
Future Generation Computer Systems 124 (2021) 315–329

S
a

b

c

R
R
A
A

T
S
R
C

f
n
f
p
c
m
e

w
r
r
t
t
w
c
e
c
t

t

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Comparingworkflow application designs for high resolution satellite
image analysis
Aymen Al-Saadi a, Ioannis Paraskevakos a,∗, Bento Collares Gonçalves b, Heather J. Lynch b,
hantenu Jha a,c, Matteo Turilli a
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, United States of America
Department of Ecology and Evolution, Stony Brook, NY 11777, United States of America
Brookhaven National Laboratory, United States of America

a r t i c l e i n f o

Article history:
eceived 7 April 2020
eceived in revised form 12 March 2021
ccepted 27 April 2021
vailable online 4 May 2021

Keywords:
Image analysis
ask-parallel
cientific workflows
untime
omputational modeling

a b s t r a c t

Very High Resolution satellite and aerial imagery are used to monitor and conduct large scale surveys
of ecological systems. Convolutional Neural Networks have successfully been employed to analyze
such imagery to detect large animals and salient features. As the datasets increase in volume and
number of images, utilizing High Performance Computing resources becomes necessary. In this paper,
we investigate three task-parallel, data-driven workflow designs to support imagery analysis pipelines
with heterogeneous tasks on high performance computing platforms. We analyze the capabilities of
each design when processing 3097 and 1575 images for two distinct use cases, for a total of 4,672
satellite and aerial images and 8.35 TB of data. We experimentally model the execution time of the
tasks of the image processing pipelines. We perform experiments to characterize resource utilization,
total time to completion and overheads of each design. Our analysis shows which design is best suited
to scientific pipelines with similar characteristics.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

A growing number of scientific domains are adopting work-
lows that use multiple analysis algorithms to process a large
umber of images. The volume and scale of data processing justi-
ies the use of parallelism, tailored programming models and high
erformance computing (HPC) resources. While these features
reate a large design space, the lack of architectural and perfor-
ance analyses makes it difficult to chose among functionally
quivalent implementations.
In this paper, we focus on the design of computing frame-

orks that support the execution of heterogeneous tasks on HPC
esources to process large imagery datasets. These tasks may
equire one or more CPUs and GPUs, implement diverse func-
ionalities and execute for different amounts of time. Typically,
asks have data dependences and are therefore organized into
orkflows. Due to task heterogeneity, executing workflows poses
hallenges of effective scheduling, correct resource binding and
fficient data management. HPC infrastructures exacerbate these
hallenges by privileging the execution of single, long-running
asks.

From a design perspective, a promising approach to address
hose challenges is isolating tasks from execution management.

∗ Corresponding author.
E-mail address: i.paraskev@rutgers.edu (I. Paraskevakos).
ttps://doi.org/10.1016/j.future.2021.04.023
167-739X/© 2021 Elsevier B.V. All rights reserved.
Tasks are assumed to be self-contained programs which are exe-
cuted in the operating system (OS) environment of HPC compute
nodes. Programs implement the domain-specific functionalities
required by use cases while computing frameworks implement
resource acquisition, task scheduling, resource binding, and data
management.

Compared to approaches in which tasks are functions or meth-
ods, a program-based approach offers several benefits as, for
example, simplified implementation of execution management,
support of general purpose programming models, and separate
programming of management and domain-specific functionali-
ties. Nonetheless, program-based designs impose performance
limitations, including OS-mediated intertask communication and
task spawning overheads, as programs execute as OS processes
and do not share a memory space.

Due to their performance limitations, program-based designs
of computing frameworks are best suited to execute compute-
intensive workflows in which each task requires a certain amount
of parallelism and runs from several minutes to hours. The use
of modern HPC infrastructures with large numbers of CPUs/GPUs
presents new challenges to the design of program-based work-
flows that require heterogeneous, compute-intensive tasks that
process large amounts of data.

We use two paradigmatic use cases from the polar science
domain to evaluate three alternative designs of computing frame-
works for executing program-based tasks, and experimentally

https://doi.org/10.1016/j.future.2021.04.023
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2021.04.023&domain=pdf
mailto:i.paraskev@rutgers.edu
https://doi.org/10.1016/j.future.2021.04.023


A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329

c
r
o
d
r
b
u
f
i
o

i
t
b

p
o
s
c
e
w
r
d
c
a
m
a

haracterize and compare their performance. The first use case
equires us to detect pack-ice seals by analyzing satellite images
f Antarctica taken across a whole calendar year. The resulting
ataset consists of 3097 images for a total of 4 TB. This use case
equires us to repeatedly process these images, running tasks on
oth CPUs and GPUs that exchange several GB of data. The second
se case requires us to match paired images of penguin colonies
rom Antarctica and estimate the approximate location where
mages were taken. The dataset contains 1575 images for a total
f 1 TB.
The first design uses a pipeline to independently process each

mage, while the second and third designs use the same pipeline
o process a series of images with differences in how images are
ound to available compute nodes.
Leveraging and extending the results presented in Ref. [1], this

aper offers four main contributions: (1) a GPU implementation
f the Scale Invariant Fast Transformation (SIFT) algorithm to
erve the purpose of geolocating satellite imagery; (2) an indi-
ation of how to further the implementation of our workflow
ngine so as to support the class of use cases we considered,
hile minimizing workflow time to completion and maximizing
esource utilization; (3) specific design guidelines for supporting
ata-driven, compute-intensive workflows on high-performance
omputing resources with a task-based computing framework;
nd (4) an experiment-based methodology to compare perfor-
ance of alternative designs that does not depend on the use case
nd computing framework presented in this paper.
The paper is organized as follows. Section 2 provides a survey

of the state of the art. Section 3 presents the use cases in more
detail and discusses their computational requirements as well
as the individual stages of the pipelines. Section 4 describes
and discusses the novel implementation of SIFT and its perfor-
mance. Section 5 discusses the three program-based designs in
detail. Section 6 details our performance evaluation, discussing
the results of our experiments. In Section 7, we summarize
the contributions of this paper and identify some new lines of
research that it opens.

2. Related work

Several tools and frameworks are available for image analy-
sis based on diverse designs and programming paradigms, and
implemented for specific resources. Numerous image analytics
frameworks for medical, astronomical, and other domain specific
imagery provide MapReduce [2] implementations. MaReIA [3],
built for medical image analysis, is based on Hadoop and Spark
[4]. Kira [5], built for astronomical image analysis, also uses Spark
and pySpark, allowing users to define custom analysis applica-
tions. Further, Ref. [6] proposes a Hadoop-based cloud Platform
as a Service, utilizing Hadoop’s streaming capabilities to reduce
filesystem reads and writes. These frameworks support clouds
and/or commodity clusters for execution.

BIGS [7] is a framework for image processing and analysis.
BIGS is based on the master–worker model and supports het-
erogeneous resources, such as clouds, grids and clusters. BIGS
deploys a number of workers to resources, which query its sched-
uler for jobs. When a worker can satisfy the data dependencies of
a job, it becomes responsible to execute it. BIGS workers can be
deployed on any type of supported resource. The user is respon-
sible for defining the input, processing pipeline and launching
BIGS workers. As soon as a worker is available, execution starts.
In addition, BIGS offers a diverse set of APIs for developers. BIGS
approach is very close to Design 1 we described in Section 5.1.

LandLab [8] is a framework for building, coupling and ex-
ploring two-dimensional numerical models for Earth-surface dy-
namics. LandLab provides a library of processing constructs. Each
316
construct is a numerical representation of a geological process.
Multiple components are used together, allowing the simulation
of multiple processes acting on a grid. The design of each compo-
nent is intended to work in a plug-and-play fashion. Components
couple simply and quickly but parallelizing Landlab components
is left to the developer.

The High Performance Computing (HPC)/ High Throughput
Computing (HTC) Software Infrastructure for the Synthesis and
Analysis of Cosmic Microwave Background (CMB) Datasets [9]
is a project to enable CMB experiments to seamlessly use both
HPC and HTC systems for their simulation and processing needs.
Specifically, this project develops compatible data models to en-
able bidirectional data flow among pipeline components, con-
currently executing on HPC, HTC and hybrid infrastructures. The
project extends the Time Ordered Astrophysics Scalable Tools
(TOAST) to support data translation and unification across these
infrastructures.

The Sea Ice High Resolution Image Analytics (ArcCI) [6] is a
framework that uses cloud computing for big data management
and visualization. ArcCI is implemented as a set of web ser-
vices to collect, search, explore, visualize, organize, analyze and
share collections of high spatial resolution Arctic sea ice imagery.
Currently, ArcCI supports 35 datasets for a total of 1.96 TB of data.

The Large-scale IMage Processing Infrastructure Development
(LIMPID) [10] project developed the Bio-Image Semantic Query
User Environment (BisQue) for managing, analyzing and shar-
ing images and metadata for large-scale problems. The main
goal of BisQue is to enable reproducible image data science on
cloud platforms, supporting multiple imaging modalities such as
photographs, satellites and microscopes.

Image analysis libraries, frameworks and applications have
been proposed for HPC resources. PIMA(GE)2 Library [11] offers a
low-level API for parallel image processing using MPI and CUDA.
SIBIA [12] is a framework for coupling biophysical models with
medical image analysis, providing users parallel computational
kernels through MPI and vectorization. Ref. [13] proposes a scal-
able medical image analysis service. This service uses DAX [14]
as an engine to create and execute image analysis pipelines.
Tomosaic [15] is a Python framework, used for medical imaging,
employing MPI4py to parallelize different parts of the workflow.

Petruzza et al. [16] describe a scalable image analysis library.
Their approach defines pipelines as data-flow graphs, with user
defined functions as tasks. Charm++ is used as the workflow
management layer, by abstracting the execution level details,
allowing execution on local workstations and HPC resources.
Teodoro et al. [17] define a master–worker framework supporting
image analysis pipelines on heterogeneous resources. The user
defines an abstract dataflow and the framework is responsi-
ble for scheduling tasks on CPU or GPUs. Data communication
and coordination is done via MPI. Ref. [18] proposes the use of
UNICORE [19] to define image analysis workflows on HPCs.

Image classification is an existing problem of interest for com-
puter vision scientists. The most common approaches are using
scene and object recognition technology. These approaches iden-
tify a set of images and classify them based on the scene of
interest, e.g., building, mountain, or lakes. A disadvantage of
these approaches is that they do not estimate the approximate
geographical location of images.

Another approach in computer vision is geolocating satellite
and ground-level imagery. Ghouaiel and Lefèvre [20] proposed an
automatic translation for ground photos into aerial viewpoint, the
technique specifically supports only wide panoramic photos with
an accuracy of 54%.

In the large scale image geolocalization, the approach is based
on using the ‘‘IM2GPS’’ algorithm [21]. IM2GPS uses a convo-
lutional neural network (CNN) to geolocalize images against a



A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329

d
d
i

t
t
u
t

p
i
a
r
t
t
l
m

p
i
C
a
f
t

3

w
c
a
a
b
f
s
p
t
r

3

u
e
H
i
V
f
w
t
t
q
l

t
e
m
a
i
A
p
e

m
t

atabase of geotagged Internet photographs, used as training
ata. The approach reaches an accuracy of 25% for the 237 photos
n their dataset.

We introduce another image geolocating approach based on
he image matching technique to extract the similarity level be-
ween two images and estimate the approximate location as val-
es of longitude and latitude. We focus on geolocating a set of his-
oric aerial photo imagery using satellite imagery as a basemap.

Our workflow approach proposes designs for image analysis
ipelines that are domain independent, i.e., not specific to med-
cal, astronomical, or other domain imagery. Both the workflow
nd runtime systems we use allow execution on multiple HPC
esources with no change in our approach, independent from
he types, durations and sizes of task that workflows require
o execute. Furthermore, in one of the proposed designs, paral-
elization is inferred, allowing correct execution regardless of the
ulti-core or multi-GPU capabilities of the used resource.
All the above, except Ref. [5], focus on characterizing the

erformance of the proposed solution. Ref. [5] compares different
mplementations, one with Spark, one with pySpark, and an MPI
-based implementation. This comparison is based on the weak
nd strong scaling properties of the approaches. Our approach of-
ers a well-defined methodology to compare different designs for
ask-based and data-driven pipelines with heterogeneous tasks.

. Satellite imagery analysis use cases

In this paper we developed and characterized computational
orkflows that satisfy the requirements of two earth science use
ases. The first use case, labeled as UC1, requires to process im-
gery to find Antarctic pack-ice seals. The second use case, labeled
s UC2, geolocates an aerial image using a satellite image as a
asemap. These use cases require to develop application work-
lows in which images are processed and analyzed in multiple
tages in order to find some relevant properties. This application
attern is used in many scientific domains and, as such, our
wo use cases are paradigmatic of a common set of computing
equirements.

.1. Seals use case (UC1)

The imagery employed by ecologists as a tool to survey pop-
lations and ecosystems come from a wide range of sensors,
.g., camera-trap surveys [22] and aerial imagery transects [23].
owever, most traditional methods can be prohibitively labor-
ntensive when employed at large scales or in remote regions.
ery High Resolution (VHR) satellite imagery provides an ef-
ective alternative to perform large scale surveys at locations
ith poor accessibility such as surveying Antarctic fauna [24]. To
ake full advantage of increasingly large VHR imagery, and reach
he spatial and temporal breadths required to answer ecological
uestions, it is paramount to automate image processing and
abeling.

Convolutional Neural Networks (CNN) represent the state-of-
he-art for nearly every computer vision routine. For instance,
cologists have successfully employed CNNs to detect large mam-
als in airborne imagery [25,26] and camera-trap survey im-
gery [27]. We use a CNN to survey Antarctic pack-ice seals
n VHR imagery. Pack-ice seals are a main component of the
ntarctic food web [28]; estimating the size and trends of their
opulations is key to understanding how the Southern Ocean
cosystem copes with climate change [29] and fisheries [30].
For this use case, we process WorldView 3 (WV03) panchro-

atic imagery as provided by DigitalGlobe Inc. This dataset has
he highest available resolution for commercial satellite imagery.
317
We refrain from using imagery from other sensors because pack-
ice seals are not clearly visible at lower resolutions. For our CNN
architecture, we use a U-Net [31] variant that counts seals with an
added regression branch and locates them using a seal intensity
heat map. To train our CNN, we use a training set of 53 WV03
images, with 88,000 hand-labeled tiles, where every tile has a
correspondent seal count and a class label (i.e., seal vs. non-seal).
For hyper-parameter search, we train CNN variants for 75 epochs
(i.e., 75 complete runs through the training set) using an Adam
optimizer [32] with a learning rate of 10−3 and tested against a
validation set. The validation set consists of 10% of the training
set. In addition, we randomized the WV03 image selection so
that a validation tile does not overlap with a training one. Testing
was performed on 5 WV03 images. Double observer seal counting
was performed and model detection results were compared to
observer consensus detections. Furthermore, we avoided dou-
ble counting by setting a minimum distance boundary between
neighboring seals and keeping those where the model was more
confident.

We use the best performing model on an archive of over 3097
WV03 images, with a total dataset size of 4 TB. Due to limitations
on GPU memory, it is necessary to tile WV03 images into smaller
patches before sending input imagery through the seal detection
CNN. Taking tiled imagery as input, the CNN outputs the latitude
and longitude of each detected seal. While the raw model output
still requires statistical treatment, such ‘‘mock-run’’ emulates the
scale necessary to perform a comprehensive pack-ice seal census.
We order the tiling and seal detection stages into a pipeline that
can be re-run whenever new imagery is obtained. This allows
domain scientists to create seal abundance time series that can
aid in Southern Ocean monitoring.

3.2. Image geolocation use case (UC2)

We introduce the image geolocating use case for two main
reasons: (i) Image geolocation can help domain scientists to as-
sess the impact of global warming on climate change; and (ii) a
second use case with different computational requirements helps
to validate our design.

Image geolocating or geotagging is the process of append-
ing geographical identification metadata to images. Each image
is paired to other images and specialized algorithms are used
to extract, compare and match relevant image features. In this
way, different images of the same geographical location can be
matched. In earth science, geolocating can be useful to match
datasets of geographical areas recorded at different points in
time, by different instruments, with different camera viewpoint,
orientation, resolution and brightness.

For this use case, we process aerial and satellite panchromatic
imagery. The aerial imagery was taken in 2000 and provided by
the U.S. Antarctic Resource Center (USARC). The satellite imagery
of the same area was taken in 2017 by WorldView 2 (WV02) and
provided by DigitalGlobe Inc. The geolocating process involves
two main operations: image matching and rectifying of false
positive and false negative matching. For the former we used the
scale-invariant feature transform (SIFT) algorithm [33] and for the
latter the random sampling consensus (RANSAC) algorithm [34].

SIFT is a feature detection algorithm developed for computer
vision to detect commonalities among different images with a
stated degree of accuracy and number of probable false matches.
Importantly, SIFT results are invariant to image resizing and rota-
tion, and partially invariant to changes in brightness and camera
viewpoint. RANSAC is an iterative method to detect outliers in
a provided dataset. It is a ‘‘learning’’ algorithm because it fits a
model to multiple random samples of the dataset and returns the
model that best fits a subset of the data. In this context, it is used



A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329

t
s

e
s
5
t
a
s
b
n

4
t

a
o
r
5
e
p
a

d
C
t
s
c

b
i
c
M
o
e

C
m
p
m
s
a
t
t

s
a
w
P
o
o
7
u

4

G
3
o
M
e
t

w

m
t
s

h
t
c
t
3
e
G

t
S
i
i
o
n

I
b
C
t
i
a

4

S
p
c
2

o evaluate the set of matched features produced by SIFT and to
eparate false positive matches.
For our use case, image matching required us to first divide

very satellite image into smaller rectangular tiles of the same
ize. This process created a set of tiles between 20002 px and
0002 px, discarding tiles that were at the edge of an image. Every
ile from one satellite image was then matched against all the
erial images to find overlapping keypoints, i.e., common features
uch as edges, corners, blobs/regions, and ridges. The similarity
etween source and target images was measured as the total
umber of matched keypoints, as extracted by SIFT.

. GPU-SIFT implementation and performance characteriza-
ion

Currently, two main implementations of SIFT are freely avail-
ble: CPU-SIFT [35] and CUDA-SIFT [36]. As required by the Ge-
location use case described in Section 3.2, CPU-SIFT supports
aw GeoTIFF satellite imagery and can process image tiles up to
0002 px or more. Unfortunately, CPU-SIFT is memory inefficient,
specially with large tiles, and cannot use GPUs. CUDA-SIFT sup-
orts GPUs but does not support raw GeoTIFF satellite imagery
nd can process tiles only up to 1920 × 1080 px.
To address these challenges, we extended CUDA-SIFT [36] and

eveloped GPU-SIFT [37]. We extended CUDA-SIFT instead of
PU-SIFT because GPUs offer shorter execution times compared
o CPUs. That allows us to better support use cases in which the
ize of datasets grows over time, requiring increasing amount of
omputing resources and execution time.
GPU-SIFT offers the following functionalities: (i) reading dual-

and 8 and 16 bit GeoTIFF satellite imagery; (ii) reading GeoTIFF
mages larger than 1920 × 1080 px; (iii) enabling CUDA to allo-
ate up to 4 GB GPU memory per image; (iv) implementing CUDA
ulti-Process Service (MPS) technology to run 2 CUDA kernels
n a single GPU device; and (v) implementing adaptive contrast
nhancer.
We characterize and compare the performance of CPU-SIFT,

UDA-SIFT, and GPU-SIFT based on three metrics: throughput,
emory consumption and matching accuracy. We match single
airs of increasingly large GeoTIFF images (source and target),
easuring how many MB are processed by the CPU or GPU per
econd, how much memory the matching of the images required
nd how accurate such a matching was. Note that, in this context,
hroughput refers to the volume of data processed per unit of
ime (MB/s).

We performed all our experiments on the XSEDE Bridges
upercomputer [38]. Bridges offers 32 nodes with 2 T P100 GPUs
nd 32 GB of GPU-dedicated memory, and 2 16-cores Intel Broad-
ell E5-2683 CPUs with 128 GB of RAM. We used RADICAL-
ilot [39] to manage the execution of our experiment workloads
n Bridges. For all the experiments, we use a single GeoTIFF image
f 845 MB, tiled into four predefined sizes: 90, 180, 360, and
20 MB. We then match two copies of the same tile for each size,
sing each SIFT implementation.

.1. Throughput

We measure the throughput of CPU-SIFT, CUDA-SIFT, and
PU-SIFT in MB/s when processing the same pair of 90, 180,
60 and 720 MB images. CPU-SIFT and CUDA-SIFT can analyze
ne pair of images per CPU/GPU, while GPU-SIFT can use CUDA
PS to analyze two pairs of images per GPU. Consistently, in our
xperiments we concurrently execute two CPU-SIFT on two CPUs,
wo CUDA-SIFT on two GPUs and one GPU-SIFT on one GPU.

Fig. 1(a) shows that CPU-SIFT (red) has the lowest throughput
ith a value of 54.38 MB/s. This is due to CPU-SIFT programming
318
odel: CPU-SIFT uses one core per CPU to process and match
wo images. As a result, CPU-SIFT cannot leverage the parallelism
upported by multi-core architecture to increase throughput.
CUDA-SIFT (dark green) has a throughput almost six times

igher than CPU-SIFT, with a value of 244.44 MB/sec. In contrast
o CPU-SIFT, CUDA-SIFT uses the CUDA framework to load balance
alculations across the cores of the GPU device. Nonetheless, note
hat with the given images, CUDA-SIFT uses only up to 1658 of the
584 CUDA cores available on the Nvidia P100 GPU devices of our
xperiments. There are not enough data to process to saturate the
PU cores.
GPU-SIFT (light green) has the highest throughput among the

hree SIFT implementations, with value of 478.25 MB/s. GPU-
IFT uses 3400 of the 3584 available CUDA cores, running 2 pair
mage comparisons concurrently. Note that GPU-SIFT throughput
s almost double that of the CUDA-SIFT. This shows that the
verheads imposed by the CUDA Multi-Process Service (MPS) are
egligible for our implementation.
Fig. 1(a) shows that GPU throughput is invariant to image size.

ncreasing the image size increases the amount of data processed
y the GPU or CPU per second, bounded by the available GPU or
PU bandwidth. Note that the error bars for the GPU implemen-
ations are smaller than those of the CPU implementation. This
s likely due to the efficiency of the CUDA framework and the
bsence of competing processes on the GPU subsystem.

.2. Memory consumption

We measure the memory consumption of CPU-SIFT, CUDA-
IFT and GPU-SIFT as the amount of physical memory a particular
rogram utilizes at runtime. Fig. 1(b) shows the total memory
onsumption of CPU-SIFT, GPU-SIFT and CUDA-SIFT for pairs of
0002 px, 30002 px, 40002 px and 50002 px tiles. The memory

usage includes tile reading and the SIFT detecting, extracting, and
matching of features.

For the largest tile of 50002 px, CPU-SIFT consumes 24.67 GB of
memory, almost five times higher than CUDA-SIFT and GPU-SIFT
which consume 8.05 GB and 8.08 GB respectively. The minimal
difference in memory consumption of GPU-SIFT compared to
CUDA-SIFT account for the acquisition of GeoTIFF images and the
use of CUDA MPS. This shows the minimal memory overhead that
these features require and therefore the minimal cost of doubling
the throughput of GPU-SIFT.

4.3. Numbers of matched points

We compare the efficiency of each SIFT implementation in
terms of the number of matching points between a pair of images.
We picked a pair of images for which 16,850 matches have been
previously identified and validated by the domain scientists. We
applied CPU-SIFT, GPU-SIFT and CUDA-SIFT on the pair of images
with different tile sizes to: (1) measure the number of matches
that the three implementations can detect; and (2) validate the
assumption that the tile size can affect the number of matches.

We repeated the experiments 75 times to measure the ac-
curacy of both implementations, using the same satellite image
with tile sizes of 20002 px, 30002 px, 40002 px and 50002 px.
Fig. 2(a) shows that the number of matched points detected by
CPU-SIFT is more than those detected by GPU-SIFT and CUDA-
SIFT. For 50002 px tiles, CPU-SIFT returns 13,500 matches out
of the existing 16,850 with an accuracy of 80.11%. This is about
5.92% more than GPU-SIFT, and 8.97% more than CUDA-SIFT.
GPU-SIFT, plotted in green, returns 12,500 matches with an accu-
racy of 74.18%, while CUDA-SIFT, plotted in orange, returns 9500
matches with an accuracy of 56.81%.



A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329

G

t
i
E
T
C
u

Fig. 1. (a) The throughput of CPU-SIFT, CUDA-SIFT and GPU-SIFT as a function of image size in Megabytes. (b) Memory consumption of CPU-SIFT, CUDA-SIFT and
PU-SIFT as a function of tile size.
Fig. 2. Shows the matching accuracy (a) and the total number of correct correspondences (b) found with GPU-SIFT, CUDA-SIFT and CPU-SIFT for well-known satellite
image as a function of tile size.
w
l
t
o
p
a
w
b
p

p
t
i
i
p
i
e
t

e
e
a
a
t
c
m

c
c
(
e
p
a

5

s

CPU-SIFT variability shown in Fig. 2(a) are larger than those
of CUDA-SIFT and GPU-SIFT and it remains unclear why CPU-
SIFT accuracy is inconsistent. In absolute terms, CPU-SIFT is the
implementation that can reach the highest number of matches
but, on average, GPU-SIFT offer a more reliable performance.

CPU-SIFT and GPU-SIFT apply contrast enhancement to both
source and target images before processing them, while CUDA-
SIFT does not apply any contrast enhancement. Enhancing the
level of contrast of an image can increase the numbers of detected
features and as a result, it directly increases the number of
matches between both images [40].

We distinguish between validation of the results produced
by SIFT and validation of GPU-SIFT against CPU-SIFT. The former
pertains to the accuracy of the matches produced by SIFT, in-
cluding false positives; the latter to the consistency between the
matches produced by GPU-SIFT and CPU-SIFT. GPU-SIFT and CPU-
SIFT produce comparable results, with variations introduced by
optimizations specific to CPU-SIFT that still have to be ported to
GPU-SIFT.

For the domain scientists interested in this use case, the main
goal is to obtain effective matches of specific features of an image.
So far, SIFT proved relatively inefficient for this specific task. Our
GPU-SIFT implementation opens the possibility to investigate the
role that ML-driven algorithms requiring GPU support could play
to improve the accuracy of SIFT matches. A recent application
of machine learning image matching [41,42], shows promising
speed improvements, further shifting the focus of the domain
scientists from validating the accuracy of GPU-SIFT to study its
accuracy when augmented with ML algorithms.

5. Workflow design and implementation

Computationally, the use cases described in Section 3 present
hree main challenges: heterogeneity, scale and reusability. The
mages of the use cases’ datasets have a wide distribution in size.
ach image requires a series of tasks to get the aggregated result.
hese tasks are memory and computational intensive, requiring
PU and GPU implementations. Whenever the image dataset is
pdated, it needs to be reprocessed.
319
We address these challenges by codifying image analyses into
orkflows. We then execute these workflows on HPC resources,

everaging the concurrency, storage systems and compute speed
hey offer to reduce time to completion. Typically, the workflows
f our use cases consist of a sequence (i.e., pipeline) of tasks, each
erforming part of the end-to-end analysis on one or more im-
ges. We compare two common designs for the execution of these
orkflows: one in which each image is processed independently
y a dedicated pipeline, and the other in which a single pipeline
rocesses multiple images.
Note that both designs separate the functionalities required to

rocess each image from the functionalities used to coordinate
he processing of multiple images. This is consistent with mov-
ng away from vertical, end-to-end single-point solutions, favor-
ng designs and implementations that satisfy multiple use cases,
ossibly across diverse domains. Accordingly, the designs we
mplement and characterize, employ two tasks (i.e., standalone
xecutable programs) to provide the functionalities required by
he use cases.

The designs are functionally equivalent, in that they both
nable the analysis of the given image datasets. Nonetheless,
ach design leads to different concurrency, resource utilization
nd overheads, depending on compute-data affinity, scheduling
lgorithms, and coordination between CPU and GPU computa-
ions. We analyze the performance of these designs using the
ommon metrics of total execution time, resource utilization, and
iddleware overheads.
Consistent with HPC resources currently available and our use

ases, we make three assumptions: (1) each compute node has
CPUs; (2) each compute node has g GPUs where g ≤ c; and

3) each compute node has enough memory to enable concurrent
xecution of a certain number of tasks. As a result, at any given
oint in time there are C = n × c CPUs and G = n × g GPUs
vailable, where n is the number of compute nodes.

.1. Design 1: One image per pipeline

We specify the workflow for either counting the number of
eals in a set of images, or geolocating pairs of images as a set



A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329

Q

o
m
w
s
w
s

g
U
p
T
g
i
f

r
G
t
a
a

N
t
a
g
w
i
n

i
a

t
d
t
i
c
t
i

e
c

Fig. 3. Design approaches to implement the workflow required for the use cases of Section 3. 3(a)–Design 1: Pipeline, stage and task based design. 3(b)–Design 2:
ueue based design with a single queue for all the tasks of the pipeline. 3(c)–Design 2.A: Queue based design with multiple queues for the tasks of the pipeline.
o
r
c

t
f
c

f pipelines. Each pipeline is composed of two stages, each with
ultiple instances of one type of task. In the Seals use case (UC1),
e specify the workflow for counting the number of seals in a
et of images. In the Geolocation use case (UC2), we specify the
orkflow to match a pair of images in two sets of aerial and
atellite images.
In UC1, the task of the first stage gets an image as input and

enerates tiles of that image based on the tile size as output. In
C2, the task of the first stage gets a pair of images as input and
roduces a set of matches between these two images as output.
he task of the second stage gets the output of the first stage –
enerated tiles or matches – and outputs the number of seals per
mage for UC1 and a set of matches with reduced false positives
or UC2.

Formally, we define two types of tasks in UC1 and UC2:

• TUC1
1 = ⟨I, fI , t⟩, where I is an image or a pair of images, fI

is a stage 1 type function and t is a set of tiles or matches
that correspond to I .

• TUC1
2 = ⟨t, fA, S⟩, where fA is a stage 2 type function and S is

either the number of seals or final matches.
• TUC2

1 = ⟨Ip, kI ,m⟩, where Ip is a pair of images, kI is a
matching function and m is a set of matches as a file that
correspond to Ip.

• TUC2
2 = ⟨m, fR, t⟩, where fR is a function that eliminates

the undesired matches and t is the output file of filtered
matches.

Tiling in TUC1
1 is implemented with OpenCV [43] and Raste-

io [44] in Python. Rasterio allows us to open and convert a
eoTIFF WV3 image to an array. The array is then partitioned
o sub-arrays based on a user-specified scaling factor. Each sub-
rray is converted to an compressed image via OpenCV routines
nd saved to the filesystem.
Seal counting in TUC1

2 is performed via a Convolutional Neural
etwork (CNN) implemented with PyTorch [45]. The CNN counts
he number of seals for each tile of an input image. When all tiles
re processed, the coordinates of the tiles are converted to the
eographical coordinates of the image and saved in a file, along
ith the number of counted seals. Note that the number of seals

n a tile does not affect the execution of the network, i.e., the same
umber of operations will be executed.
Matching in TUC2

1 is implemented by GPU-SIFT as described
n Section 4, while filtering in TUC2

2 is implemented by RANSAC
s described in 3.2.
All task implementations for UC1 and UC2 are invariant across

he alternative designs we consider. This is consistent with the
esigns being task-based, i.e., each task exclusively encapsulates
he capabilities required to perform a specific operation over an
mage, pair of images or tile. Thus, tasks are independent from the
apabilities required to coordinate their execution, whether each
ask processes a single image or pair of images, or a sequence of
mages or pairs of images.

We implemented Design 1 via EnTK, a workflow engine which
xposes an API based on pipelines, stages, and tasks [46]. The user
an define a set of pipelines, where each pipeline has a sequence
320
f stages, and each stage has a set of tasks. Stages are executed
especting their order in the pipeline while the tasks in each stage
an execute concurrently, depending on resource availability.
For our use cases, EnTK has three main advantages compared

o other workflow engines: (1) it exposes pipelines and tasks as
irst-order abstractions implemented in Python; (2) it is specifi-
ally designed for concurrent management of up to 105 pipelines;
and (3) it supports RADICAL-Pilot, a pilot-based runtime system
designed to execute heterogeneous bag of tasks on HPC ma-
chines [39]. Together, these features address the challenges of
heterogeneity, scale and reusability: users can encode multiple
pipelines, each with different types of tasks, executing them at
scale on HPC machines without explicitly coding parallelism and
resource management.

When implemented in EnTK, the workflows of our use cases
map to a set of pipelines, each with two stages St1, St2. Each stage
has a task of type TUC1−2

1 and TUC1−2
2 respectively. Each pipeline

is defined as P = (St1, St2). For UC1, the workflow consists of N
pipelines and for UC2 the workflow consists of N×(N−1), where
N is the number of images.

Fig. 3(a) shows the abstract workflow for both use cases. For
each pipeline, EnTK submits the task of stage St1 to the runtime
system (RTS). As soon as this task finishes, the task of stage St2 is
submitted for execution. This design allows concurrent execution
of pipelines and, as a result, concurrent analysis of single images
or pair of images, one for each pipeline. Since pipelines execute
independently and concurrently, there are instances where St1 of
a pipeline executes at the same time as St2 of another pipeline.

Design 1 has the potential to increase utilization of available
resources as each compute node of the target HPC machine has
multiple CPUs and GPUs. Importantly, computing concurrency
comes with the price of multiple reads and writes to the filesys-
tem on which the dataset is stored. This can cause I/O bottlenecks,
especially if each task of each pipeline reads from and writes to
the same filesystem, possibly over a network connection.

For UC1, we used a tagged scheduler for EnTK’s RTS to avoid
I/O bottlenecks. This scheduler schedules T1 of each pipeline
on the first available compute node, and guarantees that the
corresponding T2 is scheduled on the same compute node. As a
result, compute-data affinity is guaranteed among co-located T1
and T2. This design reduces I/O bottlenecks but it may also reduce
concurrency when the performance of the compute nodes and/or
the tasks is heterogeneous: T2 may have to wait to execute on a
specific compute node while another node is free.

5.2. Design 2: Multiple images per pipeline

Design 2 implements a queue-based approach. We introduce
two tasks (T1- T2) for both UC1 and UC2 as defined in Section 5.1.
In contrast to Design 1, these tasks are started and then executed
for as long as resources are available, processing input images
at the rate taken to process each image or pair of images. For
both use cases, the number of concurrent T1 and T2 depends on
available resources, including CPUs, GPUs, and RAM.

For the implementation of Design 2, we do not need EnTK, as

we submit a bag of T1 and T2 tasks via the RADICAL-Pilot RTS,



A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329

a
s

nd manage the data movement between tasks via queues. As
hown in Fig. 3(b), Design 2 uses one queue (Queue 1) for the
dataset, and another queue (Queue 2) for each compute node.
For each compute node, each T1 pulls an image or pair of images
from Queue 1, generates tiles or matches, and then queues the
results to Queue 2. The first available T2 on that compute node,
pulls those tiles or matches from Queue 2, and counts the seals
or filters false positive matches.

To communicate data and control signals between queues and
tasks, we defined a communication protocol with three enti-
ties: Sender, Receiver, and Queue. Sender connects to Queue and
pushes data. When done, Sender informs Queue and disconnects.
Receiver connects to Queue and pulls data. If there are no data in
Queue but Sender is connected, Receiver pulls a ‘‘wait’’ message,
waits, and pulls again after a second. When there are no data
in Queue or Sender is not connected to Queue, Receiver pulls
an ‘‘empty’’ message, upon which it disconnects and terminates.
This ensures that tasks are executing, even if starving, and that all
tasks are gracefully terminating when all images are processed.

Note that Design 2 load balances T1 tasks across compute
nodes but balances T2 tasks only within each node. For example,
suppose that T1 on compute node A runs two times faster than
T1 on compute node B. Since both tasks are pulling images from
the same queue, T1 of A will process twice as many images as
T1 of B. Both T1 of A and B will execute for around the same
amount of time until Queue 1 is empty, but Queue 2 of A will
be twice as large as Queue 2 of B. T2 tasks executing on B will
process half as many images as T2 tasks on A, possibly running for
a shorter period of time, depending on the time taken to process
each image.

In principle, Design 2 can be modified to load balance also
across Queue 2 but in practice, as discussed in Section 5.1, this
would produce I/O bottlenecks. Load balancing across T2 tasks
would require for all tiles produced by T1 tasks to be written to
and read from a filesystem shared across multiple compute nodes.
Keeping Queue 2 local to each compute node enables using the
filesystem local to each compute node.

5.2.1. Design 2.A: Uniform image dataset per pipeline
The lack of load balancing of T2 tasks in Design 2 can be

mitigated by introducing a queue in each node from where T1
tasks pull data. This allows early binding of images to compute
nodes, i.e., deciding the distribution of input images per node
before executing T1 and T2. As a result, the execution can be load
balanced among all available nodes, depending on the correlation
between image properties and image execution time.

Fig. 3(c) shows variation 2.A of Design 2. The early binding of
images to compute nodes introduces an overhead compared to
using late binding via a single queue as in Design 2. Nonetheless,
depending on the strength of the correlation between image
properties and execution time, design 2.A offers the opportunity
to improve resource utilization. While in Design 2 some node may
end up waiting for another node to process a much larger Queue
2, in design 2.A this is avoided by guaranteeing that each compute
node has an analogous payload to process.

6. Experiments and discussion

We executed three experiments using the GPU compute nodes
of the XSEDE Bridges supercomputer. These nodes offer 32 cores,
128 GB of RAM and two P100 T GPUs. We stored the dataset of
the experiments and the output files on Bridges’ Pylon5 Lustre
filesystem. Specifically, for the Seals use case (UC1 onwards),
we stored the tiles produced by the tiling tasks on the local
filesystem of the compute nodes. This way, we avoided a potential
performance bottleneck from millions of reads and writes of
321
≈700 KB on Pylon5. The Geolocation use case (UC2 onwards) did
not require the use of the node local filesystem since it writes a
single file of few MBs per task. We submitted jobs requesting 4
compute nodes to keep the average queue time within a couple
of days. Requesting more nodes produced queue times in excess
of a week.

The dataset of UC1 consists of 3097 images, ranging from 50 to
2770 MB, for a total of 4 TB of data. The dataset of UC2 consists
of 1575 aerial and satellite images, ranging from 1.5 to 5.5 MB
for a total of 4.35 GB. We generated 11,552 image pairs to cross-
match all aerial images to all satellite images. Those datasets
are posed to grow overtime, both in terms of number of images
and the size of each image. In turn, that increases the number
and size of the generated image pairs. Consequently, in UC2, we
used a GPU implementation to: (i) account for the growth of the
dataset’s number of images and the size of individual images; and
(ii) improve the scale and time to completion of the analysis as
the GPU implementation is faster than the CPU one.

The image size of both datasets follows a normal distribution.
The UC1 dataset has a mean value of 1,304.85 MB and standard
deviation of 512.68 MB. The dataset of UC2 has a mean value of
6.13 MB and standard deviation of 1.79 MB.

For Design 1, 2 and 2.A described in Section 5, Experiment 1
models the execution time of the two tasks of our use cases as
a function of the image size—the only property of the images for
which we found a correlation with execution time; Experiment 2
measures resource utilization for each design; and Experiment 3
characterizes the overheads of the middleware implementing
each design. These experiments enable performance comparison
across designs, allowing us to draw conclusions about the per-
formance of heterogeneous task-based execution of data-driven
workflows on HPC resources.

As already done in Section 5.1, we use TUC1
1 and TUC1

2 to
indicate the first and second type of task for the Seals use case;
and TUC2

1 and TUC2
2 to indicate first and second type of task for the

Geolocation use case.

6.1. Experiment 1, Design 1

Fig. 4(a) shows the execution time of the tiling task TUC1
1 as

a function of the image size. We partition the set of images
based on image size, obtaining 22 bins with binsize 125 MB each
starting from 50 MB up to 2800 MB. The average time to tile
an image in each bin tends to increase with the image size. The
box-plots show some positive skew of the data with a number
of data points falling outside the assumed normal distribution.
Thus, there is a weak correlation between task execution time
and image size with a large spread across all the image sizes.

There are also large standard deviations (STD—blue line) in
most of the bins. We explored the causes of the observed val-
ues by measuring how it varies in relation to the number of
TUC1
1 concurrently executing on the same node. The STD ob-

served was consistent across degrees of task concurrency, allow-
ing us to conclude that it depends on fluctuation in the node
performance [1].

Fig. 5(a) shows the execution time of the image matching task
TUC2
1 as a function of the size of an image pair. In this use case, we

partitioned the data based on the total size of the image pair as
each task processes two images at the same time. Fig. 5(a) shows
22 bins of 187 KB, each in a range of [1.0, 5.5] MB.

Fig. 4(a) indicates that the execution time is a linear function
of the image size between bins 4 and 18. Bins 1–3 and 19–23
are not representative as the head and tail of the image sizes
distribution contain less than 5% of the image dataset. Similarly,
in Fig. 5(a) bins 5–19 show linear behavior and bins 1–4 and 20–
23 are omitted from the analysis as they contain less than 4% of



A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329

s

s

t
e

T

w
E
p

i
t
s
w
i

e
p
a
t
f
f

s
T
s
W
a
5
f

T
A
v

6

t
m
n

Fig. 4. Experiment 1, Design 1, UC1: Box-plots of (a) TUC1
1 and (b) TUC1

2 execution times, means and standard deviations (STDs) for 125 MB image size bins. Red line
hows fitted linear function for TUC1 , green line for TUC1 . Red shadow shows confidence interval for TUC1 , green shadow for TUC1 .
1 2 1 2
Fig. 5. Experiment 1, Design 1, UC2: Box-plots of (a) TUC2
1 and (b) TUC2

2 execution times, means and standard deviations (STDs) for 187 MB image size bins. Red line
hows fitted linear function for TUC2

1 , green line for TUC2
2 . Red shadow shows confidence interval for TUC2

1 , green shadow for TUC2
2 .
t
e
l
t
w
a
D
f

F
e
T
A
w
m
c
w
i
d
m
o

T
(
e
s
o
c
a

r
i
D

i
a
N
s

he data set. Accordingly, for both UC1 and UC2, we model the
xecution time as:

(x) = α × x + β (1)

here x is the image size. We found the parameter values of
q. (1) by using a non-linear least squares algorithm to fit ex-
erimental data (see Table 1).
Fig. 4(b) shows the execution time of TUC1

2 as a function of the
mage size. This task presents a different behavior than TUC1

1 , as
he code executed is different. Note the slightly stronger positive
kew of the data compared to that of Fig. 4(a) but still consistent
ith our conclusion that deviations are mostly due to fluctuations

n the node performance, i.e., different code similar fluctuations.
Similar to TUC1

1 , Fig. 4(b) shows a weak correlation between the
xecution time of TUC1

2 and image size. In addition, the variance
er bin is relatively similar across bins, as expected based on the
nalysis of TUC1

1 . The box-plot and mean execution time indicate
hat a linear function is a good candidate for a model of TUC1

2 . We
itted a linear function (as in Eq. (1)) to the execution time as a
unction of the image size for the same bins as TUC1

1 .
Fig. 5(b) shows the execution time of TUC2

2 as function of the
ize of the image pair. We notice a weak correlation between
UC2
2 execution time and the size of the image pair. Further, we
ee a similar variance among the bins as that measured for TUC1

2 .
e notice that the execution time becomes positively skewed

s the image pair size increases, as shown in Figs. 5(a) and
(b). Node usage increases with image size, making the observed
luctuations consistent with the analysis from UC1.

Based on Table 1, the R2 values for TUC1
1 , TUC1

2 , TUC2
1 and

UC2
2 show a good fit of the respective lines to the actual data.
s a result, we can conclude that our estimated functions are
alidated.

.2. Experiment 1, Design 2

Fig. 6(a) shows the execution time of TUC1
1 as a function of

he image size for Design 2. In principle, design differences in
iddleware that execute tasks as independent programs should
ot directly affect task execution time. In this type of middleware,
 c

322
ask code is independent from that of the middleware: once tasks
xecute, the middleware waits for each task to return. Nonethe-
ess, in real scenarios with concurrency and heterogeneous tasks,
he middleware may perform operations on multiple tasks while
aiting for others to return. Accordingly, in Design 2 we observe
n execution time variation comparable to that observed with
esign 1 but Fig. 6(a) shows a stronger positive skew of the data
or Design 2 than Fig. 4(a) for Design 1.

We investigated the positive skew of the data observed in
ig. 6(a) by comparing the system load of a compute node when
xecuting the same number of tiling tasks for Design 1 and 2.
he system load of Design 2 was higher than that of Design 1.
s we used the same type of task, image and task concurrency,
e conclude that the middleware implementing Design 2 uses
ore compute resources than that used for Design 1. Due to
oncurrency, the middleware of Design 2 competes for resources
ith the tasks, momentarily slowing down their execution. This

s consistent with the architectural differences across the two
esigns: Design 2 requires resources to manage queues and data
ovement while Design 1 has only to schedule and launch tasks
n each node.
Design 2 also produces a much stronger positive skew of

UC1
2 execution time compared to executing TUC1

2 with Design 1
see Fig. 6(b)). TUC1

2 executes on GPU and TUC1
1 on CPU but their

xecution times have comparable skew in Design 2. This further
upports our hypothesis that the long tail of the distribution
f TUC1

1 and especially TUC1
2 execution times, depends on the

ompetition for main memory and I/O between the middleware
nd the executing tasks.
Table 1 shows the model parameters for both tasks and their

espective R2 values. R2 are worse compared to Design 1. This
s expected based on the positive skew of the data observed in
esign 2.
Fig. 7(a) shows the execution time of TUC2

1 as a function of
mage pair size for Design 2. We notice an execution time vari-
tion comparable to the one shown in Fig. 5(a) for Design 1.
onetheless, while the number of outliers is lower than in De-
ign 1, their spread is higher: between 10 s and 80 s for Design 2

ompared to 5 s and 16 s for Design 1. As with UC1, this positive



A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329

l

s
w
i

t
s
e
e
s
a
o

6

U
s
a

a
i
D
t
t
i
c

d

t
e
T

Table 1
Fitted parameter values of Eq. (1) using a non-linear least squares algorithm to fit our experimental data.

Design Fitted data α value β value R2 value Figure

1 TUC1
1 1.92 × 10−2 60.49 0.97 Fig. 4(a), red line

1 TUC1
2 5.21 × 10−2 128.53 0.96 Fig. 4(b), green line

1 TUC2
1 0.93 2.45 0.97 Fig. 5(a), red line

1 TUC2
2 5.21 × 10−2 128.53 0.96 Fig. 5(b), green line

2 TUC1
1 3.17 × 10−2 64.81 0.92 Fig. 6(a), red line

2 TUC1
2 4.71 × 10−2 95.83 0.95 Fig. 6(b), green line

2 TUC2
1 0.62 1.52 0.61 Fig. 7(a), red line

2 TUC2
2 3.16 × 10−2 0.29 0.51 Fig. 7(b), green line

2.A TUC1
1 2.74 × 10−2 49.03 0.94 N/A

2.A TUC1
2 4.80 × 10−2 87.60 0.95 N/A

2.A TUC2
1 0.54 1.51 0.76 N/A

2.A TUC2
2 2.82 × 10−2 0.26 0.89 N/A
Fig. 6. Experiment 1, Design 2, UC1: Box-plots of (a) TUC1
1 and (b) TUC1

2 execution times, means and standard deviations (STDs) for 125 MB image pair size bins. Red
ine shows fitted linear function for TUC1

1 , green line for TUC1
2 . Red shadow shows confidence interval for TUC1

1 , green shadow for TUC1
2 .
t
F

a
w
b
D
b
t
c
a

f
a
e
v

n
m
f
a

t
t
w
p
T
t

6

s
f
i

kewness is due to the increased system load per compute node
ith Design 2. The fitted parameter values are shown in Table 1

ndicating a good fit.
Fig. 7(b) shows the execution time of TUC2

2 . We notice a skew of
he data similar to what observed for TUC2

2 in Design 1 and a larger
pread of the outliers. The latter supports our hypothesis that the
xecution time of the task is sensitive to resource competition,
specially related to the use of the file system. This wider spread
upports a worse fit of our model, as shown in Table 1. Spread
part, there is not much difference between the execution times
f TUC2

2 tasks in Design 1 and Design 2.

.3. Experiment 1, Design 2.A

Similarly to the analysis for Design 1 and 2, we fitted UC1 and
C2 data from Design 2.A to Eq. (1). The fitted parameter are
hown in Table 1. Based on R2, we can conclude that all model
re good fits for their respective data.
The results of experiment 1 indicate that with Design 2.A, on

verage, there is a decrease in the execution time of T1 and an
ncrease in that of T2 compared to Design 2, for both use cases.
esign 2.A requires one queue more than Design 2 for TUC1

1 and
herefore more resources for its implementation. This can explain
he slowing of T2 but not the speedup of T1. This requires further
nvestigation, measuring whether the performance fluctuations of
ompute nodes are larger than measured so far.
As discussed in Section 5.2, balancing of workflow execution

iffers between Design 2 and Design 2.A. Figs. 8(a) and 9(a) show
that the task T1 of the two use cases can work on a different
number of images but all T1 tasks concurrently execute for a
similar duration. The histograms in Figs. 8(a) and 9(a) also show
hat this balancing can result in different input distributions for
ach compute node, affecting the total execution time of the
tasks on each node. Thus, Design 2 can create imbalances in
2

323
he time to completion of T2, as shown by the red bars in both
igs. 8(a) and 9(a).
Design 2.A addresses these imbalances by early binding im-

ges to compute nodes. Comparing the lower part of Fig. 8(a)
ith Figs. 8(b) and 9(a) with Fig. 9(b), we notice the difference
etween the distributions of image size for each node between
esign 2 and 2.A. In Design 2.A, due to the modeled correlation
etween time to completion and the size of the processed image,
he similar distribution of the size of the images bound to each
ompute node balances the total processing time of the workflow
cross multiple nodes.
Note that Figs. 8 and 9 show just one of the runs we perform

or this experiment. Due to the random pulling of images from
global queue performed by Design 2, each run shows differ-
nt distributions of image sizes across nodes, leading to large
ariations in the total execution time of the workflow.
Fig. 8(b) shows also an abnormal behavior of one compute

ode: For images larger than 1.5 GBs, Node 3 CPU performance is
arkedly slower than other nodes when executing TUC1

1 . Different
rom Design 2, Design 2.A can balance these fluctuations in TUC1

1
s far as they do not starve TUC1

2 tasks.
Fig. 9(b) shows a more balanced and decreasing execution

ime of TUC2
1 among the 4 nodes, compared to Design 2. We inves-

igated the decreasing of the execution time and we explained it
ith the different input distribution of the total size of the image
airs (smaller) in Node 3 and 4 compared to Node 1 and Node 2.
his image size variation can create a significant fluctuations in
he execution time.

.4. Experiment 2: Resource utilization

Resource utilization varies across Design 1, 2 and 2.A. In De-
ign 1, the runtime system (RTS), i.e, RADICAL-Pilot, is responsible
or scheduling and executing tasks. For UC1, TUC1

1 is memory
ntensive and, as a consequence, we were able to concurrently



A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329

e
a
c
i
o
w

i
a
o
r
a
c
3

a
U
t
t
t
s
a
G
a

A

Fig. 7. Experiment 1, Design 2, UC2: Box-plots of (a) TUC2
1 and (b) TUC2

2 execution times, means and standard deviations (STDs) for 187 KB image size bins. Red line
shows fitted linear function for TUC2

1 , green line for TUC2
2 . Red shadow shows confidence interval for TUC2

1 , green shadow for TUC2
2 .
Fig. 8. Experiment 1, Design 2.A, UC1 execution time of TUC1
1 (blue) and TUC1

2 (red), and distributions of image size per node for (a) Design 2 and (b) Design 2.A.
Fig. 9. Experiment 1, Design 2.A, UC2 execution time of TUC2
1 (blue) and TUC2

2 (red), and distributions of image size per node for (a) Design 2 and (b) Design 2.A.
s
w
w

c

xecute 3 TUC1
1 on each compute node, using only 3 of the 32

vailable CPU cores. We were instead able to execute 2 TUC1
2

oncurrently on each node, using all the available GPUs. Assuming
deal concurrency among the 4 compute nodes we utilized in
ur experiments, the theoretical maximum utilization per node
ould be 10.6% for CPUs and 100% for GPUs.
For UC2, TUC2

1 uses GPU-SIFT to process and match a pair of
mages. TUC2

1 is a GPU-memory intensive task that requires an
mount of memory proportional to the size of the image pair
n which to perform image matching. TUC2

2 runs on CPU and
equires only one core to perform the RANSAC filtration. We were
ble to execute 2 TUC2

1 and up to 2 TUC2
2 concurrently on every

ompute node, utilizing all of the 8 GPUs but only up to 2 of the
2 available cores per node.
Figs. 10 and 11 show the resource utilization percentage, for

ll designs, for UC1 and UC2 respectively. CPU utilization for
C1 with Design 1 (Fig. 10(a)) closely approximates the 10.6%
heoretical maximum utilization but GPU utilization is well below
he theoretical 100%. GPUs are not utilized for almost an hour at
he beginning of the execution and utilization decreases to 80%
ome time after half of the total execution was completed. Our
nalysis shows that RADICAL-Pilot’s scheduler did not schedule
PU tasks at the start of the execution even if GPU resources were
vailable [1].
Fig. 11(a) shows the resource utilization of UC2 with Design 1.
verage GPU utilization is 97% and it is reached in about 13.75 s,

324
howing that the issues with GPU execution observed for UC1
ere addressed. Nonetheless, average CPU utilization is only 1%
ith large amount of time spent throttling TUC2

2 executions. This
is explained by the distribution of TUC2

2 execution time and the
apabilities of the RTS. The mean execution time of TUC2

2 is 1.1 s
and the task scheduler of the RTS is not able to sustain the
throughput required to use the available cores. While the output
of TUC2

1 tasks accumulates, TUC2
2 tasks wait in the scheduler and

executor queues of the RTS.
UC1 does not suffer from the same scheduling limitations of

UC2 for Design 1. The mean execution time of TUC1
2 is 194 s,

requiring much less throughput from the scheduler of the RTS.
Further, the mean execution time of TUC1

1 is 85 s instead of the
6 s of TUC2

1 . This produces a much lower output rate for TUC1
1 than

that of TUC1
2 . In turn, the RTS scheduler has fewer tasks per unit

of time to schedule. Overall, we can conclude that for tasks with
less than 1 min execution time, the overheads of scheduling and
setting up the execution of a task become dominant in the RTS
we utilized.

Fig. 10(b) shows resource utilization for UC1 with Design 2.
GPUs are utilized almost immediately as images are becoming
available in the queues between TUC1

1 and TUC1
2 . This quickly leads

to fully utilized resources. CPU utilization is larger compared to
Design 1, which is expected due to the longer execution times
measured. In addition, two GPUs are used for more than 20,000 s

compared to other GPUs. This shows that the additional execution



A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329

t
i

C
9
t
b
r
t
t

l
t
e
b
t
h
b
f

I
c
U
s
t
d
t
E
a
t
w

6

u
s
e
a

Fig. 10. Experiment 2, UC1 Percentage of CPU and GPU utilization for: (a) Design 1; (b) Design 2, and (3) Design 2.A.
Fig. 11. Experiment 2, UC2 Percentage of CPU and GPU utilization for: (a) Design 1; (b) Design 2, and (3) Design 2.A.
ime of that node was only due to the data size and not due to
dle resource time.

Fig. 11(b) shows resource utilization for UC2 with Design 2.
ompared to Design 1, average GPU utilization improves from
7% to 99% but, more relevantly, average CPUs utilization grows
o 1.35% with almost no throttling. The use of queues, the early
inding of data and the pinning of tasks to nodes, all contribute to
educe the need for throughput in the RTS scheduler. As a result,
otal execution time decreases from the 61,310 s of Design 1 to
he 6,704 s of Design 2.

Figs. 10(c) and 11(c) show that, in Design 2.A, GPUs are re-
eased faster compared to Design 1 and Design 2. This leads
o a GPU utilization above 90% for both use cases. As already
xplained in Experiment 1, this is due to differences in data
alancing among designs. Two design choices are effective for
he concurrent execution of data-driven, compute-intensive and
eterogeneous workflows: (1) early binding of data to node with
alanced distribution of image size; and (2) the use of local
ilesystems for data sharing among tasks.

Drops in resource utilization are observed in all three designs.
n Design 1, although both CPUs and GPUs were used, in some
ases CPU utilization dropped to 6 cores for UC1 and to 3 GPUs for
C2. Our analysis showed that this occurred when RADICAL-Pilot
cheduled both CPU and GPU tasks, pointing to an inefficiency in
he scheduler implementation. Design 2 and 2.A CPU utilization
rops mostly by one CPU when multiple tasks try to pull from
he queue at the same time. This confirms our conclusions in
xperiment 1 about resource competition between middleware
nd executing tasks. In all designs, there is no significant fluctua-
ions in GPU utilization, although there are more often in Design 1
hen CPU and GPUs are used concurrently.

.5. Experiment 3: Implementation overheads

Experiment 3 studies how the total execution time of our
se cases workflow varies across Design 1, 2 and 2.A. Fig. 12(a)
hows that Design 1 and 2 for UC1 have similar total time to
xecution within error bars, while Design 2.A is the fastest by
small margin. Fig. 13(a) shows that, for UC2, Design 1 total

time to execution is around three times longer than the one of
Design 2 and Design 2.A, while Design 2 and Design 2.A have
similar durations. The discussion in Sections 6.1 and 6.2 explains
how these differences relate to the execution time differences of
tasks T and T , and execution concurrency.
1 2

325
Figs. 12(b) and 13(b) show the overheads of each design im-
plementation. For UC1, all three designs overheads are at least
two orders of magnitude smaller than the total time to execution.
A common overheads among the three designs is the ‘‘Dataset
Discovery Overhead’’. This overhead is the time needed to list the
dataset and it is proportional to the size of the dataset. RADICAL-
Pilot has two main components: Agent and Client. RADICAL-
Pilot Agent’s overhead is less than a second in all designs while
RADICAL-Pilot Client’s overhead is in the order of seconds for all
three designs. The latter overhead is proportional to the number
of tasks submitted simultaneously to RADICAL-Pilot Agent.

EnTK’s overhead in Design 1 includes the time to: (1) cre-
ate the workflow consisting of independent pipelines; (2) start
EnTK’s components; and (3) submit the tasks that are ready to be
executed to RADICAL-Pilot. This overhead is proportional to the
number of tasks in the first stage of a pipeline, and the number
of pipelines in the workflow. EnTK does not currently support
partial workflow submission, which would allow us to submit the
minimum number of tasks to fully utilize the resources before
submitting the rest.

The dominant overhead of Design 2 is ‘‘Design 2 Setup Over-
head’’ (Fig. 12(b)). This overhead includes setting up and starting
queues, and starting and shutting down both tasks TUC1

1 and
TUC1
2 on each compute node. Setting up and starting the queues

accounts for most of the overhead as we use a conservative
waiting time to assure that all the queues are up and ready. This
can be optimized further, reducing the impact of this overhead.
Design 2.A introduces an overhead called ‘‘Design 2.A Distributing
Overhead’’ when partitioning and distributing the dataset over
separate nodes. The average time of this overhead for UC1 is
7.5 s, with a standard deviation of 3.71 and is proportional to the
dataset and the number of available compute nodes.

Compared to UC1, Fig. 13(b) shows a different composition of
overheads for UC2. The overheads of Design 1 account for most of
the execution time showed in Fig. 11(a). EnTK and RP Client/Agent
overheads are all very large, indicating that RP spends most of
the time scheduling, launching and unscheduling tasks, possibly
with very large I/O overheads due to the high frequency of read-
ing/writing to a shared file system. EnTK takes a long time waiting
for the data required to describe the full workflow and more time
waiting for the tasks to be handled by the RTS. We measured also
high latency between the RTS and the external MongoDB instance
used by EnTK and RTS to communicate task descriptions and state



A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329
Fig. 12. Experiment 3, (a) UC1 total execution time of Design 1, 2 and 2.A. (b) Overheads of Design 1, 2 and 2.A are at least two orders of magnitude less than the
total execution time.
Fig. 13. Experiment 3, (a) UC2 total execution time of Design 1, 2 and 2.A. (b) Overheads of Design 1, 2 and 2.A.
updates. Overall, Design 1 is proven to be unfeasible for UC2 with
the middleware used for our experiments.

Designs 2 and 2.A show much lower overheads than Design 1
for UC2. Note that the sum of RP and Setup overheads are com-
parable to those of UC1 but with a slightly different distribution
across overheads components. For UC2, RP Agent overhead is
smaller, possibly due to the improvements made to the RTS
task scheduler. ‘‘Dataset Discovery’’ overhead is larger for UC2
compared to UC1 due to the larger dataset used and the need
to form pairs.

In general, Design 2.A offers the best and more stable perfor-
mance, in terms of overheads, resource utilization, load balancing
and total time to execution. Although Design 2 has similar over-
heads, even assuming minimization of Setup Overhead, it does
not guarantee load balancing as done by Design 2.A. Design 1
involves independent pipelines that are concurrently executed
by the RTS on any available resource, leading to the described
overheads. Based on the results of our analysis, these overheads
could be reduced in both EnTK and RADICAL-Pilot by adopting
early binding of images to each compute node as done in De-
sign 2.A. Nonetheless, Design 1 would still require executing a
task for each image, imposing bootstrap and tear down overheads
for each task.

7. Conclusions

While Design 1, 2 and 2.A can successfully support the exe-
cution of the use cases described in Section 3, our experiments
show that for the metrics considered, Design 2.A is the one that
offers the better overall performance. Generalizing this result, use
cases that are both data-driven and compute-intensive benefit
from early binding of data to compute nodes so as to maximize
326
data and compute affinity, and equally balance input data across
nodes. Design 2.A minimizes the overall time to completion of
this type of workflow while maximizing resource utilization.

Our analysis also shows the limits of an approach where
pipelines, i.e., interdependent compute tasks, are late bound to
compute nodes. In designs in which tasks are independent exe-
cutables (i.e., programs), the overhead of bootstrapping a program
needs to be minimized, ensuring that each pipeline processes
as much input as possible (in our use case, single and pairs
of images). In presence of large amount of data, late binding
implies copying, replicating or accessing data over network and
at runtime. We showed that, in contemporary HPC infrastruc-
tures, this is too costly both for resource utilization and total
time to completion. Even when data are made available on the
network filesystems of the HPC infrastructure, the time spent to
access and/or write those amounts of data at runtime dominates
the total time to completion of the application workflow, vastly
reducing the amount of time computing resources can be used
while available.

It should be noted that our insight does not depend on the
middleware we used for our experiments, or on the type of data
and computation that our use cases required. Our insight depends
instead on the requirements of the given tasks and how the
capabilities of the available resources satisfy those requirements.
Given the ratio between CPUs and GPUs, the amount of memory
per node and the filesystem performance in our experiments,
Design 2.A will perform better than the other two designs for any
use case that requires the analysis of multi-terabyte dataset with
both CPUs and GPUs. Conversely, given a resource with a suffi-
ciently fast filesystem and a 1:1 ratio between CPUs and GPUs,
based on our analysis, all three designs will perform analogously,
possibly with slightly different overhead distributions.



A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329

s
C
w
a
o
t
n
f
c
t
d
m
c

c
t
t
a
d
l
e
t
i
t

t
e
d
c
o
h
a
W
a
q
s
g
t
u
a
r

W
s
b
t
p
i
o
t
h
t
t
t
t
e
e
H

t
u
o
1
i
r

r
o
w
t
o
c

t

C

p
o
M

D

c
t

A

B
C
p
S
w
A
t
t
v
p

R

Infrastructure-wise, the experiments presented in Section 6
how the limits imposed by an imbalance between number of
PU cores and available memory. Given data-driven computation
here multi GB images need concurrent processing, we were
ble to use just 10% of the available cores due to the amount
f RAM required by each image processing. This applies also to
he imbalance between CPUs and GPUs: use cases with heteroge-
eous tasks would benefit from a higher GPU/CPU ratio. Finally,
ilesystem performance limited the amount of concurrent I/O we
ould perform from concurrent processes. This is consistent with
he current trend of building HPC infrastructures with higher GPU
ensity per node, with different types of dedicated memories and
ulti-tiered data systems. ORNL Summit or TACC Frontera are
ontemporary examples of such a trend.
Sections 4 and 6 also show the limits of optimizing the exe-

utable of a task when multiple instances of that executable have
o be executed concurrently. While GPU-SIFT largely improves on
he computing efficiency of preexisting SIFT implementations, the
mount of memory it required to match an image pair always
epend on the size of the images of the pair. This imposes a
imit on the number of GPU-SIFT tasks that can be concurrently
xecuted. This make the use of dedicated accelerators preferable
o the use of general purpose processors, but also shows the
mportance of optimizing the design of the middleware that has
o execute those program instances concurrently.

Section 6 offers an example of a methodology for experimen-
ally evaluating the performance of alternative but functionally
quivalent middleware designs that support the execution of
ata and compute intensive workflow applications on HPC ma-
hines. This methodology is important to drive the development
f middleware in a moment in which application workflows
ave become fundamental for many scientific domains [47] and
cademic efforts are multiplying to support such applications 5.
hile qualitative metrics like usability, security or portability

re fundamental, to the best of our knowledge, we are lacking
uantitative ways to compare alternative middleware designs for
pecific production infrastructures (i.e., experimental methodolo-
ies). Consistently, our methodology focuses on three quanti-
ative performance metrics (total time to completion, resource
tilization and middleware overheads) which measure the speed
nd efficiency with which users can obtain results and how well
esources that have been ‘‘paid’’ for can be utilized.

The results presented open several future lines of research.
e will extend both EnTK and RADICAL-Pilot to implement De-

ign 2.A. We will use our characterization of overheads as a
aseline to evaluate our implementations and further improve
he efficiency of our middleware. Further, we will apply the
resented experimental methodology to additional use cases and
nfrastructures, measuring the trade offs imposed by other types
f task heterogeneity, including multi-core or multi-GPU tasks
hat extend beyond a single compute node. We will explore
ow the presented methodology applies to designs in which
asks are not independent programs but, instead, single func-
ions or methods. In general, we will study how to evaluate the
rade offs between in-memory and filesystem-based computa-
ions when use cases demand the maximization of concurrent
xecution. This will be particularly important to evaluate the
xecution of workflow applications on the upcoming exascale
PC infrastructures.
Beyond design, methodological and implementation insights,

he work for this paper has already enabled the execution of
se cases at unprecedented scale and speed. The 3097 images
f the Seals use case can be analyzed in ≈20 hours, and the
1,030 image pairs of the Geolocation use case can be matched
n ≈5.6 hours, compared to labor-intensive weeks previously

equired on non-HPC resources. These are by no means optimal

327
esults. The capabilities we will develop for our middleware based
n the insight gained with the results presented in this paper,
ill allow for further improvement of execution performance. In
his context, it will be important to integrate analytical models
f optimal execution with the analysis of executions on actual
omputing infrastructures.
Data sources, the software used for their analysis and replica-

ion guidelines can be found at [1,48].

RediT authorship contribution statement

Aymen Al-Saadi: Contributed equally to all section of the
aper. Ioannis Paraskevakos: Contributed equally to all section
f the paper. Bento Collares Gonçalves: Contributed to section 3.
atteo Turilli: Contributed equally to all section of the paper.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments and contributions

We thank Andre Merzky (Rutgers) and Brad Spitzbart (Stony
rook) for useful discussions. This work is funded by NSF Earth-
ube Award, United States of America Number 1740572. Com-
utational resources were provided by NSF XRAC awards, United
tates of America TG-MCB090174. Geospatial support for this
ork provided by the Polar Geospatial Center, United States of
merica under NSF-OPP awards 1043681 and 1559691. We thank
he PSC Bridges PI and Support Staff for supporting this work
hrough resource reservations. Aymen Alsaadi, Ioannis Paraske-
akos and Matteo Turilli contributed equally to all section of the
aper. Bento Collares Gonçalves contributed to Section 3.

eferences

[1] I. Paraskevakos, M. Turilli, B.C. Gonçalves, H. Lynch, S. Jha, Workflow
design analysis for high resolution satellite image analysis, in: 2019 15th
International Conference on EScience (EScience), 2019, pp. 47–56.

[2] J. Dean, S. Ghemawat, MapReduce: a flexible data processing tool,
Commun. ACM 53 (1) (2010) 72–77.

[3] H. Vo, J. Kong, D. Teng, Y. Liang, A. Aji, G. Teodoro, F. Wang, Mareia: a cloud
mapreduce based high performance whole slide image analysis framework,
Distrib. Parallel Databases (2018) http://dx.doi.org/10.1007/s10619-018-
7237-1.

[4] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark:
Cluster computing with working sets, in: Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, in: HotCloud’10, USENIX
Association, Berkeley, CA, USA, 2010, p. 10.

[5] Z. Zhang, K. Barbary, F.A. Nothaft, E.R. Sparks, O. Zahn, M.J. Franklin, D.A.
Patterson, S. Perlmutter, Kira: Processing astronomy imagery using big
data technology, IEEE Trans. Big Data (2016) 1, http://dx.doi.org/10.1109/
TBDATA.2016.2599926, http://ieeexplore.ieee.org/document/7549106/.

[6] Y. Yan, L. Huang, Large-Scale Image Processing Research Cloud,
2014, http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=
E70A37090C2094525DF8F818154EE7D3?doi=10.1.1.684.6787{&}rep=
rep1{&}type=pdf.

[7] R. Ramos-Pollan, F.A. Gonzalez, J.C. Caicedo, A. Cruz-Roa, J.E. Camargo,
J.A. Vanegas, S.A. Perez, J. David Bermeo, J.S. Otalora, P.K. Rozo, J.E.
Arevalo, BIGS: A framework for large-scale image processing and anal-
ysis over distributed and heterogeneous computing resources, in: 2012
IEEE 8th International Conference on E-Science, IEEE, 2012, pp. 1–
8, http://dx.doi.org/10.1109/eScience.2012.6404424, http://ieeexplore.ieee.
org/document/6404424/.

[8] D.E.J. Hobley, J.M. Adams, S.S. Nudurupati, E.W.H. Hutton, N.M. Gasparini,
G.E. Tucker, Creative computing with landlab: an open-source toolkit for
building, coupling, and exploring two-dimensional numerical models of
Earth-surface dynamics, Earth Surf. Dynam 5 (2017) 21–46, http://dx.doi.
org/10.5194/esurf-5-21-2017, www.earth-surf-dynam.net/5/21/2017/.

http://refhub.elsevier.com/S0167-739X(21)00144-8/sb2
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb2
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb2
http://dx.doi.org/10.1007/s10619-018-7237-1
http://dx.doi.org/10.1007/s10619-018-7237-1
http://dx.doi.org/10.1007/s10619-018-7237-1
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb4
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb4
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb4
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb4
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb4
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb4
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb4
http://dx.doi.org/10.1109/TBDATA.2016.2599926
http://dx.doi.org/10.1109/TBDATA.2016.2599926
http://dx.doi.org/10.1109/TBDATA.2016.2599926
http://ieeexplore.ieee.org/document/7549106/
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=E70A37090C2094525DF8F818154EE7D3?doi=10.1.1.684.6787{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=E70A37090C2094525DF8F818154EE7D3?doi=10.1.1.684.6787{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=E70A37090C2094525DF8F818154EE7D3?doi=10.1.1.684.6787{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=E70A37090C2094525DF8F818154EE7D3?doi=10.1.1.684.6787{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=E70A37090C2094525DF8F818154EE7D3?doi=10.1.1.684.6787{&}rep=rep1{&}type=pdf
http://dx.doi.org/10.1109/eScience.2012.6404424
http://ieeexplore.ieee.org/document/6404424/
http://ieeexplore.ieee.org/document/6404424/
http://ieeexplore.ieee.org/document/6404424/
http://dx.doi.org/10.5194/esurf-5-21-2017
http://dx.doi.org/10.5194/esurf-5-21-2017
http://dx.doi.org/10.5194/esurf-5-21-2017
http://www.earth-surf-dynam.net/5/21/2017/


A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329
[9] J. Borrill, C. Bischoff, T. Crawford, M. Hasselfield, R. Keskitalo, T. Kisner,
A. Kusaka, N. Whitehorn, HPC / HTC Software Infrastructure for the
Synthesis and Analysis of CMB Datasets, 2020, http://dx.doi.org/10.
6084/m9.figshare.11821071.v2, https://figshare.com/articles/HPC_HTC_
Software_Infrastructure_for_the_Synthesis_and_Analysis_of_CMB_Datasets/
11821071.

[10] B.S. Manjunath, T. Pollock, R. Miller, N. Merchant, A. Roy-Chowdhury,
LIMPID: Large-scale Image Processing Infrastructure, 2018, http://dx.doi.
org/10.6084/m9.figshare.6169337.v1, https://figshare.com/articles/LIMPID_
Large-scale_Image_Processing_Infrastructure/6169337.

[11] A. Galizia, D. D’Agostino, A. Clematis, An MPI–CUDA library for
image processing on HPC architectures, J. Comput. Appl. Math.
273 (2015) 414–427, http://dx.doi.org/10.1016/J.CAM.2014.05.004, https:
//www.sciencedirect.com/science/article/pii/S0377042714002374.

[12] A. Gholami, A. Mang, K. Scheufele, C. Davatzikos, M. Mehl, G. Biros, A
framework for scalable biophysics-based image analysis, in: Proceedings of
the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, in: SC ’17, ACM, New York, NY, USA, 2017, pp.
19:1–19:13, http://dx.doi.org/10.1145/3126908.3126930.

[13] Y. Huo, J. Blaber, S.M. Damon, B.D. Boyd, S. Bao, P. Parvathaneni, C.B.
Noguera, S. Chaganti, V. Nath, J.M. Greer, I. Lyu, W.R. French, A.T. Newton,
B.P. Rogers, B.A. Landman, Towards portable large-scale image process-
ing with high-performance computing, J. Digital Imaging 31 (3) (2018)
304–314, http://dx.doi.org/10.1007/s10278-018-0080-0.

[14] S.M. Damon, B.D. Boyd, A.J. Plassard, W. Taylor, B.A. Landman, DAX
- The next generation: Towards one million processes on commod-
ity hardware, Proceedings of SPIE–the International Society for Optical
Engineering 2017 (2017) http://dx.doi.org/10.1117/12.2254371, http://
www.ncbi.nlm.nih.gov/pubmed/28919661, http://www.pubmedcentral.nih.
gov/articlerender.fcgi?artid=PMC5596878.

[15] R. Vescovi, M. Du, V. de Andrade, W. Scullin, G. Doğa, C. Jacobsen,
Tomosaic: efficient acquisition and reconstruction of teravoxel tomography
data using limited-size synchrotron X-ray beams, J. Synchrotron Radiat. 25
(2018) 1478–1489, http://dx.doi.org/10.1107/S1600577518010093.

[16] S. Petruzza, A. Venkat, A. Gyulassy, G. Scorzelli, F. Federer, A. Angelucci, V.
Pascucci, P.-T. Bremer, ISAVS: Interactive scalable analysis and visualization
system, in: SIGGRAPH Asia 2017 Symposium on Visualization, in: SA ’17,
ACM, New York, NY, USA, 2017, pp. 18:1–18:8, http://dx.doi.org/10.1145/
3139295.3139299, http://doi.acm.org/10.1145/3139295.3139299.

[17] G. Teodoro, T. Pan, T.M. Kurc, J. Kong, L.A. Cooper, N. Podhorszki, S. Klasky,
J.H. Saltz, High-throughput analysis of large microscopy image datasets on
CPU-gpu cluster platforms, in: 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing, IEEE, 2013, pp. 103–114, http://dx.doi.
org/10.1109/IPDPS.2013.11, http://ieeexplore.ieee.org/document/6569804/.

[18] R. Grunzke, F. Jug, B. Schuller, R. Jäkel, G. Myers, W.E. Nagel, Seamless
HPC integration of data-intensive KNIME workflows via UNICORE, Springer,
Cham, 2017, pp. 480–491, http://dx.doi.org/10.1007/978-3-319-58943-5_
39, http://link.springer.com/10.1007/978-3-319-58943-5{_}39.

[19] K. Benedyczak, B. Schuller, M. Petrova-El Sayed, J. Rybicki, R. Grunzke,
UNICORE 7 — Middleware services for distributed and federated comput-
ing, in: 2016 International Conference on High Performance Computing
& Simulation (HPCS), IEEE, 2016, pp. 613–620, http://dx.doi.org/10.1109/
HPCSim.2016.7568392, http://ieeexplore.ieee.org/document/7568392/.

[20] N. Ghouaiel, S. Lefèvre, Coupling ground-level panoramas and aerial
imagery for change detection, Geo-spatial Inf. Sci. 19 (2016) 222–232.

[21] N. Vo, N. Jacobs, J. Hays, Revisiting IM2GPS in the deep learning era, 2017,
arXiv:1705.04838.

[22] K.U. Karanth, Estimating tiger panthera tigris populations from camera-trap
data using capture—recapture models, Biol. Cons. 71 (3) (1995) 333–338.

[23] D. Western, R. Groom, J. Worden, The impact of subdivision and seden-
tarization of pastoral lands on wildlife in an African savanna ecosystem,
Biol. Cons. 142 (11) (2009) 2538–2546.

[24] H.J. Lynch, R. White, A.D. Black, R. Naveen, Detection, differentiation,
and abundance estimation of penguin species by high-resolution satellite
imagery, Polar Biol. 35 (6) (2012) 963–968, http://dx.doi.org/10.1007/
s00300-011-1138-3.

[25] B. Kellenberger, D. Marcos, D. Tuia, Detecting mammals in UAV im-
ages: Best practices to address a substantially imbalanced dataset
with deep learning, Remote Sens. Environ. 216 (2018) 139–153,
http://dx.doi.org/10.1016/j.rse.2018.06.028, http://www.sciencedirect.com/
science/article/pii/S0034425718303067.

[26] A. Polzounov, I. Terpugova, D. Skiparis, A. Mihai, Right whale recognition
using convolutional neural networks, 2016, CoRR, abs/1604.05605, arXiv:
1604.05605.

[27] M.S. Norouzzadeh, A. Nguyen, M. Kosmala, A. Swanson, M.S. Palmer, C.
Packer, J. Clune, Automatically identifying, counting, and describing wild
animals in camera-trap images with deep learning, Proc. Natl. Acad. Sci.
115 (25) (2018) E5716–E5725, http://dx.doi.org/10.1073/pnas.1719367115,
arXiv:115/25/E5716, https://www.pnas.org/content/115/25/E5716.
328
[28] A. Fabra, V. Gascón, The convention on the conservation of antarctic marine
living resources (CCAMLR) and the ecosystem approach, Int. J. Mar. Coast.
Law 23 (3) (2008) 567–598.

[29] H. Hillebrand, T. Brey, J. Gutt, W. Hagen, K. Metfies, B. Meyer, A.
Lewandowska, Climate change: Warming impacts on marine biodiversity,
in: Handbook on Marine Environment Protection, Springer, 2018, pp.
353–373.

[30] K. Reid, Climate change impacts, vulnerabilities and adaptations: Southern
ocean marine fisheries, Impacts Clim. Chang. Fish. Aquac. (2019) 363.

[31] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medical
Image Computing and Computer-Assisted Intervention, Springer, 2015, pp.
234–241.

[32] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

[33] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int.
J. Comput. Vis. 60 (2) (2004) 91–110, http://dx.doi.org/10.1023/B:VISI.
0000029664.99615.94.

[34] R.C. Bolles, M.A. Fischler, A RANSAC-based approach to model fitting and
its application to finding cylinders in range data., in: IJCAI, 1981, 1981, pp.
637–643.

[35] M. Rodriguezs, et al., Fast Image Matching by Affine Simulation, CMLA,
2017–, https://github.com/rdguez-mariano/fast_imas_IPOL.

[36] M. Björkman, N. Bergström, D. Kragic, Detecting, segmenting and tracking
unknown objects using multi-label MRF inference, Comput. Vis. Image
Underst. 118 (2014) 111–127, http://dx.doi.org/10.1016/j.cviu.2013.10.007,
http://www.sciencedirect.com/science/article/pii/S107731421300194X.

[37] A.-S. Aymen, Scalable algorithm and workload execution for geo locating
satellite imagery, 2020, http://dx.doi.org/10.7282/t3-z0w1-sg59, https://
rucore.libraries.rutgers.edu/rutgers-lib/62916/.

[38] N.A. Nystrom, M.J. Levine, R.Z. Roskies, J.R. Scott, Bridges: A uniquely
flexible HPC resource for new communities and data analytics, in: Pro-
ceedings of the 2015 XSEDE Conference: Scientific Advancements Enabled
By Enhanced Cyberinfrastructure, in: XSEDE ’15, ACM, New York, NY, USA,
2015, pp. 30:1–30:8, http://dx.doi.org/10.1145/2792745.2792775.

[39] A. Merzky, M. Turilli, M. Maldonado, M. Santcroos, S. Jha, Using pilot sys-
tems to execute many task workloads on supercomputers, in: Workshop
on Job Scheduling Strategies for Parallel Processing, Springer, 2018, pp.
61–82.

[40] L. Tu, C. Dong, Histogram equalization and image feature matching, in:
2013 6th International Congress on Image and Signal Processing (CISP),
Vol. 01, 2013, pp. 443–447.

[41] K. Lin, J. Lu, C. Chen, J. Zhou, Learning compact binary descriptors
with unsupervised deep neural networks, in: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1183–1192,
http://dx.doi.org/10.1109/CVPR.2016.133.

[42] L. Zheng, Y. Yang, Q. Tian, SIFT Meets CNN: A decade survey of instance
retrieval, IEEE Trans. Pattern Anal. Mach. Intell. 40 (5) (2018) 1224–1244,
http://dx.doi.org/10.1109/TPAMI.2017.2709749.

[43] G. Bradski, The opencv library, Dr. Dobb’s J. Softw. Tool (2000).
[44] S. Gillies, et al., Rasterio: Geospatial Raster I/O for Python Programmers,

Mapbox, 2013–, https://github.com/mapbox/rasterio.
[45] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.

Desmaison, L. Antiga, A. Lerer, Automatic differentiation in PyTorch, in:
NIPS-W, 2017.

[46] V. Balasubramanian, M. Turilli, W. Hu, M. Lefebvre, W. Lei, R. Modrak, G.
Cervone, J. Tromp, S. Jha, Harnessing the power of many: Extensible toolkit
for scalable ensemble applications, in: 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), IEEE, 2018, pp. 536–545.

[47] T. McPhillips, S. Bowers, D. Zinn, B. Ludäscher, Scientific workflow design
for mere mortals, Future Gener. Comput. Syst. 25 (5) (2009) 541–551.

[48] ICEBERG Team, Imagery cyber-infrastructure and extensible building blocks
to enhance geosciences research, 2018, [Online; accessed April 25th 2019],
https://iceberg-project.github.io/.

Aymen Al-Saadi is a Ph.D. student and Junior Research
Developer of the RADICAL group. Before that he earned
his master degree in Computer Engineering from Rut-
gers University. His research focus currently lies on
high throughput function execution in HPC contexts.

http://dx.doi.org/10.6084/m9.figshare.11821071.v2
http://dx.doi.org/10.6084/m9.figshare.11821071.v2
http://dx.doi.org/10.6084/m9.figshare.11821071.v2
https://figshare.com/articles/HPC_HTC_Software_Infrastructure_for_the_Synthesis_and_Analysis_of_CMB_Datasets/11821071
https://figshare.com/articles/HPC_HTC_Software_Infrastructure_for_the_Synthesis_and_Analysis_of_CMB_Datasets/11821071
https://figshare.com/articles/HPC_HTC_Software_Infrastructure_for_the_Synthesis_and_Analysis_of_CMB_Datasets/11821071
https://figshare.com/articles/HPC_HTC_Software_Infrastructure_for_the_Synthesis_and_Analysis_of_CMB_Datasets/11821071
https://figshare.com/articles/HPC_HTC_Software_Infrastructure_for_the_Synthesis_and_Analysis_of_CMB_Datasets/11821071
http://dx.doi.org/10.6084/m9.figshare.6169337.v1
http://dx.doi.org/10.6084/m9.figshare.6169337.v1
http://dx.doi.org/10.6084/m9.figshare.6169337.v1
https://figshare.com/articles/LIMPID_Large-scale_Image_Processing_Infrastructure/6169337
https://figshare.com/articles/LIMPID_Large-scale_Image_Processing_Infrastructure/6169337
https://figshare.com/articles/LIMPID_Large-scale_Image_Processing_Infrastructure/6169337
http://dx.doi.org/10.1016/J.CAM.2014.05.004
https://www.sciencedirect.com/science/article/pii/S0377042714002374
https://www.sciencedirect.com/science/article/pii/S0377042714002374
https://www.sciencedirect.com/science/article/pii/S0377042714002374
http://dx.doi.org/10.1145/3126908.3126930
http://dx.doi.org/10.1007/s10278-018-0080-0
http://dx.doi.org/10.1117/12.2254371
http://www.ncbi.nlm.nih.gov/pubmed/28919661
http://www.ncbi.nlm.nih.gov/pubmed/28919661
http://www.ncbi.nlm.nih.gov/pubmed/28919661
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5596878
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5596878
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5596878
http://dx.doi.org/10.1107/S1600577518010093
http://dx.doi.org/10.1145/3139295.3139299
http://dx.doi.org/10.1145/3139295.3139299
http://dx.doi.org/10.1145/3139295.3139299
http://doi.acm.org/10.1145/3139295.3139299
http://dx.doi.org/10.1109/IPDPS.2013.11
http://dx.doi.org/10.1109/IPDPS.2013.11
http://dx.doi.org/10.1109/IPDPS.2013.11
http://ieeexplore.ieee.org/document/6569804/
http://dx.doi.org/10.1007/978-3-319-58943-5_39
http://dx.doi.org/10.1007/978-3-319-58943-5_39
http://dx.doi.org/10.1007/978-3-319-58943-5_39
http://link.springer.com/10.1007/978-3-319-58943-5{_}39
http://dx.doi.org/10.1109/HPCSim.2016.7568392
http://dx.doi.org/10.1109/HPCSim.2016.7568392
http://dx.doi.org/10.1109/HPCSim.2016.7568392
http://ieeexplore.ieee.org/document/7568392/
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb20
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb20
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb20
http://arxiv.org/abs/1705.04838
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb22
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb22
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb22
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb23
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb23
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb23
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb23
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb23
http://dx.doi.org/10.1007/s00300-011-1138-3
http://dx.doi.org/10.1007/s00300-011-1138-3
http://dx.doi.org/10.1007/s00300-011-1138-3
http://dx.doi.org/10.1016/j.rse.2018.06.028
http://www.sciencedirect.com/science/article/pii/S0034425718303067
http://www.sciencedirect.com/science/article/pii/S0034425718303067
http://www.sciencedirect.com/science/article/pii/S0034425718303067
http://arxiv.org/abs/1604.05605
http://arxiv.org/abs/1604.05605
http://arxiv.org/abs/1604.05605
http://dx.doi.org/10.1073/pnas.1719367115
http://arxiv.org/abs/115/25/E5716
https://www.pnas.org/content/115/25/E5716
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb28
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb28
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb28
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb28
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb28
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb29
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb29
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb29
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb29
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb29
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb29
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb29
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb30
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb30
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb30
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb31
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb31
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb31
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb31
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb31
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb31
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb31
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb34
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb34
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb34
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb34
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb34
https://github.com/rdguez-mariano/fast_imas_IPOL
http://dx.doi.org/10.1016/j.cviu.2013.10.007
http://www.sciencedirect.com/science/article/pii/S107731421300194X
http://dx.doi.org/10.7282/t3-z0w1-sg59
https://rucore.libraries.rutgers.edu/rutgers-lib/62916/
https://rucore.libraries.rutgers.edu/rutgers-lib/62916/
https://rucore.libraries.rutgers.edu/rutgers-lib/62916/
http://dx.doi.org/10.1145/2792745.2792775
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb39
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb39
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb39
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb39
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb39
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb39
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb39
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb40
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb40
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb40
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb40
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb40
http://dx.doi.org/10.1109/CVPR.2016.133
http://dx.doi.org/10.1109/TPAMI.2017.2709749
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb43
https://github.com/mapbox/rasterio
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb45
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb45
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb45
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb45
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb45
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb46
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb46
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb46
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb46
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb46
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb46
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb46
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb47
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb47
http://refhub.elsevier.com/S0167-739X(21)00144-8/sb47
https://iceberg-project.github.io/


A. Al-Saadi, I. Paraskevakos, B.C. Gonçalves et al. Future Generation Computer Systems 124 (2021) 315–329

C
s
a
s
w
S

s
H
E
b
m
b

Ioannis Paraskevakos received his Ph.D. from Rutgers
University.

His research focused on providing data-intensive
capabilities on HPC for analyzing data from scien-
tific simulations, through abstraction, architectures and
middleware. His research interests include High Per-
formance Computing, Task Parallel Applications and
Architectures, Distributed System Communication Pro-
tocols, and Distributed Data Abstractions.

During his studies, he was involved in two
projects, MIddleware for Data-Intensive Analytics and

Science (MIDAS) and Imagery Cyberinfrastructure and Extensible Building-Blocks
to Enhance Research in the Geosciences (ICEBERG). In addition, he regularly
contributes to several RADICAL-Cybertools projects.

Bento is a biologist by training, with expertise in
remote sensing and computer vision algorithms and
a wide variety of machine learning and statistical
methods in his toolbox. Fueled by intellectual challenge
and wanting to go beyond observation and simple
statistics, Bento picked up programming by himself and
developed an interest in Machine Learning, which soon
became his bread and butter through his quantitative
ecology Ph.D. A pioneer in using deep learning in
Ecology, Bento designed Convolution Neural Network
architectures to automatically detect seals and penguin

colonies in high-resolution satellite-imagery, enabling population estimates at
unprecedented spatial and temporal scales.

Heather Lynch is the IACS Endowed Chair for Ecology
& Evolution at Stony Brook University in Stony Brook,
NY, USA. Her research focuses on the population dy-
namics of Antarctic wildlife and the development of
novel wildlife survey methods using computer vision,
UAVs, and satellite imagery. Lynch has a A.B. in Physics
from Princeton University, an M.A. in Physics from
Harvard University, and a Ph.D. in Organismic and
Evolutionary Biology from Harvard University. Contact
her at heather.lynch@stonybrook.edu.
329
Shantenu is an Associate Professor of Computer En-
gineering at Rutgers University and the Chair of the
Department (Center) for Data Driven Discovery at
Brookhaven National Laboratory. He was appointed
a Rutgers Chancellor’s Scholar in 2015. He has held
visiting positions at the University of Edinburgh and
UCL.

Shantenu’s research interests are at the intersec-
tion of high-performance distributed computing and
computational & data-driven science. He is the PI of
RADICAL Lab and the lead investigator of RADICAL-

ybertools project which are a suite of middleware building blocks used to
upport large-scale science and engineering applications. He is proud to play
part in the upcoming revolution at the interface of computing and health-

cience—global health and ‘‘personalized’’ medicine. He collaborates extensively
ith scientists from multiple domains—including but not limited to Molecular
ciences, Earth Sciences and High-Energy Physics.

Shantenu was the recipient of the inaugural Chancellor’s Excellence in Re-
earch (2016) for his cyberinfrastructure contributions to computational science.
e was also awarded a Rutgers Board of Trustees Fellowship for Scholarly
xcellence (2014). He is a recipient of the NSF CAREER Award (2013) and several
est paper prizes at SC’xy and ISC’xy. His current research has been funded by
ultiple NSF awards and US Department of Energy (DoE); his work has also
een funded by US National Institute for Health (NIH), and the UK EPSRC.

Matteo Turilli I am Assistant Research Professor at
the department of Electrical and Computer Engineer-
ing, Rutgers University. Before moving to Rutgers, I
was the Chair of the EGI Federated Cloud and Senior
Research Associate at the Oxford e-Research Centre
(OeRC), University of Oxford, UK. My research interests
primarily concern bridging the gap between distributed
and high performance computing, designing middle-
ware for scientific cyberinfrastructures, and supporting
domain-specific scientific workflows. I collaborate with
several domain scientists to enable research in bio-

logical sciences, earth sciences, climate sciences and particle physics. For my
research, I use production infrastructures like OLCF, NCSA, NCAR and XSEDE,
performing large-scale experiments on among the biggest ‘‘supercomputers’’
currently available. Highly motivated students with similar research interests
and looking for joining a Master or Ph.D. program are always welcome to get
in contact.

mailto:heather.lynch@stonybrook.edu

	Comparing workflow application designs for high resolution satellite image analysis
	Introduction
	Related work
	Satellite imagery analysis use cases
	Seals use case (UC1)
	Image geolocation use case (UC2)

	GPU-SIFT implementation and performance characterization
	Throughput
	Memory consumption
	Numbers of matched points

	Workflow design and implementation
	Design 1: One image per pipeline
	Design 2: Multiple images per pipeline
	Design 2.A: Uniform image dataset per pipeline


	Experiments and discussion
	Experiment 1, Design 1
	Experiment 1, Design 2
	Experiment 1, Design 2.A
	Experiment 2: Resource utilization
	Experiment 3: Implementation overheads

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments and contributions
	References


