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1. Introduction

A growing number of scientific domains are adopting work-
flows that use multiple analysis algorithms to process a large
number of images. The volume and scale of data processing justi-
fies the use of parallelism, tailored programming models and high
performance computing (HPC) resources. While these features
create a large design space, the lack of architectural and perfor-
mance analyses makes it difficult to chose among functionally
equivalent implementations.

In this paper, we focus on the design of computing frame-
works that support the execution of heterogeneous tasks on HPC
resources to process large imagery datasets. These tasks may
require one or more CPUs and GPUs, implement diverse func-
tionalities and execute for different amounts of time. Typically,
tasks have data dependences and are therefore organized into
workflows. Due to task heterogeneity, executing workflows poses
challenges of effective scheduling, correct resource binding and
efficient data management. HPC infrastructures exacerbate these
challenges by privileging the execution of single, long-running
tasks.

From a design perspective, a promising approach to address
those challenges is isolating tasks from execution management.
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Tasks are assumed to be self-contained programs which are exe-
cuted in the operating system (0S) environment of HPC compute
nodes. Programs implement the domain-specific functionalities
required by use cases while computing frameworks implement
resource acquisition, task scheduling, resource binding, and data
management.

Compared to approaches in which tasks are functions or meth-
ods, a program-based approach offers several benefits as, for
example, simplified implementation of execution management,
support of general purpose programming models, and separate
programming of management and domain-specific functionali-
ties. Nonetheless, program-based designs impose performance
limitations, including OS-mediated intertask communication and
task spawning overheads, as programs execute as OS processes
and do not share a memory space.

Due to their performance limitations, program-based designs
of computing frameworks are best suited to execute compute-
intensive workflows in which each task requires a certain amount
of parallelism and runs from several minutes to hours. The use
of modern HPC infrastructures with large numbers of CPUs/GPUs
presents new challenges to the design of program-based work-
flows that require heterogeneous, compute-intensive tasks that
process large amounts of data.

We use two paradigmatic use cases from the polar science
domain to evaluate three alternative designs of computing frame-
works for executing program-based tasks, and experimentally
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characterize and compare their performance. The first use case
requires us to detect pack-ice seals by analyzing satellite images
of Antarctica taken across a whole calendar year. The resulting
dataset consists of 3097 images for a total of 4 TB. This use case
requires us to repeatedly process these images, running tasks on
both CPUs and GPUs that exchange several GB of data. The second
use case requires us to match paired images of penguin colonies
from Antarctica and estimate the approximate location where
images were taken. The dataset contains 1575 images for a total
of 1 TB.

The first design uses a pipeline to independently process each
image, while the second and third designs use the same pipeline
to process a series of images with differences in how images are
bound to available compute nodes.

Leveraging and extending the results presented in Ref. [1], this
paper offers four main contributions: (1) a GPU implementation
of the Scale Invariant Fast Transformation (SIFT) algorithm to
serve the purpose of geolocating satellite imagery; (2) an indi-
cation of how to further the implementation of our workflow
engine so as to support the class of use cases we considered,
while minimizing workflow time to completion and maximizing
resource utilization; (3) specific design guidelines for supporting
data-driven, compute-intensive workflows on high-performance
computing resources with a task-based computing framework;
and (4) an experiment-based methodology to compare perfor-
mance of alternative designs that does not depend on the use case
and computing framework presented in this paper.

The paper is organized as follows. Section 2 provides a survey
of the state of the art. Section 3 presents the use cases in more
detail and discusses their computational requirements as well
as the individual stages of the pipelines. Section 4 describes
and discusses the novel implementation of SIFT and its perfor-
mance. Section 5 discusses the three program-based designs in
detail. Section 6 details our performance evaluation, discussing
the results of our experiments. In Section 7, we summarize
the contributions of this paper and identify some new lines of
research that it opens.

2. Related work

Several tools and frameworks are available for image analy-
sis based on diverse designs and programming paradigms, and
implemented for specific resources. Numerous image analytics
frameworks for medical, astronomical, and other domain specific
imagery provide MapReduce [2] implementations. MaRelA [3],
built for medical image analysis, is based on Hadoop and Spark
[4]. Kira [5], built for astronomical image analysis, also uses Spark
and pySpark, allowing users to define custom analysis applica-
tions. Further, Ref. [6] proposes a Hadoop-based cloud Platform
as a Service, utilizing Hadoop’s streaming capabilities to reduce
filesystem reads and writes. These frameworks support clouds
and/or commodity clusters for execution.

BIGS [7] is a framework for image processing and analysis.
BIGS is based on the master-worker model and supports het-
erogeneous resources, such as clouds, grids and clusters. BIGS
deploys a number of workers to resources, which query its sched-
uler for jobs. When a worker can satisfy the data dependencies of
a job, it becomes responsible to execute it. BIGS workers can be
deployed on any type of supported resource. The user is respon-
sible for defining the input, processing pipeline and launching
BIGS workers. As soon as a worker is available, execution starts.
In addition, BIGS offers a diverse set of APIs for developers. BIGS
approach is very close to Design 1 we described in Section 5.1.

LandLab [8] is a framework for building, coupling and ex-
ploring two-dimensional numerical models for Earth-surface dy-
namics. LandLab provides a library of processing constructs. Each
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construct is a numerical representation of a geological process.
Multiple components are used together, allowing the simulation
of multiple processes acting on a grid. The design of each compo-
nent is intended to work in a plug-and-play fashion. Components
couple simply and quickly but parallelizing Landlab components
is left to the developer.

The High Performance Computing (HPC)/ High Throughput
Computing (HTC) Software Infrastructure for the Synthesis and
Analysis of Cosmic Microwave Background (CMB) Datasets [9]
is a project to enable CMB experiments to seamlessly use both
HPC and HTC systems for their simulation and processing needs.
Specifically, this project develops compatible data models to en-
able bidirectional data flow among pipeline components, con-
currently executing on HPC, HTC and hybrid infrastructures. The
project extends the Time Ordered Astrophysics Scalable Tools
(TOAST) to support data translation and unification across these
infrastructures.

The Sea Ice High Resolution Image Analytics (ArcCl) [6] is a
framework that uses cloud computing for big data management
and visualization. ArcCl is implemented as a set of web ser-
vices to collect, search, explore, visualize, organize, analyze and
share collections of high spatial resolution Arctic sea ice imagery.
Currently, ArcCI supports 35 datasets for a total of 1.96 TB of data.

The Large-scale IMage Processing Infrastructure Development
(LIMPID) [10] project developed the Bio-Image Semantic Query
User Environment (BisQue) for managing, analyzing and shar-
ing images and metadata for large-scale problems. The main
goal of BisQue is to enable reproducible image data science on
cloud platforms, supporting multiple imaging modalities such as
photographs, satellites and microscopes.

Image analysis libraries, frameworks and applications have
been proposed for HPC resources. PIMA(GE)? Library [11] offers a
low-level API for parallel image processing using MPI and CUDA.
SIBIA [12] is a framework for coupling biophysical models with
medical image analysis, providing users parallel computational
kernels through MPI and vectorization. Ref. [13] proposes a scal-
able medical image analysis service. This service uses DAX [14]
as an engine to create and execute image analysis pipelines.
Tomosaic [15] is a Python framework, used for medical imaging,
employing MPI4py to parallelize different parts of the workflow.

Petruzza et al. [16] describe a scalable image analysis library.
Their approach defines pipelines as data-flow graphs, with user
defined functions as tasks. Charm++ is used as the workflow
management layer, by abstracting the execution level details,
allowing execution on local workstations and HPC resources.
Teodoro et al. [17] define a master-worker framework supporting
image analysis pipelines on heterogeneous resources. The user
defines an abstract dataflow and the framework is responsi-
ble for scheduling tasks on CPU or GPUs. Data communication
and coordination is done via MPI. Ref. [18] proposes the use of
UNICORE [19] to define image analysis workflows on HPCs.

Image classification is an existing problem of interest for com-
puter vision scientists. The most common approaches are using
scene and object recognition technology. These approaches iden-
tify a set of images and classify them based on the scene of
interest, e.g., building, mountain, or lakes. A disadvantage of
these approaches is that they do not estimate the approximate
geographical location of images.

Another approach in computer vision is geolocating satellite
and ground-level imagery. Ghouaiel and Lefévre [20] proposed an
automatic translation for ground photos into aerial viewpoint, the
technique specifically supports only wide panoramic photos with
an accuracy of 54%.

In the large scale image geolocalization, the approach is based
on using the “IM2GPS” algorithm [21]. IM2GPS uses a convo-
lutional neural network (CNN) to geolocalize images against a
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database of geotagged Internet photographs, used as training
data. The approach reaches an accuracy of 25% for the 237 photos
in their dataset.

We introduce another image geolocating approach based on
the image matching technique to extract the similarity level be-
tween two images and estimate the approximate location as val-
ues of longitude and latitude. We focus on geolocating a set of his-
toric aerial photo imagery using satellite imagery as a basemap.

Our workflow approach proposes designs for image analysis
pipelines that are domain independent, i.e., not specific to med-
ical, astronomical, or other domain imagery. Both the workflow
and runtime systems we use allow execution on multiple HPC
resources with no change in our approach, independent from
the types, durations and sizes of task that workflows require
to execute. Furthermore, in one of the proposed designs, paral-
lelization is inferred, allowing correct execution regardless of the
multi-core or multi-GPU capabilities of the used resource.

All the above, except Ref. [5], focus on characterizing the
performance of the proposed solution. Ref. [5] compares different
implementations, one with Spark, one with pySpark, and an MPI
C-based implementation. This comparison is based on the weak
and strong scaling properties of the approaches. Our approach of-
fers a well-defined methodology to compare different designs for
task-based and data-driven pipelines with heterogeneous tasks.

3. Satellite imagery analysis use cases

In this paper we developed and characterized computational
workflows that satisfy the requirements of two earth science use
cases. The first use case, labeled as UC1, requires to process im-
agery to find Antarctic pack-ice seals. The second use case, labeled
as UC2, geolocates an aerial image using a satellite image as a
basemap. These use cases require to develop application work-
flows in which images are processed and analyzed in multiple
stages in order to find some relevant properties. This application
pattern is used in many scientific domains and, as such, our
two use cases are paradigmatic of a common set of computing
requirements.

3.1. Seals use case (UC1)

The imagery employed by ecologists as a tool to survey pop-
ulations and ecosystems come from a wide range of sensors,
e.g., camera-trap surveys [22] and aerial imagery transects [23].
However, most traditional methods can be prohibitively labor-
intensive when employed at large scales or in remote regions.
Very High Resolution (VHR) satellite imagery provides an ef-
fective alternative to perform large scale surveys at locations
with poor accessibility such as surveying Antarctic fauna [24]. To
take full advantage of increasingly large VHR imagery, and reach
the spatial and temporal breadths required to answer ecological
questions, it is paramount to automate image processing and
labeling.

Convolutional Neural Networks (CNN) represent the state-of-
the-art for nearly every computer vision routine. For instance,
ecologists have successfully employed CNNs to detect large mam-
mals in airborne imagery [25,26] and camera-trap survey im-
agery [27]. We use a CNN to survey Antarctic pack-ice seals
in VHR imagery. Pack-ice seals are a main component of the
Antarctic food web [28]; estimating the size and trends of their
populations is key to understanding how the Southern Ocean
ecosystem copes with climate change [29] and fisheries [30].

For this use case, we process WorldView 3 (WV03) panchro-
matic imagery as provided by DigitalGlobe Inc. This dataset has
the highest available resolution for commercial satellite imagery.
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We refrain from using imagery from other sensors because pack-
ice seals are not clearly visible at lower resolutions. For our CNN
architecture, we use a U-Net [31] variant that counts seals with an
added regression branch and locates them using a seal intensity
heat map. To train our CNN, we use a training set of 53 WV03
images, with 88,000 hand-labeled tiles, where every tile has a
correspondent seal count and a class label (i.e., seal vs. non-seal).
For hyper-parameter search, we train CNN variants for 75 epochs
(i.e., 75 complete runs through the training set) using an Adam
optimizer [32] with a learning rate of 103 and tested against a
validation set. The validation set consists of 10% of the training
set. In addition, we randomized the WVO03 image selection so
that a validation tile does not overlap with a training one. Testing
was performed on 5 WV03 images. Double observer seal counting
was performed and model detection results were compared to
observer consensus detections. Furthermore, we avoided dou-
ble counting by setting a minimum distance boundary between
neighboring seals and keeping those where the model was more
confident.

We use the best performing model on an archive of over 3097
WV03 images, with a total dataset size of 4 TB. Due to limitations
on GPU memory, it is necessary to tile WV03 images into smaller
patches before sending input imagery through the seal detection
CNN. Taking tiled imagery as input, the CNN outputs the latitude
and longitude of each detected seal. While the raw model output
still requires statistical treatment, such “mock-run” emulates the
scale necessary to perform a comprehensive pack-ice seal census.
We order the tiling and seal detection stages into a pipeline that
can be re-run whenever new imagery is obtained. This allows
domain scientists to create seal abundance time series that can
aid in Southern Ocean monitoring.

3.2. Image geolocation use case (UC2)

We introduce the image geolocating use case for two main
reasons: (i) Image geolocation can help domain scientists to as-
sess the impact of global warming on climate change; and (ii) a
second use case with different computational requirements helps
to validate our design.

Image geolocating or geotagging is the process of append-
ing geographical identification metadata to images. Each image
is paired to other images and specialized algorithms are used
to extract, compare and match relevant image features. In this
way, different images of the same geographical location can be
matched. In earth science, geolocating can be useful to match
datasets of geographical areas recorded at different points in
time, by different instruments, with different camera viewpoint,
orientation, resolution and brightness.

For this use case, we process aerial and satellite panchromatic
imagery. The aerial imagery was taken in 2000 and provided by
the U.S. Antarctic Resource Center (USARC). The satellite imagery
of the same area was taken in 2017 by WorldView 2 (WV02) and
provided by DigitalGlobe Inc. The geolocating process involves
two main operations: image matching and rectifying of false
positive and false negative matching. For the former we used the
scale-invariant feature transform (SIFT) algorithm [33] and for the
latter the random sampling consensus (RANSAC) algorithm [34].

SIFT is a feature detection algorithm developed for computer
vision to detect commonalities among different images with a
stated degree of accuracy and number of probable false matches.
Importantly, SIFT results are invariant to image resizing and rota-
tion, and partially invariant to changes in brightness and camera
viewpoint. RANSAC is an iterative method to detect outliers in
a provided dataset. It is a “learning” algorithm because it fits a
model to multiple random samples of the dataset and returns the
model that best fits a subset of the data. In this context, it is used
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to evaluate the set of matched features produced by SIFT and to
separate false positive matches.

For our use case, image matching required us to first divide
every satellite image into smaller rectangular tiles of the same
size. This process created a set of tiles between 2000? px and
50007 px, discarding tiles that were at the edge of an image. Every
tile from one satellite image was then matched against all the
aerial images to find overlapping keypoints, i.e., common features
such as edges, corners, blobs/regions, and ridges. The similarity
between source and target images was measured as the total
number of matched keypoints, as extracted by SIFT.

4. GPU-SIFT implementation and performance characteriza-
tion

Currently, two main implementations of SIFT are freely avail-
able: CPU-SIFT [35] and CUDA-SIFT [36]. As required by the Ge-
olocation use case described in Section 3.2, CPU-SIFT supports
raw GeoTIFF satellite imagery and can process image tiles up to
50007 px or more. Unfortunately, CPU-SIFT is memory inefficient,
especially with large tiles, and cannot use GPUs. CUDA-SIFT sup-
ports GPUs but does not support raw GeoTIFF satellite imagery
and can process tiles only up to 1920 x 1080 px.

To address these challenges, we extended CUDA-SIFT [36] and
developed GPU-SIFT [37]. We extended CUDA-SIFT instead of
CPU-SIFT because GPUs offer shorter execution times compared
to CPUs. That allows us to better support use cases in which the
size of datasets grows over time, requiring increasing amount of
computing resources and execution time.

GPU-SIFT offers the following functionalities: (i) reading dual-
band 8 and 16 bit GeoTIFF satellite imagery; (ii) reading GeoTIFF
images larger than 1920 x 1080 px; (iii) enabling CUDA to allo-
cate up to 4 GB GPU memory per image; (iv) implementing CUDA
Multi-Process Service (MPS) technology to run 2 CUDA Kkernels
on a single GPU device; and (v) implementing adaptive contrast
enhancer.

We characterize and compare the performance of CPU-SIFT,
CUDA-SIFT, and GPU-SIFT based on three metrics: throughput,
memory consumption and matching accuracy. We match single
pairs of increasingly large GeoTIFF images (source and target),
measuring how many MB are processed by the CPU or GPU per
second, how much memory the matching of the images required
and how accurate such a matching was. Note that, in this context,
throughput refers to the volume of data processed per unit of
time (MB/s).

We performed all our experiments on the XSEDE Bridges
supercomputer [38]. Bridges offers 32 nodes with 2 T P100 GPUs
and 32 GB of GPU-dedicated memory, and 2 16-cores Intel Broad-
well E5-2683 CPUs with 128 GB of RAM. We used RADICAL-
Pilot [39] to manage the execution of our experiment workloads
on Bridges. For all the experiments, we use a single GeoTIFF image
of 845 MB, tiled into four predefined sizes: 90, 180, 360, and
720 MB. We then match two copies of the same tile for each size,
using each SIFT implementation.

4.1. Throughput

We measure the throughput of CPU-SIFT, CUDA-SIFT, and
GPU-SIFT in MB/s when processing the same pair of 90, 180,
360 and 720 MB images. CPU-SIFT and CUDA-SIFT can analyze
one pair of images per CPU/GPU, while GPU-SIFT can use CUDA
MPS to analyze two pairs of images per GPU. Consistently, in our
experiments we concurrently execute two CPU-SIFT on two CPUs,
two CUDA-SIFT on two GPUs and one GPU-SIFT on one GPU.

Fig. 1(a) shows that CPU-SIFT (red) has the lowest throughput
with a value of 54.38 MB/s. This is due to CPU-SIFT programming
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model: CPU-SIFT uses one core per CPU to process and match
two images. As a result, CPU-SIFT cannot leverage the parallelism
supported by multi-core architecture to increase throughput.

CUDA-SIFT (dark green) has a throughput almost six times
higher than CPU-SIFT, with a value of 244.44 MB/sec. In contrast
to CPU-SIFT, CUDA-SIFT uses the CUDA framework to load balance
calculations across the cores of the GPU device. Nonetheless, note
that with the given images, CUDA-SIFT uses only up to 1658 of the
3584 CUDA cores available on the Nvidia P100 GPU devices of our
experiments. There are not enough data to process to saturate the
GPU cores.

GPU-SIFT (light green) has the highest throughput among the
three SIFT implementations, with value of 478.25 MB|/s. GPU-
SIFT uses 3400 of the 3584 available CUDA cores, running 2 pair
image comparisons concurrently. Note that GPU-SIFT throughput
is almost double that of the CUDA-SIFT. This shows that the
overheads imposed by the CUDA Multi-Process Service (MPS) are
negligible for our implementation.

Fig. 1(a) shows that GPU throughput is invariant to image size.
Increasing the image size increases the amount of data processed
by the GPU or CPU per second, bounded by the available GPU or
CPU bandwidth. Note that the error bars for the GPU implemen-
tations are smaller than those of the CPU implementation. This
is likely due to the efficiency of the CUDA framework and the
absence of competing processes on the GPU subsystem.

4.2. Memory consumption

We measure the memory consumption of CPU-SIFT, CUDA-
SIFT and GPU-SIFT as the amount of physical memory a particular
program utilizes at runtime. Fig. 1(b) shows the total memory
consumption of CPU-SIFT, GPU-SIFT and CUDA-SIFT for pairs of
2000% px, 3000% px, 4000 px and 5000% px tiles. The memory
usage includes tile reading and the SIFT detecting, extracting, and
matching of features.

For the largest tile of 50007 px, CPU-SIFT consumes 24.67 GB of
memory, almost five times higher than CUDA-SIFT and GPU-SIFT
which consume 8.05 GB and 8.08 GB respectively. The minimal
difference in memory consumption of GPU-SIFT compared to
CUDA-SIFT account for the acquisition of GeoTIFF images and the
use of CUDA MPS. This shows the minimal memory overhead that
these features require and therefore the minimal cost of doubling
the throughput of GPU-SIFT.

4.3. Numbers of matched points

We compare the efficiency of each SIFT implementation in
terms of the number of matching points between a pair of images.
We picked a pair of images for which 16,850 matches have been
previously identified and validated by the domain scientists. We
applied CPU-SIFT, GPU-SIFT and CUDA-SIFT on the pair of images
with different tile sizes to: (1) measure the number of matches
that the three implementations can detect; and (2) validate the
assumption that the tile size can affect the number of matches.

We repeated the experiments 75 times to measure the ac-
curacy of both implementations, using the same satellite image
with tile sizes of 2000% px, 3000% px, 4000° px and 5000% px.
Fig. 2(a) shows that the number of matched points detected by
CPU-SIFT is more than those detected by GPU-SIFT and CUDA-
SIFT. For 5000% px tiles, CPU-SIFT returns 13,500 matches out
of the existing 16,850 with an accuracy of 80.11%. This is about
5.92% more than GPU-SIFT, and 8.97% more than CUDA-SIFT.
GPU-SIFT, plotted in green, returns 12,500 matches with an accu-
racy of 74.18%, while CUDA-SIFT, plotted in orange, returns 9500
matches with an accuracy of 56.81%.
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CPU-SIFT variability shown in Fig. 2(a) are larger than those
of CUDA-SIFT and GPU-SIFT and it remains unclear why CPU-
SIFT accuracy is inconsistent. In absolute terms, CPU-SIFT is the
implementation that can reach the highest number of matches
but, on average, GPU-SIFT offer a more reliable performance.

CPU-SIFT and GPU-SIFT apply contrast enhancement to both
source and target images before processing them, while CUDA-
SIFT does not apply any contrast enhancement. Enhancing the
level of contrast of an image can increase the numbers of detected
features and as a result, it directly increases the number of
matches between both images [40].

We distinguish between validation of the results produced
by SIFT and validation of GPU-SIFT against CPU-SIFT. The former
pertains to the accuracy of the matches produced by SIFT, in-
cluding false positives; the latter to the consistency between the
matches produced by GPU-SIFT and CPU-SIFT. GPU-SIFT and CPU-
SIFT produce comparable results, with variations introduced by
optimizations specific to CPU-SIFT that still have to be ported to
GPU-SIFT.

For the domain scientists interested in this use case, the main
goal is to obtain effective matches of specific features of an image.
So far, SIFT proved relatively inefficient for this specific task. Our
GPU-SIFT implementation opens the possibility to investigate the
role that ML-driven algorithms requiring GPU support could play
to improve the accuracy of SIFT matches. A recent application
of machine learning image matching [41,42], shows promising
speed improvements, further shifting the focus of the domain
scientists from validating the accuracy of GPU-SIFT to study its
accuracy when augmented with ML algorithms.

5. Workflow design and implementation

Computationally, the use cases described in Section 3 present
three main challenges: heterogeneity, scale and reusability. The
images of the use cases’ datasets have a wide distribution in size.
Each image requires a series of tasks to get the aggregated result.
These tasks are memory and computational intensive, requiring
CPU and GPU implementations. Whenever the image dataset is
updated, it needs to be reprocessed.
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We address these challenges by codifying image analyses into
workflows. We then execute these workflows on HPC resources,
leveraging the concurrency, storage systems and compute speed
they offer to reduce time to completion. Typically, the workflows
of our use cases consist of a sequence (i.e., pipeline) of tasks, each
performing part of the end-to-end analysis on one or more im-
ages. We compare two common designs for the execution of these
workflows: one in which each image is processed independently
by a dedicated pipeline, and the other in which a single pipeline
processes multiple images.

Note that both designs separate the functionalities required to
process each image from the functionalities used to coordinate
the processing of multiple images. This is consistent with mov-
ing away from vertical, end-to-end single-point solutions, favor-
ing designs and implementations that satisfy multiple use cases,
possibly across diverse domains. Accordingly, the designs we
implement and characterize, employ two tasks (i.e., standalone
executable programs) to provide the functionalities required by
the use cases.

The designs are functionally equivalent, in that they both
enable the analysis of the given image datasets. Nonetheless,
each design leads to different concurrency, resource utilization
and overheads, depending on compute-data affinity, scheduling
algorithms, and coordination between CPU and GPU computa-
tions. We analyze the performance of these designs using the
common metrics of total execution time, resource utilization, and
middleware overheads.

Consistent with HPC resources currently available and our use
cases, we make three assumptions: (1) each compute node has
¢ CPUs; (2) each compute node has g GPUs where g < c; and
(3) each compute node has enough memory to enable concurrent
execution of a certain number of tasks. As a result, at any given
point in time there are C = n x ¢ CPUs and G = n x g GPUs
available, where n is the number of compute nodes.

5.1. Design 1: One image per pipeline

We specify the workflow for either counting the number of
seals in a set of images, or geolocating pairs of images as a set
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Fig. 3. Design approaches to implement the workflow required for the use cases of Section 3. 3(a)-Design 1: Pipeline, stage and task based design. 3(b)-Design 2:
Queue based design with a single queue for all the tasks of the pipeline. 3(c)-Design 2.A: Queue based design with multiple queues for the tasks of the pipeline.

of pipelines. Each pipeline is composed of two stages, each with
multiple instances of one type of task. In the Seals use case (UC1),
we specify the workflow for counting the number of seals in a
set of images. In the Geolocation use case (UC2), we specify the
workflow to match a pair of images in two sets of aerial and
satellite images.

In UC1, the task of the first stage gets an image as input and
generates tiles of that image based on the tile size as output. In
UC2, the task of the first stage gets a pair of images as input and
produces a set of matches between these two images as output.
The task of the second stage gets the output of the first stage -
generated tiles or matches - and outputs the number of seals per
image for UC1 and a set of matches with reduced false positives
for UC2.

Formally, we define two types of tasks in UC1 and UC2:

o TUCT = (I, fi, t), where I is an image or a pair of images, f;
is a stage 1 type function and ¢ is a set of tiles or matches
that correspond to I.

TY1 = (t, fa, S), where fy is a stage 2 type function and S is
either the number of seals or final matches.

T/ (I,, ki, m), where I, is a pair of images, k; is a
matching function and m is a set of matches as a file that
correspond to I,.

T2 = (m, f, t), where f is a function that eliminates
the undesired matches and t is the output file of filtered
matches.

Tiling in TY“! is implemented with OpenCV [43] and Raste-
rio [44] in Python. Rasterio allows us to open and convert a
GeoTIFF WV3 image to an array. The array is then partitioned
to sub-arrays based on a user-specified scaling factor. Each sub-
array is converted to an compressed image via OpenCV routines
and saved to the filesystem.

Seal counting in TYC! is performed via a Convolutional Neural
Network (CNN) implemented with PyTorch [45]. The CNN counts
the number of seals for each tile of an input image. When all tiles
are processed, the coordinates of the tiles are converted to the
geographical coordinates of the image and saved in a file, along
with the number of counted seals. Note that the number of seals
in a tile does not affect the execution of the network, i.e., the same
number of operations will be executed.

Matching in T{“? is implemented by GPU-SIFT as described
in Section 4, while filtering in TY“? is implemented by RANSAC
as described in 3.2.

All task implementations for UC1 and UC2 are invariant across
the alternative designs we consider. This is consistent with the
designs being task-based, i.e., each task exclusively encapsulates
the capabilities required to perform a specific operation over an
image, pair of images or tile. Thus, tasks are independent from the
capabilities required to coordinate their execution, whether each
task processes a single image or pair of images, or a sequence of
images or pairs of images.

We implemented Design 1 via EnTK, a workflow engine which
exposes an API based on pipelines, stages, and tasks [46]. The user
can define a set of pipelines, where each pipeline has a sequence

320

of stages, and each stage has a set of tasks. Stages are executed
respecting their order in the pipeline while the tasks in each stage
can execute concurrently, depending on resource availability.

For our use cases, EnTK has three main advantages compared
to other workflow engines: (1) it exposes pipelines and tasks as
first-order abstractions implemented in Python; (2) it is specifi-
cally designed for concurrent management of up to 10> pipelines;
and (3) it supports RADICAL-Pilot, a pilot-based runtime system
designed to execute heterogeneous bag of tasks on HPC ma-
chines [39]. Together, these features address the challenges of
heterogeneity, scale and reusability: users can encode multiple
pipelines, each with different types of tasks, executing them at
scale on HPC machines without explicitly coding parallelism and
resource management.

When implemented in EnTK, the workflows of our use cases
map to a set of pipelines, each with two stages Sty, St,. Each stage
has a task of type T/“'~2 and T;/“'~? respectively. Each pipeline
is defined as P = (Sty, St ). For UC1, the workflow consists of N
pipelines and for UC2 the workflow consists of N x (N — 1), where
N is the number of images.

Fig. 3(a) shows the abstract workflow for both use cases. For
each pipeline, EnTK submits the task of stage St; to the runtime
system (RTS). As soon as this task finishes, the task of stage St; is
submitted for execution. This design allows concurrent execution
of pipelines and, as a result, concurrent analysis of single images
or pair of images, one for each pipeline. Since pipelines execute
independently and concurrently, there are instances where St; of
a pipeline executes at the same time as St, of another pipeline.

Design 1 has the potential to increase utilization of available
resources as each compute node of the target HPC machine has
multiple CPUs and GPUs. Importantly, computing concurrency
comes with the price of multiple reads and writes to the filesys-
tem on which the dataset is stored. This can cause I/O bottlenecks,
especially if each task of each pipeline reads from and writes to
the same filesystem, possibly over a network connection.

For UC1, we used a tagged scheduler for EnTK’s RTS to avoid
I/O bottlenecks. This scheduler schedules T; of each pipeline
on the first available compute node, and guarantees that the
corresponding T, is scheduled on the same compute node. As a
result, compute-data affinity is guaranteed among co-located T;
and T,. This design reduces 1/O bottlenecks but it may also reduce
concurrency when the performance of the compute nodes and/or
the tasks is heterogeneous: T, may have to wait to execute on a
specific compute node while another node is free.

5.2. Design 2: Multiple images per pipeline

Design 2 implements a queue-based approach. We introduce
two tasks (T;- T) for both UC1 and UC2 as defined in Section 5.1.
In contrast to Design 1, these tasks are started and then executed
for as long as resources are available, processing input images
at the rate taken to process each image or pair of images. For
both use cases, the number of concurrent T; and T, depends on
available resources, including CPUs, GPUs, and RAM.

For the implementation of Design 2, we do not need EnTK, as
we submit a bag of T; and T, tasks via the RADICAL-Pilot RTS,
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and manage the data movement between tasks via queues. As
shown in Fig. 3(b), Design 2 uses one queue (Queue 1) for the
dataset, and another queue (Queue 2) for each compute node.
For each compute node, each T; pulls an image or pair of images
from Queue 1, generates tiles or matches, and then queues the
results to Queue 2. The first available T, on that compute node,
pulls those tiles or matches from Queue 2, and counts the seals
or filters false positive matches.

To communicate data and control signals between queues and
tasks, we defined a communication protocol with three enti-
ties: Sender, Receiver, and Queue. Sender connects to Queue and
pushes data. When done, Sender informs Queue and disconnects.
Receiver connects to Queue and pulls data. If there are no data in
Queue but Sender is connected, Receiver pulls a “wait” message,
waits, and pulls again after a second. When there are no data
in Queue or Sender is not connected to Queue, Receiver pulls
an “empty” message, upon which it disconnects and terminates.
This ensures that tasks are executing, even if starving, and that all
tasks are gracefully terminating when all images are processed.

Note that Design 2 load balances T; tasks across compute
nodes but balances T, tasks only within each node. For example,
suppose that T; on compute node A runs two times faster than
T; on compute node B. Since both tasks are pulling images from
the same queue, T; of A will process twice as many images as
T; of B. Both T; of A and B will execute for around the same
amount of time until Queue 1 is empty, but Queue 2 of A will
be twice as large as Queue 2 of B. T, tasks executing on B will
process half as many images as T, tasks on A, possibly running for
a shorter period of time, depending on the time taken to process
each image.

In principle, Design 2 can be modified to load balance also
across Queue 2 but in practice, as discussed in Section 5.1, this
would produce I/O bottlenecks. Load balancing across T, tasks
would require for all tiles produced by T, tasks to be written to
and read from a filesystem shared across multiple compute nodes.
Keeping Queue 2 local to each compute node enables using the
filesystem local to each compute node.

5.2.1. Design 2.A: Uniform image dataset per pipeline

The lack of load balancing of T, tasks in Design 2 can be
mitigated by introducing a queue in each node from where T;
tasks pull data. This allows early binding of images to compute
nodes, i.e., deciding the distribution of input images per node
before executing T; and T>. As a result, the execution can be load
balanced among all available nodes, depending on the correlation
between image properties and image execution time.

Fig. 3(c) shows variation 2.A of Design 2. The early binding of
images to compute nodes introduces an overhead compared to
using late binding via a single queue as in Design 2. Nonetheless,
depending on the strength of the correlation between image
properties and execution time, design 2.A offers the opportunity
to improve resource utilization. While in Design 2 some node may
end up waiting for another node to process a much larger Queue
2, in design 2.A this is avoided by guaranteeing that each compute
node has an analogous payload to process.

6. Experiments and discussion

We executed three experiments using the GPU compute nodes
of the XSEDE Bridges supercomputer. These nodes offer 32 cores,
128 GB of RAM and two P100 T GPUs. We stored the dataset of
the experiments and the output files on Bridges’ Pylon5 Lustre
filesystem. Specifically, for the Seals use case (UC1 onwards),
we stored the tiles produced by the tiling tasks on the local
filesystem of the compute nodes. This way, we avoided a potential
performance bottleneck from millions of reads and writes of
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~700 KB on Pylon5. The Geolocation use case (UC2 onwards) did
not require the use of the node local filesystem since it writes a
single file of few MBs per task. We submitted jobs requesting 4
compute nodes to keep the average queue time within a couple
of days. Requesting more nodes produced queue times in excess
of a week.

The dataset of UC1 consists of 3097 images, ranging from 50 to
2770 MB, for a total of 4 TB of data. The dataset of UC2 consists
of 1575 aerial and satellite images, ranging from 1.5 to 5.5 MB
for a total of 4.35 GB. We generated 11,552 image pairs to cross-
match all aerial images to all satellite images. Those datasets
are posed to grow overtime, both in terms of number of images
and the size of each image. In turn, that increases the number
and size of the generated image pairs. Consequently, in UC2, we
used a GPU implementation to: (i) account for the growth of the
dataset’s number of images and the size of individual images; and
(ii) improve the scale and time to completion of the analysis as
the GPU implementation is faster than the CPU one.

The image size of both datasets follows a normal distribution.
The UC1 dataset has a mean value of 1,304.85 MB and standard
deviation of 512.68 MB. The dataset of UC2 has a mean value of
6.13 MB and standard deviation of 1.79 MB.

For Design 1, 2 and 2.A described in Section 5, Experiment 1
models the execution time of the two tasks of our use cases as
a function of the image size—the only property of the images for
which we found a correlation with execution time; Experiment 2
measures resource utilization for each design; and Experiment 3
characterizes the overheads of the middleware implementing
each design. These experiments enable performance comparison
across designs, allowing us to draw conclusions about the per-
formance of heterogeneous task-based execution of data-driven
workflows on HPC resources.

As already done in Section 5.1, we use TU! and TY¢! to
indicate the first and second type of task for the Seals use case;
and T{“* and T} to indicate first and second type of task for the
Geolocation use case.

6.1. Experiment 1, Design 1

Fig. 4(a) shows the execution time of the tiling task TUC! as
a function of the image size. We partition the set of images
based on image size, obtaining 22 bins with binsize 125 MB each
starting from 50 MB up to 2800 MB. The average time to tile
an image in each bin tends to increase with the image size. The
box-plots show some positive skew of the data with a number
of data points falling outside the assumed normal distribution.
Thus, there is a weak correlation between task execution time
and image size with a large spread across all the image sizes.

There are also large standard deviations (STD—blue line) in
most of the bins. We explored the causes of the observed val-
ues by measuring how it varies in relation to the number of
T/! concurrently executing on the same node. The STD ob-
served was consistent across degrees of task concurrency, allow-
ing us to conclude that it depends on fluctuation in the node
performance [1].

Fig. 5(a) shows the execution time of the image matching task
Tluc2 as a function of the size of an image pair. In this use case, we
partitioned the data based on the total size of the image pair as
each task processes two images at the same time. Fig. 5(a) shows
22 bins of 187 KB, each in a range of [1.0,5.5] MB.

Fig. 4(a) indicates that the execution time is a linear function
of the image size between bins 4 and 18. Bins 1-3 and 19-23
are not representative as the head and tail of the image sizes
distribution contain less than 5% of the image dataset. Similarly,
in Fig. 5(a) bins 5-19 show linear behavior and bins 1-4 and 20-
23 are omitted from the analysis as they contain less than 4% of
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the data set. Accordingly, for both UC1 and UC2, we model the
execution time as:

Tx)=axx+ 8 (1

where x is the image size. We found the parameter values of
Eq. (1) by using a non-linear least squares algorithm to fit ex-
perimental data (see Table 1).

Fig. 4(b) shows the execution time of T{“! as a function of the
image size. This task presents a different behavior than T/, as
the code executed is different. Note the slightly stronger positive
skew of the data compared to that of Fig. 4(a) but still consistent
with our conclusion that deviations are mostly due to fluctuations
in the node performance, i.e., different code similar fluctuations.

Similar to TY“!, Fig. 4(b) shows a weak correlation between the
execution time of TZUC1 and image size. In addition, the variance
per bin is relatively similar across bins, as expected based on the
analysis of TU!. The box-plot and mean execution time indicate
that a linear function is a good candidate for a model of TY“!. We
fitted a linear function (as in Eq. (1)) to the execution time as a
function of the image size for the same bins as T¢!.

Fig. 5(b) shows the execution time of Ty as function of the
size of the image pair. We notice a weak correlation between
TZUC2 execution time and the size of the image pair. Further, we
see a similar variance among the bins as that measured for TJ¢!.
We notice that the execution time becomes positively skewed
as the image pair size increases, as shown in Figs. 5(a) and
5(b). Node usage increases with image size, making the observed
fluctuations consistent with the analysis from UCI.

Based on Table 1, the R? values for TY¢!, TV¢1, TUS? and
TJ? show a good fit of the respective lines to the actual data.
As a result, we can conclude that our estimated functions are
validated.

6.2. Experiment 1, Design 2

Fig. 6(a) shows the execution time of T/ as a function of
the image size for Design 2. In principle, design differences in
middleware that execute tasks as independent programs should
not directly affect task execution time. In this type of middleware,
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task code is independent from that of the middleware: once tasks
execute, the middleware waits for each task to return. Nonethe-
less, in real scenarios with concurrency and heterogeneous tasks,
the middleware may perform operations on multiple tasks while
waiting for others to return. Accordingly, in Design 2 we observe
an execution time variation comparable to that observed with
Design 1 but Fig. 6(a) shows a stronger positive skew of the data
for Design 2 than Fig. 4(a) for Design 1.

We investigated the positive skew of the data observed in
Fig. 6(a) by comparing the system load of a compute node when
executing the same number of tiling tasks for Design 1 and 2.
The system load of Design 2 was higher than that of Design 1.
As we used the same type of task, image and task concurrency,
we conclude that the middleware implementing Design 2 uses
more compute resources than that used for Design 1. Due to
concurrency, the middleware of Design 2 competes for resources
with the tasks, momentarily slowing down their execution. This
is consistent with the architectural differences across the two
designs: Design 2 requires resources to manage queues and data
movement while Design 1 has only to schedule and launch tasks
on each node.

Design 2 also produces a much stronger positive skew of
TJC! execution time compared to executing TIZU“ with Design 1
(see Fig. 6(b)). TY! executes on GPU and TY“" on CPU but their
execution times have comparable skew in Design 2. This further
supports our hypothesis that the long tail of the distribution
of T and especially T/“! execution times, depends on the
competition for main memory and I/O between the middleware
and the executing tasks.

Table 1 shows the model parameters for both tasks and their
respective R?> values. R? are worse compared to Design 1. This
is expected based on the positive skew of the data observed in
Design 2.

Fig. 7(a) shows the execution time of T/? as a function of
image pair size for Design 2. We notice an execution time vari-
ation comparable to the one shown in Fig. 5(a) for Design 1.
Nonetheless, while the number of outliers is lower than in De-
sign 1, their spread is higher: between 10 s and 80 s for Design 2
compared to 5 s and 16 s for Design 1. As with UC1, this positive
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skewness is due to the increased system load per compute node
with Design 2. The fitted parameter values are shown in Table 1
indicating a good fit.

Fig. 7(b) shows the execution time of Ty“%. We notice a skew of
the data similar to what observed for TZUC2 in Design 1 and a larger
spread of the outliers. The latter supports our hypothesis that the
execution time of the task is sensitive to resource competition,
especially related to the use of the file system. This wider spread
supports a worse fit of our model, as shown in Table 1. Spread
apart, there is not much difference between the execution times
of TJ“2 tasks in Design 1 and Design 2.

6.3. Experiment 1, Design 2.A

Similarly to the analysis for Design 1 and 2, we fitted UC1 and
UC2 data from Design 2.A to Eq. (1). The fitted parameter are
shown in Table 1. Based on R?, we can conclude that all model
are good fits for their respective data.

The results of experiment 1 indicate that with Design 2.A, on
average, there is a decrease in the execution time of T; and an
increase in that of T2 compared to Design 2, for both use cases.
Design 2.A requires one queue more than Design 2 for T/ and
therefore more resources for its implementation. This can explain
the slowing of T, but not the speedup of T. This requires further
investigation, measuring whether the performance fluctuations of
compute nodes are larger than measured so far.

As discussed in Section 5.2, balancing of workflow execution
differs between Design 2 and Design 2.A. Figs. 8(a) and 9(a) show
that the task T; of the two use cases can work on a different
number of images but all T; tasks concurrently execute for a
similar duration. The histograms in Figs. 8(a) and 9(a) also show
that this balancing can result in different input distributions for
each compute node, affecting the total execution time of the
T, tasks on each node. Thus, Design 2 can create imbalances in

the time to completion of T, as shown by the red bars in both
Figs. 8(a) and 9(a).

Design 2.A addresses these imbalances by early binding im-
ages to compute nodes. Comparing the lower part of Fig. 8(a)
with Figs. 8(b) and 9(a) with Fig. 9(b), we notice the difference
between the distributions of image size for each node between
Design 2 and 2.A. In Design 2.A, due to the modeled correlation
between time to completion and the size of the processed image,
the similar distribution of the size of the images bound to each
compute node balances the total processing time of the workflow
across multiple nodes.

Note that Figs. 8 and 9 show just one of the runs we perform
for this experiment. Due to the random pulling of images from
a global queue performed by Design 2, each run shows differ-
ent distributions of image sizes across nodes, leading to large
variations in the total execution time of the workflow.

Fig. 8(b) shows also an abnormal behavior of one compute
node: For images larger than 1.5 GBs, Node 3 CPU performance is
markedly slower than other nodes when executing TUC". Different
from Design 2, Design 2.A can balance these fluctuations in TV¢!
as far as they do not starve TY¢! tasks.

Fig. 9(b) shows a more balanced and decreasing execution
time of Tlucz among the 4 nodes, compared to Design 2. We inves-
tigated the decreasing of the execution time and we explained it
with the different input distribution of the total size of the image
pairs (smaller) in Node 3 and 4 compared to Node 1 and Node 2.
This image size variation can create a significant fluctuations in
the execution time.

6.4. Experiment 2: Resource utilization

Resource utilization varies across Design 1, 2 and 2.A. In De-
sign 1, the runtime system (RTS), i.e, RADICAL-Pilot, is responsible
for scheduling and executing tasks. For UC1, T}’Cl is memory
intensive and, as a consequence, we were able to concurrently
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execute 3 on each compute node, using only 3 of the 32
available CPU cores. We were instead able to execute 2 TY¢!
concurrently on each node, using all the available GPUs. Assuming
ideal concurrency among the 4 compute nodes we utilized in
our experiments, the theoretical maximum utilization per node
would be 10.6% for CPUs and 100% for GPUs.

For UC2, TY“? uses GPU-SIFT to process and match a pair of
images. TluC2 is a GPU-memory intensive task that requires an
amount of memory proportional to the size of the image pair
on which to perform image matching. TY“? runs on CPU and
requires only one core to perform the RANSAC filtration. We were
able to execute 2 TY? and up to 2 TY? concurrently on every
compute node, utilizing all of the 8 GPUs but only up to 2 of the
32 available cores per node.

Figs. 10 and 11 show the resource utilization percentage, for
all designs, for UC1 and UC2 respectively. CPU utilization for
UC1 with Design 1 (Fig. 10(a)) closely approximates the 10.6%
theoretical maximum utilization but GPU utilization is well below
the theoretical 100%. GPUs are not utilized for almost an hour at
the beginning of the execution and utilization decreases to 80%
some time after half of the total execution was completed. Our
analysis shows that RADICAL-Pilot’s scheduler did not schedule
GPU tasks at the start of the execution even if GPU resources were
available [1].

Fig. 11(a) shows the resource utilization of UC2 with Design 1.
Average GPU utilization is 97% and it is reached in about 13.75 s,

uc1
T]

showing that the issues with GPU execution observed for UC1
were addressed. Nonetheless, average CPU utilization is only 1%
with large amount of time spent throttling TJ“? executions. This
is explained by the distribution of Tj“? execution time and the
capabilities of the RTS. The mean execution time of TY? is 1.1 s
and the task scheduler of the RTS is not able to sustain the
throughput required to use the available cores. While the output
of T/ tasks accumulates, T;“* tasks wait in the scheduler and
executor queues of the RTS.

UC1 does not suffer from the same scheduling limitations of
UC2 for Design 1. The mean execution time of T,“! is 194 s,
requiring much less throughput from the scheduler of the RTS.
Further, the mean execution time of Tluc1 is 85 s instead of the
6 s of TU?. This produces a much lower output rate for T'“! than
that of T/". In turn, the RTS scheduler has fewer tasks per unit
of time to schedule. Overall, we can conclude that for tasks with
less than 1 min execution time, the overheads of scheduling and
setting up the execution of a task become dominant in the RTS
we utilized.

Fig. 10(b) shows resource utilization for UC1 with Design 2.
GPUs are utilized almost immediately as images are becoming
available in the queues between TY! and TY“!. This quickly leads
to fully utilized resources. CPU utilization is larger compared to
Design 1, which is expected due to the longer execution times
measured. In addition, two GPUs are used for more than 20,000 s
compared to other GPUs. This shows that the additional execution
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time of that node was only due to the data size and not due to
idle resource time.

Fig. 11(b) shows resource utilization for UC2 with Design 2.
Compared to Design 1, average GPU utilization improves from
97% to 99% but, more relevantly, average CPUs utilization grows
to 1.35% with almost no throttling. The use of queues, the early
binding of data and the pinning of tasks to nodes, all contribute to
reduce the need for throughput in the RTS scheduler. As a result,
total execution time decreases from the 61,310 s of Design 1 to
the 6,704 s of Design 2.

Figs. 10(c) and 11(c) show that, in Design 2.A, GPUs are re-
leased faster compared to Design 1 and Design 2. This leads
to a GPU utilization above 90% for both use cases. As already
explained in Experiment 1, this is due to differences in data
balancing among designs. Two design choices are effective for
the concurrent execution of data-driven, compute-intensive and
heterogeneous workflows: (1) early binding of data to node with
balanced distribution of image size; and (2) the use of local
filesystems for data sharing among tasks.

Drops in resource utilization are observed in all three designs.
In Design 1, although both CPUs and GPUs were used, in some
cases CPU utilization dropped to 6 cores for UC1 and to 3 GPUs for
UC2. Our analysis showed that this occurred when RADICAL-Pilot
scheduled both CPU and GPU tasks, pointing to an inefficiency in
the scheduler implementation. Design 2 and 2.A CPU utilization
drops mostly by one CPU when multiple tasks try to pull from
the queue at the same time. This confirms our conclusions in
Experiment 1 about resource competition between middleware
and executing tasks. In all designs, there is no significant fluctua-
tions in GPU utilization, although there are more often in Design 1
when CPU and GPUs are used concurrently.

6.5. Experiment 3: Implementation overheads

Experiment 3 studies how the total execution time of our
use cases workflow varies across Design 1, 2 and 2.A. Fig. 12(a)
shows that Design 1 and 2 for UC1 have similar total time to
execution within error bars, while Design 2.A is the fastest by
a small margin. Fig. 13(a) shows that, for UC2, Design 1 total
time to execution is around three times longer than the one of
Design 2 and Design 2.A, while Design 2 and Design 2.A have
similar durations. The discussion in Sections 6.1 and 6.2 explains
how these differences relate to the execution time differences of
tasks Ty and T, and execution concurrency.
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Figs. 12(b) and 13(b) show the overheads of each design im-
plementation. For UC1, all three designs overheads are at least
two orders of magnitude smaller than the total time to execution.
A common overheads among the three designs is the “Dataset
Discovery Overhead”. This overhead is the time needed to list the
dataset and it is proportional to the size of the dataset. RADICAL-
Pilot has two main components: Agent and Client. RADICAL-
Pilot Agent’s overhead is less than a second in all designs while
RADICAL-Pilot Client’s overhead is in the order of seconds for all
three designs. The latter overhead is proportional to the number
of tasks submitted simultaneously to RADICAL-Pilot Agent.

EnTK's overhead in Design 1 includes the time to: (1) cre-
ate the workflow consisting of independent pipelines; (2) start
EnTK’s components; and (3) submit the tasks that are ready to be
executed to RADICAL-Pilot. This overhead is proportional to the
number of tasks in the first stage of a pipeline, and the number
of pipelines in the workflow. EnTK does not currently support
partial workflow submission, which would allow us to submit the
minimum number of tasks to fully utilize the resources before
submitting the rest.

The dominant overhead of Design 2 is “Design 2 Setup Over-
head” (Fig. 12(b)). This overhead includes setting up and starting
queues, and starting and shutting down both tasks T{’Cl and
TC! on each compute node. Setting up and starting the queues
accounts for most of the overhead as we use a conservative
waiting time to assure that all the queues are up and ready. This
can be optimized further, reducing the impact of this overhead.
Design 2.A introduces an overhead called “Design 2.A Distributing
Overhead” when partitioning and distributing the dataset over
separate nodes. The average time of this overhead for UC1 is
7.5 s, with a standard deviation of 3.71 and is proportional to the
dataset and the number of available compute nodes.

Compared to UC1, Fig. 13(b) shows a different composition of
overheads for UC2. The overheads of Design 1 account for most of
the execution time showed in Fig. 11(a). EnTK and RP Client/Agent
overheads are all very large, indicating that RP spends most of
the time scheduling, launching and unscheduling tasks, possibly
with very large 1/O overheads due to the high frequency of read-
ing/writing to a shared file system. EnTK takes a long time waiting
for the data required to describe the full workflow and more time
waiting for the tasks to be handled by the RTS. We measured also
high latency between the RTS and the external MongoDB instance
used by EnTK and RTS to communicate task descriptions and state
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updates. Overall, Design 1 is proven to be unfeasible for UC2 with
the middleware used for our experiments.

Designs 2 and 2.A show much lower overheads than Design 1
for UC2. Note that the sum of RP and Setup overheads are com-
parable to those of UC1 but with a slightly different distribution
across overheads components. For UC2, RP Agent overhead is
smaller, possibly due to the improvements made to the RTS
task scheduler. “Dataset Discovery” overhead is larger for UC2
compared to UC1 due to the larger dataset used and the need
to form pairs.

In general, Design 2.A offers the best and more stable perfor-
mance, in terms of overheads, resource utilization, load balancing
and total time to execution. Although Design 2 has similar over-
heads, even assuming minimization of Setup Overhead, it does
not guarantee load balancing as done by Design 2.A. Design 1
involves independent pipelines that are concurrently executed
by the RTS on any available resource, leading to the described
overheads. Based on the results of our analysis, these overheads
could be reduced in both EnTK and RADICAL-Pilot by adopting
early binding of images to each compute node as done in De-
sign 2.A. Nonetheless, Design 1 would still require executing a
task for each image, imposing bootstrap and tear down overheads
for each task.

7. Conclusions

While Design 1, 2 and 2.A can successfully support the exe-
cution of the use cases described in Section 3, our experiments
show that for the metrics considered, Design 2.A is the one that
offers the better overall performance. Generalizing this result, use
cases that are both data-driven and compute-intensive benefit
from early binding of data to compute nodes so as to maximize
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data and compute affinity, and equally balance input data across
nodes. Design 2.A minimizes the overall time to completion of
this type of workflow while maximizing resource utilization.

Our analysis also shows the limits of an approach where
pipelines, i.e., interdependent compute tasks, are late bound to
compute nodes. In designs in which tasks are independent exe-
cutables (i.e., programs), the overhead of bootstrapping a program
needs to be minimized, ensuring that each pipeline processes
as much input as possible (in our use case, single and pairs
of images). In presence of large amount of data, late binding
implies copying, replicating or accessing data over network and
at runtime. We showed that, in contemporary HPC infrastruc-
tures, this is too costly both for resource utilization and total
time to completion. Even when data are made available on the
network filesystems of the HPC infrastructure, the time spent to
access and/or write those amounts of data at runtime dominates
the total time to completion of the application workflow, vastly
reducing the amount of time computing resources can be used
while available.

It should be noted that our insight does not depend on the
middleware we used for our experiments, or on the type of data
and computation that our use cases required. Our insight depends
instead on the requirements of the given tasks and how the
capabilities of the available resources satisfy those requirements.
Given the ratio between CPUs and GPUs, the amount of memory
per node and the filesystem performance in our experiments,
Design 2.A will perform better than the other two designs for any
use case that requires the analysis of multi-terabyte dataset with
both CPUs and GPUs. Conversely, given a resource with a suffi-
ciently fast filesystem and a 1:1 ratio between CPUs and GPUs,
based on our analysis, all three designs will perform analogously,
possibly with slightly different overhead distributions.
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Infrastructure-wise, the experiments presented in Section 6
show the limits imposed by an imbalance between number of
CPU cores and available memory. Given data-driven computation
where multi GB images need concurrent processing, we were
able to use just 10% of the available cores due to the amount
of RAM required by each image processing. This applies also to
the imbalance between CPUs and GPUs: use cases with heteroge-
neous tasks would benefit from a higher GPU/CPU ratio. Finally,
filesystem performance limited the amount of concurrent I/O we
could perform from concurrent processes. This is consistent with
the current trend of building HPC infrastructures with higher GPU
density per node, with different types of dedicated memories and
multi-tiered data systems. ORNL Summit or TACC Frontera are
contemporary examples of such a trend.

Sections 4 and 6 also show the limits of optimizing the exe-
cutable of a task when multiple instances of that executable have
to be executed concurrently. While GPU-SIFT largely improves on
the computing efficiency of preexisting SIFT implementations, the
amount of memory it required to match an image pair always
depend on the size of the images of the pair. This imposes a
limit on the number of GPU-SIFT tasks that can be concurrently
executed. This make the use of dedicated accelerators preferable
to the use of general purpose processors, but also shows the
importance of optimizing the design of the middleware that has
to execute those program instances concurrently.

Section 6 offers an example of a methodology for experimen-
tally evaluating the performance of alternative but functionally
equivalent middleware designs that support the execution of
data and compute intensive workflow applications on HPC ma-
chines. This methodology is important to drive the development
of middleware in a moment in which application workflows
have become fundamental for many scientific domains [47] and
academic efforts are multiplying to support such applications 5.
While qualitative metrics like usability, security or portability
are fundamental, to the best of our knowledge, we are lacking
quantitative ways to compare alternative middleware designs for
specific production infrastructures (i.e., experimental methodolo-
gies). Consistently, our methodology focuses on three quanti-
tative performance metrics (total time to completion, resource
utilization and middleware overheads) which measure the speed
and efficiency with which users can obtain results and how well
resources that have been “paid” for can be utilized.

The results presented open several future lines of research.
We will extend both EnTK and RADICAL-Pilot to implement De-
sign 2.A. We will use our characterization of overheads as a
baseline to evaluate our implementations and further improve
the efficiency of our middleware. Further, we will apply the
presented experimental methodology to additional use cases and
infrastructures, measuring the trade offs imposed by other types
of task heterogeneity, including multi-core or multi-GPU tasks
that extend beyond a single compute node. We will explore
how the presented methodology applies to designs in which
tasks are not independent programs but, instead, single func-
tions or methods. In general, we will study how to evaluate the
trade offs between in-memory and filesystem-based computa-
tions when use cases demand the maximization of concurrent
execution. This will be particularly important to evaluate the
execution of workflow applications on the upcoming exascale
HPC infrastructures.

Beyond design, methodological and implementation insights,
the work for this paper has already enabled the execution of
use cases at unprecedented scale and speed. The 3097 images
of the Seals use case can be analyzed in ~20 hours, and the
11,030 image pairs of the Geolocation use case can be matched
in ~5.6 hours, compared to labor-intensive weeks previously
required on non-HPC resources. These are by no means optimal
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results. The capabilities we will develop for our middleware based
on the insight gained with the results presented in this paper,
will allow for further improvement of execution performance. In
this context, it will be important to integrate analytical models
of optimal execution with the analysis of executions on actual
computing infrastructures.

Data sources, the software used for their analysis and replica-
tion guidelines can be found at [1,48].
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