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ABSTRACT

This paper studies the online energy scheduling problem in a hy-

brid model where the cost of energy is proportional to both the

volume and peak usage, and where energy can be either locally

generated or drawn from the grid. Inspired by recent advances in

online algorithms with Machine Learned (ML) advice, we develop

parameterized deterministic and randomized algorithms for this

problem such that the level of reliance on the advice can be adjusted

by a trust parameter. We then analyze the performance of the pro-

posed algorithms using two performance metrics: robustness that
measures the competitive ratio as a function of the trust parameter

when the advice is inaccurate, and consistency for competitive ratio

when the advice is accurate. Since the competitive ratio is analyzed

in two different regimes, we further investigate the Pareto optimal-

ity of the proposed algorithms. Our results show that the proposed

deterministic algorithm is Pareto-optimal, in the sense that no

other online deterministic algorithms can dominate the robustness

and consistency of our algorithm. Furthermore, we show that the

proposed randomized algorithm dominates the Pareto-optimal de-

terministic algorithm. Our large-scale empirical evaluations using

real traces of energy demand, energy prices, and renewable energy

generations highlight that the proposed algorithms outperform

worst-case optimized algorithms and fully data-driven algorithms.
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• Theory of computation→ Online algorithms; Linear pro-
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1 INTRODUCTION

The electricity bill is a significant operating cost of large energy cus-

tomers such as data centers, businesses, and university campuses.

For example, in data center operations, the largest expenditure

is energy consumption, e.g. energy cost is more than 30% of the

total operating costs of Google and Microsoft’s data centers [25].

Consequently, managing the energy consumption and cost of large

energy customers has become critically important. This has led to

substantial research on incorporating local renewable sources [19],

energy-aware server provisioning [18], geographical load balanc-

ing [17, 20], and on-site energy storage systems [31].

The electricity bill for large energy customers is usually based on

a hybrid model that uses both the volume and peak of the energy

consumption. Specifically, assuming that each billing cycle can

be divided into 𝑇 time slots, and the energy demand in slot 𝑡 is

𝑒 (𝑡), the electricity bill is the sum of the following two terms: (1)

the volume pricing, which is the aggregate energy usage over the

cycle, i.e.,

∑
𝑡 𝑝 (𝑡)𝑒 (𝑡), where 𝑝 (𝑡) is the real-time unit price at 𝑡 ,

and (2) the peak pricing, which is the peak demand drawn over

the cycle, i.e., max𝑡 ∈[𝑇 ] 𝑒 (𝑡), multiplied by 𝑝𝑚 as the peak price.

The contribution of peak pricing in the electricity bill is usually

substantial. The peak price is often more than 100 times higher than

the maximum spot price, e.g., 118× for PG&E or 227× for Duke

Energy Kentucky. Hence, the contribution of peak charging in the

energy bill for large energy costumers can be considerable, e.g.,

from 20% to 80% for Google data centers [30].

A promising approach to reduce the contribution of peak charges

in the final electricity bill is to install on-site generation units that

can “shave the peak” by covering that portion of the demand [33].

A notable example is Microsoft’s plan to add 72 new generators at

its Quincy, Washington data center campus [1]. The global market

for on-site generators is growing and expected to reach a revenue

of around $5 billion in 2023 [2]. With an on-site generator, one can

schedule its generation such that part of the total energy demand

is satisfied by the local generator, hence, the peak net demand from

the grid is reduced over the billing cycle.

However, peak-aware energy generation scheduling of local

generators is a challenging problem due to the uncertainty of the

demand of energy customers, especially in data centers. For data

centers the energy demand is highly unpredictable because user

demand for internet services is variable. For instance, a data center

serving videos to users can experience an unexpected flash crowd

of users for a popular video release. Furthermore, sophisticated

https://doi.org/10.1145/3447555.3464860
https://doi.org/10.1145/3447555.3464860
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Figure 1: A motivating example for the peak-aware energy

scheduling problem.

optimization algorithms are being used in Google data centers

to improve the energy efficiency of data center’s internal oper-

ations [12], which can further increase the variability of energy

demand. In geographical load balancing schemes [17, 20], a global

load balancer could move user demand into or out of the data center,

resulting in unexpected changes in the energy patterns. Lastly, the

integration of renewables into data centers provides even more

uncertainty, since the production level of renewables is uncertain

and intermittent [13].

The peak-aware energy generation scheduling problem (hence-

forth PAES) has been tackled using the competitive online frame-

work [33]. More specifically, two deterministic and randomized

algorithms have been proposed that can achieve the best compet-
itive ratio as the well-established performance metric for online

algorithms [6]. Competitive ratio is defined as the ratio between

the cost of an online algorithm and that of the offline optimal for

the worst-case over all feasible instances to the problem. The com-

petitive online framework, however, aims to be provably efficient

against worst-case input instances. Toward this end, it assumes

that no stochastic, exact, or noisy measurement of future inputs is

available and tries to make the best decisions without future knowl-

edge. This assumption makes online algorithms overly pessimistic

in practice, since worst-case scenarios rarely happen in reality. On

top of that, it is reasonable to have at least a noisy prediction of

future data in most online problems.

1.1 Motivation

As a motivating example, we consider the performance of online

algorithms designed with three different paradigms. Figure 1 shows

the normalized cost achieved by three algorithms for PAES. The

three online algorithms shown are: (a) the algorithm that achieves

the best competitive ratio for “pessimistic” worst-case inputs for

the energy cost minimization problem [33]; (b) the algorithm that

makes decisions assuming an “optimistic” world of perfect predic-

tions; and (c) a proposed online algorithm in this paper that aims

to perform well in both worlds. The figure shows the cumulative

probability distribution of the 99 percentile normalized cost of 100+

trials for traffic and energy inputs from 200+ Akamai data center

locations in the United States (details on experimental data and

setting in §6). Although the state-of-the-art “pessimistic” online

algorithm is guaranteed to achieve a bounded normalized cost in

the worst-case, Figure 1 demonstrates that its average performance

is not promising. The average normalized cost is far from optimal,

with even the best performing trials achieving normalized cost no

less than 1.6. Conversely, an “optimistic” data-driven online algo-

rithm has better average performance, with about 60% of trials

having a normalized cost of 1.25 or lower. As a trade-off, it has

a heavy tail of worst-case instances where the normalized cost

is worse than 2. However, online algorithms with ML advice (the

algorithmic approach of this work) achieve the best of both worlds:

good average performance as well as the best guarantee for the

worst-case tail performance through prudent usage of predictions

spanning between pure optimism and pure pessimism.

1.2 Algorithmic Approach

The goal of this paper is to design competitive algorithms with

advice for the PAES problem. Our approach is inspired by the recent

effort on integrating machine learned (ML) advice to improve the

practical performance of online algorithms [14, 16, 22, 24]. The key

motivation is two-fold: (1) to keep the core competency of online

algorithms, i.e., performance guarantee against the worst-case; and

(2) to achieve a provably improved performance if the accuracy of

ML-predictor is satisfactory. The twomotivations could be analyzed

for learning-assisted online algorithms [22, 24] by introducing the

notions of (1) robustness that characterizes the first motivation; and

(2) consistency that characterizes the second one.

Specifically, suppose that A is a learning-assisted online algo-

rithm that leverages an ML-predictor in decision making. The

algorithm A is (𝛼,𝛾)-competitive where 𝛼 and 𝛾 represent the

robustness and consistency of A, respectively. That is, the com-

petitive ratio of A is always less than 𝛼 regardless of the error in

ML-predictor. Also, A is 𝛾-consistent if with perfect predictions

it achieves the competitive ratio of 𝛾 . Robustness measures how

well the algorithm does in the worst-case of poor predictions, while

consistency measures how well the algorithm does under perfect

predictions. In this framework, the performance of an algorithm is

evaluated using two criteria, i.e., robustness and consistency. Hence,

investigating the optimality of an algorithm naturally leads to the

consideration of Pareto optimality. Therefore, the eventual goal

in this setting is to design an algorithm A that is Pareto-optimal,

meaning that there is no other algorithm that can achieve a bet-

ter consistency (resp., robustness) than A without sacrificing the

robustness (resp., consistency).

With this analytical framework, one is able to achieve “the best

of both worlds” paradigm from the perspective of learning-assisted

competitive algorithms. While it might slightly degrade the ro-

bustness against worst-case, or ideally maintain the worst-case

guarantee, it resolves the fundamental drawback of competitive

analysis of pessimistic decision making by incorporating ML predic-

tions. More importantly, unlike classic prediction-based competitive

designs [7, 9, 10, 15], the framework used in this paper leverages a

trust parameter that determines how much the algorithms trust the

predictors, enabling the full spectrum coverage from pure worst-

case to fully prediction-based decision making.
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Table 1: A summary of theoretical results. Here 𝜆 ∈ (0, 1] is
the trust parameter, 𝛽 ∈ (0, 1) is a problem-specific parame-

ter, and Φ1,Φ2 are expressions for the randomized algorithm

defined in Algorithm 3.

Algorithm Theoretical results Property

OnMLEng
(Deterministic)

Robustness:

1 + (1 − 𝛽)/𝜆
Consistency:

1 + 𝜆 (1 − 𝛽)

OnMLEng is
Pareto optimal

rOnMLEng
(Randomized)

Robustness:

max{1+Φ1 (1 − 𝛽),
1 + Φ2 (1 − 𝛽)
[ (𝑒1/𝜆 − 1 − 1/𝜆) (1/𝜆 − 1) + 1/𝜆2 ] }
Consistency:

max{1 + Φ1𝜆
2 (1 − 𝛽),

1+Φ2 (1 − 𝛽) }

rOnMLEng
dominates the

Pareto optimal

deterministic

algorithm

1.3 Summary of Contributions

Inspired by the above direction of learning-assisted algorithm de-

sign, we develop deterministic and randomized algorithms for PAES

that take into account advice from an ML model in decision making.

This paper makes the following contributions, with a summary of

theoretical results outlined in Table 1.

First, we propose OnMLEng, a deterministic algorithm parame-

terized by a trust parameter 𝜆 ∈ (0, 1], that achieves a competitive

ratio of 1+ (1− 𝛽)/𝜆, where 𝛽 ∈ (0, 1) is a problem-specific parame-

ter that determines the ratio between the unit price of the grid and

local generator. We show that OnMLEng is (1+ (1−𝛽)/𝜆)-robust and
(1 + 𝜆(1 − 𝛽))-consistent. The trust in ML prediction is interpreted

as follows. Greater trust in ML prediction is achieved by setting 𝜆

close to 0, which means that OnMLEng is 1-consistent, i.e., it achieves
the optimal performance with perfect advice. On the other hand,

less trust in ML advice is achieved by setting 𝜆 close to 1, and the

robustness result guarantees the optimal online competitive ratio

of 2 − 𝛽 as in [33]. More importantly, we show that OnMLEng is

Pareto-optimal, showing that our deterministic algorithm achieves

the best possible robustness and consistency bounds.

Second, we propose rOnMLEng, a randomized algorithm with a

trust parameter 𝜆 that has both robustness and consistency guaran-

tees.With 𝜆 = 1, rOnMLEng recovers the competitive ratio of the best

randomized algorithm with the competitive ratio of 𝑒/(𝑒 − 1 + 𝛽) ≤
1.58. With 𝜆 → 0, rOnMLEng is 1-consistent, i.e., it behaves opti-

mally. The design and analysis of rOnMLEng is a significant theoret-
ical contribution of this paper. Specifically, it is worth noting that

the probability distribution functions of rOnMLEng are carefully

designed to achieve solid robustness and consistency guarantees.

These distribution functions are customized based on Yao’s prin-

ciple [32] to provide robustness and consistency results in a more

systematic manner compared to the randomized algorithm design

for online problems in [16, 22, 24]. Finally, we show that rOnMLEng
dominates the Pareto-optimal deterministic algorithm OnMLEng.

Last, we empirically evaluate the performance of the algorithms

using real-world data traces. We use energy demand traces from

Akamai data centers [23] as an example of large-scale industrial

load, as well as energy price values from New York energy mar-

ket (NYISO). The results show the improved performance of our

proposed online algorithms with ML advice as compared to the

purely online algorithm. We also investigate the impact of several

parameters and provide insights that reveal the practical benefits

of learning-assisted algorithms.

2 PROBLEM STATEMENT

We consider the scenario where the energy demand can be covered

by either local generators or the external grid. The peak-aware

energy scheduling problem (PAES) aims to prudently choose the

source of energy, so that the energy demand can be met at each

time step while the total cost is minimized.

We focus on one billing cycle T = {1, · · · ,𝑇 } with 𝑇 discrete

time slots of uniform length. The billing cycle is usually one month

and the length of each slot is 5 minutes. Let the energy demand in

slot 𝑡 be 𝑒 (𝑡) and 𝒆 = [𝑒 (𝑡)]𝑡 ∈[𝑇 ] . We consider an online scenario

in which the values of demand are unknown for future slots. The

demand can be covered by two sources, the local generator and
external grid. The local generator can satisfy at most 𝐶 ≥ 1 KWs of

demand in each slot, with cost 𝑝𝑔 . In reality, some traditional gen-

erators [21] have maximum ramp-up and ramp-down constraints

that limit the change of output between two adjacent slots. In this

paper, we focus on “fast-responding" generators that can ramp up

and down without any limit. In experiments (§6.3.3), we investigate

the impact of ramp constraints.

We consider a typical energy cost model for industrial energy

customers that follows a hybrid charging model that has both total

usage (a.k.a. energy charge) and peak usage (a.k.a. demand charge)

components. The energy cost is the sum of the following two terms:

(1) the usage-based pricing, which is the total energy usage over the

cycle, and (2) the peak pricing, which is the peak demand drawn

over the cycle. Following the dynamics of the energy market, the

grid provides electricity with a spot price 𝑝 (𝑡) at time 𝑡, where we

assume 𝑝 (𝑡) ≥ 𝑝min > 0. In reality, the unit cost of local genera-

tors 𝑝𝑔 is usually higher than that of external grid, i.e., 𝑝𝑔 ≥ 𝑝 (𝑡).
Otherwise, it is always optimal to use local generators as much

as possible for both online and offline algorithms. However, the

expensive local generator can shave the peak demand (peak charge)

of the external grid. In addition, 𝑝𝑚 is the peak charge price that

is known and fixed over the billing cycle. Note that 𝑝𝑚 is usually

more than 100 times larger than 𝑝 (𝑡). For ease of exposition, denote
𝛽 ≜ 𝑝min/𝑝𝑔 < 1 as the ratio between the minimum grid price and

the unit cost of local generation. We characterize the performance

of our algorithms as a function of 𝛽 .

Let 𝑣 (𝑡) and𝑢 (𝑡) be the optimization variables that determine the

amount of electricity procured from the external grid and local gen-

erator, respectively. For the grid, its cost consists of volume charge

and peak charge. The volume charge is the sum of volume cost over

the time horizon, i.e.,

∑
𝑡 𝑝 (𝑡)𝑣 (𝑡) . The peak charge is based on the

maximum single-slot power and peak price 𝑝𝑚, i.e., 𝑝𝑚 max𝑡 𝑣 (𝑡)
[30, 33]. The cost of using local generators, is

∑
𝑡 𝑝𝑔𝑢 (𝑡) . There-

fore, with 𝒖 = [𝑢 (𝑡)]𝑡 ∈T and 𝒗 = [𝑣 (𝑡)]𝑡 ∈T , the PAES problem is

defined as

PAES : min

𝒖,𝒗

∑
𝑡 ∈T

𝑝 (𝑡)𝑣 (𝑡) + 𝑝𝑚 max

𝑡
𝑣 (𝑡) +

∑
𝑡 ∈T

𝑝𝑔𝑢 (𝑡)

s.t., 𝑢 (𝑡) + 𝑣 (𝑡) ≥ 𝑒 (𝑡), 𝑡 ∈ T ,
𝑢 (𝑡) ≤ 𝐶, 𝑡 ∈ T ,
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𝑣 (𝑡) ≥ 0, 𝑢 (𝑡) ≥ 0, 𝑡 ∈ T ,

where the first constraint ensures that the demand is satisfied, and

the second constraint is due to the generator capacity limitation.

We note that in our algorithm design we focus on a basic version of

PAES, where the demand 𝑒 (𝑡) only takes binary values 0 or 1. Our

algorithms and competitive analysis, however, could be extended

to the general case as discussed in Section 4.6.

PAES with 𝑒 (𝑡) and 𝑝 (𝑡) values known in advance is a linear

program. Hence, it can be solved using any linear programming

algorithm. However, in practice 𝑒 (𝑡) and 𝑝 (𝑡) are unknown in ad-

vance and hard to predict, hence an online approach is required. We

use a recently proposed algorithmic framework [22, 24] for devising

online algorithms with advice, and provide a brief overview of the

framework in the following section.

3 ALGORITHMIC FRAMEWORK

In this section, we give an overview of the recently proposed frame-

work for designing competitive algorithms with ML advice [22, 24].

In this framework the goal is to utilize ML advice to improve the

performance of online algorithms, both in theory and practice. To-

ward this, it is assumed that there is advice from an untrusted ML

model that might be subject to error or even vulnerable to malicious

activities. The goal is to develop online algorithms that are able to

determine the level of trust in the ML advice.

Trust. The trust parameter determines how much the algorithm

trusts the ML advice. More formally, let 𝜆 ∈ (0, 1] be a trust param-

eter that indicates the level of trust that we place on the advice. In

our algorithms, setting 𝜆 → 0 represents full trust in ML advice,

and 𝜆 → 1 indicates no trust at all, i.e., making worst-case decisions

similar to the classic competitive framework. Any value in between

indicates partial trust in ML advice.

Robustness and Consistency. The performance of an algorithm

in this framework is captured using two metrics that reflect two

extreme cases when the advice is inaccurate and when the advice

is fully accurate. Specifically, suppose that A𝜆 is an online algo-

rithm that leverages ML advice in decision making with the trust

parameter 𝜆. Let 𝜖 be the error of the ML advice, which is the ab-

solute difference between the advice and actual outcome. Denote

ALG(𝜖, 𝜆) as the cost of A𝜆 given 𝜆 as the trust parameter and

𝜖 as the error of the ML advice, and OPT as the offline optimum,

respectively.

Definition 1. (Robustness)A𝜆 is 𝛼-robust if ALG(𝜖, 𝜆) ≤ 𝛼 ·OPT
for all 𝜖 and feasible instances to the problem.

Definition 2. (Consistency) A𝜆 is 𝛾-consistent if ALG(0, 𝜆) ≤
𝛾 · OPT when the ML advice is accurate (𝜖 = 0) and for all feasible
instances to the problem.

Note that 𝛼 and 𝛾 could be functions of the problem parameters

as well as 𝜆 and 𝜖 . Intuitively, robustness measures how well the

algorithm does in the worst-case of poor advice, and consistency

measures how well the algorithm does with perfect advice.

Pareto Optimality. In the traditional framework with competitive

ratio as the performance metric, the notion of optimality refers

to an online algorithm that achieves the best possible competitive

ratio. In the new framework with ML advice, the performance of

algorithms is measured by two criteria: robustness and consistency.

The superiority of an algorithm in a bi-criteria setting against an

alternative can be measured using the notion of dominance and
Pareto optimality.

Definition 3. (Dominance) For comparing two online algorithms
𝐴 and 𝐵, we say that 𝐴 dominates 𝐵 if it is better in both criteria, i.e.,
𝛼𝐴 ≤ 𝛼𝐵 and 𝛾𝐴 ≤ 𝛾𝐵 .

With the trust parameter, we develop a class of online algorithms

in which each instance of the algorithm refers to a specific value of

trust parameter. Hence, for analyzing the dominance of the algo-

rithms, our goal is to investigate the Pareto frontier properties of a

class of algorithms.

Definition 4. (Pareto Optimality) Let A = {𝐴𝜆, 𝜆 ∈ (0, 1]} be
the class of online algorithms with trust parameter 𝜆. A is Pareto-
optimal if for any other online algorithm 𝐵, there exists 𝐴𝜆 ∈ A such
that 𝐴𝜆 dominates 𝐵.

In Section 4, we develop deterministic and randomized algo-

rithms using the above framework and analyze their robustness,

consistency, and Pareto-optimality in Section 5. Our proposed algo-

rithms are built on top of existing fully online algorithms that do

not use ML advice for decision making. We briefly introduce these

algorithms in the following subsection.

Existing Online Algorithms without ML advice. The idea of prior
online algorithms (OnEng) [33] lies in constructing a break-even

point that balances between the cost of using generators and the

peak charge of using the grid. Specifically, break-even point 𝜎 is

𝜎 =
1

𝑝𝑚

[ ∑
𝑡 ∈T
(𝑝𝑔 − 𝑝 (𝑡))𝑒 (𝑡)

]
. (1)

The parameter 𝜎 plays a critical role in algorithm design. For an

optimal offline algorithm, we have 𝑣∗ (𝑡) = 𝑒 (𝑡), ∀𝑡 ∈ T , when
𝜎 > 1; and 𝑣∗ (𝑡) = 0, ∀𝑡 ∈ T , otherwise. The optimal output of the

local generator is then 𝑢∗ (𝑡) = 𝑒 (𝑡) − 𝑣∗ (𝑡) .
The value of 𝜎 can be calculated easily in an offline manner. How-

ever, with unknown price and demand values, this value cannot

be fully computed online. The high-level idea of OnEng is make a

decision based on a partially-calculated value of 𝜎 over the current

and past slots. Specifically, OnEng keeps using the local genera-

tor initially and switches to the grid at the first time 𝜏 such that∑𝜏
𝑡=1 (𝑝𝑔 − 𝑝 (𝑡))𝑒 (𝑡) ≥ 𝑝𝑚 . The competitive ratio of OnEng is 2− 𝛽 .

The proof ideas are similar to the ski-rental problem and they

show that the break-even point is the best balance between being

aggressive (paying the one-time premium peak cost) and being

conservative (using the local generator). Finally, the competitive

ratio has been improved to 𝑒/(𝑒 − 1 + 𝛽) ≤ 1.58, by developing

a randomized algorithm (rOnEng), in which the algorithm starts

purchasing grid electricity when

∑
𝜏 (𝑝𝑔 − 𝑝 (𝜏)) ≥ 𝑠 · 𝑝𝑚 , where 𝑠

is chosen randomly according to the following distribution

𝑓 ∗ (𝑠) =


𝑒𝑠

𝑒−1+𝛽 , when 𝑠 ∈ [0, 1];
𝛽

𝑒−1+𝛽 𝛿 (0), when 𝑠 = ∞;
0, otherwise.

(2)
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4 ALGORITHM DESIGN

In this section, we first introduce how the ML advice could be

constructed for the PAES problem, then present a Pareto-optimal

deterministic algorithm, and finally a randomized algorithm that

dominates our proposed Pareto-optimal deterministic algorithm.

We also highlight our technical results. The detailed derivation of

the theoretical results are given in Section 5.

4.1 ML advice for the PAES problem

First, we introduce the ML advice. Assume that there is a learning

model that predicts the future values of external grid prices, 𝑝 (𝑡),
and energy demand, 𝑒 (𝑡). The key idea in our online algorithm

design lies in constructing a break-even point using these two

values so as to balance between the cost of using generators and

the peak charge of using the grid. Given these two values, let 𝜎̂ be

the predicted break-even point using the learning model as

𝜎̂ ≜
1

𝑝𝑚

[ ∑
𝑡 ∈T
(𝑝𝑔 − 𝑝 (𝑡))𝑒 (𝑡)

]
. (3)

Note that it is even possible that the ML model directly predicts the

value of 𝜎̂ based on historical break-even points. Hence, predicting

individual values of 𝑝 (𝑡) and 𝑒 (𝑡) for the cycle is not needed.

4.2 A Simple Consistent and Non-Robust

Algorithm

We first show that there exists an algorithm Eng-dd for PAES that

naively uses the predicted break-even point and is 1-consistent, i.e.,

its competitive ratio is 1 when the advice is accurate. However, it is

straightforward to show that this algorithm is not robust since the

competitive ratio can be arbitrarily large in the case of incorrect

predictions. We empirically compare the result of our robust and

consistent algorithms with this simple algorithm in Section 6.

Algorithm 1 Eng-dd

if 𝜎̂ > 1 then

use the local generator entirely

else

use the grid entirely

end if

4.3 OnMLEng: A Deterministic Robust and

Consistent Algorithm

We propose an online algorithm OnMLEng with ML advice that uses

the trust parameter 𝜆 ∈ (0, 1] to determine the level of trust in

advice as introduced in Section 3. OnMLEng makes decisions based

on the values of 𝜎̂ and 𝜆 as summarized in Algorithm 2. Note that

in OnMLEng, 𝜆 → 0 (full trust) is equivalent to running Eng-dd.

Theorem 1. The OnMLEng algorithm achieves the competitive ratio
of 1 + (1 − 𝛽)/𝜆, where 𝜆 ∈ (0, 1].

Corollary 1. OnMLEng is (1 + (1 − 𝛽)/𝜆)-robust.

Corollary 2. OnMLEng is (1 + 𝜆(1 − 𝛽))-consistent.

Algorithm 2 OnMLEng

if 𝜎̂ > 1 then

𝑠 ← 𝜆

else

𝑠 ← 1/𝜆
end if

Use local generator first and commit to switching to the grid

starting at the first time 𝜏 where∑𝜏

𝑡=1
(𝑝𝑔 − 𝑝 (𝑡))𝑒 (𝑡) ≥ 𝑠 · 𝑝𝑚 .

Algorithm 3 rOnMLEng

Denote Φ1 =
1

𝑒𝜆−1+𝜆2𝛽 and Φ2 =
1

𝑒
1

𝜆 −1+ 1

𝜆2
𝛽

if 𝜎̂ > 1 then

𝑓 ∗
1
(𝑠) =


Φ1𝑒

𝑠 , 𝑠 ∈ [0, 𝜆];
Φ1𝜆

2𝛽𝛿 (0), 𝑠 = ∞;
0, otherwise.

else

𝑓 ∗
2
(𝑠) =


Φ2𝑒

𝑠 , 𝑠 ∈ [0, 1
𝜆
];

Φ2

1

𝜆2
𝛽𝛿 (0), 𝑠 = ∞;

0, otherwise.

end if

Pick a value 𝑠 randomly according to probability distribution

𝑓 ∗
1
(𝑠) or 𝑓 ∗

2
(𝑠), and switch to grid electricity starting at the first

time 𝜏 where
𝜏∑
𝑡=1

(𝑝𝑔 − 𝑝 (𝑡))𝑒 (𝑡) ≥ 𝑠 · 𝑝𝑚 .

Intuitively, 𝑠 ∈ (0,∞) is a function of 𝜎̂ and 𝜆 that determines

when OnMLEng switches to the grid. Setting 𝜆 = 1 will fix 𝑠 = 1,

which recovers the robustness competitive ratio of 2 − 𝛽 from the

optimal online algorithm OnEng [33]. This implies that with bad

advice it suffices to completely distrust the advice to be robust

against worst-case performance. On the other hand, setting 𝜆 → 0

will result in 𝑠 → 0 or 𝑠 →∞, which means immediately switching

to the grid or entirely staying with the local generator respectively.

This results in a consistency of 1. Tuning the value of 𝜆 effectively

adjusts the level of trust in advice by determining 𝑠 .

Next, in Theorem 2, we show that OnMLEng represents a family

of Pareto-optimal algorithms specified by the trust parameter 𝜆,

based on Definition 4.

Theorem 2. OnMLEng defines the Pareto frontier of robustness
and consistency for the PAES problem, and is Pareto-optimal for all
deterministic algorithms that solve PAES.

The above result shows that OnMLEng defines the Pareto fron-

tier. In other words, there is no other family of deterministic algo-

rithms that can achieve a better consistency (resp., robustness) than

OnMLEng without sacrificing the robustness (resp., consistency).

Furthermore, we show that for any deterministic algorithm A
that solves PAES, it can be expressed by a deterministic algorithm

with a switching parameter, i.e., OnMLEng is Pareto-optimal for any

deterministic algorithm A .
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4.4 rOnMLEng: A Randomized Robust and

Consistent Algorithm

In randomized algorithms, the decision making is based on ran-

dom variable draws from a proper probability distribution function.

We develop a randomized algorithm, rOnMLEng, as summarized in

Algorithm 3. In rOnMLEng we modify the probability distribution

function of rOnEng [33] based on 𝜆 and 𝜎̂ as in Eq. (3).

Theorem 3. rOnMLEng achieves a competitive ratio of

max{1+Φ1 (1− 𝛽), 1+Φ2 (1− 𝛽) [(𝑒1/𝜆 − 1− 1/𝜆) (1/𝜆 − 1) + 1/𝜆2]},

where 𝜆 ∈ (0, 1], Φ1 =
1

𝑒𝜆−1+𝜆2𝛽 and Φ2 =
1

𝑒1/𝜆−1+1/𝜆2 ·𝛽 .

Corollary 3. rOnMLEng is (max{1+Φ1 (1−𝛽), 1+Φ2 (1−𝛽) [(𝑒1/𝜆−
1 − 1/𝜆) (1/𝜆 − 1) + 1/𝜆2]})-robust.

Corollary 4. rOnMLEng is (max{1+Φ1𝜆
2 (1−𝛽), 1+Φ2 (1−𝛽)})-

consistent.

Corollary 5. The consistency and robustness bounds of rOnMLEng
are strictly better than those of OnMLEng.

The probability distributions 𝑓 ∗
1
(𝑠), 𝑓 ∗

2
(𝑠) are designed to satisfy

two critical conditions. First, setting 𝜆 = 1 retains the original

distribution function of the optimal randomized online algorithm

rOnEng, and therefore would recover its competitive ratio of 𝑒/(𝑒 −
1 + 𝛽). Second, setting 𝜆 → 0 guarantees picking 𝑠 = 0 or 𝑠 =

∞ depending on the advice driven break-even point 𝜎̂ . This will

result in a competitive ratio of 1 for consistency, meaning matching

optimal performance once the ML advice is accurate. Note that this

follows the same selection of 𝑠 in OnMLEng when 𝜆 → 0.

Corollary 5 shows that the proposed randomized algorithm

rOnMLEng dominates OnMLEng, the Pareto optimal deterministic

algorithm. Lastly, in Appendix B we show that the randomized al-

gorithm that naïvely modifies the distribution function of OnEng (2)
based on the guidelines in deterministic algorithm fails to achieve

satisfactory robustness and consistency at the same time.

4.5 OnMLEng-dyn and rOnMLEng-dyn: Dynamic

Break-even Point Algorithms

OnMLEng and rOnMLEng utilize a static predicted break-even point

𝜎̂ that persists over the entire billing cycle, but our results can

also be extended to utilizing a set of dynamic break-even points

𝝈̂ = {𝜎̂1, 𝜎̂2, ..., 𝜎̂𝑇 }. Having a dynamic break-even point captures a

broad range of algorithms and allows a rich design space within

OnMLEng and rOnMLEng. For example, predictions can be adjusted

and possibly improved according to observed values over time. Al-

gorithms that use a sliding window of predictions also fit within this

framework, since the break-even point is dynamically calculated

according to the available predictions.

Define OnMLEng-dyn as the version of OnMLEng where the set of

predictions at each time step may change over time. In other words,

let ê𝜏 = [𝑒𝜏 (𝑡)]𝑡 ∈[𝑇 ] , p̂𝜏 = [𝑝𝜏 (𝑡)]𝑡 ∈[𝑇 ] , be the set of predictions
for demand and grid price at time 𝜏 ∈ [1,𝑇 ]. Then the advice is

dynamically provided as

𝜎̂𝜏 =
1

𝑝𝑚

[ ∑
𝑡 ∈T
(𝑝𝑔 − 𝑝𝜏 (𝑡))𝑒𝜏 (𝑡)

]
, (4)

and the decision to switch from the local generator to the grid is

made according to 𝜎̂𝜏 and 𝜆. Similarly, define rOnMLEng-dyn as the

version of rOnMLEng using a set of break-even points 𝝈 , with all

else remaining the same. The detailed forms of OnMLEng-dyn and
rOnMLEng-dyn can be found in Appendix C.

Theorem 4. The robustness and consistency of OnMLEng-dyn and
rOnMLEng-dyn are equivalent to those of OnMLEng and rOnMLEng,
respectively.

While the theoretical bounds of dynamic break-even algorithms

are the same for robustness, consistency, and Pareto optimality,

these algorithms are of practical importance because they can cap-

ture scenarios such as a sliding window of available predictions or

improved prediction quality over time. We empirically evaluate the

performance of one such algorithm in Section 6.

4.6 Extending Algorithms for Energy Problem

to the General Case

The proposed algorithms for PAES in the paper are analyzed for a

basic version inwhich the demand takes binary values of 0 or 1. Also,

the corresponding competitive analyses are dedicated to the basic

setting. However, the results can be straightforwardly extended to

the general problem of non-negative integer demand. This is done

by dividing the integer demand 𝑒 (𝑡) into multiple sub-problems

with binary demand. At a given layer 𝑖 , the layered demand at time

𝑡 is 1 if 𝑒 (𝑡) ≤ 𝑖 and 0 otherwise. Then the result in [33, Theorem 3]

can be applied. By using the layered sub-problems strategy, the

competitive ratio of an algorithm which solves the sub-problem

with binary demand is an upper bound to the competitive ratio of

an algorithm which solves the general integer demand problem.

Similarly, the robustness and consistency of the binary demand

setting provide an upper bound to the robustness and consistency

of the general setting. Further proof and discussion on extending

to the general case is in Appendix E.

5 PROOFS OF MAIN RESULTS

In this section, we provide the main proofs for the algorithms. The

proofs for the competitive ratio of the randomized algorithm and

dynamic algorithms are given in Appendix A and C.

5.1 Proof of Theorem 1

We analyze the competitiveness of OnMLEng. Given the structure of

Algorithm 2, we can parameterize any online algorithm by parame-

ter 𝑠 . LetA𝑠 be an online algorithm with a specific parameter 𝑠 , e.g.,

OnMLEng is in this category with the value of 𝑠 as in Algorithm 2.

Let ℎ(A𝑠 , 𝜎) be the ratio between the cost of algorithmA𝑠 and that

of an optimal offline algorithm given 𝜎 . The following proposition

characterizes the closed-form value of ℎ(A𝑠 , 𝜎), and facilitates the

analysis of the proposed algorithm.

Proposition 1. [33] For any online algorithm A𝑠 , we have

when 𝜎 ≤ 1, ℎ(A𝑠 , 𝜎) =
{
1, if 𝑠 > 𝜎 ;

1 + 1−𝜎+𝑠
𝜎 (1 − 𝛽), otherwise.

when 𝜎 > 1, ℎ(A𝑠 , 𝜎) =

1 + (𝜎−1) (1−𝛽)(𝜎−1)𝛽+1 , if 𝑠 > 𝜎 ;

1 + 𝑠 (1−𝛽)
(𝜎−1)𝛽+1 , otherwise.
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We proceed to prove the robustness and consistency results. We

first consider the robustness. The worst-case cost ratio for a general

deterministic algorithm A𝑠 with parameter 𝑠 is when 𝜎 = 𝑠 , where

the online algorithm pays for the peak charge premium but has no

net demand to serve anymore. From Proposition 1, this worst case

cost ratio max𝜎 ℎ(A𝑠 , 𝜎) is

max

𝜎
ℎ(A𝑠 , 𝜎) =

{
1 + 1

𝑠 (1 − 𝛽), if 𝑠 ≤ 1;

1 + 𝑠 (1−𝛽)
(𝑠−1)𝛽+1 , otherwise.

(5)

We compute the competitive ratio of OnMLEng under two cases:

(i) 𝜎̂ > 1: According to OnMLEng, 𝑠 = 𝜆 < 1. From (5), we have

CR(A𝜆) = 1 + (1 − 𝛽)/𝜆.
(ii) 𝜎̂ ≤ 1: According to OnMLEng, 𝑠 = 1/𝜆 > 1. From (5), we have

CR(A
1/𝜆) = 1 + (1−𝛽)/𝜆

(1/𝜆−1)𝛽+1 .
This means that OnMLEng is (1 + (1 − 𝛽)/𝜆)-robust. Note that

setting 𝜆 = 1 recovers the competitive ratio of the optimal online

algorithm.

Next, we consider the consistency. For consistency guarantees,

we compute the competitive ratio assuming the predictions are

correct. There are two cases to consider here:

(i) 𝜎̂ = 𝜎 > 1, i.e., 𝑠 = 𝜆. From Proposition 1, when 𝜎 > 1 ≥ 𝑠 = 𝜆,

we have CR(A
1/𝜆) = 1 + 𝜆 (1−𝛽)

(𝜎−1)𝛽+1 ≤ 1 + 𝜆(1 − 𝛽) .
(ii) 𝜎̂ = 𝜎 ≤ 1, i.e., 𝑠 = 1/𝜆. From Proposition 1, when 𝜎 ≤

1 ≤ 𝑠 = 1/𝜆, the worst case occurs when 𝑠 = 1/𝜆 = 𝜎 . Then

CR(A
1/𝜆) = 1 + 𝜆(1 − 𝛽) .

This means that OnMLEng is (1 + 𝜆(1 − 𝛽))-consistent. Note that
setting 𝜆 → 0 results in a competitive ratio of 1, which means

optimal performance with accurate predictions.

5.2 Proof of Theorem 2

First, we establish that OnMLEng is Pareto optimal for all deter-

ministic algorithms with a switching parameter. From Theorem 1,

OnMLEng is (1 + 𝜆(1 − 𝛽))-consistent and (1 + 1

𝜆
(1 − 𝛽))-robust.

Denote the consistency and robustness bounds as 𝛾𝐴 = 1+ 𝜆(1− 𝛽)
and 𝛼𝐴 = 1 + 1

𝜆
(1 − 𝛽).

Consider an arbitrary algorithm 𝐴′ that takes prediction-based
advice with a consistency bound 𝛾𝐴′ and robustness bound 𝛼𝐴′ . 𝐴

′

switches at either 𝑖 · 𝑝𝑚 or 𝑗 · 𝑝𝑚 based on the advice. Without loss

of generality, we assume 𝑖 ≤ 𝑗 .

Lemma 1. A’ must be at least 𝛾𝐴′ ≥ 1

𝑗 (1 − 𝛽)−consistent and
𝛼𝐴′ ≥ 1

𝑗 (1 − 𝛽)-robust.

Proof. We consider a couple of cases for the true break-even

point 𝜎 utilizing Proposition 1: First, when 𝜎 ≤ 1, 𝐴′ will either
select 𝑠 = 𝑖 or 𝑠 = 𝑗 for competitive ratios of 1 + 1

𝑖 (1 − 𝛽) or
1 + 1

𝑗 (1 − 𝛽), respectively. We now consider the corresponding

consistency and robustness:

(i) For consistency, 𝐴′ has perfect predictions and knows exactly
that 𝜎 ≤ 1. As a result, 𝐴′ will rationally pick 𝑠 = 𝑗, since 𝑖 ≤ 𝑗

implies that
1

𝑗 (1 − 𝛽) ≤
1

𝑖 (1 − 𝛽). Then 𝛾𝐴′ ≥
1

𝑗 (1 − 𝛽).
(ii) For robustness, 𝐴′ does not have perfect predictions and

cannot have full certainty that 𝜎 ≤ 1. Then𝐴′ could rationally pick
𝑠 = 𝑖 or 𝑠 = 𝑗 , and in the worst case 𝑠 = 𝑖 will be chosen. Then

𝛼𝐴′ ≥ 1

𝑖 (1 − 𝛽). □

Assume that 𝐴′ has a lower consistency bound than OnMLEng,
i.e. 𝛾𝐴′ ≤ 1 + 𝜆(1 − 𝛽). It follows that 1 + 𝑖 (1 − 𝛽) ≤ 1 + 𝜆(1 − 𝛽),
and subsequently 𝑖 ≤ 𝜆. Applying this to the robustness bound for

𝛼𝐴′ yields 𝛼𝐴′ ≥ 1 + 1

𝑖 (1 − 𝛽) ≥ 1 + 1

𝜆
(1 − 𝛽) = 𝛼𝐴 .

This concludes the proof that OnMLEng is Pareto optimal for all

deterministic algorithms with a switching parameter, since 𝛾𝐴′ ≤
𝛾𝐴 guarantees that 𝛼𝐴′ ≥ 𝛼𝐴 for any algorithm 𝐴′ with switching

parameters 𝑖, 𝑗 .

Lemma 2. Any deterministic algorithm for PAES can be expressed
by a deterministic algorithm with a switching parameter.

The main idea for proving this lemma is that time slots assigned

to the local generator and the grid can be reordered such that the

assignment can be determined by a single parameter. The full details

of the proof are given in Appendix D. Combining Lemma 1 and

Lemma 2 concludes the proof of Theorem 2.

(a) New York City (b) Rochester

Figure 2: Time-varying energy demand with incorporation

of renewables for two Akamai data centers in NY. Although

there is a roughly diurnal pattern for energy demand inNew

York City, Rochester is comparably more unpredictable.

6 EXPERIMENTS

We use real-world traces to experimentally evaluate the perfor-

mance of proposed learning-assisted algorithms as compared to

the pure online algorithms and the offline optimum. Our proposed

algorithms characterize a class of algorithms that are determined

by the choice of trust parameter. Our experiments consider such al-

gorithms in both the worst-case performance and practical average-

case performance scenarios. The results answer these questions:

(1) How does the OnMLEng algorithm compare to the pure on-
line algorithm? Our results show that OnMLEng consistently

achieves better average performance than the pure online

algorithm, sometimes even achieving near-optimality.

(2) What is the effect of varying prediction quality via renew-
able penetration? Lower-quality predictions noticeably de-

grade the worst-case performance of OnMLEng instances that
are too optimistic about advice, while the performance of

OnMLEng instances with more cautious trust parameter se-

lection is robust to poorer prediction quality.

(3) How do problem parameters such as peak price and grid capac-
ity constraints affect the performance? The normalized cost of

the best performing OnMLEng algorithm remains extremely

close to optimal under four different varying parameters.
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Table 2: Summary of algorithms that are evaluated

The online algorithms with ML advice that we evaluate

OnMLEng-opt OnMLEng with the optimal trust parameter (offline)

OnMLEng-hist
OnMLEng with the best historical trust parameter

(online)

OnMLEng-hist-dyn
OnMLEng-hist with time-varying predictions that

are adjusted to align with observed values

Eng-dd
A simple data-driven algorithm for PAES that fully

trusts the break-even point of the previous

instance

Other algorithms for comparison

ENG-OPT Optimal offline cost for PAES

OnEng [33] The best competitive online algorithm for PAES

6.1 Data Traces and Comparison Algorithms

6.1.1 Data Center Energy Demands. For representing the energy
demands of data centers, we use a dataset including the server

load information for 300+ Akamai data centers across the United

States, collected every 5 minutes [23]. Since some data centers are

co-located with on-site renewable sources, we use wind data traces

from [3] and inject renewable sources with 40% penetration in

our experiments, unless the penetration level is otherwise stated.

Two sample one week trajectories of energy demand for different

locations in the United States are depicted in Figure 2. While we

see a roughly diurnal pattern for the New York City energy de-

mand, the pattern is less visible for Rochester. For both cities, the

high unpredictability of renewable generation leads to comparable

unpredictability in the net energy demand, regardless of diurnal

patterns in energy demand. These observations show the impor-

tance of ML advice, as well as the possibility of tuning the level of

trust in a principled manner.

6.1.2 Energy Pricing Data. We use the 2018 spot energy prices

from the New York Electricity Market (NYISO). The value of spot

prices changes in real-time over intervals of 5 minutes. As an ex-

ample, the spot prices in April 2018 vary between $13.69/MWh

and $64.62/MWh. The value of 𝑝𝑚 is set to be roughly 100 ×
max𝑡 ∈T 𝑝 (𝑡), which is based on common practice by U.S. utilities

such as PG&E and Duke Energy. The cost of local generation is set

to 𝑝𝑔 = max𝑡 ∈T 𝑝 (𝑡). Finally, the capacity of the local generator is

set to be roughly 60% of the energy demand.

6.1.3 Comparison Algorithms. Table 2 summarizes the acronyms

for different algorithms in our experiments. Here, we use two ap-

proaches to determine the trust parameter: first, offline optimal

selection of the trust parameter – this approach searches over all

possible values of 𝜆 in a brute force manner as input to OnMLEng and
selects the best performing choice of 𝜆. Although selecting the best

choice of 𝜆 is not possible in online settings, the optimal hybrid algo-

rithm serves to demonstrate the full potential of algorithmswithML

advice. In experiments, the offline optimal algorithm OnMLEng-opt
is used for PAES. Second, as a practical online selection, we choose
the trust parameter based on the historical optimal value, that

is the best 𝜆 for the previous instance of the problem. The algo-

rithm OnMLEng-hist is used for this scenario. To demonstrate time-

varying predictions, algorithm OnMLEng-hist-dyn aligns the pre-
dictions used in OnMLEng-hist according to observed values in an

online manner.

In experiments, we report the normalized cost of different algo-

rithms. The normalized cost is the ratio between the cost of the

algorithm and the offline optimal cost (i.e., ENG-OPT for PAES). The

normalized cost is always greater than or equal to 1. The lower

the cost ratio of an algorithm, the better the performance. Finally,

to show how online algorithms with ML advice achieve the best

of both worlds, we compare their normalized cost to pure online

algorithms (OnEng [33]) and naive data-driven algorithms that fully

trust the advice (Eng-dd).

6.2 Large-scale Trace-Driven Evaluation

6.2.1 Analysis at Single Renewable Penetration Level. Wefirst evalu-

ate the performance of the proposed algorithms over a large variety

of locations and trials, with emphasis on demonstrating how the

proposed algorithms are able to achieve the best of both worlds.

To begin, we focus on the cumulative probability distribution of

normalized cost at a single penetration level. In Figure 3, we report

results for PAES over 338 locations and 30 trials at 30% renewable

penetration. Specifically, we observe that OnEng is strictly upper

bounded by the theoretically guaranteed bound of approximately

1.85, but the majority (over 80%) of locations have normalized cost

of greater than 1.6. The Eng-dd algorithm has comparatively better

normalized cost for the majority of locations, but has a heavy tail.

OnMLEng-opt and OnMLEng-hist clearly outperform OnEng and

Eng-dd since they leverage advice for better decision making. Last

but not least, the performance of OnMLEng and its variants largely

depend on the level of uncertainty in energy demand. To investigate

the impact of this uncertainty, we report additional experimental

results at varying renewable penetration levels in Appendix F.

6.2.2 Evaluating a Dynamic Break-even Point Algorithm. A natural

choice for a dynamic break-even point algorithmwithin OnMLEng-dyn
is one that aligns the predictions with observed past and current

values, i.e. once 𝑝 (𝑡), 𝑒 (𝑡) are observed at time 𝜏 ′ then the pre-

dictions for all current and future time slots 𝜏 ≥ 𝜏 ′ are set as

𝑝𝜏≥𝜏′ (𝑡) = 𝑝 (𝑡), 𝑒𝜏≥𝜏′ (𝑡) = 𝑒 (𝑡). This type of algorithm is a natural

middle ground between OnEng and OnMLEng, since the predicted
break-even points are gradually aligning with observed values.

We consider a variant of this algorithm OnMLEng-hist-dyn which

uses the best historical trust parameter, and compare it against

OnMLEng-hist. From Figure 4, we see that OnMLEng-hist-dyn is

slightly better than OnMLEng-hist in worst case and 99 percentile

scenarios, but functionally equivalent in the average case scenario.

This correlates closely with Theorem 4, as the two algorithms have

equivalent theoretical robustness bounds.

6.3 Evaluation Results for PAES

In this section, we investigate the impact of different parameters

on the performance of the proposed algorithms.

6.3.1 The Impact of Trust Parameter. Introducing the trust param-

eter in the algorithm design allows effective usage of predictions

in algorithmic actions. Specifically, setting 𝜆 close to 0 represents

more trust in predictions, while 𝜆 close to 1 represents almost no

trust in predictions. To scrutinize the impact of 𝜆 on the perfor-

mance of OnMLEng, in Figure 5(a) we vary the value of 𝜆 from 0

to 1. We report the average normalized cost over several locations
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Figure 3: Cumulative probability distribution of normalized cost of different algorithms at 30% penetration level. We consider

somekey observations from these plots. First, algorithmswithMLadvice almost strictly outperform OnEng inmeannormalized

cost, but careful selection of trust level is important as prediction quality decreases. Second, the worst-case performance in

OnMLEng-hist is noticeably robust to degrading prediction quality when compared to Eng-dd, indicating that careful selection

of trust level will restrict poor worst-case performance.

Figure 4: Cumulative probability distribution of dynamic vs. static break-even advice algorithms at 50% penetration. The key

observation is that OnMLEng-hist-dyn is slightly better than OnMLEng-hist inworst case scenarios, but equivalent in the practical

average case scenario.

(a) Trust parameter (b) Peak price (c) Ramp constraints (d) Capacity (e) Cost reduction

Figure 5: Evaluation results of five different experiments for PAES. Key observations are noted in 6.3.

and trials, with ML advice in three regimes: (i) accurate denotes
perfect ML advice, (ii) high error denotes poor ML advice, and (iii)

previous with the values of the previous run of the algorithm as

the ML advice. These three regimes represent a broad range of ML

advice and the goal is to investigate the impact of level of trust

in different algorithms. The notable observations are summarized

as follows: (1) With accurate ML advice, and 𝜆 ≤ 0.1, OnMLEng
achieves the optimal performance. (2) With high error in ML ad-

vice, unfavorable values of 𝜆 (high trust on prediction) lead to even

worse performance than the pure online algorithms. (3) Favorable

setting of 𝜆, e.g., 𝜆 ≥ 0.4 for OnMLEng, achieves better performance

even with high error in ML advice. This experiment signifies the

importance of setting right values for the trust parameter in order

to outperform purely online algorithms without advice.

6.3.2 The Impact of Peak Price. The peak price 𝑝𝑚 is an important

parameter that impacts the break-even point. Case studies show

that the peak charge varies substantially in different geographical

locations, ranging from 20% to 80% of the total electricity bill [30].

In this experiment, we investigate the impact of this parameter

on different algorithms. We scale the value of peak price from

1× to 20× of its original value and report the average normalized

cost values of 30 runs in Figure 5(b). The result shows that the

normalized cost of OnMLEng with trust 𝜆 = 0.5 is constantly better

than OnEng. OnMLEng-hist is always very close to OnMLEng-opt
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and is substantially better than OnEng. Interestingly, the normalized

costs of all algorithms are better in the extremes of low and high

peak prices. This is reasonable since with low peak prices it is

natural to use the grid. At high peak prices, the optimal decision is

clearly to fully utilize the generators. So, despite the uncertainty of

the input, decisions in these two extreme regimes are trivial.

6.3.3 The Impact of Ramp Constraints. The algorithms proposed

in this paper work for fast-response generators. In practice, there

are several generators that are slow-response and cannot switch

their output level quickly. The proposed algorithms are easily mod-

ified to incorporate ramp constraints. Specifically, let 𝑅 be the ramp

constraints, so that |𝑢 (𝑡) − 𝑢 (𝑡 − 1) | ≤ 𝑅,∀𝑡 ∈ T , i.e., the changes
in generator output level should be always less than 𝑅. We can

easily modify OnMLEng and OnEng, as explained in [34, Section 4],

to reflect the ramp constraint. The idea is to first run the algorithm

without the ramp constraints, and then, project the obtained values

to the feasible region to respect the ramp constraints. In Figure 5(c),

we vary the ramp to capacity ratio from 10% to 100%, and report the

average normalized cost of OnEng and OnMLEng. The result shows
that OnMLEng always achieves better performance than OnEng. Al-
though the normalized costs for OnEng and OnMLEng increase as we
relax the ramp constraints, for OnMLEng-hist and OnMLEng-opt
those values are robust.

6.3.4 The Impact of Local Generation Capacity. A drawback of pure

online algorithms such as OnEng is that they are too conservative in
decision making. An example of such performance degradation is

once the capacity of the generator is above 60% of the total energy

demand (see Figure 5 in [33]). By leveraging ML advice, we can

effectively prevent this performance degradation. To show this, we

investigate the cost saving of different algorithms as the capacity of

generator changes. We define 𝜌 = 𝐶/max𝑡 𝑒 (𝑡) as the ratio between
the capacity of generator and the maximum energy demand, and

change this value from 10% to 100%. Figure 5(d) shows the normal-

ized cost of of different algorithms. To better illustrate the benefit

of algorithms with ML advice, in Figure 5(e) we report the cost re-

ductions as compared to a baseline without local generation. With

𝜌 ≤ 30%, all algorithms perform more or less similarly. However,

with 𝜌 > 40% the performance of OnEng and OnMLEng with 𝜆 = 0.5

degrades substantially, while the cost reduction of OnMLEng-opt
and OnMLEng-hist increases. We consider this observation as an-

other critical motivation to use online algorithms with ML advice

for tackling online problems.

7 ALGORITHMIC DISCUSSION

The framework of ML advice for online algorithms is recently pro-

posed and has been utilized for several online problems, e.g., online

caching [22, 26, 28], bin packing [4], ski rental [5, 24, 27, 29] and

job scheduling [24, 29]. However, this work is the first that uses

this framework in the context of energy scheduling. Traditional

approaches incorporating predictions often assume the prediction

or prediction error follows a particular distribution or stochastic

process, which limits the generality and practicality of their pre-

diction framework. Other works [10, 11] use prediction windows

of limited size that do not provide any information about events

further into the future. These works apply predictions directly into

the optimization for decision making. In this paper, predictions are

used to generate advice for decision making. From our theoretical

analysis and numerical evaluation, using advice is more power-

ful because only high-level structure such as break-even points is

needed. This is in contrast to requiring detailed prediction of each

time slot and modelling the error structure of each prediction.

PAES is an extended version of the ski-rental problem [8], in

which a skier is going to ski for an unknown number of days. For

each day, the skier can either rent skis at unit price or buy them

for a higher price of 𝑏 > 1 and ski for free from then on. The

best known deterministic algorithm for ski-rental problem is the

break-even algorithm: rent the first 𝑏 − 1 days and buy on day 𝑏. In

PAES, there is a rent-vs-buy dilemma in usage-based vs. peak-based

decision making and the online algorithms in literature follow the

break-even structure [33]. However, there is an additional unique

challenge dedicated to PAES, namely that the “buy” option is not

fully free and has an additional time-varying unit price. In our

algorithm design with ML advice, we assume that an ML model

provides an estimate of the break-even point to the problem. We

do not assume any modeling from ML and treat it as a black-box

that provides input to our algorithms.

8 CONCLUDING REMARKS

This paper improves the performance of classic competitive algo-

rithms with ML advice in a principled manner for the peak-aware

energy scheduling problem. Different from prior literature on using

prediction for online algorithms, our algorithms are empowered

with a parameter that determines the level of trust in the ML ad-

vice. For all algorithms we characterized the competitive ratio as

a function of the trust parameter and showed that our algorithms

are provably the best possible algorithms in this framework since

they are Pareto optimal. By extensive large-scale experiments we

showed the improved performance of the proposed algorithms

against pure online algorithms as well as data-driven algorithms

that naively trust the advice, verifying that our algorithms achieve

the best of both worlds. While we focused on an energy scheduling

problem, the rent-vs-buy nature and the category of break-even

point algorithms appear frequently in broad application domains

such as server on/off scheduling, TCP acknowledgment, and rent-

ing cloud servers, and a promising future direction is to extend the

break-even point algorithms for those problems. Another promis-

ing direction is to incorporate the energy storage systems into the

peak-aware energy scheduling problem.
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A PROOF OF ROBUSTNESS AND

CONSISTENCY OF RONMLENG

A.1 Proof of Corollary 3 and Corollary 4

Proof. First we show the consistency and robustness bounds

of Corollary 3 and Corollary 4 hold when 𝜎̂ > 1.

(i) 𝜎̂ > 1, 𝜎 ≤ 𝜆 < 1. Note this is an incorrect prediction scenario,

so the final upper bound lies in the robustness setting. The expected

cost is given by

∫
𝑠
ℎ(𝑠, 𝜎) 𝑓 ∗

1
(𝑠)𝑑𝑠

= Φ1

∫ 𝜎

0

[
1 + 1 − 𝜎 + 𝑠

𝜎
(1 − 𝛽)

]
𝑒𝑠𝑑𝑠 + Φ1

∫ 𝜆

𝜎

𝑒𝑠𝑑𝑠 + Φ1 (1)𝜆2𝛽

= Φ1 (𝑒𝜆 − 1 + 𝜆2𝛽) + Φ1 (1 − 𝛽)
= 1 + Φ1 (1 − 𝛽) .

(ii) 𝜎̂ > 1, 𝜆 ≤ 𝜎 < 1. Note this is an incorrect prediction scenario,

so the final upper bound lies in the robustness setting. The expected

cost is given by

∫
𝑠
ℎ(𝑠, 𝜎) 𝑓 ∗

1
(𝑠)𝑑𝑠

= Φ1

∫ 𝜆

0

[
1 + 1 − 𝜎 + 𝑠

𝜎
(1 − 𝛽)

]
𝑒𝑠𝑑𝑠 + Φ1 (1)𝜆2𝛽

≤ Φ1

∫ 𝜆

0

𝑒𝑠𝑑𝑠 + Φ1

∫ 𝜎

0

[
1 − 𝜎 + 𝑠

𝜎
(1 − 𝛽)

]
𝑒𝑠𝑑𝑠 + Φ1𝜆

2𝛽

= 1 + Φ1 (1 − 𝛽).

Case (ii) is clearly upper bounded by case (i), so the robustness

bound holds.

(iii) 𝜎̂ > 1, 𝜆 < 1 < 𝜎 . Note this is a best case correct prediction

scenario, so the final upper bound lies in the consistency setting.

The expected cost is given by

∫
𝑠
ℎ(𝑠, 𝜎) 𝑓 ∗

1
(𝑠)𝑑𝑠

= Φ1

∫ 𝜆

0

[
1 + 𝑠 (1 − 𝛽)
(𝜎 − 1)𝛽 + 1

]
𝑒𝑠𝑑𝑠 + Φ1

[
1 + (𝜎 − 1) (1 − 𝛽)(𝜎 − 1)𝛽 + 1

]
𝜆2𝛽

https://www.datacenterknowledge.com/microsoft/generator-permit-indicates-microsoft-plans-big-quincy-data-center-expansion
https://www.datacenterknowledge.com/microsoft/generator-permit-indicates-microsoft-plans-big-quincy-data-center-expansion
https://www.prnewswire.com/news-releases/global-data-center-generator-market-to-generate-revenues-of-5-billion-during-20182023--market-research-by-arizton-300789765.html
https://www.prnewswire.com/news-releases/global-data-center-generator-market-to-generate-revenues-of-5-billion-during-20182023--market-research-by-arizton-300789765.html
https://www.prnewswire.com/news-releases/global-data-center-generator-market-to-generate-revenues-of-5-billion-during-20182023--market-research-by-arizton-300789765.html
https://www.nrel.gov/grid/eastern-western-wind-data.html
https://www.nrel.gov/grid/eastern-western-wind-data.html
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= 1 + (1 − 𝛽)Φ1

[
𝜆2 + (𝑒

𝜆 − 1 − 𝜆) (𝜆 − 1)
(𝜎 − 1)𝛽 + 1

]
(𝑎)
≤ 1 + (1 − 𝛽)Φ1 [𝜆2 + 0] ≤ 1 + Φ1𝜆

2 (1 − 𝛽),

where (a) holds true since we have 0 ≤ 𝑒𝜆 − 1 − 𝜆 for 𝜆 ∈ (0, 1]
from the discussions in Case (i), and 𝜆 − 1 ≤ 0.

We now consider the cases where 𝜎̂ ≤ 1.

(iv) 𝜎̂ ≤ 1, 1 ≤ 1

𝜆
< 𝜎 . Note this is a worst case failed prediction

scenario. The expected cost is given by

∫
𝑠
ℎ(𝑠, 𝜎) 𝑓 ∗

2
(𝑠)𝑑𝑠

= Φ2

∫
1/𝜆

0

[
1 + 𝑠 (1 − 𝛽)
(𝜎 − 1)𝛽 + 1

]
𝑒𝑠𝑑𝑠 + Φ2

[
1 + (𝜎 − 1) (1 − 𝛽)(𝜎 − 1)𝛽 + 1

]
1

𝜆2
𝛽

= 1 + Φ2 (1 − 𝛽)
[
𝑒

1

𝜆 ( 1
𝜆
− 1) + 1 + 1

𝜆2
(𝜎 − 1)𝛽

(𝜎 − 1)𝛽 + 1

]
= 1 + Φ2 (1 − 𝛽)

[
(𝑒

1

𝜆 − 1 − 1

𝜆
) ( 1

𝜆
− 1)

(𝜎 − 1)𝛽 + 1 + 1

𝜆2

]
(𝑐)
≤ 1 + Φ2 (1 − 𝛽)

[
(𝑒

1

𝜆 − 1 − 1

𝜆
) ( 1

𝜆
− 1)

1

+ 1

𝜆2

]
,

where (c) holds since (𝜎 − 1)𝛽 + 1 ≥ 1 and (𝑒
1

𝜆 − 1 − 1

𝜆
) is positive

as shown in case (i) that 𝑓 (1/𝜆) is increasing for 𝜆 ∈ [0, 1] so
𝑓 (1/𝜆) ≥ 𝑓 (1) > 0.

(v) 𝜎̂ ≤ 1, 1 ≤ 𝜎 < 1

𝜆
. Note this is a worst case failed prediction

scenario. The expected cost is given by

∫
𝑠
ℎ(𝑠, 𝜎) 𝑓 ∗

2
(𝑠)𝑑𝑠

= Φ2

∫ 𝜎

0

[
1 + 𝑠 (1 − 𝛽)
(𝜎 − 1)𝛽 + 1

]
𝑒𝑠𝑑𝑠+

Φ2

[
1 + (𝜎 − 1) (1 − 𝛽)(𝜎 − 1)𝛽 + 1

] [ ∫ 1

𝜆

𝜎

𝑒𝑠𝑑𝑠 + 1

𝜆2
𝛽

]
= 1 + Φ2 (1 − 𝛽)

(𝜎 − 1)𝛽 + 1

[
1 + (𝜎 − 1)𝑒

1

𝜆 + (𝜎 − 1) 1
𝜆2

𝛽)
]

(𝑒)
≤ 1 + Φ2 (1 − 𝛽)

(𝜎 − 1)𝛽 + 1

[
1 + ( 1

𝜆
− 1)𝑒

1

𝜆 + (𝜎 − 1) 1
𝜆2

𝛽)
]

≤ 1 + Φ2 (1 − 𝛽)
[
(𝑒

1

𝜆 − 1 − 1

𝜆
) ( 1
𝜆
− 1) + 1

𝜆2

]
,

where (e) is true since𝜎 < 1

𝜆
. The final step is is true since inequality

(e) is equivalent to inequality (b) from case (iv), so the competitive

ratio of case (v) reduces to the competitive ratio of case (iv). So the

same robustness bound from (iv) will also dominate OnMLEng.
(vi) 𝜎̂ ≤ 1, 𝜎 ≤ 1 < 1

𝜆
. This is a correct prediction scenario. The

expected cost is given by

∫
𝑠
ℎ(𝑠, 𝜎) 𝑓 ∗

2
(𝑠)𝑑𝑠

= Φ2

∫ 𝜎

0

[
1 + 1 − 𝜎 + 𝑠

𝜎
(1 − 𝛽)

]
𝑒𝑠𝑑𝑠 + Φ2

∫ 𝜆

𝜎

𝑒𝑠𝑑𝑠 + Φ2 (1)
1

𝜆2
𝛽

= Φ2 (𝑒𝜆 − 1 +
1

𝜆2
𝛽) + Φ2 (1 − 𝛽)

= 1 + Φ2 (1 − 𝛽).

□

A.2 Proof of Corollary 5

Proof. We show that Corollary 5 is true for each of the above 6

cases. We begin with the cases where 𝜎̂ > 1.

(1) Consider case (i) above with bound 1 + Φ1 (1 − 𝛽). We show

that this bound is better that of the deterministic algorithm, i.e.,

1 + Φ1 (1 − 𝛽) ≤ 1 + 1

𝜆
(1 − 𝛽) for 𝜆 ∈ (0, 1] and 𝛽 ∈ [0, 1]. In

other words, we need to show Φ ≤ 1

𝜆
, i.e., 1

𝑒𝜆−1+𝜆2𝛽 ≤
1

𝜆
. Since

1

𝑒𝜆−1+𝜆2𝛽 ≤
1

𝑒𝜆−1 , we only need to prove that
1

𝑒𝜆−1 ≤
1

𝜆
, i.e., 𝑒𝜆−1 ≥

𝜆 for 𝜆 ∈ (0, 1] . Define 𝑓 (𝜆) = 𝑒𝜆 − 1 − 𝜆. It is easy to check that

𝑓 (𝜆) is increasing in (0, 1], hence 𝑓 (𝜆) ≥ 𝑓 (0) = 0.

(2) The result for case (i) holds, since case (ii) is upper bounded

by case (i).

(3) Consider case (iii) above with bound 1+𝜆2Φ1 (1−𝛽). We show

that this bound is better than that of the deterministic algorithm,

i.e., 1 + 𝜆2Φ1 (1 − 𝛽) ≤ 1 + 𝜆(1 − 𝛽) for 𝜆 ∈ (0, 1] and 𝛽 ∈ [0, 1].
Given Φ1 we only need to show

𝜆2

𝑒𝜆−1+𝜆2𝛽 ≤ 𝜆, i.e., 1

𝑒𝜆−1+𝜆2𝛽 ≤
1

𝜆
,

which holds true from case (i).

So cases (1) - (3) demonstrate that when 𝜎̂ > 1, rOnMLEng domi-

nates the robustness and consistency bounds of OnMLEng.
New, we consider the cases where 𝜎̂ ≤ 1. (4) Consider case (iv)

above with bound 1 + Φ2 (1 − 𝛽) ((𝑒
1

𝜆 − 1 − 1

𝜆
) ( 1

𝜆
− 1) + 1

𝜆2
). We

show that this bound is better than that of OnMLEng, i.e., 1 +Φ2 (1−
𝛽) ((𝑒

1

𝜆 − 1 − 1

𝜆
) ( 1

𝜆
− 1) + 1

𝜆2
) ≤ 1 + 1

𝜆
(1 − 𝛽), i.e., Φ2 ((𝑒

1

𝜆 − 1 −
1

𝜆
) ( 1

𝜆
− 1) + 1

𝜆2
) ≤ 1

𝜆
. To show this, we have

Φ2 ((𝑒
1

𝜆 − 1 − 1

𝜆
) ( 1
𝜆
− 1) + 1

𝜆2
) ≤ 1

𝜆

⇔(𝑒
1

𝜆 − 1 − 1

𝜆
) ( 1
𝜆
− 1) + 1

𝜆2
≤ 1

𝜆Φ2

⇔(𝑒
1

𝜆 − 1 − 1

𝜆
) ( 1
𝜆
− 1) + 1

𝜆2
≤ 1

𝜆
(𝑒

1

𝜆 − 1 + 1

𝜆2
𝛽)

⇔ 1

𝜆
(𝑒

1

𝜆 − 1 − 1

𝜆
) + 1

𝜆2
− (𝑒

1

𝜆 − 1 − 1

𝜆
) ≤ 1

𝜆
(𝑒

1

𝜆 − 1 + 1

𝜆2
𝛽)

⇔( 1
𝜆
𝑒

1

𝜆 − 1

𝜆
− 1

𝜆2
+ 1

𝜆2
) − (𝑒

1

𝜆 − 1 − 1

𝜆
) ≤ ( 1

𝜆
𝑒

1

𝜆 − 1

𝜆
+ 1

𝜆3
𝛽)

⇔( 1
𝜆
𝑒

1

𝜆 − 1

𝜆
) − (𝑒

1

𝜆 − 1 − 1

𝜆
) ≤ ( 1

𝜆
𝑒

1

𝜆 − 1

𝜆
+ 1

𝜆3
𝛽)

⇔0 − (𝑒
1

𝜆 − 1 − 1

𝜆
) ≤ 0 + 1

𝜆3
𝛽

⇔0 − (𝑒
1

𝜆 − 1 − 1

𝜆
)
(𝑑)
≤ 0 ≤ 0 + 1

𝜆3
𝛽,

where (d) holds true from (𝑒
1

𝜆 − 1 − 1

𝜆
) is positive. The inequal-

ity holds true, thus the robustness bound of rOnMLEng dominates

OnMLEng when 𝜎̂ ≤ 1.

(5) The result for case (iv) holds, since case (v) is upper bounded

by case (iv).

(6) Consider case (vi) above with bound 1 + Φ2 (1 − 𝛽). We show

that this bound is better than that of OnMLEng, i.e., 1 + Φ2 (1 − 𝛽) ≤
1+𝜆(1−𝛽), i.e.,Φ2 ≤ 𝜆. It is easy to show that 𝑒

1

𝜆 −1 ≥ 1

𝜆
. Then 𝑒

1

𝜆 −
1 + 1

𝜆2
𝛽 ≥ 1

𝜆
, i.e.,

1

Φ2

≥ 1

𝜆
from the definition of Φ2 . Therefore, we

have Φ2 ≤ 𝜆. Thus the competitive ratio dominates the consistency

bound of OnMLEng. So cases (3) - (6) demonstrate that the rOnMLEng
dominates the robustness and consistency bounds of OnMLEngwhen
𝜎̂ ≤ 1. □
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B A RANDOMIZED ALGORITHM WITH

DIRECT EXTENSION OF THE EXISTING

RANDOMIZED ALGORITHM

The goal in this section is to show that a naive incorporation of

the ML advice in designing a randomized algorithm lead to an

algorithm that is neither robust nor consistent. Specifically, we

show that a randomized algorithm that modifies the distribution

function proposed in Equation (2) fails to achieve both robustness

and consistency at the same time. In particular, a first attempt to

change the distribution function is to naturally modify according

to the enhancements in deterministic algorithms and obtain the

following functions:

if 𝜎̂ > 1:

𝑓 ∗
1
(𝑠) =


Φ1𝑒

𝑠 , 𝑠 ∈ [0, 𝜆];
Φ1𝜆𝛽𝛿 (0) 𝑠 = ∞;
0, o.w.,

if 𝜎̂ ≤ 1:

𝑓 ∗
1
(𝑠) =


𝜆𝑒𝑠

𝑒1/𝜆−1+𝛽 , 𝑠 ∈ [0, 1/𝜆];
𝛽

𝑒1/𝜆−1+𝛽 𝛿 (0), 𝑠 = ∞;
0, o.w.

Our analysis below demonstrates that with these functions,

rOnMLEng is max

{
min

{
1/𝛽, 1/𝜆

}
· 𝑒1/𝜆

𝑒1/𝜆−1+𝛽 ,
𝑒𝜆

𝑒𝜆−1+𝛽

}
-robust and

(1/𝛽)-consistent. This means that with above distribution functions

the consistency could be large as 𝛽 approaches 0.

(i) 𝜎̂ > 1, 𝜎 ≤ 𝜆 < 1. This is an incorrect prediction scenario. The

expected cost is given by

∫
𝑠
ℎ(𝑠, 𝜎) 𝑓 ∗

1
(𝑠)𝑑𝑠

=

∫ 𝜎

0

[
1 + 1 − 𝜎 + 𝑠

𝜎
(1 − 𝛽)

]
𝑒𝑠

𝑒𝜆 − 1 + 𝛽
𝑑𝑠+∫ 𝜆

𝜎

𝑒𝑠

𝑒𝜆 − 1 + 𝛽
𝑑𝑠 + (1) 𝛽

𝑒𝜆 − 1 + 𝛽

=
𝑒𝜆 − 1

𝑒𝜆 − 1 + 𝛽
+ 1 − 𝛽
𝑒𝜆 − 1 + 𝛽

+ 𝛽

𝑒𝜆 − 1 + 𝛽

=
𝑒𝜆

𝑒𝜆 − 1 + 𝛽
.

(ii) 𝜎̂ > 1, 𝜆 ≤ 𝜎 < 1. This is an incorrect prediction scenario.

The expected cost is given by

∫
𝑠
ℎ(𝑠, 𝜎) 𝑓 ∗

1
(𝑠)𝑑𝑠

=

∫ 𝜆

0

[
1 + 1 − 𝜎 + 𝑠

𝜎
(1 − 𝛽)

]
𝑒𝑠

𝑒𝜆 − 1 + 𝛽
𝑑𝑠 + (1) 𝛽

𝑒𝜆 − 1 + 𝛽

≤
∫ 𝜆

0

𝑒𝑠

𝑒𝜆 − 1 + 𝛽
𝑑𝑠 +

∫ 𝜎

0

[
1 − 𝜎 + 𝑠

𝜎
(1 − 𝛽)

]
𝑒𝑠

𝑒𝜆 − 1 + 𝛽
𝑑𝑠+

𝛽

𝑒𝜆 − 1 + 𝛽

=
𝑒𝜆 − 1

𝑒𝜆 − 1 + 𝛽
+ 1 − 𝛽
𝑒𝜆 − 1 + 𝛽

+ 𝛽

𝑒𝜆 − 1 + 𝛽

=
𝑒𝜆

𝑒𝜆 − 1 + 𝛽
.

(iii) 𝜎̂ > 1, 𝜆 < 1 < 𝜎 . Note this is a correct prediction scenario.

The expected cost is given by

∫
𝑠
ℎ(𝑠, 𝜎) 𝑓 ∗

1
(𝑠)𝑑𝑠

=

∫ 𝜆

0

[
1 + 𝑠 (1 − 𝛽)
(𝜎 − 1)𝛽 + 1

]
𝑒𝑠

𝑒𝜆 − 1 + 𝛽
𝑑𝑠+[

1 + (𝜎 − 1) (1 − 𝛽)(𝜎 − 1)𝛽 + 1

]
𝛽

𝑒𝜆 − 1 + 𝛽

= 1 + 1

𝑒𝜆 − 1 + 𝛽

[
(1 − 𝛽)𝑒𝜆 (𝜆 − 1)
(𝜎 − 1)𝛽 + 1 + (1 − 𝛽)

]
=

𝑒𝜆

𝑒𝜆 − 1 + 𝛽
− 𝑒𝜆

𝑒𝜆 − 1 + 𝛽

[
(1 − 𝜆) (1 − 𝛽)
(𝜎 − 1)𝛽 + 1

]
≤ 𝑒𝜆

𝑒𝜆 − 1 + 𝛽
.

(iv) 𝜎̂ ≤ 1, 1 ≤ 1/𝜆 < 𝜎 . This is an incorrect prediction sce-

nario.The expected cost is given by

∫
𝑠
ℎ(𝑠, 𝜎) 𝑓 ∗

2
(𝑠)𝑑𝑠

=

∫
1/𝜆

0

[
1 + 𝑠 (1 − 𝛽)
(𝜎 − 1)𝛽 + 1

]
𝑒𝑠

𝑒1/𝜆 − 1 + 𝛽
𝑑𝑠+[

1 + (𝜎 − 1) (1 − 𝛽)(𝜎 − 1)𝛽 + 1

]
𝛽

𝑒1/𝜆 − 1 + 𝛽

=
𝑒1/𝜆

𝑒1/𝜆 − 1 + 𝛽

[
1 + (1/𝜆 − 1) (1 − 𝛽)(𝜎 − 1)𝛽 + 1

]
(𝑐)
≤ 𝑒1/𝜆

𝑒1/𝜆 − 1 + 𝛽

[
1 + (1/𝜆 − 1) (1 − 𝛽)

]
(𝑑)
≤ 𝑒1/𝜆

𝑒1/𝜆 − 1 + 𝛽

[
1 + (1/𝜆 − 1)

]
=

1

𝜆

𝑒1/𝜆

𝑒1/𝜆 − 1 + 𝛽
,

where (c) holds since (𝜎 − 1)𝛽 + 1 ≥ 1, and (d) is true since 0 ≤
1 − 𝛽 ≤ 1. However, note the following upper bound also holds:

1 + (1/𝜆 − 1) (1 − 𝛽)(𝜎 − 1)𝛽 + 1 ≤ 1 + (𝜎 − 1) (1 − 𝛽)(𝜎 − 1)𝛽 + 1

≤ 1 + (𝜎 − 1) (1 − 𝛽)(𝜎 − 1)𝛽

≤ 1 + (1 − 𝛽)
𝛽

≤ 1

𝛽
.

Then the competitive ratio in this case is

∫
𝑠

ℎ(𝑠, 𝜎) 𝑓 ∗
2
(𝑠)𝑑𝑠 ≤ min

{
1/𝛽, 1/𝜆

}
· 𝑒1/𝜆

𝑒1/𝜆 − 1 + 𝛽
.
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(v) 𝜎̂ ≤ 1, 1 ≤ 𝜎 < 1/𝜆. This is an incorrect prediction scenario.

The expected cost is given by

∫
𝑠
ℎ(𝑠, 𝜎) 𝑓 ∗

2
(𝑠)𝑑𝑠

=

∫ 𝜎

0

[
1 + 𝑠 (1 − 𝛽)
(𝜎 − 1)𝛽 + 1

]
𝑒𝑠

𝑒1/𝜆 − 1 + 𝛽
𝑑𝑠

+
[
1 + (𝜎 − 1) (1 − 𝛽)(𝜎 − 1)𝛽 + 1

] [ ∫
1/𝜆

𝜎

𝑒𝑠

𝑒1/𝜆 − 1 + 𝛽
𝑑𝑠 + 𝛽

𝑒1/𝜆 − 1 + 𝛽

]
=

𝑒1/𝜆

𝑒1/𝜆 − 1 + 𝛽

[
1 + (1/𝜆 − 1) (1 − 𝛽)(𝜎 − 1)𝛽 + 1

]
=

𝑒1/𝜆

𝑒1/𝜆 − 1 + 𝛽
(𝜎 − 1/𝜆)𝛽 + 1

𝜆

(𝜎 − 1)𝛽 + 1
(𝑑)
≤ 𝑒1/𝜆

𝑒1/𝜆 − 1 + 𝛽
1/𝜆
1

=
1

𝜆

𝑒1/𝜆

𝑒1/𝜆 − 1 + 𝛽
,

where (d) is true since 1 ≤ 𝜎 ≤ 1/𝜆, 𝜎 − 1/𝜆 < 0, and 𝜎 − 1 ≥ 0.

Then the competitive ratio in this case is∫
𝑠

ℎ(𝑠, 𝜎) 𝑓 ∗
2
(𝑠)𝑑𝑠 ≤ min

{
1/𝛽, 1/𝜆

}
· 𝑒1/𝜆

𝑒1/𝜆 − 1 + 𝛽
.

(vi) 𝜎̂ ≤ 1, 𝜎 ≤ 1 < 1/𝜆. Note this is a correct prediction scenario.

The expected cost is given by

∫
𝑠
ℎ(𝑠, 𝜎) 𝑓 ∗

2
(𝑠)𝑑𝑠

=

∫ 𝜎

0

[
1 + 1 − 𝜎 + 𝑠

𝜎
(1 − 𝛽)

]
𝑒𝑠

𝑒1/𝜆 − 1 + 𝛽
𝑑𝑠+∫

1/𝜆

𝜎

𝑒𝑠

𝑒1/𝜆 − 1 + 𝛽
𝑑𝑠 (1) 𝛽

𝑒1/𝜆 − 1 + 𝛽

=

∫
1/𝜆

0

𝑒𝑠

𝑒1/𝜆 − 1 + 𝛽
𝑑𝑠 +

∫ 𝜎

0

[
1 − 𝜎 + 𝑠

𝜎
(1 − 𝛽)

]
· 𝑒𝑠

𝑒1/𝜆 − 1 + 𝛽
𝑑𝑠

+ 𝛽

𝑒1/𝜆 − 1 + 𝛽

=
𝑒1/𝜆 − 1

𝑒1/𝜆 − 1 + 𝛽
+ 1 − 𝛽
𝑒1/𝜆 − 1 + 𝛽

+ 𝛽

𝑒1/𝜆 − 1 + 𝛽
=

𝑒1/𝜆

𝑒1/𝜆 − 1 + 𝛽
.

Next, we consider the consistency. For consistency guarantees,

we compute the competitive ratio assuming the predictions are

correct. There are two cases to consider here

(i) 𝜎̂ = 𝜎 > 1. With a selected parameter 𝑠 from the distribution

𝑓 ∗
1
(𝑠), the algorithm uses the local generator for the first 𝑇 𝑠

time

slots before switching to the grid. Then the cost of the algorithm is

ALG =
∑𝑇 𝑠

𝑡=1 𝑝𝑔𝑒 (𝑡) +
∑𝑇
𝑡=𝑇 𝑠 𝑝 (𝑡)𝑒 (𝑡) + 𝑝𝑚 . Since 𝜎 > 1, the optimal

offline solution uses the grid for the whole duration with cost

OPT =
∑𝑇
𝑡=1 𝑝 (𝑡)𝑒 (𝑡) + 𝑝𝑚 . Then we have the following:

ALG =

𝑇 𝑠∑
𝑡=1

𝑝𝑔𝑒 (𝑡) +
𝑇∑

𝑡=𝑇 𝑠+1
𝑝 (𝑡)𝑒 (𝑡) + 𝑝𝑚

=

𝑇 𝑠∑
𝑡=1

(𝑝𝑔 − 𝑝 (𝑡))𝑒 (𝑡) +
𝑇∑
𝑡=1

𝑝 (𝑡)𝑒 (𝑡) + 𝑝𝑚

≤ 𝑠 · 𝑝𝑚 +
𝑇∑
𝑡=1

𝑝 (𝑡)𝑒 (𝑡) + 𝑝𝑚 ≤ (1 + 𝑠) · 𝑝𝑚 +
𝑇∑
𝑡=1

𝑝 (𝑡)𝑒 (𝑡)

≤ (1 + 𝑠) (𝑝𝑚 +
𝑇∑
𝑡=1

𝑝 (𝑡)𝑒 (𝑡)) ≤ (1 + 𝑠)OPT.

To compute the expected expected cost of the randomized al-

gorithm, we need to know a special case of the cost of ALG when
𝑠 = ∞. With 𝑠 = ∞, the algorithm never switches to grid electricity

ALG{𝑠=∞} =
𝑇∑
𝑡=1

𝑝𝑔𝑒 (𝑡) =
𝑇∑
𝑡=1

𝑝𝑔

𝑝 (𝑡) 𝑝 (𝑡)𝑒 (𝑡) ≤
𝑝𝑔

𝑝𝑚𝑖𝑛

𝑇∑
𝑡=1

𝑝 (𝑡)𝑒 (𝑡)

=
1

𝛽

𝑇∑
𝑡=1

𝑝 (𝑡)𝑒 (𝑡) ≤ 1

𝛽

𝑇∑
𝑡=1

𝑝 (𝑡)𝑒 (𝑡) + 1

𝛽
𝑝𝑚 =

1

𝛽
OPT.

Then the expected cost of the randomized algorithm is

E[ALG] =
∫
𝑠

ALG · 𝑓 ∗
1
(𝑠)𝑑𝑠

≤
∫ 𝜆

0

(1 + 𝑠) (OPT) 𝑒𝑠

𝑒𝜆 − 1 + 𝛽
𝑑𝑠 + 1

𝛽
(OPT) 𝛽

𝑒𝜆 − 1 + 𝛽

≤ OPT

𝑒𝜆 − 1 + 𝛽

[
1 +

∫ 𝜆

0

𝑒𝑠 + 𝑠𝑒𝑠𝑑𝑠
]

=
OPT

𝑒𝜆 − 1 + 𝛽
(1 + 𝜆𝑒𝜆).

If 𝜆 = 0, we have (1/𝛽)-consist.
(ii) 𝜎̂ = 𝜎 ≤ 1. With the trust parameter 𝜆, the algorithm uses

the local generator for the first 𝑇 1/𝜆
time slots before switching

to the grid, where 𝑇 1/𝜆 ≤ 𝑇 . Then the cost of the algorithm is

ALG =
∑𝑇 1/𝜆
𝑡=1 𝑝𝑔𝑒 (𝑡) +

∑𝑇

𝑡=𝑇 1/𝜆+1 𝑝 (𝑡)𝑒 (𝑡) + 𝑝𝑚 . Since 𝜎 ≤ 1, the

optimal offline solution uses the grid for the whole duration with

cost OPT =
∑𝑇
𝑡=1 𝑝𝑔𝑒 (𝑡). Then we have the following:

ALG =

𝑇 1/𝜆∑
𝑡=1

𝑝𝑔𝑒 (𝑡) +
𝑇∑

𝑡=𝑇 1/𝜆+1
𝑝 (𝑡)𝑒 (𝑡) + 𝑝𝑚

≤
𝑇 1/𝜆∑
𝑡=1

𝑝𝑔𝑒 (𝑡) +
𝑇∑

𝑡=𝑇 1/𝜆+1
𝑝𝑔𝑒 (𝑡) + 𝑝𝑚 = OPT + 𝑝𝑚

(𝑒)
≤ OPT + 𝜆

(
𝑇 1/𝜆+1∑
𝑡=1

(𝑝𝑔 − 𝑝 (𝑡))𝑒 (𝑡)
)

≤ OPT + 𝜆
(

𝑇∑
𝑡=1

𝑝𝑔𝑒 (𝑡)
)

= (1 + 𝜆)OPT,
where (e) is true from Algorithm rOnMLEng.

C THE ROBUSTNESS AND CONSISTENCY OF

ONMLENG-DYN AND RONMLENG-DYN
This appendix presents Algorithm 4 and Algorithm 5 as the pseu-

docode of the dynamic break-even algorithms OnMLEng-dyn and

rOnMLEng-dyn introduced in Section 4.5.

C.1 Proof of Theorem 4

Proof. The key observation is that Proposition 1 still holds

with a dynamic break-even point, where we can characterize the

competitive ratio of any online algorithm A𝑠 with parameter 𝑠 .
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Algorithm 4 OnMLEng-dyn

Use local generator first and switch to the grid starting at the

first time 𝜏 where∑𝜏

𝑡=1
(𝑝𝑔 − 𝑝 (𝑡))𝑒 (𝑡) ≥ 𝑠𝜏 · 𝑝𝑚,

and 𝑠𝜏 is defined by

𝑠𝜏 =

{
𝜆, 𝜎̂𝑡 > 1;

1/𝜆, 𝜎̂𝑡 ≤ 1.

Algorithm 5 rOnMLEng-dyn

Denote Φ1 =
1

𝑒𝜆−1+𝜆2𝛽 and Φ2 =
1

𝑒
1

𝜆 −1+ 1

𝜆2
𝛽

if 𝜎̂𝜏 > 1 then

𝑓 ∗
1
(𝑠) =


Φ1𝑒

𝑠 , 𝑠 ∈ [0, 𝜆];
Φ1𝜆

2𝛽𝛿 (0), 𝑠 = ∞;
0, otherwise.

else

𝑓 ∗
2
(𝑠) =


Φ2𝑒

𝑠 , 𝑠 ∈ [0, 1
𝜆
];

Φ2

1

𝜆2
𝛽𝛿 (0), 𝑠 = ∞;

0, otherwise.

end if

Pick a value 𝑠1 randomly according to probability distribution

𝑓 ∗
1
(𝑠) and 𝑠2 likewise from 𝑓 ∗

2
(𝑠).

Switch to grid electricity starting at the first time 𝜏 where

𝜏∑
𝑡=1

(𝑝𝑔 − 𝑝 (𝑡))𝑒 (𝑡) ≥ 𝑠𝜏 · 𝑝𝑚,

and 𝑠𝜏 is defined by

𝑠𝜏 =

{
𝑠1, 𝜎̂𝑡 > 1;

𝑠2, 𝜎̂𝑡 ≤ 1.

Although the value of 𝑠 will change over time in OnMLEng-dynwith
dynamic advice 𝜎̂𝑡 , the possible values of 𝑠 remain the same as the

possible values in OnMLEng. The possible competitive ratios must be

the same, and subsequently the robustness and consistency are the

same. Similarly for rOnMLEng-dyn and rOnMLEng, 𝑠 may be time

varying but is still constrained to the same two distributions.

□

D PROOF OF LEMMA 2

We show that an arbitrary deterministic algorithm can be expressed

by a deterministic algorithm with a switching parameter.

We first define two algorithms: (i) Generic-set-selection, a
deterministic algorithm that is not limited by a switching parameter;

and (ii) Converted-switching-parameter, rearranges price and
demand 𝑝 (𝑡), 𝑒 (𝑡) such that Generic-set-selection is replicated.

Algorithm 6 Generic-set-selection

Use local generator for a set of timeslots 𝑇𝑙 ⊆ T , and use grid

electricity starting for the set of timeslots 𝑇𝑔 = T −𝑇𝑙

Algorithm 7 Converted-switching-parameter

Let the timeslots of 𝑇𝑙 be specified 𝑇𝑙 = {𝑙1, 𝑙2, ..𝑙 |𝑇𝑙 |} and 𝑇𝑔 be

specified 𝑇𝑔 = {𝑔1, 𝑔2, ..𝑔 |𝑇𝑔 |}.
Define a new ordering of price and demand 𝑝 ′(𝑡), 𝑒 ′(𝑡) according
to:

𝑝 ′(𝑡)=
{
𝑝 (𝑙𝑡 ), if 𝑡 ≤ |𝑇𝑙 |,
𝑝 (𝑔𝑡 ), otherwise.

𝑒 ′(𝑡)=
{
𝑒 (𝑙𝑡 ), if 𝑡 ≤ |𝑇𝑙 |,
𝑒 (𝑔𝑡 ), otherwise.

Choose switching parameter 𝑠 according to:

1

𝑝𝑚

∑ |𝑇𝑙 |
𝑡=1
(𝑝𝑔 − 𝑝 ′(𝑡))𝑒 ′(𝑡) = 𝑠 .

Under the new ordering, use local generator first and switch to

the grid electricity starting at the first time 𝜏 where∑𝜏

𝑡=1
(𝑝𝑔 − 𝑝 ′(𝑡))𝑒 ′(𝑡) ≥ 𝑠 · 𝑝𝑚 .

We consider Algorithm 6 with 𝑇𝑙 ,𝑇𝑔 , and an arbitrary determin-

istic algorithm A modeled by Algorithm 6 with 𝑇𝑙 ,𝑇𝑔 .

Let 𝑡∗ be the last timeslot before |𝑇𝑙 | in the new demand ordering

𝑒 ′(𝑡) with nonzero demand, i.e. 𝑡∗ is defined by

𝑡∗ = max

𝑡 ≤ |𝑇𝑙 |,𝑒′ (𝑡 )=1
𝑡 .

Wewill show that the switching parameter algorithmwill switch

at time 𝑡∗. In other words, the timeslots chosen for local generator

and the grid will be the same as𝑇𝑙 and𝑇𝑔 , except for some timeslots

from 𝑡∗ to |𝑇𝑙 | with 0 demand. As a results, the cost is equivalent

since timeslots with 0 demand contribute nothing to the cost.

Since 𝑒 ′(𝑡) = 0 for 𝑡∗ < 𝑡 ≤ |𝑇𝑙 |, we have

𝑠 =
1

𝑝𝑚

∑ |𝑇𝑙 |
𝑡=1
(𝑝𝑔 − 𝑝 ′(𝑡))𝑒 ′(𝑡)

=
1

𝑝𝑚

∑𝑡∗

𝑡=1
(𝑝𝑔 − 𝑝 ′(𝑡))𝑒 ′(𝑡) +

1

𝑝𝑚

∑ |𝑇𝑙 |
𝑡=𝑡∗+1 (𝑝𝑔 − 𝑝

′(𝑡)) · 0

=
1

𝑝𝑚

∑𝑡∗

𝑡=1
(𝑝𝑔 − 𝑝 ′(𝑡))𝑒 ′(𝑡) + 0,

i.e.,

∑𝑡∗
𝑡=1 (𝑝𝑔 − 𝑝 ′(𝑡))𝑒 ′(𝑡) = 𝑠 · 𝑝𝑚 .

Similarly, since 𝑒 ′(𝑡∗) = 1, 𝑝 ′(𝑡) < 𝑝𝑔,∀𝑡 , we have

𝑠 =
1

𝑝𝑚

∑𝑡∗

𝑡=1
(𝑝𝑔 − 𝑝 ′(𝑡))𝑒 ′(𝑡)

=
1

𝑝𝑚

∑𝑡∗−1
𝑡=1
(𝑝𝑔 − 𝑝 ′(𝑡))𝑒 ′(𝑡) +

(𝑝𝑔 − 𝑝 ′(𝑡∗))𝑒 ′(𝑡∗)
𝑝𝑚

>
1

𝑝𝑚

∑𝑡∗−1
𝑡=1
(𝑝𝑔 − 𝑝 ′(𝑡))𝑒 ′(𝑡),

i.e.,

∑𝑡∗−1
𝑡=1 (𝑝𝑔 − 𝑝 ′(𝑡))𝑒 ′(𝑡) < 𝑠 · 𝑝𝑚 .

Therefore the first time 𝜏 where

∑𝜏
𝑡=1 (𝑝𝑔 − 𝑝

′(𝑡))𝑒 ′(𝑡) ≥ 𝑠 · 𝑝𝑚
will be at 𝜏 = 𝑡∗.

Timeslots 1, · · · , 𝑡∗ are selected for the local generator. These are
correctly assigned since 𝑡∗ ≤ |𝑇𝑙 |. If 𝑡∗ < |𝑇𝑙 |, then timeslots 𝑡∗ <
𝑡 ≤ |𝑇𝑙 | are incorrectly assigned to the grid. However, 𝑒 ′(𝑡) = 0 for

𝑡∗ < 𝑡 ≤ |𝑇𝑙 |, which means there is no difference in cost. Timeslots
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(a) 30% penetration.

(b) 40% penetration.

(c) 50% penetration.

Figure 6: Cumulative probability distribution of normalized cost of different algorithms at 30%, 40%, and 50% penetration

levels.

|𝑇𝑙 |+1, · · · ,𝑇 are correctly assigned to the grid. Therefore switching

at time 𝑡∗ in the new ordering has an equivalent cost as assigning

𝑇𝑙 and 𝑇𝑔 .

E EXTENDING RESULTS TO THE GENERAL

DEMAND SETTING

Consider an instance of PAES with integer demand. We can con-

struct a binary demand instance PAES-b at the 𝑘-th layer by denot-

ing 𝑒𝑘 (𝑡) = 1{𝑒 (𝑡 ) ≥𝑘 } . The full details of decomposing PAES into

PAES-b are inspired by [33], so we outline the necessary adaptions

for robustness and consistency analysis.

Denote 𝑣𝑘 (𝑡) and 𝑢𝑘 (𝑡) the energy usage from the grid and

local generator respectively from the 𝑘-th layer of binary demand.

Note that max𝑡
∑
𝑘 𝑣

𝑘 (𝑡) =
∑
𝑘 max𝑡 𝑣

𝑘 (𝑡), i.e. the overall peak

grid utilization is the sum of the layered peak utilization. Similarly,

𝑢 (𝑡) = ∑
𝑘 𝑢

𝑘 (𝑡), 𝑣 (𝑡) = ∑
𝑘 𝑣

𝑘 (𝑡), i.e. the overall grid and generator

usage is the sum of the layered grid and generator usage. Then we

have

cost(PAES − ALG) =
∑
𝑘

cost(PAES-b − ALG)

i.e. the cost of PAES is equal to the sum of the costs over the

binary demand problems PAES-b.

E.1 Extending Consistency and Robustness

Results

Let an algorithm which solves PAES-b be 𝛼-robust and 𝛾-consistent

in the binary demand setting. Then we demonstrate that extending

to the integer demand setting PAES is also 𝛼 robust and 𝛾 consis-

tent. Consider the consistency scenario, where the integer demand

predictions 𝑒 (𝑡) are correct. Then each layer prediction 𝑒𝑘 (𝑡)would
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also be correct. We can then use the 𝛾 consistency bound. Consider

a binary demand layer 𝑘 :

cost(PAES-b − ALG) ≤ 𝛾cost(PAES-b − OPT),∀𝑘
Then summing over 𝑘 gives:

cost(PAES − ALG) ≤ 𝛾cost(PAES − OPT)
Now consider the robustness scenario, where the overall demand

prediction 𝑒 (𝑡) is not necessarily accurate. Then each consider a

binary demand layer 𝑘 will be 𝛼 robust:

cost(PAES-b − ALG) ≤ 𝛼cost(PAES-b − OPT),∀𝑘
Then summing over 𝑘 gives:

cost(PAES − ALG) ≤ 𝛼cost(PAES − OPT)
We can just substitute the respective consistency and robustness

bounds of OnMLEng and rOnMLEng for 𝛾 and 𝛼 . Thus the upper

bounds on OnMLEng and rOnMLEng extend to the general demand

setting.

E.2 Extending the Pareto Optimality of OnMLEng
Observe that PAES-b is a special case of PAES. Then it is impossible

for an algorithm which solves PAES to dominate OnMLEng in the

integer demand setting. If such an algorithm existed, then it would

dominate OnMLEng in the binary demand setting, which contradicts

Theorem 2. Thus the pareto optimality of OnMLEng extends to the

general demand setting.

F ADDITIONAL EXPERIMENTAL RESULTS

WITH DIFFERENT RENEWABLE

PENETRATION

The quality of advice for PAES could be substantially influenced

by the renewable penetration level. Hence, it is also valuable to

see a comparison of algorithms at varying penetration levels. The

experiments in Figure 3 were done at 30% penetration, but exper-

iments at 40% (Figure 6(b)) and 50% (Figure 6(c)) are also shown

for comparison. For better illustration of the results, the results

for 40% penetration are also included again in Figure 6(b). Overall,

increasing the penetration degrades the accuracy of the predictions

and subsequently drives the normalized cost higher. This is most

prevalent in the worst case scenario, where the heavy tails beyond

the theoretical guarantee increase from 20% to 40% for Eng-dd. On
the other hand, the mean normalized cost is relatively robust de-

grading predictions via penetration level. For all algorithms, the

mean normalized cost remains below the theoretical guarantee.
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