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We introduce and study a general version of the fractional online knapsack problem with multiple knapsacks,

heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on

the assignment of items to knapsacks. This problem generalizes variations of the knapsack problem and of the

one-way trading problem that have previously been treated separately, and additionally finds application to the

real-time control of electric vehicle (EV) charging. We introduce a new algorithm that achieves a competitive

ratio within an additive factor of one of the best achievable competitive ratios for the general problem and

matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way

trading literatures. Moreover, our analysis provides a novel approach to online algorithm design based on an

instance-dependent primal-dual analysis that connects the identification of worst-case instances to the design

of algorithms. Finally, we illustrate the proposed algorithm via trace-based experiments of EV charging.
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1 INTRODUCTION
Online optimization has become a foundational piece of the design of networked and distributed

systems that is used to capture the challenges of decision-making in uncertain environments.

Theoretical results have had impact for data center optimization [3, 26, 29, 43], video streaming [37,

42], energy systems [6, 7, 18, 35, 45], cloud management [27, 39, 45, 47], and beyond.

Authors’ addresses: Bo Sun, The Hong Kong University of Science and Technology, Hong Kong; Ali Zeynali, University of

Massachusetts Amherst, USA; Tongxin Li, California Institute of Technology, USA; Mohammad Hajiesmaili, University of

Massachusetts Amherst, USA; Adam Wierman, California Institute of Technology, USA; Danny H.K. Tsang, The Hong Kong

University of Science and Technology, Hong Kong.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2476-1249/2020/12-ART51 $15.00

https://doi.org/10.1145/3428336

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 51. Publication date: December 2020.

https://doi.org/10.1145/3428336
https://doi.org/10.1145/3428336
https://doi.org/10.1145/3428336


51:2 Bo Sun et al.

Two classical problems within the online optimization literature that have received considerable

attention in recent years are the online knapsack problem and the one-way trading problem. In

the online knapsack problem, an agent must make irrevocable decisions about which items to pack

into a knapsack without knowing which items will arrive in the future. In the one-way trading
problem, an investor must trade a limited amount of one asset to another asset without knowing

the future conversion rates. These problems have seen broad application in recent years, e.g., to

auction-based resource provisioning in cloud/edge clusters [39, 45], admission control and routing

of virtual circuits [9, 32], and transactive control of distributed energy resources [5–7, 38].

These two problems are seemingly very different, and the papers on each tend to use very

different algorithmic approaches and analytic techniques, e.g., threat-based algorithms [15, 16],

threshold-based algorithms [40, 45, 48], online primal-dual algorithms [9, 10, 38], online linear

programming [4, 44], model predictive control [18, 24], and more. In addition, within each problem,

a wide range of variations have been considered, each motivated by features of different applications.

For example, versions of online 0/1 knapsack [45], online multiple knapsacks, where items can

be assigned across multiple knapsacks [48], and online fractional knapsack, where each item can

be partially admitted [31]. Similarly, a wide set of variants of one-way trading have emerged, e.g.,

with [15] or without [44] leftover assets, and concave returns [25]. The disconnected nature of

these literatures begs the question: Is it possible for a unified algorithmic approach to be developed or
does each variant truly require a carefully crafted approach?

Contributions of This Paper. Despite the differences in approaches and techniques, there are

also similarities between these problems that lead one to hope that unification is possible. In this

paper, we provide such an algorithmic unification via a generalization of the online knapsack and

one-way trading problems, i.e., we show that a single algorithmic approach can be used to provide

near optimal algorithms across nearly all previously considered variants of these two problems.

More specifically, we take motivation from the online electric vehicle (EV) charging problem,

which is a prominent problem in energy systems [5–7, 18, 24, 38, 46]. In this problem, an operator

of an EV charging facility must charge a set of EVs that arrive over time without knowing requests

of future arrivals. Each request includes a charging demand, a charging rate limit, and a departure

time before which it must receive charge. Upon the arrival of each EV, the operator receives its

request and schedules its charging to maximize the aggregate value of all EVs. Most commonly, the

operator tries to satisfy EVs’ charging demands using a best effort policy although drivers desire an

on-arrival commitment, which notifies them a guaranteed amount of energy to be delivered upon

their arrivals [5, 38]. However, on-arrival commitment adds significant challenges to design online

algorithms with theoretical guarantee since it introduces strong temporal coupling for the schedule

of each EV, especially when a charging rate limit is also enforced. Thus, to mitigate the temporal

coupling, this paper focuses on a policy that achieves on-arrival commitment by determining a

committed schedule upon arrivals. We show that this simple policy does not lose too much flexibility

in the worst case since it can achieve a nearly optimal competitive ratio, and hence provides a

good baseline schedule for further adjusting the charging adaptively over time (see Section 2.2).

Because of the rate constraint, the EV charging problem cannot fit into either the one-way trading

or the online multiple knapsack problem (OMKP) directly. However, it can be modeled as a form

of a fractional OMKP (FOMKP) with rate constraints that generalizes existing problems in both

online knapsack and one-way trading. Additionally, the resulting problem also captures other

applications, such as classical formulations of cloud scheduling [27, 47] and geographical load

balancing [3, 26, 29, 35] (see Section 2.2).

Focusing on this new FOMKP, the goal of the paper is to design algorithms that can achieve

nearly the optimal value as the optimal algorithm. Specifically, we aim to develop algorithms that
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maintain a minimal competitive ratio, which is the worst-case ratio of the value of the optimal

offline algorithm to that achieved by the online algorithm.

To that end, we focus on a form of algorithms introduced by [48] in the context of OMKP
called online threshold-based algorithms (OTA). The design of this class of algorithms is based

on a threshold function 𝜙 that estimates the dual variables of the problem based on the knapsack

utilization. See Section 3.1 for a formal introduction to OTA. While OTA has proven effective in

some contexts, the application of the approach is limited due to the fact that designing the threshold

function 𝜙 is more art than science, similarly to the difficulties in designing Lyapunov functions

for Lyapunov-based control [12, 34] and designing potential functions for the analysis of online

scheduling algorithms [1, 17].

In this paper, we present a new systematic approach for designing the threshold functions in

OTA. The approach, described in Section 3.2, uses a novel instance-dependent online primal-dual

analysis to design the threshold function directly from a characterization of worst-case instances

of the problem. Thus, the task of identifying instances in order to prove a lower bound is unified

with the task of designing an algorithm that can (nearly) achieve that bound.

This new approach yields the design of a threshold function for OTA that provides the first

algorithmwith a competitive ratio within an additive factor of one of the best achievable competitive

ratio for the general problem and matches or improves on the best-known competitive bounds for

a wide variety of special cases in the knapsack and one-way trading literatures (see Section 3.3).

Specifically, we illustrate the approach for classical one-way trading and two of its recent variants.

In all cases the approach yields either the optimal competitive ratio or a competitive ratio that

improves upon the state-of-the-art.

Finally, to illustrate the performance of the algorithm in a specific application, we end the paper

with a brief discussion in Section 6 of the problem that motivates our study: EV charging with

on-arrival commitment to drivers and rate constraints. Note that the on-arrival commitment of a

charging level to drivers is a distinctive feature of this case study that adds significant additional

challenges compared to typical papers on online EV charging. Additionally, it is rare for algorithms

for online EV charging to have theoretical guarantees when rate constraints are considered. We

present a case study using the Adaptive Charging Network Dataset, ACN-Data, which includes

50,000 EV charging sessions [23]. Here, we show that our algorithm, which uses an adaptive

utilization-based threshold, improves over the most common prior approaches for related online

knapsack problems such as [15], which use a fixed threshold policy. Our design targets the worst-

case performance, and we see an over 40% decrease (nearly a factor of 2 improvement) in the

worst-case when utilization is high, while also achieving an around 20% decrease on average.

In summary, in this paper we make the following contributions.

• We introduce and study a generalization of the fractional online multiple knapsack problem

(FOMKP) that is motivated by the EV charging problem and unifies the online knapsack and

one-way trading literatures.

• We develop an approach for designing online threshold-based (OTA) algorithms based on a

novel instance-dependent online primal-dual analysis that connects the characterization of

worst-case instances to the design of online algorithms.

• We design an algorithm for the general FOMKP problem with rate constraints that has a

competitive ratio within an additive factor of one from the optimal competitive ratio. The

algorithm also matches or improves upon best-known results in specific cases covered by

recent papers, e.g., [25, 44, 45, 48].

• We illustrate the performance of the algorithm in the context of EV charging using a trace-

based case study, showing a decrease in the worst case by up to 44% and of the average case
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by around 20% as compared to fixed threshold policies, the most common approach in prior

work on online knapsack problems.

Related Work. The online optimization problem considered in this work is related to, and

unifies, problems that have originated from a wide range of applications. In the following, we

briefly overview the problems that can be considered as variants or special cases of the FOMKP
that we study. Details of these problems are discussed in Section 2.2, where the relationship to the

FOMKP we study is shown formally.

The Online Knapsack Problem. Our work generalizes a class of problems known as the online

knapsack problems (OKPs) [11, 40, 45, 48], which are online variants of the well-studied knapsack

problem [33]. Since there is no competitive online algorithm for general OKPs, studies typically

assume that the weight of each item is small and the value-to-weight ratio is bounded from both

below and above. Under this infinitesimal assumption, competitive algorithms can be derived. For

example, (1 + ln𝜃 )-competitive online algorithms have been designed for the classical online 0/1
knapsacks [45, 48], where 𝜃 is the ratio of the upper and lower bounds of the value-to-weight ratio.

An important generalization of the classical problem is to the case of multiple knapsacks. In an

online multiple knapsack problem (OMKP), an operator has a set of knapsacks with heterogeneous

capacities. Items arrive sequentially, each with an associated weight and value, and an operator

decides whether to accept each item and where to pack it if it is accepted. Here, [48] presents an

algorithm that can achieve a competitive ratio of 1 + ln𝜃 under the infinitesimal assumption.

A more general version of OMKP is the online multiple knapsack problem with assignment

restrictions (OMKPAR) [22]. In this problem, each item is associated with a subset of knapsacks

and is restricted to be packed in this subset. Here progress has not been made, even under the

infinitesimal assumption. In this paper, we study a generalization of a fractional online multiple

knapsack problem (FOMKP), where fractional refers to the fact that items can be assigned such that

a fraction goes to each of multiple knapsacks. Fractional assignment is an important feature of many

applications, e.g., EV charging [6, 46], cloud scheduling [27, 47], geographical load balancing [26, 35].

Furthermore, there is a strong connection between the fractional version of knapsack problems

and the integral version with an infinitesimal assumption. In particular, algorithms for fractional

versions of the problem also can be used for the integral case under the infinitesimal assumption

(see Section 3.1). Prior work on fractional knapsack problems includes [20, 28, 31]. However, none

of these works include rate constraints, which are core to EV scheduling.

There are also other variants of generalized OKPs that have been considered in the literature,

such as the online fractional packing problem [10] and the online multi-dimensional knapsack

problem [45]. In these settings, the best-known competitive ratios depend on the number of

knapsacks𝑀 . For example, [10] gives a competitive ratio𝑂 (ln𝑀) for the online fractional packing
problem and the state-of-the-art competitive ratio for the online multi-dimensional knapsack

problem is 𝑂 (𝑀), shown in [45]. This variant of the OKPs is harder than the FOMKP considered in

this paper. Particularly, the FOMKP relaxes the above problems by allowing the amount of items

allocated to each knapsack to be a continuous variable. This allows us to achieve competitive ratios

that are independent of the dimension of knapsacks.

The One-Way Trading Problem. This problem was first introduced and studied by EI-Yaniv et
al. [15] under the assumption that the price is bounded from above and below. It is shown that a

threat-based algorithm can achieve a competitive ratio of𝑂 (ln𝜃 ), where 𝜃 is the ratio of upper and

lower bounds on the prices (or conversion rates). Follow-up works mainly focus on variants with

different assumptions on the prices, e.g., known distribution of prices [16], unbounded prices [13],

and interrelated prices [36], or with different performance metrics, e.g., competitive difference [42].

Recently, Yang et al. [44] considers a bounded price but a different problem setting, in which the
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investor is unaware of whether a price is the last one and may have leftover assets due to the sudden

termination of trading process. This work designs a threshold-based algorithm that is shown to

be (1 + ln𝜃 )-competitive. A further extension was given by Lin et al. [25], which generalizes the

linear objective function to a concave one. In this paper, we consider a problem that generalizes all

these variants, and we present a single algorithm that matches or improves upon the competitive

ratio in each case.

The Online EV Charging Problem. The task of managing the charging of EVs is a prominent

algorithm challenge for smart energy systems [6, 18, 24]. A number of variants of online EV

charging have been tackled in prior work [5–7, 38, 46]. Despite the fact that many algorithms

achieve good performances (on average) in practice, analyzing algorithms to provide worst-case

guarantees for online EV charging is notoriously difficult, and existing algorithms, such as model

predictive control (MPC), are known to be vulnerable to adversarial inputs. For example, in [18],

the EV charging problem is modeled as an online linear program and the authors show that MPC is

equivalent to an offline solver when the costs are uniformly monotone and has a competitive ratio

𝑂 (𝜃 ) otherwise. Most commonly, online EV algorithms have been allowed to adaptively determine

the EV charging schedule over time, thus providing no guarantees to a driver at arrival about

the total charge they will receive, e.g., [6, 18, 24]. This approach simplifies the analysis; however,

charging with on-arrival commitment [5, 38] is what is desired by drivers. In this paper, we consider

charging with on-arrival commitment, in which the charging schedule is determined upon EVs’

arrivals and will be kept unchanged. Competitive analysis of this setting is known to be challenging,

e.g., [5] has shown that no bounded competitive ratio can be achieved in general. However, in

this paper, we give an online algorithm with a nearly optimal competitive ratio under a set of

regularity conditions that are standard in the online knapsack literature (Assumption 2.3). Further,

our algorithm achieves its competitive ratio when charging rate constraints are included, which

add additional challenges and are typically not considered in online EV charging formulations.

2 THE ONLINE FRACTIONAL MULTIPLE KNAPSACK PROBLEM
This paper focuses on a novel generalization of the fractional Online Multiple Knapsack Problem

(FOMKP). In a classical OMKP, each arriving item can only be packed into one of the knapsacks.

In contrast, in the FOMKP each knapsack𝑚 ∈ M is allowed to accept a fraction of the entire size

of each item 𝑛 ∈ N , i.e., the accepted item can be packed into multiple knapsacks, each of which

accommodates a portion of the total accepted item. Additionally, the formulation we consider

incorporates heterogeneous rate-limiting constraints depending on the knapsack and the item to be

packed. This generalization is motivated by issues in practical problems such as online EV charging

and enables the unification of a wide range of classical online algorithms problems, many of which

are traditionally approached with contrasting algorithmic techniques.

2.1 Problem Statement
We consider a setting where items in a set N need to be packed into knapsacks in a set M. For

each item 𝑛, the operator decides an assignment vector denoted by𝒚𝑛 := (𝑦𝑛1, . . . , 𝑦𝑛𝑀 ), where each
entry 𝑦𝑛𝑚 is the fraction of item 𝑛 packed into the knapsack𝑚. The assignment vector 𝒚𝑛 must

satisfy the following constraints. The set of assignment vectors 𝒚𝑛 satisfying (1)-(3) is Y𝑛 :∑︁
𝑚∈M

𝑦𝑛𝑚 ≤ 𝐷𝑛, ∀𝑛 ∈ N , (1)∑︁
𝑛∈N

𝑦𝑛𝑚 ≤ 𝐶𝑚, ∀𝑚 ∈ M, (2)

0 ≤ 𝑦𝑛𝑚 ≤ 𝑌𝑛𝑚, ∀𝑛 ∈ N ,𝑚 ∈ M . (3)
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The first constraint (1) is a demand constraint, which bounds the total accepted fractions of the

item 𝑛 by the item size 𝐷𝑛 . The second constraint (2) ensures the assigned fractions 𝒚𝑛 satisfy the

capacity constraints, of the heterogeneous knapsacks, where 𝐶𝑚 is the maximum capacity of the

knapsack𝑚. The third constraint (3) is a rate constraint, which ensures that at most 𝑌𝑛𝑚 fraction of

the item 𝑛 can be packed into the knapsack𝑚. This constraint also allows imposing heterogeneous

restrictions on which items can be packed into which knapsacks, e.g., by setting 𝑌𝑛𝑚 = 0 for

knapsacks that are not available to the item 𝑛. Due to the algorithmic difficulties it creates, the rate

constraint (3) is rarely studied in the literature of OMKP. Note that all three of these constraints
are crucial to capturing applications such as EV scheduling. We highlight this in Section 2.2.

2.1.1 Objective Function. The objective of an FOMKP is to optimize the value of packed items

subject to the constraints (1)-(3). More formally, let 𝑔𝑛 (𝒚𝑛) : Y𝑛 → R+ denote the value function of

the item 𝑛. This function models the value of the item 𝑛 with an assignment vector 𝒚𝑛 . Optimizing

over assignment vectors that satisfy (1)-(3), the offline version of FOMKP can be summarized as

(Offline FOMKP) max
𝒚𝑛

∑︁
𝑛∈N

𝑔𝑛 (𝒚𝑛), s.t. constraints (1) − (3). (4)

In this paper, we follow standard practice in the literature and focus on value functions that

are separable or aggregate functions, e.g., [2, 6, 35]. These definitions are useful in order to prove

competitive bounds.

Definition 2.1 (Aggregate Function). The aggregation of allocations contributes to the value
function, i.e., 𝑔𝑛 (𝒚𝑛) = 𝑔𝑛 (

∑
𝑚∈M 𝑦𝑛𝑚).

Definition 2.2 (Separable Function). The value function is separable over allocations, i.e.,
𝑔𝑛 (𝒚𝑛) =

∑
𝑚∈M 𝑔𝑛𝑚 (𝑦𝑛𝑚), where 𝑔𝑛𝑚 (𝑦𝑛𝑚) is the value of allocating 𝑦𝑛𝑚 of item 𝑛 to knapsack𝑚.

Both definitions capture a broad range of applications. For example, interpreting different

knapsacks as different time slots allows us to model the EV charging application (described in detail

in Section 2.2) using an aggregate function. Additionally, the notion of separable value functions

captures the phenomenon of different values for allocating items to different knapsacks, which

is of interest to applications such as geographical load balancing (described in detail in Section

2.2). Note that when the value function is linear, an aggregate function is by definition a separable

function. Additionally, when there is only one knapsack, both definitions are equivalent.

In addition, we assume that the value functions satisfy the following regularity conditions.

Assumption 2.3. The value functions {𝑔𝑛 : 𝑛 ∈ N} satisfy:
(i) for any 𝑛 ∈ N , 𝑔𝑛 (·) is non-decreasing, differentiable and concave in Y𝑛 ;
(ii) for any 𝑛 ∈ N , 𝑔𝑛 (0) = 0;
(iii) the partial derivative of 𝑔𝑛 (·) is bounded, i.e., there exist constants 𝐿,𝑈 > 0 such that for any

𝑛 ∈ N and𝑚 ∈ M, 𝐿 ≤ 𝜕𝑔𝑛
𝜕𝑦𝑛𝑚

≤ 𝑈 .

These are again classical assumptions in the online knapsack literature [25, 40, 45, 48]. The

first condition ensures that the value function is smooth and has diminishing returns. The second

condition indicates that packing no item earns no value. The third condition requires that the

partial derivatives of the value function are lower and upper bounded by 𝐿 and𝑈 , respectively. 𝐿

and𝑈 are assumed to be known and let 𝜃 := 𝑈 /𝐿 denote the fluctuation ratio.

2.1.2 Online Formulation. The parameters described to this point can be encapsulated in two

sets, S and I. The set S := {{𝐶𝑚}𝑚∈M, 𝐿,𝑈 } includes the capacity information, and the partial

derivative bounds of value functions. We call S the setup information since it is known from the

start and can be used for the design of online algorithms. The set I := {𝐷𝑛, {𝑌𝑛𝑚}𝑚∈M, 𝑔𝑛 (·)}𝑛∈N
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contains the information corresponding to each item, including the item size, rate limits, and value

functions. I is also called arrival information. The focus of this paper is an online formulation

where the arrival information of each item is revealed upon its arrival. Thus, the algorithm only

knows the causal information {𝐷𝑘 , {𝑌𝑘𝑚}𝑚∈M, 𝑔𝑘 (·)}𝑘=1,...,𝑛 for the decision-making of item 𝑛.

Our goal is to design an online algorithm that makes an irrevocable assignment decision based

only on causal information and still performs nearly as well as the offline optimum. Particularly, we

evaluate the performance of an online algorithm under the competitive analysis framework. Given

setup information S, let OPT(I) and ALG(I,A) denote the offline optimum of the FOMKP and the

value achieved by an online algorithmA under an arrival instance I, respectively. The competitive

ratio of the online algorithm A is defined as CR(A) = maxI∈Ω
OPT(I)

ALG(I,A) , where Ω denotes the set

of all instances that satisfy Assumption 2.3. An algorithm A is 𝛼-competitive if CR(A) ≤ 𝛼 .

2.2 Examples
The generalization of FOMKP introduced above is novel and serves to unify a wide variety of

classical online problems. On one hand, it is a generalization of two classical online optimization

problems: the one-way trading and the online knapsack problems, bringing together two streams of

research that were previously treated separately in the literature. On the other hand, it is the core

model of many practical online decision-making applications such as the EV charging and online

geographical load balancing problems. We highlight these connections explicitly in the following.

Previous studies on those problems are summarized at the end of Section 1

The One-Way Trading Problem. One-way trading [15] is a classical online problem where an

investor aims to trade a limited amount of one asset (e.g., dollar) to another asset (e.g., yen). The

sequence of the trading prices is not known to the investor ahead of time and the investor must

decide the amount of traded assets for each price except the last one, and trade remaining assets at

the last price. The objective is to maximize the total profits of the entire trading process.

To see that one-way trading is a special case of FOMKP, observe that FOMKP reduces to the

following generalized one-way trading (GOT) problem when the number of knapsacks is𝑀 = 1 and

the rate limit is equal to the item size, i.e., 𝑌𝑛1 = 𝐷𝑛 ,

(Offline GOT) max
𝑦𝑛

∑︁
𝑛∈N

𝑔𝑛 (𝑦𝑛), s.t.
∑︁

𝑛∈N
𝑦𝑛 ≤ 𝐶, 0 ≤ 𝑦𝑛 ≤ 𝐷𝑛, ∀𝑛 ∈ N , (5)

where we omit the knapsack index for simplicity. Notice that GOT includes all previous variations

of the one-way trading problem in the literature, e.g., [15, 44], and additionally extends the most

general one-way trading model in [25] by including the rate constraint 𝑦𝑛 ≤ 𝐷𝑛 .

The Online Multiple Knapsack Problem with Small Weights. While our focus is on the

FOMKP, there are strong connections between the fractional and integral versions. In the integral

version, itemsmust be assigned to a single knapsack and cannot be split betweenmultiple knapsacks.

Thus, OMKP [48] is an online integer linear program with multiple capacity constraints.

To see the connection between FOMKP and OMKP, note that, when the assignment set Y𝑛 is

restricted to the following discrete set

Ỹ𝑛 :=
{
𝒚𝑛 :

∑︁
𝑚∈M

𝑦𝑛𝑚 ≤ 𝐷𝑛, 𝑦𝑛𝑚 ∈ {0, 𝑌𝑛𝑚},∀𝑚 ∈ M
}
, (6)

where 𝑌𝑛𝑚 ∈ {0, 𝐷𝑛}, FOMKP becomes an OMKP with assignment restrictions (OMKPAR) [22],
which is a generalization of OMKP. Under the assumptions that (i) each item can be packed into

any one of all knapsacks, i.e., 𝑌𝑛𝑚 = 𝐷𝑛,∀𝑚 ∈ M, and (ii) the value of each item is independent of

knapsacks, e.g., 𝑔𝑛 (𝒚𝑛) is aggregate, OMKPAR reduces to OMKP.
Under an infinitesimal assumption that is standard in the literature (i.e., the weights/sizes of

items are much smaller than the knapsack capacities) [40, 48], the online algorithms designed
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for the FOMKP can be converted to an integral version to solve the OMKPAR with the same

competitiveness. This is formally highlighted in Remark 3.2. Thus, the FOMKP can be considered

as a generalization of OMKPAR under an infinitesimal assumption. Note that this assumption is

typically satisfied in practical applications. For example, the energy demand required by a single

EV is much smaller than the capacity of the garage and the resource required by a single job or

VM is much smaller than the capacity of servers. Additionally, such an infinitesimal assumption

is typically required for online (non-fractional) knapsack problems, e.g., [40, 45, 48], since no

non-trivial competitive results are known without assumptions [48].

Online EV Charging with On-Arrival Commitment. In an online EV charging problem,

an operator of an EV charging facility charges a set N of EVs that arrive sequentially in a set

M of time slots. The facility capacity (i.e., the available total charging power) at time𝑚 is 𝐶𝑚 .

Each EV 𝑛 is characterized by parameters {M𝑛, 𝐷𝑛, 𝑌𝑛, 𝑔𝑛 (·)}, where M𝑛 := {𝑡𝑎𝑛 , . . . , 𝑡𝑑𝑛 } denotes
the available window of EV 𝑛 with 𝑡𝑎𝑛 and 𝑡𝑑𝑛 as the arrival and departure times, 𝐷𝑛 denotes the

charging demand, 𝑌𝑛 is the charging rate limit, and 𝑔𝑛 (·) is a value function of the total received

energy of EV 𝑛. By letting 𝑌𝑛𝑚 = 𝑌𝑛,∀𝑚 ∈ M𝑛 , and 𝑌𝑛𝑚 = 0,∀𝑚 ∈ M \ M𝑛 , the offline EV

charging problem is precisely the problem (4). In order to ensure the quality of service (QoS) for

drivers in the online setting, the operator needs to guarantee how much energy each EV will be

provided when the EV first plugs in, i.e., on-arrival commitment. Crucially, we consider a specific

approach to achieve such on-arrival commitment by committing to a charging schedule upon the

arrival of each EV. Particularly, upon the arrival of each EV 𝑛, the operator commits to a charging

schedule 𝒚𝑛 = (𝑦𝑛1, . . . , 𝑦𝑛𝑀 ), where 𝑦𝑛𝑚 is the charging rate of EV 𝑛 at time 𝑚, and obtains a

value 𝑔𝑛 (𝒚𝑛) := 𝑔𝑛 (
∑

𝑚∈M 𝑦𝑛𝑚) from charging EV 𝑛 by the schedule 𝒚𝑛 . The goal of the operator
is to maximize the total values of all EVs. We can then see the online EV charging with on-arrival

commitment exactly fits into FOMKP.
Note that our formulation considers the charging schedules as irrevocable decisions, i.e., 𝒚𝑛 will

be fixed on arrival of EV 𝑛. This formulation restricts the decision space of online EV charging

since the operator has the flexibility of re-optimizing the charging schedules over time in practice.

However, to the best of our knowledge, no online EV charging algorithms with re-optimizing in the

literature have achieved bounded competitive ratios and on-arrival commitment simultaneously. As

is shown in next section, under our formulation with the most intuitive way to guarantee on-arrival

commitment, we can design online algorithms that can achieve nearly optimal competitive ratios

within an additive factor of one. Such results indicate our formulation does not lose too much

flexibility.

Moreover, compared to FOMKP, the online EV charging, which models time slots as knapsacks,

actually has additional information, i.e., past time slots will not be available for assignment of

future arrivals. Thus, the operator can adjust the charging rates slot by slot based on the committed

charging schedules to further improve the competitive ratios. Particularly, if the committed sched-

ules only consume partial capacity of the current time slot, the operator can allocate the remaining

capacity to the EVs whose demand constraints and rate-limiting constraints of current time slot are

not binding. Since value functions of all EVs are non-decreasing in their total received energy, the

resulting schedules after such adaptive adjustment can achieve the total value no worse than the

committed schedules, and hence improve the empirical competitive ratios in practice.

Cloud Scheduling and Geographical Load Balancing. FOMKP with separable value func-

tions can be viewed as an extension of the classical task of job scheduling in a cloud, e.g., [27, 47],

which includes the so-called geographical load balancing problem, e.g., [3, 26, 29, 35]. More con-

cretely, consider a service provider, e.g., Netflix or YouTube, with a set of geographically distributed

infrastructures for performing video processing jobs, e.g., encoding video files into multiple quality

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 51. Publication date: December 2020.



Competitive Algorithms for the Online Multiple Knapsack Problem with Application to Electric Vehicle Charging 51:9

levels [41] to be used in ABR streaming algorithms [37]. These video processing jobs are heteroge-

neous and typically have flexibility in execution across different locations without violating QoS

requirements.

While the problems of job scheduling and geographical load balancing have been mainly studied

separately, with FOMKP, the joint problem could be tackled. Formally, in this model a knapsack

𝑚 ∈ M denotes a pair of time and location, i.e., with𝑇 time slots and𝐾 locations, we have𝑇 ×𝐾 = 𝑀

knapsacks. There is a set ofN (e.g., video) jobs, each characterized by {M𝑛, 𝐷𝑛, 𝑌𝑛, {𝑔𝑛𝑚 (·)}𝑚∈M𝑛
},

where M𝑛 is the set of slot/locations available for job 𝑛, 𝐷𝑛 is the computation demand, and 𝑌𝑛 is

the job parallelism bound [27] that captures the maximum number of processing units (or servers)

that can be allocated to a single job at any given slot/location. Lastly, 𝑔𝑛𝑚 (·) captures the value (or
cost, e.g., energy [35] or bandwidth [2]) of executing job 𝑛 at slot/location𝑚. In this model, the

deadline constraints and QoS constraints, e.g., infeasibility of running jobs in far locations [19]

could be captured using the rate constraints. In particular, by letting 𝑌𝑛𝑚 = 𝑌𝑛,∀𝑚 ∈ M𝑛 , and

𝑌𝑛𝑚 = 0,∀𝑚 ∈ M \M𝑛 , the deadline and QoS constraints of job 𝑛 could be enforced.

3 ALGORITHMS & RESULTS
The key challenge when designing online algorithms for FOMKP results from the capacity con-

straints that couple the knapsack decisions of all items. Formally, one can understand the difficulty

created by this via the dual variables. In particular, if the optimal dual variables associated with

the capacity constraints were to be given, the FOMKP could be decoupled across items and the

optimal knapsack decision for each item could be determined by maximizing a pseudo-utility that

is defined as the value of the item minus a linear cost using the optimal dual variables as the price.

However, in the online setting, the optimal dual variables cannot be known since the future items’

information is unavailable. Thus, we can only use an adaptive estimation of the dual variables to

solve the online problem based on causal information.

This intuition leads to an important algorithmic idea at the core of literature focusing on the

OMKP, e.g., [48]: estimate the dual variable as a function of the knapsack utilization, i.e., the fraction
of the consumed knapsack capacity. We refer to this estimation function as a threshold function
defined below.

Definition 3.1 (Threshold Function). A threshold function 𝜙𝑚 (𝑤) of a knapsack𝑚 is a non-
decreasing function that evaluates the price (or marginal cost) of packing items to the knapsack𝑚
when its utilization𝑤 is within capacity𝑤 ∈ [0,𝐶𝑚] and 𝜙𝑚 (𝑤) = +∞ when𝑤 ∈ (𝐶𝑚, +∞).

The approach we follow in this paper is to design a class of online threshold-based algorithms

(OTA) for FOMKP. In the following, we first formally introduce the OTA class of algorithms,

followed by key ideas for competitive analysis, and finally we present our main competitive results.

Proofs are deferred to the next sections.

3.1 Online Threshold-Based Algorithms (OTA)
The OTA framework has been developed in the context of OMKP by Zhou et al. [48]. The basic idea
of OTA is to use threshold functions to estimate the cost of a (non-fractional) knapsack assignment

under infinitesimal assumptions and determine the online solution by solving a pseudo-utility

maximization problem, i.e., the value from the item minus the cost of packing it. We extend this

idea to FOMKP, where the estimated cost of assignment decisions is estimated by an integral of

the threshold function.

More formally, given a set of threshold functions 𝜙 := {𝜙𝑚 (·)}𝑚∈M , the details of the OTA
algorithm are provided in Algorithm 1. Let 𝒚∗

𝑛 be the online assignment decision produced by

OTA𝜙 . Let 𝑤
(𝑛)
𝑚 =

∑𝑛−1
𝑘=1 𝑦

∗
𝑘𝑚

denote the utilization of a knapsack𝑚 observed upon the arrival of
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Algorithm 1 Online Threshold-Based Algorithm with Threshold Function 𝜙 (OTA𝜙 )

1: input: threshold function 𝜙 := {𝜙𝑚 (·)}𝑚∈M , and initial knapsack utilization 𝑤
(1)
𝑚 = 0,∀𝑚 ∈

M;

2: while item 𝑛 arrives do
3: observe item size 𝐷𝑛 , rate limits {𝑌𝑛𝑚}𝑚∈M , and value function 𝑔𝑛 (·);
4: determine knapsack assignment 𝒚∗

𝑛 by solving the pseudo-utility maximization problem

𝒚∗
𝑛 = argmax

𝒚𝑛 ∈Y𝑛

𝑔𝑛 (𝒚𝑛) −
∑︁

𝑚∈M

∫ 𝑤
(𝑛)
𝑚 +𝑦𝑛𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢; (7)

5: update the utilization𝑤
(𝑛+1)
𝑚 = 𝑤

(𝑛)
𝑚 + 𝑦∗𝑛𝑚,∀𝑚 ∈ M.

6: end while

item 𝑛, which is the total fraction of the occupied knapsack capacity by the previous 𝑛 − 1 items.

OTA𝜙 uses the utilization as the state for decision-making. Since 𝜙𝑚 (𝑢)𝑑𝑢 can be considered as the

cost of assigning a small bit of the item to knapsack𝑚 when its current utilization is 𝑢, we can

estimate the total cost of assigning 𝑦𝑛𝑚 fraction of the item 𝑛 to the knapsack𝑚 by an integral∫ 𝑤
(𝑛)
𝑚 +𝑦𝑛𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢. Therefore, the second term of the pseudo-utility in the problem (7) is the total

estimated cost of a knapsack assignment 𝒚𝑛 . Since 𝜙 is a non-decreasing function, the estimated

cost is a convex function in 𝒚𝑛 and this pseudo-utility maximization problem (7) can be efficiently

solved. By definition, the threshold function becomes infinite when the utilization exceeds the

capacity, which avoids violating the knapsack capacities.

The above highlights thatOTA𝜙 is fully parameterized by the threshold function 𝜙 . Thus, the key

design question is how to determine the threshold function 𝜙 such that OTA𝜙 is competitive with

the offline optimum. Interestingly, prior works, e.g., [44, 45, 48], use the same threshold function for

the classical one-way trading and online 0/1 knapsack problems. However, this threshold function

is obtained through trial and error, and it is unclear how to design threshold functions for more

complicated variations or other settings. The crucial bottleneck for progress of these algorithms is

understanding how to design the threshold function, and the key idea in our work is a systematic

approach for the design of such threshold functions, which we describe in the next section.

Remark 3.2. Our focus is on fractional knapsack problems, but OTA𝜙 can be easily converted into
an integral version for solving the non-fractional problem OMKPAR, which restricts the schedule to a
discrete set Ỹ𝑛 defined in equation (6) [22]. To do so, the estimated cost of packing item 𝑛 to knapsack

𝑚 is approximated by
∫ 𝑤

(𝑛)
𝑚 +𝑦𝑛𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢 ≈ 𝜙𝑚 (𝑤 (𝑛)
𝑚 +𝑦𝑛𝑚)𝑦𝑛𝑚 . Under the infinitesimal assumption,

this approximation is accurate enough and the integral OTA can achieve the same competitive ratio
for OMKPAR as that of OTA for FOMKP.

3.2 Key Idea: Designing the Threshold Function via Instance-dependent Online
Primal-dual Analysis

The fundamental challenge when developing an OTA𝜙 algorithm is the design of the thresh-

old function 𝜙 . The key idea of the approach proposed in this paper is to design 𝜙 using an

instance-dependent primal-dual analysis that extracts the design of the threshold function from

the identification of a worst-case instance.

The use of online primal-dual (OPD) analysis for OTA stems from the work of [9]. The key idea

of the OPD approach is to construct a feasible dual solution based on the online solution produced
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by the online algorithm to be analyzed, and then build the upper bound of the offline optimum

using the feasible dual objective based on weak duality [8]. More concretely, since OTA𝜙 is only

parameterized by the threshold function 𝜙 , the performance of OTA𝜙 can be denoted by ALG(I, 𝜙).
Let Dual(I, 𝜙) denote the objective of the dual problem of FOMKP evaluated at the constructed

dual solution. Therefore, Dual(I, 𝜙) is also a function of 𝜙 . This means that the OPD technique

allows the design of 𝜙 to be viewed as a search for 𝜙 such that:

𝛼ALG(I, 𝜙) ≥ Dual(I, 𝜙) ≥ OPT(I),∀I ∈ Ω. (8)

The first inequality holds only under certain sufficient conditions, i.e., 𝜙 must satisfy a set of

differential equations parameterized by 𝛼 , see [14, 40, 45] for examples. The second inequality

comes from weak duality and holds if the constructed dual solution is feasible. The classical OPD
mainly focuses on designing the sufficient conditions to reduce the gap in the first inequality but

neglects the possibility of reducing the weak duality gap in the second inequality, which also makes

a difference to derive a smaller competitive ratio 𝛼 .

The classical approach for designing such a 𝜙 in the literature (e.g., [9, 10, 14, 40]) uses the

primal-dual relationship (e.g., weak duality, KKT conditions) between an offline primal problem and

its dual. This viewpoint does not rely on understanding instances of particular online optimization

problems. However, the gap between OPT(I) and Dual(I, 𝜙) not only depends on the constructed

dual solution, but also the constraint coefficients of the primal problem. Thus, under different

instances, the dual objective based on the primal constraints in the same offline formulation may

lead to a loose upper bound.

The novelty of our approach is the construction of instance-dependent offline formulations by

adding constraints to the primal problem that are constructed based on online solutions, and then

utilizing the corresponding dual objectives to bound the offline optimum. In this way, we actually

perform an instance-dependent OPD analysis. Moreover, by focusing on the worst-case instances,

this approach yields threshold functions that are tuned to the challenges of the online problem,

and are tight for the worst case.

While the application of this approach is complex for the general case of FOMKP, it can be

illustrated concretely in the specific case of the generalized one-way trading (GOT) described in

the problem (5). In that setting, the following lemmas (see details in Section 4) provide a simple,

concrete illustration of the approach. First, Lemma 3.3 provides a sufficient condition on 𝜙 that can

ensure OTA𝜙 is 𝛼-competitive.

Lemma 3.3. Under Assumption 2.3, OTA𝜙 for GOT is 𝛼-competitive if the threshold function 𝜙 is

𝜙 (𝑤) =
{
𝐿 𝑤 ∈ [0, 𝛽)
𝜑 (𝑤) 𝑤 ∈ [𝛽,𝐶]

,

where 𝛽 ∈ [0,𝐶] is a utilization threshold and 𝜑 is a non-decreasing function, and 𝜙 satisfies{
𝜑 (𝑤)𝐶 ≤ 𝛼

∫ 𝑤

0
𝜙 (𝑢)𝑑𝑢,𝑤 ∈ [𝛽,𝐶],

𝜑 (𝛽) = 𝐿, 𝜑 (𝐶) ≥ 𝑈 .
(9)

The form of the threshold function specified by the lemma consists of two segments, a flat

segment in [0, 𝛽) and a non-decreasing segment in [𝛽,𝐶]. This two-segment function results from

two families of instances as shown in Case I and Case II of Section 4.1, in which different offline

formulations are needed to construct the dual objective Dual(I, 𝜙) such that the gap between

Dual(I, 𝜙) and OPT(I) is minimized. The differential equations and boundary conditions in (9) are

designed to guarantee the first inequality of the OPD relationship (8) holds. By binding all inequali-

ties and solving equations (9), the resulting threshold function 𝜙∗
achieves the minimal competitive
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ratio among the threshold functions that satisfy this sufficient condition. This competitive ratio is

an upper bound of the optimal competitive ratio and its tightness depends on the instances.

Conversely, the next key lemma shows necessary conditions that need to be satisfied in order to

achieve 𝛼-competitiveness. It is phrased in terms of a utilization function, which is an abstracted

model of an online algorithm, mapping an instance to the final utilization level of the knapsack.

See Definition 4.3 for a formal definition.

Lemma 3.4. If there exists an 𝛼-competitive online algorithm for GOT, there must exist a utilization
function𝜓 (𝑝) : [𝐿,𝑈 ] → [0,𝐶] such that𝜓 is a non-decreasing function and satisfies{

𝐿𝜓 (𝐿) +
∫ 𝑝

𝐿
𝑢𝑑𝜓 (𝑢) ≥ 𝑝𝐶/𝛼, 𝑝 ∈ [𝐿,𝑈 ],

𝜓 (𝐿) ≥ 𝐶/𝛼,𝜓 (𝑈 ) ≤ 𝐶.
(10)

This lemma provides an interpretation of an online algorithm for GOT as a black box, with an

instance as an input and a sequence of changes in the knapsack utilization as an output. Given a

family of instances, each online algorithm corresponds to a utilization function𝜓 , and in Lemma 3.4

we specifically design the family of instances in away that allows them to be indexed by a continuous

marginal value within [𝐿,𝑈 ] (see Definition 4.3), making𝜓 a simple single variable function. If𝜓

satisfies (10), the online algorithm corresponding to𝜓 can achieve at least 1/𝛼 of offline optimum

under the specifically-designed family of instances. Thus, the existence of a solution to (10) is

necessary for the existence of an 𝛼-competitive online algorithm. Moreover, Lemma 3.4 means the

𝛼 in (10) is a lower bound of the optimal competitive ratio if it ensures there exists a solution to

(10). The minimal 𝛼 can be achieved when all inequalities are binding in differential equations (10)

and let 𝜓 ∗
denote the corresponding solution. An important observation is that the two sets of

differential equations (9) and (10) with the same 𝛼 are essentially the same when all inequalities are

binding. In particular, the threshold function 𝜙∗
is an inverse function of the utilization function

𝜓 ∗
. This implies that OTA𝜙∗ achieves not only an upper bound but also a lower bound, and hence

exactly the optimal competitive ratio of GOT. Conversely, it also means the special instance used for

constructing the necessary condition is actually the worst-case instance of GOT. Thus, the OTA𝜙∗

algorithm and the worst-case instances are connected via the differential equations, implying the

design of OTA𝜙∗ is equivalent to finding the worst-case instance for GOT.
Returning to the general FOMKP, the instance-dependent OPD approach can still be leveraged

to design competitive OTA algorithms via an understanding of the worst-case instance, though the

application is more complex (see Section 5). The optimal OTA and the worst-case instance can be

derived simultaneously when the upper and lower bounds match.

3.3 Summary of Results
Using the instance-dependent OPD approach described in the previous section, the main results of

the paper present the design of threshold functions for FOMKP and the special case of GOT, which
has received considerable attention in the literature.

For simplicity, we start by discussing the special case of GOT, where we design a threshold

function that achieves the optimal competitive ratio 1 + ln𝜃 .

Theorem 3.5. Under Assumption 2.3, when the threshold function of OTA𝜙 for GOT is

𝜙∗ (𝑤) =
{
𝐿 𝑤 ∈ [0, 𝛽∗)
𝐿𝑒 (1+ln𝜃 )𝑤/𝐶−1 𝑤 ∈ [𝛽∗,𝐶]

, (11)

where 𝛽∗ = 𝐶
𝛼𝜙∗ is the utilization threshold, the competitive ratio of OTA𝜙∗ is 𝛼𝜙∗ = 1 + ln𝜃 .

Theorem 3.6. The optimal competitive ratio of GOT is 𝛼∗ = 1 + ln𝜃 .
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This is the best-known result for GOT (under Assumption 2.3), improving upon the results

summarized in the one-way trading problem [44] and the online 0/1 knapsack problem [45, 48].

Importantly, the threshold function 𝜙∗
in (11) coincides with the optimal threshold function of OTA

used in [44, 45, 48], and OTA𝜙∗ achieves the same competitive ratio. Thus, Theorem 3.5 highlights

that generalizing the objective of the one-way trading problem from linear to concave functions

and taking into account the rate limits do not degrade the competitive performance of OTA.
In addition, our approach can be extended to solve two previously studied variants of GOT. First,

[15] considers a setting that the investor can trade all its remaining assets at the last (lowest) price.

We consider a variant of the GOT defined in (5) that also allows to fill the remaining knapsack

capacity with items of the lowest marginal value 𝐿. In this context our approach yields a threshold

function for OTA that achieves the same optimal competitive ratio as the special case in [15].

Second, [25] considers a relaxed assumption on the value function, which restricts the average

value of each item to be lower bounded by 𝐿/𝑐 , instead of the marginal value in GOT, with a given

parameter 𝑐 ≥ 1 (see Assumption 4.7 for detail). In this context our approach yields a threshold

function for OTA that improves the upper bound on the competitive ratio from 𝑂 (𝑐 (1 + ln𝜃 ))
in [25] to 𝑂 (ln(𝑐𝜃 )). Beyond these cases, our result also applies to GOT problems for which no

previous bounds on the competitive ratio were known.

Obtaining results for the general FOMKP problem is more challenging than in the GOT setting;
however, the same approach we introduce in the GOT setting can be generalized. For the general

case, using the instance-dependent OPD approach, we design a threshold function that nearly

achieves the optimal competitive ratio – it differs by an additive factor of one. In this case, we have

two results, one for the case of aggregate value functions (see Definition 2.1) and one for the case

of separable value functions (see Definition 2.2).

Theorem 3.7. Under Assumptions 2.3, when the threshold function of OTA𝜙 for the FOMKP with
an aggregate value function is

𝜙∗
𝑚 (𝑤) =


𝐿 𝑤 ∈ [0, 𝛽∗𝑚)

𝐿𝑒

𝛼𝜙∗
𝐶𝑚

𝑤−
𝛼𝜙∗

𝛼𝜙∗ −1 𝑤 ∈ [𝛽∗𝑚,𝐶𝑚]
, (12)

where 𝛽∗𝑚 =
𝐶𝑚

𝛼𝜙∗−1 , the competitive ratio of OTA𝜙∗ is the solution of 𝛼𝜙∗ − 1 − 1
𝛼𝜙∗−1 = ln𝜃 .

Theorem 3.8. Under Assumption 2.3, when the threshold function of OTA𝜙 for the FOMKP with a
separable value function is

𝜙∗
𝑚 (𝑤) =

 𝐿 𝑤 ∈ [0, 𝛽∗𝑚)
𝑈−𝐿

𝑒
𝛼𝜙∗ −𝑒𝛼𝜙∗ /(𝛼𝜙∗ −1) 𝑒

𝛼𝜙∗
𝐶𝑚

𝑤 + 𝐿
𝛼𝜙∗ 𝑤 ∈ [𝛽∗𝑚,𝐶𝑚]

, (13)

where 𝛽∗𝑚 =
𝐶𝑚

𝛼𝜙∗−1 , the competitive ratio of OTA𝜙∗ is the solution of 𝛼𝜙∗ − 1 − 1
𝛼𝜙∗−1 = ln

𝛼𝜙∗𝜃−1
𝛼𝜙∗−1 .

The competitive ratios of both cases are illustrated in Figure 1. In both cases, the competitive

ratios are bounded between 1 + ln𝜃 and 2 + ln𝜃 , where 1 + ln𝜃 is a lower bound of the optimal

competitive ratio. It is also worth contrasting the threshold function with those used in prior work

on OMKP. Compared to [48], which uses the same threshold function (11) for all knapsacks, the

threshold functions (12) and (13) for FOMKP are lower, and consequently estimate a lower marginal

cost at the same utilization level, encouraging a more aggressive assignment of items. The difference

in threshold functions results from the rate-limiting constraints and the knapsack-dependent value

functions (e.g., separable value functions) in FOMKP. For an example, the rate limits constrain the

decision space of OTA, and equivalently increase the chance of missing opportunities for assigning
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Fig. 1. Competitive ratios of OTA𝜙 for FOMKP with aggregate and separable functions.

items in the worst case, leading to more aggressive assignments compared to OMKP. Details about
impact of rate limits on worst-case instances are provided in Section 5.

We close this section by discussing the advantages and limitations of applying the instance-

dependent OPD to improve upon competitive ratios of related problems. The instance-dependent

OPD can be considered as an extension of the classical OPD [9]. The key advantage of this approach

is to provide a pathway to incorporate the understanding of worst-case instances into the design

of online algorithms. Better still, applying this approach does not require a full characterization

of the worst case. As is shown in the analysis of FOMKP, a partial understanding of the worst-

case instance can already improve upon the competitive ratios. However, if we have no ideas

about the worst-case instances, our approach is no different than the classical OPD. For example,

with prior knowledge on the worst-case of FOMKP, our approach can be applied to the online

0/1 knapsack [45, 48], OMKP [48], and OMKP with assignment restrictions (OMKPAR), for their
fractional versions or under an infinitesimal assumption. In contrast, for another variant of knapsack

problems, including the online multi-dimensional knapsack [45] and online packing problem [10],

the worst-case instance of this variant is more difficult to characterize than that of FOMKP due to

the strong coupling of the assigned item across multiple knapsacks. Thus, our approach has no

advantage over the classical OPD approach (e.g., in [10]), and cannot improve upon the known

results in [10, 45] at this moment due to a lack of an understanding of worst-case instances.

4 OPTIMAL ONLINE ALGORITHMS FOR GENERALIZED ONE-WAY TRADING
In the next two sections we present the analysis that leads to the main results discussed in the

previous section. We begin by focusing on an important special case of FOMKP, the generalized
one-way trading problem (GOT). This problem has garnered considerable interest, e.g., [13, 15, 16, 25,

36, 42, 44], and serves as a way to introduce the key ideas of our approach without the additional

complexity of the full FOMKP formulation. Then, in Section 5 we show how to generalize the ideas

presented here to the full FOMKP formulation.

The key novelty of the main result in this section (Theorem 3.5) lies in our approach to derive the

threshold function (11), which we outline in Section 3.2. Then, we provide a new proof of the lower

bound in Section 4.2. Finally, we discuss extensions to variants of one-way trading in Section 4.3

4.1 Proof of Theorem 3.5: Designing the Threshold Function
In the GOT problem, formulated in (5), an operator maintains one knapsack with a total capacity 𝐶 .

Upon the arrival of a new item 𝑛 ∈ N , OTA𝜙 immediately decides the fraction of the item to be

accepted, 𝑦∗𝑛 , and obtains a value 𝑔𝑛 (𝑦∗𝑛). In this special case of FOMKP, the core pseudo-utility
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maximization problem (7) in OTA𝜙 reduces to the following problem

max
0≤𝑦𝑛≤𝐷𝑛

𝑔𝑛 (𝑦𝑛) −
∫ 𝑤 (𝑛)+𝑦𝑛
𝑤 (𝑛) 𝜙 (𝑢)𝑑𝑢. (14)

Our approach here relies on the sufficient conditions on 𝜙 in Lemma 3.3, so we first prove the

lemma and then continue with the proof of the theorem.

Proof of Lemma 3.3. The dual problem of the offline GOT (5) can be stated as

min
𝜆≥0

∑︁
𝑛∈N

ℎ𝑛 (𝜆) + 𝜆𝐶, (15)

where 𝜆 is the dual variable associated with the capacity constraint and

ℎ𝑛 (𝜆) = max
0≤𝑦𝑛≤𝐷𝑛

𝑔𝑛 (𝑦𝑛) − 𝜆𝑦𝑛 (16)

is the conjugate function of 𝑔𝑛 (·). Note that ℎ𝑛 (𝜆) can be interpreted as the maximal pseudo-utility

when a linear price 𝜆 is used to estimate the cost of using knapsack capacity. Thus, the maximization

problem (16) has a similar physical meaning to the pseudo-utility maximization problem (14) in

OTA𝜙 . This connection is formalized in the following proposition.

Proposition 4.1. The conjugate function ℎ𝑛 (𝜆) has the following properties:
(i) ℎ𝑛 (𝜆) is a non-increasing function;
(ii) when 𝜙 (𝐶) ≥ 𝑈 , ℎ𝑛 (𝜙 (𝑤 (𝑛+1) )) = 𝑔𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) )𝑦∗𝑛,∀𝑛 ∈ N , where 𝑤 (𝑛+1) = 𝑤 (𝑛) + 𝑦∗𝑛

and 𝑦∗𝑛 is the optimal solution to the problem (14).

The proof of Proposition 4.1 is shown in Appendix A.1. Property (ii) in Proposition 4.1 implies

that when the linear price 𝜆 is set to the marginal cost 𝜙 (𝑤 (𝑛+1) ), the online solution 𝑦∗𝑛 of the

problem (14) also maximizes the problem (16) in the conjugate function. This relationship connects

the online solution and the dual objective, and is important in the OPD analysis.

Let𝑤 (𝑁+1) := 𝑤 (𝑁+1) (I) denote the final utilization of the knapsack after executing the instance

I by OTA𝜙 . We divide the set Ω of all instances into two families Ω1 := {I : 0 ≤ 𝑤 (𝑁+1) < 𝛽} and
Ω2 := {I : 𝛽 ≤ 𝑤 (𝑁+1) ≤ 𝐶}, which contain the instances whose final utilizations fall into the flat

segment and the non-decreasing segment, respectively. Ω1
and Ω2

represent two different types of

worst-case instances for GOT. Ω1
contains under-demand instances, in which the knapsack capacity

is not used up even when all items are accepted to their weights. Thus, the offline solution is to

accept all items. Ω2
includes over-demand instances, in which the capacity can be fully occupied by

the offline solution in the worst case. This leads to different offline formulations for OPD analysis.

Case I: I ∈ Ω1. The threshold function 𝜙 estimates the marginal cost of using the knapsack

as 𝐿, the lower bound of the marginal value. Thus, all items in I are accepted to their weights

by OTA𝜙 and we have ALG(I, 𝜙) =
∑

𝑛∈N 𝑔𝑛 (𝐷𝑛). We can build an upper bound Dual(I, 𝜙) of
the offline optimum OPT(I) by constructing a feasible dual solution 𝜆. A natural choice of the

feasible dual solution is 𝜆 = 𝜙 (𝑤 (𝑁+1) ) = 𝐿, which is the marginal cost of the knapsack for

packing one more unit of item. Substituting this dual solution to the dual objective in (15) gives

Dual(I, 𝜙) = ∑
𝑛∈N ℎ𝑛 (𝐿) + 𝐿𝐶 =

∑
𝑛∈N 𝑔𝑛 (𝐷𝑛) + 𝐿(𝐶 −𝑤 (𝑁+1) ). However, Dual(I, 𝜙) cannot be

further bounded by 𝛼ALG(I, 𝜙), which can be observed when 𝑤 (𝑁+1) → 0. This is because the
capacity parameter 𝐶 in the dual objective (15) is not appropriate for the under-demand instances

whose capacity constraint will not be binding in the offline problem.

Instead of using 𝐶 as the capacity parameter in the offline problem (5), we can change it by

adding

∑
𝑛∈N 𝑦𝑛 ≤ 𝑤 (𝑁+1)

to the offline formulation. This change will not affect the offline solution
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for I ∈ Ω1
since the total accepted demand by offline problem cannot exceed the total weights of

all items. In this way, the dual objective is changed to

∑
𝑛∈N ℎ𝑛 (𝜆) + 𝜆𝑤 (𝑁+1)

and we have

OPT(I) ≤
∑︁

𝑛∈N
ℎ𝑛 (𝐿) + 𝐿𝑤 (𝑁+1) =

∑︁
𝑛∈N

𝑔𝑛 (𝐷𝑛) = ALG(I, 𝜙). (17)

Thus, we have OPT(I)/ALG(I, 𝜙) ≤ 1,∀I ∈ Ω1
.

Case II: I ∈ Ω2. An adversary can always add one more item with weight𝐶 and marginal value

𝜙 (𝑤 (𝑁+1) ). This new item will be rejected by OTA𝜙 while the offline optimum will accept this item

making the knapsack fully occupied. In this case, we can keep using the dual objective (15) and set

the feasible dual solution to 𝜆 = 𝜙 (𝑤 (𝑁+1) ). Based on weak duality, we have

OPT(I) ≤
∑︁

𝑛∈N
ℎ𝑛 (𝜙 (𝑤 (𝑁+1) )) + 𝜙 (𝑤 (𝑁+1) )𝐶

≤
∑︁

𝑛∈N
ℎ𝑛 (𝜙 (𝑤 (𝑛+1) )) + 𝜙 (𝑤 (𝑁+1) )𝐶 (18a)

=
∑︁

𝑛∈N
[𝑔𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) )𝑦∗𝑛] + 𝜙 (𝑤 (𝑁+1) )𝐶 (18b)

≤
∑︁

𝑛∈N
𝑔𝑛 (𝑦∗𝑛) + 𝜙 (𝑤 (𝑁+1) )𝐶 −

∫ 𝑤 (𝑁 +1)

0
𝜙 (𝑢)𝑑𝑢 (18c)

≤
∑︁

𝑛∈N
𝑔𝑛 (𝑦∗𝑛) + (𝛼 − 1)

∫ 𝑤 (𝑁 +1)

0
𝜙 (𝑢)𝑑𝑢 (18d)

≤
∑︁

𝑛∈N
𝑔𝑛 (𝑦∗𝑛) + (𝛼 − 1)

∑︁
𝑛∈N

𝑔𝑛 (𝑦∗𝑛) = 𝛼ALG(I). (18e)

Based on the properties of the conjugate function in Proposition 4.1, we can have equations (18a) and

(18b) when 𝜙 (𝐶) ≥ 𝑈 . Since 𝜙 is a non-decreasing function, we have 𝜙 (𝑤 (𝑛+1) )𝑦∗𝑛 ≥
∫ 𝑤 (𝑛+1)

𝑤 (𝑛) 𝜙 (𝑢)𝑑𝑢

and

∑
𝑛∈N 𝜙 (𝑤 (𝑛+1) )𝑦∗𝑛 ≥ ∑

𝑛∈N
∫ 𝑤 (𝑛+1)

𝑤 (𝑛) 𝜙 (𝑢)𝑑𝑢 =
∫ 𝑤 (𝑁 +1)

0
𝜙 (𝑢)𝑑𝑢. Inequality (18c) holds. If the

threshold function𝜙 satisfies the differential equation (9) in Lemma 3.3, we can have inequality (18d).

Based on the pseudo-utility maximization problem (14), non-negative utility is achieved for each

𝑛 ∈ N , i.e., 𝑔𝑛 (𝑦∗𝑛) ≥
∫ 𝑤 (𝑛+1)

𝑤 (𝑛) 𝜙 (𝑢)𝑑𝑢,∀𝑛 ∈ N . Thus, we have

∑
𝑛∈N 𝑔𝑛 (𝑦∗𝑛) ≥

∫ 𝑤 (𝑁 +1)

0
𝜙 (𝑢)𝑑𝑢, and

this gives inequality (18e). Thus, we have OPT(I)/ALG(I) ≤ 𝛼,∀I ∈ Ω2
if the sufficient conditions

in Lemma 3.3 are satisfied.

Finally, combining the two cases completes the proof. □

Continuing with the proof of Theorem 3.5, we next prove that 𝜙∗
in (11) achieves the smallest

competitive ratio among all threshold functions that satisfy the sufficient conditions in Lemma 3.3.

To do so, we make use of Gronwall’s Inequality, summarized below.

Lemma 4.2 (Gronwall’s Ineqality, Theorem 1, p.356, [30], and Lemma 4, [21]). Let 𝑓 (𝑥) be a
function defined on [𝑥, 𝑥] either continuous or of bounded variation. Let 𝑎(𝑥) and 𝑏 (𝑥) be integrable
functions, and 𝑏 (𝑥) ≥ 0 for 𝑥 ∈ [𝑥, 𝑥]. We can claim the following statements.
(i) If 𝑓 (𝑥) ≥ 𝑎(𝑥) + 𝑏 (𝑥)

∫ 𝑥

𝑥
𝑓 (𝑢)𝑑𝑢, 𝑥 ∈ [𝑥, 𝑥], then we have

𝑓 (𝑥) ≥ 𝑎(𝑥) + 𝑏 (𝑥)
∫ 𝑥

𝑥
𝑎(𝑢) exp(

∫ 𝑥

𝑢
𝑏 (𝑠)𝑑𝑠)𝑑𝑢, 𝑥 ∈ [𝑥, 𝑥] . (19)

(ii) The result remains valid if ≥ is replaced by ≤ in both conditions and results of statement (i).
(iii) Equation (19) holds in equality for 𝑥 ∈ [𝑥, 𝑥] if the condition holds in equality for 𝑥 ∈ [𝑥, 𝑥].

Applying Gronwall’s Inequality to the differential equation in (9) gives

𝜑 (𝑤) ≤ 𝛼𝐿𝛽

𝐶
+ 𝛼
𝐶

∫ 𝑤

𝛽

𝛼𝐿𝛽

𝐶
𝑒 (𝑤−𝑢)𝛼/𝐶𝑑𝑢 =

𝛼𝐿𝛽

𝐶
𝑒 (𝑤−𝛽)𝛼/𝐶 ,𝑤 ∈ [𝛽,𝐶] . (20)
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Since 𝜑 (𝐶) ≥ 𝑈 , we have𝑈 ≤ 𝜑 (𝐶) ≤ 𝛼𝐿𝛽

𝐶
𝑒 (𝐶−𝛽)𝛼/𝐶 . Combining with the sufficient condition (9),

we can conclude that the smallest 𝛼 is achieved when all above inequalities hold in equality. It

is equivalent that all inequalities in the sufficient condition hold in equality based on statement

(iii) in Lemma 4.2. Solving those equality equations gives the threshold function 𝜙∗
in (11) and the

resulting competitive ratio is 𝛼𝜙∗ = 1 + ln𝜃 .

4.2 Proof of Theorem 3.6: Bounding the Optimal Competitive Ratio
Note that the optimal competitive ratio achievable for the one-way trading problem has been shown

to be 1 + ln𝜃 [44]. Since one-way trading is a special case of GOT, the competitive ratio of GOT is
also lower bounded by 1 + ln𝜃 . Thus, Theorem 3.5 equivalently shows that OTA𝜙∗ achieves the

optimal competitive ratio. However, our goal in this section is to provide a new proof of the optimal

competitive ratio based on understanding special instances. This, in turn, builds a connection

between the online algorithm and the worst-cast instance.

Our approach is to first characterize a necessary condition that any 𝛼-competitive online algo-

rithm must satisfy, and then derive the lower bound as the minimal 𝛼 ensuring that there exist

online algorithms satisfying the necessary condition. The necessary condition is constructed based

on a subset of instances Ω𝐶𝑁 ⊆ Ω called continuously non-decreasing instances.

Definition 4.3. An instance is called 𝑝-continuously non-decreasing, 𝑝 ∈ [𝐿,𝑈 ], if
• the instance is composed of a sequence of items indexed by 𝑛 ∈ N . Each item has a linear value
function 𝑔𝑛 (𝑦𝑛) = 𝑣𝑛𝑦𝑛 and its weight is 𝐷𝑛 = 𝐶 .

• the marginal value of the first item is 𝐿, i.e., 𝑣1 = 𝐿

• the increment of the marginal values between successive items is non-negative and arbitrarily
small, i.e., 0 ≤ 𝑣𝑛+1 − 𝑣𝑛 ≤ 𝜖 , where ∀𝜖 > 0.

• the marginal value of the last item is 𝑝 , i.e., 𝑣𝑁 = 𝑝 .

Let I𝑝 denote the 𝑝-continuously non-decreasing instance and let Ω𝐶𝑁 := {I𝑝 }𝑝∈[𝐿,𝑈 ] .

Definition 4.4 (Utilization Function). A utilization function𝜓 (𝑝) : [𝐿,𝑈 ] → [0,𝐶] is defined
as the final utilization of the knapsack after executing the instance I𝑝 by an online algorithm.

Note that every online algorithm can be mapped to a utilization function via Ω𝐶𝑁 . The key to our

approach here is Lemma 3.4 and we next show that the utilization function of any 𝛼-competitive

online algorithm must satisfy the necessary condition in Lemma 3.4.

Proof of Lemma 3.4. Since online algorithms make real-time irrevocable decisions only based

on causal information,𝜓 (𝑝) is a non-decreasing function in [𝐿,𝑈 ]. Since the maximum utilization

is 𝐶 , the utilization function must satisfy the boundary condition 𝜓 (𝑈 ) ≤ 𝐶 . Additionally, by

definition, the total value achieved by an 𝛼-competitive online algorithm is at least 1/𝛼 of the

offline optimum for any arrival instances. Thus, under the instance I𝐿 , we have
OPT(I𝐿) = 𝐿𝐶 and ALG(I𝐿) = 𝐿𝜓 (𝐿),

and an 𝛼-competitive algorithm must ensure ALG(I𝐿) ≥ OPT(I𝐿)/𝛼 , which gives the boundary

condition𝜓 (𝐿) ≥ 𝐶/𝛼 .
More specifically, under the instance I𝑝 , 𝑝 ∈ (𝐿,𝑈 ], we have

OPT(I𝑝 ) = 𝑝𝐶, and ALG(I𝑝 ) = 𝐿𝜓 (𝐿) +
∫ 𝑝

𝐿
𝑢𝑑𝜓 (𝑢),

where𝑢𝑑𝜓 (𝑢) denotes the value achieved by the item with marginal value𝑢. An 𝛼-competitive algo-

rithm must ensure ALG(I𝑝 ) ≥ OPT(I𝑝 )/𝛼 which gives the differential equation in (10). Combining

all above conditions gives the necessary condition (10). □
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Finally, to complete the proof of the theorem we derive the minimal 𝛼 that can ensure there exists

a non-decreasing utilization function𝜓 satisfying the necessary condition (10). Using integration by

parts, we have 𝐿𝜓 (𝐿)+
∫ 𝑝

𝐿
𝑢𝑑𝜓 (𝑢) = 𝐿𝜓 (𝐿)+[𝜓 (𝑢)𝑢] |𝑝

𝐿
−
∫ 𝑝

𝐿
𝜓 (𝑢)𝑑𝑢 = 𝜓 (𝑝)𝑝−

∫ 𝑝

𝐿
𝜓 (𝑢)𝑑𝑢. Combining

above equation and the necessary condition (10), we see that the utilization function𝜓 corresponding

to any 𝛼-competitive online algorithms must satisfy 𝜓 (𝑝)𝑝 −
∫ 𝑝

𝐿
𝜓 (𝑢)𝑑𝑢 ≥ 𝑝𝐶/𝛼, 𝑝 ∈ [𝐿,𝑈 ].

Applying Gronwall’s Inequality in Lemma 4.2, we obtain

𝜓 (𝑝) ≥ 𝐶

𝛼
+ 1

𝑝

∫ 𝑝

𝐿

𝐶

𝛼
exp(

∫ 𝑝

𝑢

1
𝑠
𝑑𝑠)𝑑𝑢 =

𝐶

𝛼
·
[
1 +

∫ 𝑝

𝐿

1

𝑢
𝑑𝑢

]
=
𝐶

𝛼
·
[
1 + ln

(𝑝
𝐿

)]
.

Since 𝜓 (𝑈 ) ≤ 𝐶 , we have 𝐶
𝛼
[1 + ln𝜃 ] = 𝜓 (𝑈 ) ≤ 𝐶 , which gives 𝛼 ≥ 1 + ln𝜃 . And the minimal

𝛼 = 1 + ln𝜃 can be achieved when inequalities in (10) all hold in equality. Thus, 1 + ln𝜃 is a lower

bound of the competitive ratio.

4.3 Two Variants of GOT
In order to show the generality of our approach for GOT, we further deviseOTA𝜙 for two variants of

GOT using the approach. In both cases we obtain results that match or improve the state-of-the-art.

Variant 1: GOT without leftover capacity. This variant considers the classical setting of the one-way

trading problem in which after the last item, the remaining capacity of the knapsack, if any, can be

used to pack items with the lowest marginal value 𝐿. When the value function is linear, this variant

is studied by [15]. It is solved using a threat-based online algorithm, and the optimal competitive

ratio that is achieved is the solution of the equation 𝛼 = ln 𝑈−𝐿
𝛼𝐿−𝐿 . Concretely, the offline formulation

of this variant can be stated as

max
𝑦𝑛

∑︁
𝑛∈N

𝑔𝑛 (𝑦𝑛) +
(
𝐶 −

∑︁
𝑛∈N

𝑦𝑛

)
𝐿 s.t.

∑︁
𝑛∈N

𝑦𝑛 ≤ 𝐶, 0 ≤ 𝑦𝑛 ≤ 𝐷𝑛,∀𝑛 ∈ N . (21)

Note that this variant cannot be considered as a GOT with a value function 𝑔𝑛 (𝑦𝑛) − 𝐿𝑦𝑛 since (i) its

marginal value is lower bounded by 0, which does not satisfy Assumption 2.3, and (ii) the total

value is lower bounded by𝐶𝐿 even when no item is accepted by an online algorithm. The following

Corollary 4.5 (see proof in Appendix A.2) shows that we can design OTA𝜙 to achieve the optimal

competitive ratio of this variant.

Corollary 4.5. Under Assumption 2.3, if the threshold function of OTA𝜙 for Variant 1 of GOT is

𝜙∗ (𝑤) = 𝐿 + (𝑈 − 𝐿)𝑒
𝛼𝜙∗
𝐶

𝑤−𝛼𝜙∗ ,𝑤 ∈ [0,𝐶], (22)

the competitive ratio 𝛼𝜙∗ of OTA𝜙∗ is the solution of the equation 𝛼𝜙∗ = ln 𝑈−𝐿
𝛼𝜙∗𝐿−𝐿 .

Corollary 4.6. The optimal competitive ratio for Variant 1 of GOT is the solution of 𝛼∗ = ln 𝑈−𝐿
𝛼∗𝐿−𝐿 .

We can prove Corollary 4.6 using the same approach in Section 4.2 and the worst-case instance

is still the continuously non-decreasing instance Ω𝐶𝑁 . The detail is presented in Appendix A.3.

Variant 2: Relaxed GOT. In this variant, condition (iii) in Assumption 2.3 is relaxed to the following:

Assumption 4.7. The derivative of the value function satisfies 𝐿 ≤ 𝑔′𝑛 (0) ≤ 𝑈 and 𝑔𝑛 (𝐷𝑛)/𝐷𝑛 ≥
𝐿/𝑐,∀𝑛 ∈ N , where 𝑐 ≥ 1 is a given parameter.

Assumption 4.7 bounds the marginal value of the value function at origin between 𝐿 and 𝑈 ,

and the average value is lower bounded by 𝐿/𝑐 . This new assumption allows a broader class of

value functions whose marginal values may reach 0 (e.g., quadratic functions that can reach their

maximums). The assumption has also been introduced by [25], in which a CR-Pursuit online
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algorithm is proposed to solve GOT (without rate limits) and is shown to achieve a competitive ratio

upper bounded by 𝑂 (𝑐 (ln(𝜃 ) + 1)). Our approach yields the following result.

Corollary 4.8. Under the conditions (i) and (ii) in Assumption 2.3 and Assumption 4.7, when the
threshold function of OTA𝜙 for Variant 2 of GOT is given by

𝜙∗ (𝑤) =
{

𝐿
𝑐
· 𝑒𝑤/𝐶−1
𝑒𝛽

∗/𝐶−1 𝑤 ∈ [0, 𝛽∗)
𝐿
𝑐
· 𝑒 (𝑤−𝛽∗) ln(𝑐𝜃 )/(𝐶−𝛽∗) 𝑤 ∈ [𝛽∗,𝐶]

, (23)

where 𝛽∗ = (𝑊 (𝑐𝜃 ln(𝑐𝜃 )/𝑒) − ln(𝑐𝜃 ) + 1)𝐶 , the competitive ratio of OTA𝜙∗ is ln(𝑐𝜃 )
ln(𝑐𝜃 )−𝑊 (𝑐𝜃 ln(𝑐𝜃 )/𝑒) .

In the corollary above,𝑊 (·) is the Lambert-𝑊 function, which is the inverse function of 𝑓 (𝑥) =
𝑥𝑒𝑥 . Since𝑊 (𝑥) ≤ ln(𝑥) − ln ln(𝑥) +𝑂 (1), we have ln(𝑐𝜃 ) −𝑊 (𝑐𝜃 ln(𝑐𝜃 )/𝑒) ≥ 𝑂 (1). Consequently,
the competitive ratio achieved by OTA𝜙∗ in Corollary 4.8 is 𝑂 (ln(𝑐𝜃 )), improving the upper bound

in [25] from linear order 𝑂 (𝑐 (ln(𝜃 ) + 1)) in 𝑐 to logarithmic order.

5 COMPETITIVE ALGORITHMS FOR FOMKP
In this section, we prove our main results, which bound the competitive ratio for the general form

of FOMKP. To do this, we use the same general approach as illustrated in the previous section for

GOT. However, the generality of FOMKP adds considerable complexity to this case. We primarily

focus on the proof of Theorem 3.7 for the FOMKP with aggregate value functions. The proof of

Theorem 3.8 for the separable functions proceeds much the same. Thus, we highlight the key

differences here and defer the full proof to Appendix A.6.

Proof of Theorem 3.7: Aggregate Functions. First, we construct a counterpart to Lemma 3.3

for GOT, providing sufficient conditions for designing the threshold function. The sufficient condition

on the threshold function of each knapsack is not a trivial extension of the single knapsack case.

Lemma 5.1. Under Assumption 2.3,OTA𝜙 for FOMKPwith aggregate value functions is𝛼-competitive
if the threshold function 𝜙 = {𝜙𝑚}𝑚∈M is in the form of, ∀𝑚 ∈ M,

𝜙𝑚 (𝑤) =
{
𝐿 𝑤 ∈ [0, 𝛽𝑚)
𝜑𝑚 (𝑤) 𝑤 ∈ [𝛽𝑚,𝐶𝑚]

,

where 𝛽𝑚 ∈ [0,𝐶𝑚] is a utilization threshold and 𝜑𝑚 is a non-decreasing function, and 𝜙𝑚 satisfies{
𝜑𝑚 (𝑤)𝐶𝑚 ≤ 𝛼

∫ 𝑤

0
𝜙𝑚 (𝑢)𝑑𝑢 − 𝐿𝛽𝑚, 𝑤 ∈ [𝛽𝑚,𝐶𝑚],

𝜑𝑚 (𝛽𝑚) = 𝐿, 𝜑𝑚 (𝐶𝑚) ≥ 𝑈 .
(24)

To prove Lemma 5.1, we divide the set of instances Ω into three subsets Ω1
, Ω2

, and Ω3
. The

instances in those subsets result in different worst cases. Thus, we construct instance-dependent

dual objectives to bound the offline optimum in each case, leading to the sufficient conditions in

Lemma 5.1. We sketch the proof of Lemma 5.1 here and include the full version in Appendix A.5.

Proof Sketch of Lemma 5.1. Let𝑤
(𝑁+1)
𝑚 := 𝑤 (𝑁+1)

𝑚 (I) denote the final utilization of the knap-

sack 𝑚 after executing instance I by OTA𝜙 . Ω
1 := {I : 0 ≤ 𝑤

(𝑁+1)
𝑚 < 𝛽𝑚,∀𝑚 ∈ M} and

Ω2 := {I : 𝛽𝑚 ≤ 𝑤
(𝑁+1)
𝑚 ≤ 𝐶𝑚,∀𝑚 ∈ M} contain the instances whose final utilizations of

all knapsacks are below and above their utilization thresholds 𝛽𝑚 , respectively. Excluding these

two subsets, the remaining instances form Ω3 := Ω \ (Ω1 ∪ Ω2), in which some knapsacks

M1 := {𝑚 ∈ M : 0 ≤ 𝑤 (𝑁+1)
𝑚 < 𝛽𝑚} have final utilizations below the utilization thresholds and

the othersM2 := {𝑚 ∈ M : 𝛽𝑚 ≤ 𝑤 (𝑁+1)
𝑚 < 𝐶𝑚} have final utilizations above the thresholds.
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The cases when I ∈ Ω1
and I ∈ Ω2

correspond to general versions of Case I and Case II in

the proof of Lemma 3.3 for GOT. The idea is to use the optimal primal and dual variables of the

pseudo-utility maximization problem to construct the feasible dual solution in the OPD analysis,

and decompose the dual objective into a summation of equations corresponding to individual

knapsacks, making these cases similar to those in GOT.
The main new challenge comes from Case III, in which the knapsacks are coupled in a non-trivial

way. The key difference between Case II and Case III is that the knapsacks in M1
may not be

fully occupied by the offline solution under the worst-case instance in Ω3
. This is because the

total amount of items, which can be packed intoM1
, is limited by

∑
𝑚∈M1 𝑤

(𝑁+1)
𝑚 +∑

𝑚∈M2 𝛽𝑚 .

Compared to the online solution, the additional amount of items that can be assigned to the

knapsacks in M1
in the offline solution is upper bounded by the total amount of items that is

assigned toM2
before reaching the utilization threshold. The marginal cost of the assigned items

above the utilization threshold inM2
is larger than 𝐿. Therefore, the reason why such items are not

assigned to M1
is that the items are not feasible for such assignment due to the rate limits. Thus,

those items cannot be assigned to M1
in the offline solution as well. Based on this understanding

of the worst-case instance, we add the following constraint to the offline formulation∑︁
𝑛∈N

∑︁
𝑚∈M1

𝑦𝑛𝑚 ≤
∑︁

𝑚∈M1
𝑤

(𝑁+1)
𝑚 +

∑︁
𝑚∈M2

𝛽𝑚 .

Applying OPD analysis to the new offline problem gives the sufficient condition in Lemma 5.1. □

Now, to complete the proof of Theorem 3.7, we apply Gronwall’s Inequality to the differential

equation (24) and obtain

𝜑𝑚 (𝑤) ≤ 𝛼 − 1

𝐶𝑚
𝐿𝛽𝑚 + 𝛼

𝐶𝑚

∫ 𝑤

𝛽𝑚

𝛼 − 1

𝐶𝑚
𝐿𝛽𝑚𝑒

𝛼 (𝑤−𝑢)/𝐶𝑚𝑑𝑢 =
𝛼 − 1

𝐶𝑚
𝐿𝛽𝑚𝑒

𝛼 (𝑤−𝛽𝑚)/𝐶𝑚 ,𝑤 ∈ [𝛽𝑚,𝐶𝑚] .

Since 𝜑𝑚 (𝐶𝑚) ≥ 𝑈 , we have 𝑈 ≤ 𝜑 (𝐶𝑚) ≤ 𝛼−1
𝐶𝑚

𝐿𝛽𝑚𝑒
𝛼 (𝐶𝑚−𝛽𝑚)/𝐶𝑚

. The minimum 𝛼 is achieved

when all inequalities in the sufficient condition (24) hold in equality. This gives𝑈 = 𝛼−1
𝐶𝑚

𝐿𝛽𝑚𝑒
𝛼 (𝐶𝑚−𝛽𝑚)/𝐶𝑚

and 𝛽𝑚 =
𝐶𝑚

𝛼−1 . Thus, the resulting competitive ratio 𝛼𝜙∗ is the solution of the equation 𝛼𝜙∗ − 1 −
1

𝛼𝜙∗−1 = ln𝜃 and the threshold function is given by (12).

Proof Sketch of Theorem 3.8: Separable Functions. Compared to Theorem 3.7, the key

difference in proving Theorem 3.8 occurs in Case III. Cases I and II proceed similarly in both cases

but, for separable value functions, the total amount of items that can be reassigned from knapsacks

in M2
to knapsacks in M1

is upper bounded by

∑
𝑚∈M2 𝑤

(𝑁+1)
𝑚 instead of

∑
𝑚∈M2 𝛽𝑚 . This is

because each knapsack is associated with an independent value function, and thus the marginal

utility, which determines the assignment of a small bit of item, depends on both the marginal value

of the item and the marginal cost of the knapsack. So, the reason that the items are assigned to

knapsacks in M2
may not be due to the rate limits restricting the assignment from knapsacks

inM1
. Instead, this may happen because assigning to the knapsacks inM2

can result in higher

marginal utility. In this case, we add a new constraint to the offline problem and the resulting dual

objective finally leads to a different threshold function and competitive ratio in Theorem 3.8.

6 CASE STUDY
This section presents a brief demonstration of our proposed algorithm in the context of the EV

charging problem. The experiments are not meant to be exhaustive, rather they are intended to

validate the theoretical results and illustrate the potential of the approach. We consider a system

consisting of multiple stations working parallel where EVs can charge. The power capacity is

limited, and is much smaller than the total power demanded by the vehicles. Therefore, the station
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Fig. 2. The CDF of empirical profit ratios of OTA and FTA in low, medium, and high congestion settings with
linear (a–d) or quadratic (e–h) value functions are shown. The results highlight that when the value function
is linear, OTA improves the worst-case profit ratio over FTA by 10.0%, 33.3%, and 44.4% for low, medium, and
high congestion settings, respectively. When value functions are quadratic, these improvements are 23.2%,
30.6%, and 38.5%. Figures (d) and (h) show the average improvement of OTA as compared to FTA as the load
factor varies, highlighting a nearly 20% improvement in high load settings when value functions are linear
and 25% when value functions are quadratic.

cannot admit the total demands of all vehicles and must decide the amount of power to allocate to

the new vehicle upon its arrival.

Experimental Setup. We use the Adaptive Charging Network Dataset, ACN-Data, which

includes over 50,000 EV charging sessions, and 54 charging stations [23]. We use a sequence of

more than 2,000 charging sessions. The dataset includes information about the arrival and departure

time, and the power demand. In our experiments, we consider one-hour time slots within a time

horizon of one day, hence, the total number of time slots,𝑀 , is chosen as 24.

We compare our online algorithm with a fixed threshold algorithm, FTA, which admits an item if

its value is above a fixed threshold of

√
𝑈 × 𝐿, and then it delivers the maximum possible supply

power up to the vehicle’s demand or the station’s capacity. While no prior work exists on the

problem studied in this paper, FTA is the most common approach for online knapsack problems,

and provides a contrast to the utilization-based threshold in our proposed OTA algorithm. The

threshold value

√
𝑈 × 𝐿 is selected because our focus is on improving the worst-case performance

and this value achieves the best possible competitive ratio among the fixed threshold policies [15].

We use a linear, and also the quadratic value function, following the assumption of previous

work such as [46]. In our experiments, we set the value fluctuation ratio 𝜃 = 36. The results are
not too sensitive to this choice. We evaluate the performance of our algorithm in three different

congestion levels: low, medium, and high, where the system is able to cover roughly 55%, 10%, and

2.7% of the demand, respectively. For each instance, we randomly generate 20 trials for each day,

each with different values, and report the average results for 90 × 20 = 1800 trials. Last, we report

the empirical profit ratio of different algorithms, which is the ratio between the profit obtained by

the offline optimal solution and that of an online algorithm in experiments.
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Experimental Results. Our focus is on the competitive ratio. To illustrate the improvement

in the worst-case performance, Figure 2 demonstrates the cumulative distribution function (CDF)

of the empirical profit ratios of OTA, our proposed algorithm, and FTA in low, medium, and high

congestion levels. When value functions are linear, the results show that the profit ratio of our

algorithm in the low, medium, and high congestion levels is bounded by 1.7, 2.0, and 2.5 while

the maximum profit ratio of FTA is 1.9, 3.0, and 4.5. This represents a decrease of 10.0%, 33.3%,

and 44.4%, respectively, thus we see nearly a factor of 2 improvement in the worst case when

congestion is high. While the adaptive threshold was designed with the worst-case in mind, we

also see an improvement in the average profit of 6.7%, 11.8%, and 15.8% in low, medium, and high

congestion levels, respectively. In Figure 2(d), we report the percentage of improvement in the

average profit ratio as the congestion level increases. The result shows that, as the system becomes

more congested, the improvement of OTA grows since the value of scheduling increases with

congestion. In practice, EVs may have diminishing returns, which can be characterized by quadratic

value functions. In Figures 2(e)–2(h), we show the empirical profit ratios when value functions are

quadratic. Comparing the linear and quadratic settings, we observe the average improvement of

OTA compared to FTA under high congestion is improved from nearly 20% to 25%. This highlights

the importance of taking into account the non-linearity of value functions in OTA compared to

FTA, which only uses the upper and lower bounds of the marginal value function.

Finally, we performed experiments to understand the impact of heterogeneity in the values of

drivers. We considered 9 classes of arrivals, with non-i.i.d. value distributions. The mean of the

classes differ by 20. Heterogeneity leads to an increase in the improvement of our algorithm over

FTA. The resulting improvements are 27.4%, 68.9%, and 56.8% for the worst case and 10.7%, 17.9%,

and 20.7% for the average case in low, medium, and high congestion, respectively.

7 CONCLUDING REMARKS
Motivated by EV charging, we have introduced a general form of a fractional online multiple

knapsack problem that includes heterogeneous rate constraints and provides a unification of a

range of variants of both online knapsack and one-way trading. Our main result provides a near-

optimal algorithm for the general problem, as well as results for special cases corresponding to a

number of variants that have received attention in recent years. In all cases, we either match or

improve on state-of-the-art results while also including features, such as rate-constraints, that were

not included in prior work.

The key to our results is a new analytic technique called instance-dependent online primal-dual

analysis, which provides a systematic way to design threshold functions for OTA, something that

was previously more art than science. The approach exposes a novel and powerful connection

between the design of algorithms and the identification of worst-case instances. We expect this

technique to be applicable beyond the online knapsack and one-way trading problems, and an

important line of future work is to understand the breadth of online algorithms problems where

the identification of worst-case instances can systematically guide the design of algorithms.

Beyond exploring the impact of the analytic approach, another important line of future work is

to explore the application of the new algorithm proposed here. We briefly highlight an application

in EV charging, but more work is needed before real-world deployment. Moreover, applications to

cloud scheduling and geographical load balancing will be exciting to pursue.
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A PROOFS
A.1 Proof of Proposition 4.1
We begin by proving property (i) in Proposition 4.1. Let 𝜆 ≥ 𝜆′ ≥ 0 and denote by 𝑦𝑛 the optimal

solution that maximizes the conjugate problem (16) given 𝜆. We then have

ℎ𝑛 (𝜆) = 𝑔𝑛 (𝑦𝑛) − 𝜆𝑦𝑛 ≤ 𝑔𝑛 (𝑦𝑛) − 𝜆′𝑦𝑛 ≤ max
0≤𝑦𝑛≤𝐷𝑛

𝑔𝑛 (𝑦𝑛) − 𝜆′𝑦𝑛 = ℎ𝑛 (𝜆′).

Thus, ℎ𝑛 (𝜆) is a non-increasing function.

Note that the threshold function 𝜙 is discontinuous at 𝐶 since 𝜙 (𝑤) = +∞,𝑤 ∈ (𝐶, +∞) by
definition. When 𝜙 (𝐶) ≥ 𝑈 , there must exist a utilization level𝑤 ≤ 𝐶 and 𝜙 (𝑤) = 𝑈 . Since 𝑔′𝑛 ≤ 𝑈 ,

we can have𝑤 (𝑛) + 𝑦𝑛 ≤ 𝑤 . Consequently, the derivative of the integral function

Φ(𝑦𝑛) :=
∫ 𝑤 (𝑛)+𝑦𝑛
𝑤 (𝑛) 𝜙 (𝑢)𝑑𝑢

is continuous and non-decreasing, and hence this integral function is convex when 𝑦𝑛 ≤ 𝑤 −𝑤 (𝑛)
.

Thus, when 𝜙 (𝐶) ≥ 𝑈 , the pseudo-utility maximization problem (14) is a convex optimization

problem, and its optimal solution can be determined by the KKT conditions. Part of the KKT

conditions is given by

𝑔′𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) ) − 𝜅∗𝑛 + 𝜈∗𝑛 = 0, 𝜅∗𝑛 (𝐷𝑛 − 𝑦∗𝑛) = 0, 𝜈∗𝑛𝑦
∗
𝑛 = 0,

where 𝑦∗𝑛 and {𝜅∗𝑛, 𝜈∗𝑛} are the optimal primal and dual variables, and 𝜅∗𝑛 and 𝜈∗𝑛 correspond to the

constraints 𝑦𝑛 ≤ 𝐷𝑛 and 𝑦𝑛 ≥ 0, respectively. We next can verify the property (ii) in Proposition 4.1

by showing that 𝑦∗𝑛 maximizes the conjugate problem (16) given 𝜆 = 𝜙 (𝑤 (𝑛+1) ).
(i) When 𝑔′𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) ) > 0, we have 𝑦∗𝑛 = 𝐷𝑛 , i.e., 𝑔

′
𝑛 (𝐷𝑛) > 𝜙 (𝑤 (𝑛+1) ). In this case, we

have 𝑦∗𝑛 = 𝐷𝑛 = argmax0≤𝑦𝑛≤𝐷𝑛
𝑔𝑛 (𝑦𝑛) − 𝜙 (𝑤 (𝑛+1) )𝑦𝑛 .

(ii) When 𝑔′𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) ) < 0, we have 𝑦∗𝑛 = 0, i.e., 𝑔′𝑛 (0) < 𝜙 (𝑤 (𝑛+1) ) = 𝜙 (𝑤 (𝑛) ). In this

case, we have 𝑦∗𝑛 = 0 = argmax0≤𝑦𝑛≤𝐷𝑛
𝑔𝑛 (𝑦𝑛) − 𝜙 (𝑤 (𝑛+1) )𝑦𝑛 .

(iii) When 𝑔′𝑛 (𝑦∗𝑛) = 𝜙 (𝑤 (𝑛+1) ), 𝑦∗𝑛 satisfies the KKT conditions of the conjugate optimization

problem (16), given 𝜆 = 𝜙 (𝑤 (𝑛+1) ), i.e.,

𝑔′𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) ) − 𝜅𝑛 + 𝜈𝑛 = 0, 𝜅𝑛 (𝐷𝑛 − 𝑦∗𝑛) = 0, 𝜈𝑛𝑦
∗
𝑛 = 0,

in which 𝜈𝑛 = 𝜇𝑛 = 0 since 𝑔′𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) ) = 0. Therefore, 𝑦∗𝑛 ∈ argmax0≤𝑦𝑛≤𝐷𝑛
𝑔𝑛 (𝑦𝑛) −

𝜙 (𝑤 (𝑛+1) )𝑦𝑛 .
Thus, we have ℎ𝑛 (𝜙 (𝑤 (𝑛+1) )) = 𝑔𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) )𝑦∗𝑛,∀𝑛 ∈ N .

A.2 Proof of Corollary 4.5
The dual of the offline problem (21) is

min
𝜆≥0

∑︁
𝑛∈N

ℎ𝑛 (𝜆) + (𝜆 + 𝐿)𝐶,

where ℎ𝑛 (𝜆) = max0≤𝑦𝑛≤𝐷𝑛
𝑔𝑛 (𝑦𝑛) − (𝜆 + 𝐿)𝑦𝑛 . The pseudo-utility maximization problem of

this variant is the same as GOT, which is given by (14). We set the feasible dual solution as 𝜆 =
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𝜙 (𝑤 (𝑁+1) ) − 𝐿. Based on weak duality, we have

OPT(I) ≤
∑︁

𝑛∈N
ℎ𝑛 (𝜙 (𝑤 (𝑁+1) ) − 𝐿) + 𝜙 (𝑤 (𝑁+1) )𝐶

≤
∑︁

𝑛∈N

[
𝑔𝑛 (𝑦∗𝑛) − 𝜙 (𝑤 (𝑛+1) )𝑦∗𝑛

]
+ 𝜙 (𝑤 (𝑁+1) )𝐶

≤
∑︁

𝑛∈N
𝑔𝑛 (𝑦∗𝑛) + (𝐶 −𝑤 (𝑁+1) )𝐿 + 𝜙 (𝑤 (𝑁+1) )𝐶 −

∫ 𝑤 (𝑁 +1)

0
𝜙 (𝑢)𝑑𝑢 − (𝐶 −𝑤 (𝑁+1) )𝐿

≤ 𝛼
[∑︁

𝑛∈N
𝑔𝑛 (𝑦∗𝑛) + (𝐶 −𝑤 (𝑁+1) )𝐿

]
= 𝛼ALG(I).

When 𝜙 (𝐶) ≥ 𝑈 , applying Proposition 4.1 gives the second inequality. The last inequality holds if

the threshold function further satisfies the following differential equation

𝜙 (𝑤)𝐶 ≤ 𝛼
∫ 𝑤

0
𝜙 (𝑢)𝑑𝑢 + 𝛼 (𝐶 −𝑤)𝐿,𝑤 ∈ [0,𝐶] .

Applying Gronwall’s Inequality to above equation, we obtain

𝜙 (𝑤) ≤ 𝛼𝐿 − 𝛼𝐿𝑤

𝐶
+ 𝛼
𝐶

∫ 𝑤

0
𝜙 (𝑢)𝑑𝑢 ≤ 𝐿 + (𝛼𝐿 − 𝐿)𝑒𝛼𝑤/𝐶 .

Note that 𝜙 (𝐶) ≥ 𝑈 gives 𝑈 ≤ 𝜙 (𝐶) ≤ 𝐿 + (𝛼𝐿 − 𝐿)𝑒𝛼 . When all inequalities hold with equality,

the competitive ratio 𝛼 is minimized and is given by the solution of the equation 𝛼 = ln 𝑈−𝐿
𝛼𝐿−𝐿 , and

the threshold function 𝜙 is given by (22).

A.3 Proof of Corollary 4.6
In this variant of GOT, we can have the following necessary condition for the existence of an 𝛼-

competitive online algorithm based on the continuously non-decreasing instance (see Definition 4.3).

Claim A.1. If there exists an 𝛼-competitive online algorithm for Variant 1 of GOT, there must exist
a utilization function𝜓 (𝑝) : [𝐿,𝑈 ] → [0,𝐶] that is non-decreasing and satisfies{

𝜓 (𝑝)𝑝 −
∫ 𝑝

𝐿
𝜓 (𝑢)𝑑𝑢 + [𝐶 −𝜓 (𝑝)]𝐿 ≥ 𝑝𝐶/𝛼, 𝑝 ∈ [𝐿,𝑈 ]

𝜓 (𝑈 ) ≤ 𝐶
. (26)

To prove this, note that under instance I𝑝 , we have
OPT(I𝑝 ) = 𝑝𝐶,

ALG(I𝑝 ) = 𝜓 (𝐿)𝐿 +
∫ 𝑝

𝐿
𝑢𝑑𝜓 (𝑢) + (𝐶 −𝜓 (𝑝))𝐿 = 𝜓 (𝑝)𝑝 −

∫ 𝑝

𝐿
𝜓 (𝑢)𝑑𝑢 + [𝐶 −𝜓 (𝑝)]𝐿.

Since any 𝛼-competitive online algorithm must satisfy ALG(I𝑝 ) ≥ OPT(I𝑝 )/𝛼 , this gives the differ-
ential equation in (26). The utilization function cannot exceed the capacity so we have the boundary

condition𝜓 (𝑈 ) ≤ 𝐶 .
The differential equation in (26) holds when𝜓 (𝑝) = 0, 𝑝 ∈ [𝐿, 𝛼𝐿]. We can then apply Gronwall’s

Inequality to (26) and obtain

𝜓 (𝑝) ≥ 𝐶

𝛼

𝑝

𝑝 − 𝐿 − 𝐶𝐿

𝑝 − 𝐿 + 1

𝑝 − 𝐿

∫ 𝑝

𝛼𝐿

[
𝐶

𝛼

𝑢

𝑢 − 𝐿 − 𝐶𝐿

𝑢 − 𝐿

]
𝑝 − 𝐿
𝑢 − 𝐿𝑑𝑢 =

𝐶

𝛼
ln

𝑝 − 𝐿
𝛼𝐿 − 𝐿 .

Since𝜓 (𝑈 ) ≤ 𝐶 , we have 𝐶 ≥ 𝜓 (𝑈 ) ≥ 𝐶
𝛼
ln 𝑈−𝐿

𝛼𝐿−𝐿 , and those inequalities hold when all inequalities

in (26) are binding. Thus, a lower bound of the optimal competitive ratio is the solution of the

equation 𝛼 = ln 𝑈−𝐿
𝛼𝐿−𝐿 and the corresponding utilization function is given by

𝜓 ∗ (𝑝) =
{
0 𝑝 ∈ [𝐿, 𝛼𝐿]
𝐶
𝛼
ln

𝑝−𝐿
𝛼𝐿−𝐿 𝑝 ∈ [𝛼𝐿,𝑈 ]

.
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Since this lower bound can be achieved by OTA𝜙 with the threshold function given in Corollary 4.5,

the optimal competitive ratio 𝛼∗ for Variant 1 of GOT is the solution of the equation 𝛼∗ = ln 𝑈−𝐿
𝛼∗𝐿−𝐿 .

A.4 Proof of Corollary 4.8
We begin by proving a sufficient condition for ensuring an 𝛼-competitive OTA for Variant 2 of GOT.

Claim A.2. Under the conditions (i) and (ii) in Assumption 2.3 and Assumption 4.7, the OTA𝜙 for
Variant 2 of GOT is 𝛼-competitive if the threshold function is in the form of

𝜙 (𝑤) =
{
𝜑1 (𝑤) 𝑤 ∈ [0, 𝛽)
𝜑2 (𝑤) 𝑤 ∈ [𝛽,𝐶]

,

where 𝛽 ∈ [0,𝐶] is a utilization threshold and 𝜙 (𝑤) satisfies the following conditions:
(i) 𝜑1 (𝑤) is a non-decreasing differentiable function that satisfies{

𝜑1 (𝑤)𝐶 ≤
∫ 𝑤

0
𝜑1 (𝑢)𝑑𝑢 + (𝛼 − 1) 𝐿

𝑐
𝑤,𝑤 ∈ [0, 𝛽),

𝜑1 (0) = 0, 𝜑1 (𝛽) = 𝐿/𝑐.
(27)

(ii) 𝜑2 (𝑤) is a non-decreasing differentiable function that satisfies{
𝜑2 (𝑤)𝐶 ≤ 𝛼

∫ 𝑤

0
𝜙 (𝑢)𝑑𝑢,𝑤 ∈ [𝛽,𝐶],

𝜑2 (𝛽) = 𝐿/𝑐, 𝜑2 (𝐶) ≥ 𝑈 .
(28)

The derivation of the above sufficient condition for 𝑤 ∈ [𝛽,𝐶] is the same as that of Case II

in GOT by changing 𝐿 to 𝐿/𝑐 . Different from Case I of GOT, the marginal value function of this

case is not strictly lower bounded. Thus, setting the threshold function in [0, 𝛽) to a flat segment

cannot ensure all items are accepted to their sizes and the argument in Case I fails. To handle this

relaxed assumption, we can design the threshold function as a non-decreasing function 𝜑1 (𝑤).
Following the OPD approach in Case II of GOT, we can build the upper bound of OPT(I) until the
equation (18c). Instead of (18d), a smaller competitive ratio can be achieved by enforcing a stringent

sufficient condition (27) since 𝜑1 (𝑤) ≤ 𝐿/𝑐 . Then we have

OPT(I) ≤
∑︁

𝑛∈N
𝑔𝑛 (𝑦∗𝑛) + (𝛼 − 1)𝐿

𝑐
𝑤 (𝑁+1) ≤

∑︁
𝑛∈N

𝑔𝑛 (𝑦∗𝑛) + (𝛼 − 1)
∑︁

𝑛∈N
𝑔𝑛 (𝑦∗𝑛) = 𝛼ALG(I).

Based on Assumption 4.7 and the concavity of 𝑔𝑛 (·), we have 𝐿/𝑐 ≤ 𝑔𝑛 (𝐷𝑛)/𝐷𝑛 ≤ 𝑔𝑛 (𝑦∗𝑛)/𝑦∗𝑛 . Then
the second inequality is given by𝑤 (𝑁+1)𝐿/𝑐 = ∑

𝑛∈N 𝑦
∗
𝑛𝐿/𝑐 ≤

∑
𝑛∈N 𝑔𝑛 (𝑦∗𝑛).

Solving 𝜑1 and 𝜑2 by binding all inequalities in the sufficient conditions (i) and (ii), we can obtain

the threshold function (23) and the corresponding competitive ratio in Corollary 4.8.

A.5 Proof of Lemma 5.1
To begin, we rewrite the offline formulation of the FOMKP with aggregate value functions as

follows:

max
0≤𝑥𝑛≤𝐷𝑛,𝑦𝑛𝑚≥0

∑︁
𝑛∈N

𝑔𝑛 (𝑥𝑛), (29a)

s.t.
∑︁

𝑚∈M
𝑦𝑛𝑚 ≥ 𝑥𝑛,∀𝑛 ∈ N , (𝜇𝑛) (29b)∑︁

𝑛∈N
𝑦𝑛𝑚 ≤ 𝐶𝑚,∀𝑚 ∈ M, (𝜆𝑚) (29c)

𝑦𝑛𝑚 ≤ 𝑌𝑛𝑚,∀𝑛 ∈ N ,𝑚 ∈ M, (𝛾𝑛𝑚) (29d)
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where 𝑥𝑛 is the assigned aggregate fraction of item 𝑛. Similarly, the pseudo-utility maximization

problem (7) in OTA𝜙 can be rewritten as

max
0≤𝑥𝑛≤𝐷𝑛,𝑦𝑛𝑚

𝑔𝑛 (𝑥𝑛) −
∑︁

𝑚∈M

∫ 𝑤
(𝑛)
𝑚 +𝑦𝑛𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢 (30a)

s.t.
∑︁

𝑚∈M
𝑦𝑛𝑚 ≥ 𝑥𝑛, (𝜇𝑛) (30b)

0 ≤ 𝑦𝑛𝑚 ≤ 𝑌𝑛𝑚,∀𝑛 ∈ N ,𝑚 ∈ M . (𝜉𝑛𝑚, 𝛾𝑛𝑚) (30c)

The dual of the offline problem (29) can be derived as

min
𝜆𝑚≥0,𝜇𝑛≥0,𝛾𝑛𝑚≥0

∑︁
𝑛∈N

ℎ𝑛 (𝜇𝑛) +
∑︁

𝑚∈M
𝜆𝑚𝐶𝑚 +

∑︁
𝑛∈N

∑︁
𝑚∈M

𝛾𝑛𝑚𝑌𝑛𝑚 (31a)

s.t. 𝜆𝑚 ≥ 𝜇𝑛 − 𝛾𝑛𝑚, ∀𝑛 ∈ N ,𝑚 ∈ M, (31b)

where ℎ𝑛 (𝜇𝑛) = max0≤𝑥𝑛≤𝐷𝑛
𝑔𝑛 (𝑥𝑛) − 𝜇𝑛𝑥𝑛 is the conjugate function of 𝑔𝑛 (·), and 𝝁 := {𝜇𝑛}𝑛∈N ,

𝝀 := {𝜆𝑚}𝑚∈M , and𝜸 := {𝛾𝑛𝑚}𝑛∈N,𝑚∈M are the dual variables associatedwith constraints (29b), (29c),

and (29d), respectively. Let Dual(𝝁,𝝀,𝜸 ) denote the dual objective (31a).
To build the connection between the online solution and the dual objective in the OPD analysis,

we need the following proposition, which is a general version of Proposition 4.1.

Proposition A.3. When 𝜙𝑚 (𝐶𝑚) ≥ 𝑈 ,∀𝑚 ∈ M, the conjugate function ℎ𝑛 (𝜇𝑛) satisfies ℎ𝑛 (𝜇∗𝑛) =
𝑔𝑛 (𝑥∗𝑛) − 𝜇∗𝑛𝑥∗𝑛 , where 𝑥∗𝑛 and 𝜇∗𝑛 are the optimal primal and dual solutions of the problem (30).

Proof. When 𝜙𝑚 (𝐶𝑚) ≥ 𝑈 ,∀𝑚 ∈ M, the pseudo-utility maximization problem (30) is a convex

optimization problem. Part of its KKT conditions is given by

𝑔′𝑛 (𝑥∗𝑛) − 𝜇∗𝑛 − 𝜅∗𝑛 + 𝜈∗𝑛 = 0, 𝜅∗𝑛 (𝐷𝑛 − 𝑥∗𝑛) = 0, 𝜈∗𝑛𝑥
∗
𝑛 = 0,

where 𝜇∗𝑛 , 𝜅
∗
𝑛 , and 𝜈

∗
𝑛 are the optimal dual variables associated with the constraint (30b), 𝑥𝑛 ≤ 𝐷𝑛 ,

and 𝑥𝑛 ≥ 0. We can then follow the same arguments as those (i)-(iii) in the proof of Proposition 4.1

in Appendix A.1 by just replacing 𝜙 (𝑤 (𝑛+1) ) with 𝜇∗𝑛 . □

Let𝑤
(𝑁+1)
𝑚 := 𝑤 (𝑁+1)

𝑚 (I) denote the final utilization of the knapsack𝑚 after executing instance

I byOTA𝜙 . The set of all instances Ω can be divided into three families Ω1
, Ω2

, and Ω3
. In particular,

Ω1 := {I : 0 ≤ 𝑤 (𝑁+1)
𝑚 < 𝛽𝑚,∀𝑚 ∈ M} and Ω2 := {I : 𝛽𝑚 ≤ 𝑤 (𝑁+1)

𝑚 ≤ 𝐶𝑚,∀𝑚 ∈ M} contain the

instances whose final utilizations of all knapsacks are below and above their utilization thresholds,

respectively. Excluding these two families, the remaining instances form Ω3 := Ω \ (Ω1 ∪ Ω2), in
which some knapsacks have final utilizations below the utilization thresholds and the others’ final

utilizations are above the thresholds. We now treat these three cases separately.

Case I: I ∈ Ω1. The threshold functions of all knapsacks are on the flat segment, which implies

that the marginal cost of packing items into all knapsacks are at lowest price 𝐿. Thus, in this

case all items are packed up to their sizes by maximizing the pseudo-utility in OTA𝜙 . The offline

optimal solution also accepts all items and hence is the same as the online solution. So, we have

OPT(I)/ALG(I) = 1 ≤ 𝛼,∀I ∈ Ω1
.

Case II: I ∈ Ω2. The adversary can add one more item for each knapsack. The new item for

knapsack𝑚 is with size 𝐶 and marginal value 𝜙𝑚 (𝑤 (𝑁+1)
𝑚 ). Under this created worst-case instance,

all knapsack capacities are occupied in the offline solution while the online solution keeps the same.

In this case, we can reply on the dual objective Dual(𝝁,𝝀,𝜸 ) in (31a). A feasible dual solution can

be constructed as

𝜆𝑚 = 𝜙𝑚 (𝑤 (𝑁+1)
𝑚 ), 𝜇𝑛 = 𝜇∗𝑛, 𝛾𝑛𝑚 = 𝛾∗𝑛𝑚 =

{
𝜇∗𝑛 − 𝜙𝑚 (𝑤 (𝑛+1)

𝑚 ) 𝑦∗𝑛𝑚 > 0

0 𝑦∗𝑛𝑚 = 0
,
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where 𝜇∗𝑛 and 𝛾∗𝑛𝑚 are the optimal dual variables of the pseudo-utility maximization problem (30)

associated with constraints (30b) and (30c). We first show that the dual variables are feasible.

𝜆𝑚, 𝜇𝑛, 𝛾𝑛𝑚 ≥ 0 can be immediately observed. The dual constraint can be checked by

𝜇𝑛 − 𝛾𝑛𝑚 = 𝜙𝑚 (𝑤 (𝑛+1)
𝑚 ) − 𝜉∗𝑛𝑚 ≤ 𝜙𝑚 (𝑤 (𝑛+1)

𝑚 ) ≤ 𝜙𝑚 (𝑤 (𝑁+1)
𝑚 ) = 𝜆𝑚,∀𝑛 ∈ N ,𝑚 ∈ M, (32)

where the first equality is the KKT condition of the problem (30) and 𝜉∗𝑛𝑚 ≥ 0 is the optimal dual

variable associated with the constraint 𝑦𝑛𝑚 ≥ 0. The third inequality holds since𝑤
(𝑛+1)
𝑚 ≤ 𝑤 (𝑁+1)

𝑚

and 𝜙𝑚 is a non-decreasing function. Then we can have

OPT(I) ≤
∑︁

𝑛∈N

[
𝑔𝑛 (𝑥∗𝑛) − 𝜇∗𝑛𝑥∗𝑛

]
+
∑︁

𝑚∈M
𝜙𝑚 (𝑤 (𝑁+1)

𝑚 )𝐶𝑚 +
∑︁

𝑛∈N

∑︁
𝑚∈M

𝛾∗𝑛𝑚𝑌𝑛𝑚 (33a)

≤
∑︁

𝑛∈N
𝑔𝑛 (𝑥∗𝑛) +

∑︁
𝑚∈M

[
𝜙𝑚 (𝑤 (𝑁+1)

𝑚 )𝐶𝑚 −
∫ 𝑤

(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢

]
(33b)

≤
∑︁

𝑛∈N
𝑔𝑛 (𝑥∗𝑛) + (𝛼 − 1)

∑︁
𝑚∈M

∫ 𝑤
(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢 (33c)

≤
∑︁

𝑛∈N
𝑔𝑛 (𝑥∗𝑛) + (𝛼 − 1)

∑︁
𝑛∈N

𝑔𝑛 (𝑥∗𝑛) = 𝛼ALG(I). (33d)

Applying weak duality and Proposition A.3 gives inequality (33a). Based on the KKT conditions of

the problem (30), 𝜇∗𝑛 (
∑

𝑚∈M 𝑦∗𝑛𝑚 − 𝑥∗𝑛) = 0 and 𝛾∗𝑛𝑚 (𝑌𝑛𝑚 − 𝑦∗𝑛𝑚) = 0, we have

−
∑︁

𝑛∈N
𝜇∗𝑛𝑥

∗
𝑛 +

∑︁
𝑛∈N

∑︁
𝑚∈M

𝛾∗𝑛𝑚𝑌𝑛𝑚 = −
∑︁

𝑛∈N

∑︁
𝑚∈M

[𝜇∗𝑛 − 𝛾∗𝑛𝑚]𝑦∗𝑛𝑚
= −

∑︁
𝑛∈N

∑︁
𝑚∈M

𝜙𝑚 (𝑤 (𝑛+1)
𝑚 )𝑦∗𝑛𝑚 .

Combining with 𝜙𝑚 (𝑤 (𝑛+1)
𝑚 )𝑦∗𝑛𝑚 ≥

∫ 𝑤
(𝑛+1)
𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢, the inequality (33b) holds. If the differential

equation (24) in Lemma 5.1 holds, the inequality (33c) holds. Finally, we can have the inequality (33d)

by observing that 𝑔𝑛 (𝑥∗𝑛) ≥
∑

𝑚∈M
∫ 𝑤

(𝑛+1)
𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢 for 𝑛 ∈ N based on the problem (30). Thus,

in this case, we have OPT(I)/ALG(I) ≤ 𝛼,∀I ∈ Ω2
if the sufficient conditions in Lemma 5.1 are

satisfied.

Case III: I ∈ Ω3. Let M1 := {𝑚 ∈ M : 0 ≤ 𝑤
(𝑁+1)
𝑚 < 𝛽𝑚} and M2 := {𝑚 ∈ M : 𝛽𝑚 ≤

𝑤
(𝑁+1)
𝑚 < 𝐶𝑚} denote the subsets of knapsacks, whose final utilizations are below and above the

utilization thresholds, respectively. The key difference between Case II and Case III is that the

knapsacks inM1
may not be fully occupied in the offline solution under the worst-case instance

in Ω3
. This is because the total amount of items, which can be packed into M1

, is limited by∑
𝑚∈M1 𝑤

(𝑁+1)
𝑚 +∑

𝑚∈M2 𝛽𝑚 .

Based on this understanding of the worst-case instance, we can add the following constraint to

the offline formulation (29)∑︁
𝑛∈N

∑︁
𝑚∈M1

𝑦𝑛𝑚 ≤
∑︁

𝑚∈M1
𝑤

(𝑁+1)
𝑚 +

∑︁
𝑚∈M2

𝛽𝑚 . (34)

The dual problem of the new offline problem can be stated as

min
𝜆𝑚≥0,𝜇𝑛≥0,𝛾𝑛𝑚≥0,𝜂≥0

Dual(𝝁,𝝀,𝜸 ) + 𝜂 (
∑︁

𝑚∈M1
𝑤

(𝑁+1)
𝑚 +

∑︁
𝑚∈M2

𝛽𝑚) (35a)

s.t. 𝜆𝑚 ≥ 𝜇𝑛 − 𝛾𝑛𝑚, ∀𝑛 ∈ N ,𝑚 ∈ M2, (35b)

𝜆𝑚 ≥ 𝜇𝑛 − 𝛾𝑛𝑚 − 𝜂, ∀𝑛 ∈ N ,𝑚 ∈ M1, (35c)
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where 𝜂 is the dual variable of the new constraint (34). We can construct a feasible dual solution as

𝜆𝑚 =

{
𝜙𝑚 (𝑤 (𝑁+1)

𝑚 ) 𝑚 ∈ M2

0 𝑚 ∈ M1
, 𝜇𝑛 = 𝜇∗𝑛, 𝛾𝑛𝑚 = 𝛾∗𝑛𝑚, 𝜂 = 𝐿.

Based on equation (32) in Case II, the constructed dual solution satisfies the constraint (35b).

Furthermore, the constraint (35c) can be checked by observing

𝜇𝑛 − 𝛾𝑛𝑚 ≤ 𝜙𝑚 (𝑤 (𝑁+1)
𝑚 ) = 𝐿 = 𝜆𝑚 + 𝜂, 𝑛 ∈ N ,𝑚 ∈ M1 . (36)

Applying the dual objective in (35a) and KKT conditions of the problem (30), we can have

OPT(I) ≤
∑︁

𝑛∈N
𝑔𝑛 (𝑥∗𝑛) +

∑︁
𝑚∈M2

[𝜙𝑚 (𝑤 (𝑁+1)
𝑚 )𝐶𝑚 −

∫ 𝑤
(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢 + 𝐿𝛽𝑚]

≤
∑︁

𝑛∈N
𝑔𝑛 (𝑥∗𝑛) + (𝛼 − 1)

∑︁
𝑚∈M2

∫ 𝑤
(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢 ≤ 𝛼ALG(I), (37)

where the inequality (37) holds if 𝜙 satisfies the differential equation (24) in Lemma 5.1. Thus, we

have OPT(I)/ALG(I) ≤ 𝛼,∀I ∈ Ω3
.

In summary, the competitive ratio is 𝛼 if 𝜙 satisfies the sufficient condition in Lemma 5.1.

A.6 Proof of Theorem 3.8
This proof proceedsmuch the same as that of Theorem 3.7, but we now use the following counterpart

to the sufficient conditions on the threshold functions of OTA𝜙 .

Lemma A.4. Under Assumption 2.3, OTA𝜙 for the FOMKP with separable value functions is 𝛼-
competitive if the threshold function 𝜙 = {𝜙𝑚}𝑚∈M is in the form of, ∀𝑚 ∈ M,

𝜙𝑚 (𝑤) =
{
𝐿 𝑤 ∈ [0, 𝛽𝑚)
𝜑𝑚 (𝑤) 𝑤 ∈ [𝛽𝑚,𝐶𝑚]

,

where 𝛽𝑚 ∈ [0,𝐶𝑚] is a utilization threshold and 𝜑𝑚 is a non-decreasing function, and 𝜙𝑚 satisfies{
𝜑𝑚 (𝑤)𝐶𝑚 ≤ 𝛼

∫ 𝑤

0
𝜙𝑚 (𝑢)𝑑𝑢 − 𝐿𝑤, 𝑤 ∈ [𝛽𝑚,𝐶𝑚],

𝜑𝑚 (𝛽𝑚) = 𝐿, 𝜑𝑚 (𝐶𝑚) ≥ 𝑈 .
(38)

Proof of Lemma A.4. The offline formulation of the FOMKP with separable value functions

can be stated as

max
0≤𝑦𝑛𝑚≤𝑌𝑛𝑚

∑︁
𝑛∈N

∑︁
𝑚∈M

𝑔𝑛𝑚 (𝑦𝑛𝑚), (39a)

s.t.
∑︁

𝑚∈M
𝑦𝑛𝑚 ≤ 𝐷𝑛,∀𝑛 ∈ N , (39b)∑︁

𝑛∈N
𝑦𝑛𝑚 ≤ 𝐶𝑚,∀𝑚 ∈ M . (39c)

The dual problem of this offline formulation can be derived as

min
𝜆𝑚≥0,𝜇𝑛≥0

∑︁
𝑛∈N

∑︁
𝑚∈M

ℎ𝑛𝑚 (𝜇𝑛 + 𝜆𝑚) +
∑︁

𝑚∈M
𝜆𝑚𝐶𝑚 +

∑︁
𝑛∈N

𝜇𝑛𝐷𝑛, (40)

where ℎ𝑛𝑚 (𝜌𝑛𝑚) = max0≤𝑦𝑛𝑚≤𝑌𝑛𝑚 𝑔𝑛𝑚 (𝑦𝑛𝑚) − 𝜌𝑛𝑚𝑦𝑛𝑚 is the conjugate function of 𝑔𝑛𝑚 (·), and 𝜇𝑛
and 𝜆𝑚 are the dual variables that correspond to constraints (39b) and (39c), respectively.

With separable value functions, the pseudo-utility maximization problem (7) can be rewritten as

max
0≤𝑦𝑛𝑚≤𝑌𝑛𝑚

∑︁
𝑚∈M

𝑔𝑛𝑚 (𝑦𝑛𝑚) −
∑︁

𝑚∈M

∫ 𝑤
(𝑛)
𝑚 +𝑦𝑛𝑚

𝑤
(𝑛)
𝑚

𝜙𝑚 (𝑢)𝑑𝑢 (41a)

s.t.
∑︁

𝑚∈M
𝑦𝑛𝑚 ≤ 𝐷𝑛 . (41b)
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We first connect the online solution and the dual objective through the following proposition.

Proposition A.5. The conjugate function ℎ𝑛𝑚 (𝜌𝑛𝑚) satisfies
(i) ℎ𝑛𝑚 (𝜌𝑛𝑚) is a non-increasing function;
(ii) when 𝜙𝑚 (𝐶𝑚) ≥ 𝑈 ,∀𝑚 ∈ M, ℎ𝑛𝑚 (𝜙𝑚 (𝑤 (𝑛+1)

𝑚 ) + 𝜇∗𝑛) = 𝑔𝑛𝑚 (𝑦∗𝑛𝑚) − (𝑤 (𝑛+1)
𝑚 + 𝜇∗𝑛)𝑦∗𝑛𝑚, where

𝑦∗𝑛𝑚 and 𝜇∗𝑛 are the optimal primal and dual solutions of the problem (41), and𝑤 (𝑛+1)
𝑚 = 𝑤

(𝑛)
𝑚 + 𝑦∗𝑛𝑚 .

Proof of Proposition A.5. The property (i) of the conjugate function can be shown in the same

way as the proof of Proposition 4.1.

When 𝜙𝑚 (𝐶𝑚) ≥ 𝑈 ,∀𝑚 ∈ M, the pseudo-utility maximization problem (41) is a convex opti-

mization problem and part of its KKT conditions is given by

𝑔′𝑛𝑚 (𝑦∗𝑛𝑚) − 𝜙𝑚 (𝑤 (𝑛+1)
𝑚 ) − 𝜇∗𝑛 − 𝛾∗𝑛𝑚 + 𝜉∗𝑛𝑚 = 0, 𝛾∗𝑛𝑚 (𝑌𝑛𝑚 − 𝑦∗𝑛𝑚) = 0, 𝜉∗𝑛𝑚𝑦

∗
𝑛𝑚 = 0,

where 𝑦∗𝑛𝑚 , and {𝜇∗𝑛, 𝛾∗𝑛𝑚, 𝜉∗𝑛𝑚} are the optimal primal and dual solutions. Based on this structure of

KKT conditions, we can follow the same arguments in the proof of Proposition 4.1 in Appendix A.1

to show that 𝑦∗𝑛𝑚 maximizes the conjugate optimization problem given 𝜌𝑛𝑚 = 𝜙𝑚 (𝑤 (𝑛+1)
𝑚 ) + 𝜇∗𝑛 . □

We proceed to derive the sufficient condition on the threshold function for the FOMKP with

separable functions using the instance-dependent OPD analysis. The set of instances Ω is divided

into three families Ω1
, Ω2

, and Ω3
following the same definitions as those in the proof of Lemma 5.1.

Case I: I ∈ Ω1. This case is the same as Case I in the proof of Lemma 5.1. We can have

OPT(I)/ALG(I) = 1,∀I ∈ Ω1
.

Case II: I ∈ Ω2. In this case, all knapsacks can be fully occupied in the offline solution under

the worst-case instance. Thus, we can use the dual objective (40) in the OPD analysis. Particularly,

we construct a feasible dual solution as 𝜆𝑚 = 𝜙𝑚 (𝑤 (𝑁+1)
𝑚 ) and 𝜇𝑛 = 𝜇∗𝑛 . Based on weak duality, we

have

OPT(I) ≤
∑︁

𝑛∈N

∑︁
𝑚∈M

ℎ𝑛𝑚 (𝜇∗𝑛 + 𝜙𝑚 (𝑤 (𝑁+1)
𝑚 )) +

∑︁
𝑚∈M

𝜙𝑚 (𝑤 (𝑁+1)
𝑚 )𝐶𝑚 +

∑︁
𝑛∈N

𝜇∗𝑛𝐷𝑛

≤
∑︁

𝑛∈N

∑︁
𝑚∈M

𝑔𝑛𝑚 (𝑦∗𝑛𝑚) +
∑︁

𝑚∈M
[𝜙𝑚 (𝑤 (𝑁+1)

𝑚 )𝐶𝑚 −
∑︁

𝑛∈N
𝜙𝑚 (𝑤 (𝑛+1)

𝑚 )𝑦∗𝑛𝑚] (42a)

≤
∑︁

𝑛∈N

∑︁
𝑚∈M

𝑔𝑛𝑚 (𝑦∗𝑛𝑚) +
∑︁

𝑚∈M
[𝜙𝑚 (𝑤 (𝑁+1)

𝑚 )𝐶𝑚 −
∫ 𝑤

(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢] (42b)

≤
∑︁

𝑛∈N

∑︁
𝑚∈M

𝑔𝑛𝑚 (𝑦∗𝑛𝑚) + (𝛼 − 1)
∑︁

𝑚∈M

∫ 𝑤
(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢

≤ 𝛼
∑︁

𝑛∈N

∑︁
𝑚∈M

𝑔𝑛𝑚 (𝑦∗𝑛𝑚) = 𝛼ALG(I).

By applying Proposition A.5 and KKT conditions of the problem (41), we have the inequality (42a).

If the threshold function 𝜙 satisfies the differential equation in (38), the inequality (42b) holds. The

following inequalities can be easily verified based on arguments used in previous proofs. Thus, if

the differential equation in (33c) is satisfied, we have OPT(I)/ALG(I) ≤ 𝛼,∀I ∈ Ω2
.

Case III: I ∈ Ω3. The total amount of items assigned to knapsacks inM1
is still limited in the

offline solution under the worst-case instance. However, the additional items that can be reassigned

from knapsacks in M2
to those in M1

are up to

∑
𝑚∈M2 𝑤

(𝑁+1)
𝑚 . This is because in this case,

each knapsack corresponds to an individual value function and thus the marginal utility (i.e., the

marginal value of items minus the marginal cost of using knapsack when assigning a small bit of

items) of assigning items to knapsacks in M2
can be larger than to those in M1

even through the

marginal cost of knapsacks in M1
is the lowest value 𝐿. To construct a tighter upper bound of the

offline optimum, we add one more constraint to the offline formulation (39).∑︁
𝑛∈N

∑︁
𝑚∈M1

𝑦𝑛𝑚 ≤
∑︁

𝑚∈M
𝑤

(𝑁+1)
𝑚 . (43)
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The dual problem of the new offline formulation is

min
𝜆𝑚≥0,𝜇𝑛≥0,𝜂≥0

∑︁
𝑛∈N

[∑︁
𝑚∈M1

ℎ𝑛𝑚 (𝜇𝑛 + 𝜆𝑚 + 𝜂) +
∑︁

𝑚∈M2
ℎ𝑛𝑚 (𝜇𝑛 + 𝜆𝑚)

]
(44)

+
∑︁

𝑚∈M
𝜆𝑚𝐶𝑚 +

∑︁
𝑛∈N

𝜇𝑛𝐷𝑛 + 𝜂
∑︁

𝑚∈M
𝑤

(𝑁+1)
𝑚 ,

where 𝜂 is the dual variable corresponding to the new constraint (43). In this case, the feasible dual

variable is chosen as

𝜆𝑚 =

{
𝜙𝑚 (𝑤 (𝑁+1)

𝑚 ) 𝑚 ∈ M2

0 𝑚 ∈ M1
, 𝜇𝑛 = 𝜇∗𝑛, 𝜂 = 𝐿.

Then we can have

OPT(I) ≤
∑︁

𝑛∈N

∑︁
𝑚∈M

[𝑔𝑛𝑚 (𝑦∗𝑛𝑚) − (𝜙𝑚 (𝑤 (𝑛+1)
𝑚 ) + 𝜇∗𝑛)𝑦∗𝑛𝑚]

+
∑︁

𝑚∈M2
𝜙𝑚 (𝑤 (𝑁+1)

𝑚 )𝐶𝑚 +
∑︁

𝑛∈N
𝜇∗𝑛𝐷𝑛 + 𝐿

∑︁
𝑚∈M

𝑤
(𝑁+1)
𝑚

≤
∑︁

𝑛∈N

∑︁
𝑚∈M

𝑔𝑛𝑚 (𝑦∗𝑛𝑚) +
∑︁

𝑚∈M2
[𝜙𝑚 (𝑤 (𝑁+1)

𝑚 )𝐶𝑚 −
∫ 𝑤

(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢 + 𝐿𝑤 (𝑁+1)

𝑚 ]

≤
∑︁

𝑛∈N

∑︁
𝑚∈M

𝑔𝑛𝑚 (𝑦∗𝑛𝑚) + (𝛼 − 1)
∑︁

𝑚∈M2

∫ 𝑤
(𝑁 +1)
𝑚

0
𝜙𝑚 (𝑢)𝑑𝑢 (45)

≤ 𝛼
∑︁

𝑛∈N

∑︁
𝑚∈M

𝑔𝑛𝑚 (𝑦∗𝑛𝑚) = 𝛼ALG(I).

The key step in the OPD analysis above is to ensure the inequality (45). If the threshold function

𝜙 satisfies the differential equation (38), the inequality (45) holds and we have OPT(I)/ALG(I) ≤
𝛼,∀I ∈ Ω3

.

In summary, the competitive ratio of OTA𝜙 for the FOMKP with separable value functions is 𝛼 if

the threshold function 𝜙 satisfies the sufficient condition in Lemma A.4. □

Using LemmaA.4 to complete the proof, is similar to the case of aggregate functions. we determine

the threshold function that satisfies the differential equation (38) and can minimize 𝛼 . Applying

Gronwall’s Inequality to (38) gives

𝜑𝑚 (𝑤) ≤ 𝛼𝐿𝛽𝑚

𝐶𝑚
− 𝐿

𝐶𝑚
𝑤 + 𝛼

𝐶𝑚

∫ 𝑤

𝛽𝑚
𝜑𝑚 (𝑢)𝑑𝑢 =

𝐿

𝛼
+ [ (𝛼 − 1)𝐿𝛽𝑚

𝐶𝑚
− 𝐿

𝛼
]𝑒𝛼 (𝑤−𝛽𝑚)/𝐶𝑚 ,𝑤 ∈ [𝛽𝑚,𝐶𝑚]

Since 𝜑𝑚 (𝐶𝑚) ≥ 𝑈 , we have 𝑈 ≤ 𝜑𝑚 (𝐶𝑚) ≤ 𝐿
𝛼
+ [ (𝛼−1)𝐿𝛽𝑚

𝐶𝑚
− 𝐿

𝛼
]𝑒𝛼 (𝐶𝑚−𝛽𝑚)/𝐶𝑚

. The minimal 𝛼 is

achievedwhen all inequalities in (38) are binding.We then have𝑈 = 𝐿
𝛼
+[ (𝛼−1)𝐿𝛽𝑚

𝐶𝑚
− 𝐿

𝛼
]𝑒𝛼 (𝐶𝑚−𝛽𝑚)/𝐶𝑚

and 𝛽𝑚 =
𝐶𝑚

𝛼−1 . Thus, the minimal competitive ratio is the solution of the equation 𝛼𝜙∗ − 1− 1
𝛼𝜙∗−1 =

ln
𝛼𝜙∗𝜃−1
𝛼𝜙∗−1 and the threshold function is given by (13).
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