 27, 689 as compared to
only 19.5 TLS transactions. The total computation time to extract
relevant features from all Svcl sessions using packet data is around
503 seconds as compared to only 8.3 seconds using TLS transaction
data, a difference of factor of 60.

Takeaway: Packet traces provide higher accuracy than the TLS
transaction data but with a significant computation and mem-
ory overhead. Therefore, ISPs can implement adaptive monitoring,
wherein fine-granular network data is collected only for locations
where performance issues are detected.

Session identification heuristic: Recall that session identifica-
tion using TLS data can be a challenge for back-to-back sessions
due to overlapping transactions. We develop a simple heuristic for
session detection that is based on the following two insights: i)
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Figure 6: Top 10 important features across three services

w
o

n: 14

N
(%]
3
(i
N
3
N
o

D2U_med
N B (=)} [e]
(=] o o o
o o o o

- B

N
medium high
QOE class

.
o

CUM_DL_60s (in MB)
= N
w o

o

low medium high low
QOE class

(a) Svel: CUM_DL 60s for sessions (b) Sve2: D2U_med for sessions with
with duration 2-3 minutes and duration between 2-3 minutes and
SDR_DL between 1400-1600 kbps SDR_DL between 1000-1200 kbps
Figure 7: Distribution of sample transaction-level statistics and tem-
poral features for a subset of sessions with similar session-level fea-
tures (number of instances displayed at the top of each box)

Recall
82% (+9%)

Precision
73% (+2%)

Service | Accuracy
Svel 74% (+5%)
Sve2 78% (+7%) | 85% (+7%) | 76% (+5%)
Sve3 | 78% (+5%) | 89% (+4%) | 78% (+3%)

Table 4: Accuracy using packet traces and ML16. Parenthesis values

report the gain compared to TLS transaction data.

# Trans- Predicted
Actual R —
actions | Existing | New
Existing 13269 98% 2%
New 1545 11% 89%

Table 5: Transaction identification accuracy

The beginning of a session is characterized by more than one TLS
transaction, and ii) The set of servers serving content are likely to
change when a new session begins. Thus, for each transaction we
consider the set of succeeding transactions starting within W sec-
onds. Using these set of transactions, we calculate N, the number of
transactions in the set, and J, the percentage of transactions with a
different server than the set of servers seen for the current session.
A transaction is considered to start a new session, if N and § are
greater than Np,in and Syin, respectively. We use the following
parameter values, W = 3 seconds, Nyin = 2, and dpin = 0.5.

Table 5 shows the confusion matrix for Svcl sessions with session
beginnings correctly identified for 89% of the sessions. A timeout-
based heuristic would have considered all of them as a single session
as all these sessions were streamed back-to-back. We note that this
is an extreme case compared to real-world scenario.

Takeaway: Session identification techniques need to be designed
for the specific network data. The transaction arrival and server

request pattern can enable accurate session identification for TLS
transaction data.

4.3 Limitations

e Streaming application design: In addition to using volumetric
features at a session-level, we rely on the patterns of data trans-
fer across TLS transactions within a session for QoF inference.
Clearly, the extent of such patterns and consequently the ability
to infer QoE depends on the design of the streaming application.
This is also observed in variance of important features across
services in Figure 6. In an extreme case, an application may be
designed to stream the entire session over a single TLS connec-
tion, thus, rendering the transaction-level statistics and temporal
features used in our model ineffective.

e Impact of user interactions: Our experiments do not consider
the impact of user interactions on QoE inference. Different kinds
of user interactions, such as pausing and skipping, would mani-
fest in different ways in the TLS transaction data. Understanding
the impact of user interactions on inference accuracy is a part of
the future work.

Real-time QoE inference: TLS transaction information is avail-

able from the proxy only after the underlying TLS connection

terminates. Therefore, our approach is not suitable for inferring
and managing user dissatisfaction in real-time.

5 CONCLUSION

We find that coarse-grained but readily-available TLS transaction
data can be used to estimate video QoE with reasonable accuracy
and low overhead. The predictive capability can be attributed to
two factors: i) downlink data-related features that capture network
quality, ii) differences in TLS transaction statistics for low and high
QoE sessions. Our future work will analyze the generalizability of
the models across different device platforms and service types (e.g.,
live content). We also plan to more deeply explore the accuracy vs.
scalability trade-off for other forms of network data such as more
granular flow-level data collected using NetFlow.
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