
Practical Fine-Grained Binary Code Randomization†

Soumyakant Priyadarshan

Stony Brook University, USA

spriyadarsha@cs.stonybrook.edu

Huan Nguyen

Stony Brook University, USA

hnnguyen@cs.stonybrook.edu

R. Sekar

Stony Brook University, USA

sekar@cs.stonybrook.edu

Abstract
Despite its effectiveness against code reuse attacks, fine-grained

code randomization has not been deployed widely due to compati-

bility as well as performance concerns. Previous techniques often

needed source code access to achieve good performance, but this

breaks compatibility with today’s binary-based software distribu-

tion and update mechanisms. Moreover, previous techniques break

C++ exceptions and stack tracing, which are crucial for practical de-

ployment. In this paper, we first propose a new, tunable randomiza-

tion technique called LLR(k) that is compatible with these features.

Since the metadata needed to support exceptions/stack-tracing can

reveal considerable information about code layout, we propose a

new entropy metric that accounts for leaks of this metadata. We

then present a novel metadata reduction technique to significantly

increase entropy without degrading exception handling. This enables
LLR(k) to achieve strong entropy with a low overhead of 2.26%.

ACM Reference Format:
Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar. 2020. Practical Fine-

Grained Binary Code Randomization. In Annual Computer Security Appli-
cations Conference (ACSAC 2020), December 7–11, 2020, Austin, USA. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3427228.3427292

1 Introduction
With widespread adoption of data execution prevention (DEP) on

modern operating systems, attackers have shifted their focus from

code injection to code reuse attacks, e.g., return-oriented program-

ming (ROP) [47] and jump-oriented programming (JOP) [7]. Ex-

isting defenses against code reuse attacks fall into two broad cate-

gories: control-flow integrity (CFI) [2, 15, 36, 52, 61, 64] and fine-

grained code randomization [6, 11, 14, 16, 18, 26, 30, 31, 38, 55, 57,

62]. Although the deterministic nature of CFI is attractive, as a

code-reuse defense, CFI has a few drawbacks:

• Use of CFI-permitted gadgets: With CFI, attackers are uncon-

strained if they target “legitimate gadgets,” i.e., gadgets that are

reachable as per the policy enforced by CFI. In contrast, fine-

grained code randomization hides the location of every gadget,

thus requiring extra work (e.g., information leaks) before any of
them can be used in an attack.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACSAC 2020, December 7–11, 2020, Austin, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00

https://doi.org/10.1145/3427228.3427292

• Lack of graceful degradation: If CFI instrumentation leaves out

some modules or code fragments, attackers can initiate a ROP at-

tack from these fragments. Once initiated, such an attack is free

to use unintended gadgets anywhere, including modules that
have the CFI instrumentation. This is because CFI checks are
applied only on legitimate instructions, e.g., intended returns,

rather than unintended ones
1
. This contrasts with randomiza-

tion, where weaknesses introduced by an unrandomized code

module are limited to the gadgets within that module.

• Compatibility: Higher precision (aka fine-grained) CFI [15, 36,

52] suffers from compatibility problems on complex code. Coarse-

grained CFI [1, 2, 61, 64] poses fewer compatibility challenges,

but is more easily defeated. Code randomization typically faces

far fewer compatibility problems than CFI techniques.

These factors have prompted substantial research on fine-grained

code randomization. Early works [6, 30] targeted the static ROP
threat model, where the attacker has a copy of the victim’s binary

code. By statically analyzing this code, he/she can identify gadgets

that can be used in an attack. Code reuse attacks have since evolved

to use dynamic probing of victim process code and/or data memory

by leveraging memory disclosure vulnerabilities:

• (Direct) JIT-ROP attacks [50] rely on the identification of gadgets
on the fly by disclosing victim’s code memory.

• Indirect disclosure ROP attacks leak just the data memory —

specifically, code pointers stored in data memory.

Likemany recent works, we rely on execute-only code for thwarting

direct JIT-ROP. The new techniques developed in this paper are thus

aimed at the static ROP and indirect disclosure ROP threat models.

1.1 Motivation: Deployable Code Randomization

Despite advances in new code randomization techniques, they are

not widely deployed due to several concerns described below.

Need for Source Code. Many code randomization techniques

rely on a modified compiler [6, 14, 31] or special compiler options

[18, 30, 57] (e.g., debug or relocation flags) that aren’t enabled on

production binaries. This makes them incompatible with today’s

dominant software deployment and update mechanisms, which

involve the distribution of binary code. Even open-source software

is predominantly distributed in binary format for convenience.

Performance. A low overhead is critical for the deployment of

security hardening measures. Often, a 5% or lower threshold is

quoted. While techniques that rely on some level of compiler sup-

port [14, 18, 30, 31, 57] have met this threshold, most binary-based

techniques (e.g., [16, 26, 62]) tend to have higher overheads.

1
The attacker can use any gadget beginning in the middle of a legitimate instruction,

as long as the indirect control flow instructions in the gadget are unintended.

†
The first two authors contributed equally to this work, which was supported by ONR

(N00014-17-1-2891). Third author’s work was also supported by NSF (CNS-1918667).

https://www.acsac.org/2020/submissions/papers/artifacts/
https://doi.org/10.1145/3427228.3427292
https://doi.org/10.1145/3427228.3427292

ACSAC 2020, December 7–11, 2020, Austin, USA Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

Compatibility with stack tracing and C++ exceptions. A chief

concern for deployed software is the support for error handling and

reporting. Unfortunately, existing fine-grained code randomization
techniques don’t support these features.While this incompatibility

may be acceptable for a proof-of-concept implementation, it is not a

viable option for platform-wide deployment. In particular, libraries

need to be compatible, or else exceptions and stack traces are broken

for every application that uses them.

Some techniques (e.g., Readactor [14]) are incompatible because

they violate a key assumption behind these mechanisms: that func-

tion bodies are contiguous. Many others [6, 11, 16, 18, 26, 30, 55,

57, 62] are incompatible because they fail to maintain the metadata

used by these mechanisms.More importantly, none of the pre-
vious techniques have considered the security implications
of this metadata. In particular, both stack tracing and exception

handling operate from the “stack unwinding” information stored in

the eh_frame section of Linux binaries. This section records the

addresses of the first and last instructions of (almost) every function

in the binary. It is important to note that this information is present
in stripped binaries, and is stored in readable memory at runtime.
Moreover, this information is not limited to C++, as stack traces

are needed for C-code as well. We found that this information is

present for 95% of the code on Ubuntu Linux.

Since attackers have proven adept at leaking information stored

in readable memory, it is necessary to develop randomization tech-

niques that are secure despite such leaks. In particular, many exist-

ing techniques derive the bulk of their randomness from permuting

the order of functions. The availability of eh_frame information

defeats the security of such schemes.

1.2 Approach Overview and Contributions

In this paper, we present Stony Brook Static Binary Randomizer

(SBR) that provides the following key features:

• Compatibility with exceptions and stack traces;

• Compatibility with COTS binaries, including low-level libraries

such as the system loader (ld) and the C-library (glibc);

• Support for code written in multiple languages, including C,

C++, Fortran and hand-written assembly, and compiled using

multiple compilers (e.g., gcc, llvm and gfortran); and

• Low runtime overhead.

SBR has been tested on 640MB of binaries. (This is about 2/3
rd

the size of all binaries on Ubuntu Desktop 18.04.) We plan to open-

source SBR in a few months. Our main contributions are as follows.

Stack-unwinding-compatible randomization. We present a

new technique called LLR(k) that provides the following benefits:

• Each leaked code pointer reveals the locations of just 𝑘 more

instructions. As a result, attackers need to leak many pointers

before they have sufficient gadgets for an effective payload.

• Users can easily make security vs performance trade-offs by tun-

ing 𝑘 . Larger 𝑘 values yield better performance, while smaller 𝑘

values offer increased security. Moreover, LLR(k) can be seam-

lessly combined with other randomization techniques.

• Our experimental results show that 𝑘 = 16 achieves good secu-

rity (in the form of high entropy) with a low overhead of 2.26%.

Unwinding Block Entropy and Reduced EH-Metadata. We

show that the metadata used for C++ exceptions and stack-tracing

reveals a lot of fine-grained information about instruction locations.

• We define a new entropy metric, unwinding block entropy, to
quantify the difficulty of attacks that exploit this metadata.

• We develop a novel approach for reducing the metadata such

that C++ exceptions would continue to work seamlessly, and

with the same performance as before.

• We show that this metadata reduction has a major impact on

our new entropy metric, increasing it by 8x.

Comparison of randomizing transformations. We present a

robust implementation of SBR that scales to complex binaries on 64-

bit x86/Linux systems. It randomizes all code, including executables

and all libraries. Using this implementation, we present a detailed

experimental evaluation of the security vs performance trade-off

offered by previous randomization techniques and our new LLR(k).

1.3 Paper Organization

Sec. 2 provides the background on stack unwinding, our threat

model, and previous randomization techniques. Our new LLR(k)
technique is introduced in Sec. 3. A new unwinding metadata opti-

mization is described in Sec. 4. Our new entropy metrics are pre-

sented in Sec. 5, followed by our binary instrumentation approach

in Sec. 6. Implementation and evaluation are the topics of Sec. 7 and

8, followed by discussion, related work, and conclusions in Sec. 9,

10 and 11.

2 Background and Threat Model
2.1 C++ Exception and Stack Tracing Compatibility

Modern C++ compilers and runtime systems implement a “zero

overhead” (aka “zero cost”) exception model. This model is aimed

at eliminating runtime overheads for any program that raises no

exceptions, even if it includes code that uses exceptions. This is

achieved by avoiding proactive book-keeping at runtime for excep-

tion handling. Instead, the compiler generates tables that include

all the information necessary to process exceptions at runtime. This

table is stored in read-only data sections in the binary that we will

collectively refer to as EH-metadata.

On GNU/Linux, stack tracing also uses EH-metadata, so this

metadata is included in code generated from many languages, in-

cluding C. Even hand-written assembly in many system libraries

contains EH-metadata. The vast majority of binary code on Linux

systems is covered by EH-metadata — for instance, 95% of all the

code in /bin and /lib/x86_64-linux-gnu on Ubuntu 18.04 Linux.

An operation central to exception processing as well as stack

tracing is stack unwinding. This operation involves restoring the

values of callee-saved registers, and restoring the stack pointer to

its value when the current function was entered. On completion

of unwinding, the stage is set for returning to the caller. The caller

may in turn perform its own unwinding and return to its caller, and

so on. For C++ programs, unwinding stops when it reaches a catch

block for the current exception, or the outermost stack frame.

EH-metadata specifies: (a) the start and end locations of each

function, (b) the beginning and end of each unwinding block, and (c)

Practical Fine-Grained Binary Code Randomization ACSAC 2020, December 7–11, 2020, Austin, USA

the operations for unwinding. An unwinding block may correspond

to a try-block in a C++ program, or to instructions that change

the stack pointer and/or callee-saved registers. The operations for

unwinding a block are usually specified as a delta over a previous

unwinding block, thus revealing dependencies between them. More

details on EH-metadata can be found in [37, 42].

Key Implications and Requirements for Code Randomization.
• Exception metadata needs to be updated after code movement.

• This metadata reveals a lot of information useful to attackers:

(1) the start and end address of each function,

(2) the start and end of each unwinding block, and

(3) the dependence between unwinding blocks.

Our investigation shows that across a range of Linux/x86_64 bina-

ries, an average function contains about a dozen unwinding
blocks. So, unless care is taken, EH-metadata can leak a lot of

information about code locations, thereby greatly degrading the

effectiveness of code randomization. To address this threat, we need

• new code randomization techniques that can provide adequate

security despite such leaks (Sec. 3),

• newmetadata optimization techniques thatminimize the amount

of EH-metadata without impacting the functionality or perfor-

mance of exception handling (Sec. 4), and

• new entropy metrics that assess the security provided by code

randomization in the face of EH-metadata leaks (Sec. 5).

2.2 Threat Model and Security Goals

Our threat model is similar to previouswork, with the key difference

that attackers are aware of SBR’s compatibility with stack traces

and exceptions and hence may:

• leverage the fact that function bodies are contiguous in order to

speed up their attack, and/or

• target EH-metadata specifically and disclose it. This is possible

because this metadata is present in stripped binaries, and is stored
in readable memory at runtime.Moreover, it typically covers 95%

of all functions, including most C-code and assembly.

With these differences in mind, we outline the three threat models

considered in code randomization research.

Static ROP. Although this threatmodel mentions ROP [47] specif-

ically, it is intended to include other code reuse attacks that rely on

existing code snippets such as JOP [7]. This threat model assumes

that (a) the attacker is able to exploit a vulnerability in the victim

program to hijack its control flow to start the execution of a gadget

chain, and (b) the locations of these gadgets are determined on

the basis of an attacker’s prior knowledge of the victim program’s

binary. All code randomization techniques aim to take away (b),

but don’t always do it completely. For instance, compiler-based

techniques don’t randomize low-level code written in assembly.

Our goal is to defeat static ROP by ensuring that the attacker

has no knowledge of any part of the binary code that executes at

runtime, and by introducing large entropy into this binary.

JIT-ROP. The JIT-ROP threat model assumes that the victim pro-

gram has a memory corruption vulnerability that provides (i) an

arbitrary read capability, and (ii) an ability to hijack control-flow.

It also assumes the availability of a scripting environment that (i)

executes attacker-provided scripts, and (ii) can exercise these vul-

nerabilities. State-of-art defense against JIT-ROP relies on execute-

only (i.e., non-readable) code. Since this technique imposes very

low overheads and is also very strong due to its reliance on hard-

ware memory protection, our approach will simply rely on this

technique to protect against JIT-ROP. (Note that our techniques are

compatible with execute-only code.)

Indirect (only) Disclosure ROP. This threat model assumes that

the victim program has a memory corruption vulnerability that en-

ables an attacker to read arbitrarymemory locations. It also assumes

the availability of another vulnerability that enables control-flow

hijack. Finally, it assumes that code is protected from reads, so the

attacker cannot use leaked pointers to search the code for usable

gadgets. Instead, she targets gadgets that are adjacent to the leaked

code address, or at a short distance from it.

Attackers may very well use gadgets at the leaked pointers. Pre-
venting such reuse is hard, and is outside the scope of code randomi-

zation. Instead, our goal is to prevent attackers from using leaked

pointers to identify (the locations of) additional usable gadgets.
The availability of EH-metadata greatly increases useful in-

formation that may be leaked by indirect disclosures.

2.3 Common Randomizing Transformations

In this section, we summarize most of the fine-grained randomizing

transformations that have been proposed before. These transfor-

mations proceed in two phases. The first phase determines how a

function body is split into a set of partitions. In the second phase,

the partitions are permuted, and jumps introduced as needed to

preserve the original control-flow. Since the second phase is similar

for all transformations, we focus on the first phase below.

• Function Reordering (FR): Proposed in the earliest works on

code randomization [6, 30], this technique does not change

function bodies at all — it simply permutes the order of functions

in the code section. This achieves high entropy against static

ROP threat model, but FR is insufficient if code pointers or stack-

unwinding information can be leaked.

• ZeroJmp (ZJR): Koo et al [31] proposed to align code splits at lo-

cations terminating with unconditional jump instructions. With

this alignment, no new jumps are introduced for randomization;

instead, we simply adjust the targets of existing jumps after

permuting the blocks. As a result, Koo et al achieved nearly

zero overhead for this technique. We show, however, that ZJR is

relatively weak against adversaries that can leak code pointers.

• Basic Block Randomization (BBR): This technique splits func-
tion bodies at basic block boundaries. A basic block is an in-

struction sequence with no incoming control transfers except

to the first instruction, and no outgoing control transfers except

through the last instruction.

• Pointer-Hiding Randomization (PHR): Readactor [14] intro-
duced a pointer hiding defense against indirect disclosure attacks.
Specifically, for every indirectly called function, they introduce

a corresponding trampoline that then jumps to that function. It

is only the trampoline address that is stored in memory. Since

the trampoline is located randomly, it reveals no information

ACSAC 2020, December 7–11, 2020, Austin, USA Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

about possible gadgets at the beginning of the target functions.

To protect return addresses, each call is replaced with a jump

to a trampoline for that call-site, with the trampoline making a

call to the target function. As a result, the return address only

leaks the location of the trampoline.

Random placement of call-site trampolines will break stack-

unwinding. So, we consider a modification of Readactor’s tech-

nique that locates the trampoline at a random locationwithin the

body of the caller. In addition, code blocks between successive

calls are permuted. We call this variant as PHR.
• Phantom Blocks (PB): Instead of relying purely on permutation,

phantom blocks were introduced in kRˆ︁X [40] to create gaps

between blocks of original code. By randomly varying the size

of phantom blocks, entropy can be further increased. Moreover,

these blocks can bemade into “traps” by filling themwith invalid

code. This will cause any jumps into these blocks to terminate

the victim program.

Note that PB does not create new splits in the function body — in-

stead, it relies on other schemes such as BBR or PHR. Specifically,
kRˆ︁X relies on the PHR variant described next.

• One-side Pointer Hiding (OPHR): Note that call-site trampo-

lines of PHR require one jump into the trampoline, and a second

jump out of the trampoline. Performance can be improved by

removing one of these jumps. There is also a security cost, be-

cause the gadget location are hidden only on one side of the call:

the side that contains a jump.

3 LLR(𝑘): Length Limiting Randomization
Existing randomization techniques outlined above do not satisfac-

torily address indirect disclosure ROP that leverages EH-metadata:

• PHR can stop attackers from computing additional gadgets ad-

jacent to a return address even after the attacker leaks that

return address. However, if the attacker leaks a code address

from EH-metadata, PHR cannot prevent attackers from knowing

the locations of nearby gadgets.

• ZJR and BBR don’t address indirect disclosures per se, but they

do have a secondary effect since they chop and permute func-

tion bodies. This means that a leaked return address exposes

the location of instructions in the same code block, but the gad-

gets in other blocks within the caller are still unknown to the

attacker. Unfortunately, ZJR blocks can be large. In the SPEC

suite, we observed thousands of blocks consisting of hundreds of

instructions. Although BBR blocks tend to be small on average,

there are still over a hundred blocks containing hundreds of

instructions. In fact, we find a basic block that is 8KB-long! As a

result, a leaked code address can allow an attacker to compute

a large number of additional gadgets.

• PBs also don’t address indirect disclosures, so kRˆ︁X [40] relies

on OPHR for this purpose. Being a weaker (but faster) form of

PHR, OPHR shares the weaknesses of PHR, i.e., no protection is

offered for addresses disclosed in the EH-metadata. In addition,

OPHR shares a drawback of ZJR: that the number of large OPHR
blocks is comparable to that of ZJR.

In contrast, we introduce a new technique, called Length Limiting

Randomization (LLR(k)), which limits the utility of any disclosed

code address. The basic idea behind LLR(k) is very simple. Let 𝑠

be the size of a function. We generate 𝑝 = ⌊𝑠/𝑘⌋ distinct random
numbers 𝑟1, ...𝑟𝑝 over the range [1, 𝑠−1]. We then proceed to create

a partition at each 𝑟𝑖 . Since the number of partitions is 𝑝 + 1, the

average partition size is 𝑠/(𝑝 + 1) = 𝑠/(⌊𝑠/𝑘⌋ + 1) ≤ 𝑠/(𝑠/𝑘) = 𝑘 .

Despite its simplicity, LLR(k) is quite powerful, and offers several
benefits over previous techniques:

• Tunable entropy and performance: Small values of 𝑘 mean a large

number of small blocks. This increases entropy, but decreases

performance because frequent jumps increase code size, while

also decreasing cache locality. By the same reasoning, larger 𝑘

values provide better performance while decreasing entropy.

• Bounded utility for any disclosed address. Since the expected

length of any contiguous block of code is 𝑘 , an attacker that

discloses an address can expect to be able to guess the locations

of up to 𝑘 adjacent instructions. To access gadgets beyond this

range, the attacker will have to disclose additional addresses
2
.

• Higher entropy than other techniques for the same number of
partitions. For a given average partition size, LLR(k) provides
much higher entropy as compared to other schemes such as ZJR
or BBR. For instance, consider a function of size 100 instructions,

and let the average block size be 10. For this block size, both ZJR
and BBR yield an entropy of 22 bits, while LLR(k) yields 66 bits
of entropy! This is because LLR(k) introduces a lot of additional
randomness in the placement of breaks, whereas the placement

is deterministic for all other schemes discussed above.

• Can be seamlessly combined with other randomizations. We can

start with a base randomization scheme, such as ZJR, BBR, PHR,
or OPHR, and introduce additional randomness using LLR(k).
Suppose that the base scheme introduces breaks at𝑚 − 1 loca-

tions, thus yielding𝑚 partitions of a function. We then eliminate

these𝑚 − 1 locations (out of a total of 𝑠 − 1 possible locations)

from consideration, and number the remaining locations from 1

to 𝑠−𝑚. From these 𝑠−𝑚 locations, we choose 𝑝 = ⌊𝑠/𝑘⌋−𝑚 ran-

dom locations to create additional partitions. Note that the total

number of partitions is ⌊𝑠/𝑘⌋, thus ensuring the same average

block size as a pure LLR(k) scheme.

The most obvious combination is ZJR +LLR(k). In practice, there

is no reason to omit ZJR since it has nearly zero overhead. So, we

make ZJR +LLR(k) combination as the default, using the term LLR(k)
to refer to this combination. Stand-alone LLR(k) is called pure-LLR(k).

A second combination we consider is PHR + LLR(k). As compared

to PHR, we show that it provides a substantially higher entropy at

a small additional performance cost.

4 Limiting Disclosures in EH-metadata
By updating EH-metadata after code randomization, the function-

ality of C++ exceptions and stack tracing can be restored. Unfor-

tunately, the updated metadata reveals far too much information

about the new code layout that can be leveraged to defeat random-

ization. Recall from Sec. 2.1 that EH-metadata reveals:

2
Since partitions are determined by a randomnumber generator, some LLR(k) partitions
can be larger than 𝑘 . However, unlike randomization schemes where the attacker

knows the larger blocks ahead of time, the attacker cannot predict which LLR(k) blocks
will be large. This is why we consider the expected length 𝑘 as a limit on the number

of gadgets an attacker can determine from a disclosed address.

Practical Fine-Grained Binary Code Randomization ACSAC 2020, December 7–11, 2020, Austin, USA

(a) the start and end of each unwinding block,

(b) the dependence between successive unwinding blocks, and

(c) the operations for unwinding the stack and restoring registers.

It is easy to see that the amount of metadata is directly proportional

to the number of unwinding blocks. Thus, in order to minimize

disclosures through EH-metadata, we describe in Sec. 4.1 our tech-

nique for eliminating most unwinding blocks without impacting

exception handling. Next, in Sec. 4.2, we discuss the spectrum of

possible code transformations that preserve unwinding compatibil-

ity for the remaining blocks, and justify our specific design choice.

4.1 Reducing EH-metadata Stored in Memory

A key observation we make is that small unwinding blocks fre-

quently consist of instructions such as push or pop that won’t

trigger C++ exceptions. This is because C++ exceptions are ulti-

mately triggered by a call to a throw function in the standard C++

library. This means that only those unwinding blocks that contain

call instructions can be involved in a C++ exceptions. All other

unwinding blocks could only be used in stack tracing, which is

typically used when a process terminates due to a fatal error. This

may include the case of unhandled signals, e.g., due to memory

faults, divide by zero, etc.

Based on the above observation, our design generates two ver-

sions of EH-metadata: a full version that includes all unwinding

blocks, and a reduced version that only stores information for call-

containing unwinding blocks. The full version is stored in a region

of memory that is made unreadable, so it cannot leak to the attacker.

The reduced version is the EH-metadata that is available at runtime.

When C++ exceptions occur, the above design ensures that our

reduced EH-metadata will include the information needed for un-

winding all the code blocks in the current call chain. Consequently,

exception handling will continue to work as before.

Typically, stack tracing is invoked when a process encounters a

serious error. Such an error may be detected by the program, and

it may respond by calling a library function for printing the stack

trace and exiting; or, it may be an unhandled error that manifests

as a UNIX signal. In the former case, since a function is being

invoked, all the relevant unwinding information will already be in

the reduced EH-metadata. To handle the latter case, we can install

a signal handler in the instrumented binary to check if the error

is due to a fault triggered by an instruction execution. If so, SBR
will replace the reduced EH-metadata with the full version. After

completing its task, SBR’s signal handler will transfer control to the
application’s signal handler. This kind of signal handler “hooking”

can be achieved by instrumenting glibc functions used for signal

handler registration. This is feasible since SBR instruments all

binaries, including glibc and the system loader. However, we have

not implemented this yet.

Note that the above design can support C++ exceptions as well

stack tracing for programs written in C or other languages. We add

no additional overheads for C++ exceptions, or any explicit calls to

functions that perform stack-unwinding. There is additional over-

head in the remaining cases, but since those cases typically occur

in conjunction with process or thread termination, the additional

overheads seem acceptable.

Function Unwinding operations for original blocks
100:push%rbp //Block𝐴1

102:sub $20,%rsp//Block𝐴2

106:push%r8 //Block𝐴3

108:call 140

10d:pop %r8 //Block𝐴4

10f: call 120

114:add $20,%rsp//Block𝐴5

118:pop %rbp //Block𝐴6

11a:ret

𝐴1[100-100]: RBP = *(RSP); RSP = RSP + 8

𝐴2[102-102]: {RSP = RSP + 20}

+ unwind operations of𝐴1

𝐴3[106-108]: {R8 = *(RSP); RSP = RSP + 8}

+ unwind operations of𝐴2

𝐴4[10d-10f]: unwinding operations of𝐴2

𝐴5[114-114]: unwinding operations of𝐴1

𝐴6[118-11a]: { };

Unwinding operations post-optimization
𝐴13[100-108]: R8 = *(RSP); RSP = RSP+28;

RBP = *(RSP); RSP = RSP+8

𝐴46[10d-11a]: RSP = RSP+20;

RBP = *(RSP); RSP = RSP+8

Fig. 1: Unwinding blocks example

Fig. 1 illustrates our optimization on an example function with 6

unwinding blocks, 𝐴1 through 𝐴6. The second column in the figure

shows the unwinding operations for𝐴1 to𝐴6. Note that the unwind-

ing operations for 𝐴1 undo the effect of its only instruction push

%rbp on the stack and callee-saved registers. Unwind operations

for 𝐴2 need to undo the effect of its instruction sub $20, %rsp

and those of the blocks that preceded it. Rather than duplicating

the unwind operations of 𝐴1 within those of 𝐴2, a dependency on

𝐴1 is indicated in the metadata. At runtime, the stack unwinder

will observe this dependence and perform 𝐴1’s unwind operations

following those of 𝐴2. Note that the first instruction in 𝐴4 undoes

the effect of𝐴3 on the stack and callee-saved register. Realizing this,

the compiler simply records a dependence from 𝐴4 to the block 𝐴2

preceding 𝐴3.

Since 𝐴1, 𝐴2, 𝐴5 and 𝐴6 contain no calls, our optimization can

delete them. In addition, we perform an additional optimization:

Expanding call-containing blocks:While unwinding blocks

without calls have been removed, their presence may be partially

revealed by the gaps in the ranges of remaining blocks. To avoid

this, we expand call-containing blocks until they meet each other.

Instead of a deterministic choice, we pick the meeting point at

random so as to increase attacker effort. In the example above, 𝐴3

has been expanded to 𝐴13, and its range 100–108 combines those

of 𝐴1 to 𝐴3. Unwinding operations from 𝐴1, 𝐴2 and 𝐴3 have been

consolidated in reverse order into 𝐴13, ensuring the same behavior

as the original code if any exception occurs within this call. 𝐴4 has

similarly been expanded to 𝐴46.

4.2 Unwinding-Compatible Code Randomization

After expanding unwinding blocks as described in the previous

section, the next step is to randomize the code within these blocks.

We discuss two possible options in this regard and justify our choice.

Whole function randomization. This choice is motivated by

the fact that the number of possible randomizations is significantly

larger if we permute the whole function without placing additional

constraints on the basis of unwinding blocks. Unfortunately, this

increase in apparent entropy does not necessarily provide more

security in our threat model. Consider two successive unwinding

blocks 𝐴 and 𝐵 in the original code. Suppose that 𝐴 is broken into

fragments 𝐴1 and 𝐴2 and 𝐵 is broken up into 𝐵1 and 𝐵2 and the

code rearranged in the order 𝐴1𝐵1𝐴2𝐵2, and then jumps are intro-

duced to maintain the original control flow. Since 𝐵1 requires a

ACSAC 2020, December 7–11, 2020, Austin, USA Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

different set of unwinding operations, it has to reside in a distinct

unwinding block from 𝐴1 and 𝐴2. In other words, four unwind-

ing blocks would be needed now, thus reversing the benefits of

the optimization described in the last section, and exposing more

information about the code layout in EH-metadata. Moreover, it

is often possible to infer the dependence between 𝐴1 and 𝐴2 (and

the lack of dependence between 𝐴1 and 𝐵1 or 𝐵1 and 𝐴2) from the

associated unwinding data.Worse, the attacker can now determine
the length of blocks 𝐴1 and 𝐴2, thereby pinpointing the locations
where the original code blocks have been partitioned. Using depen-
dency and block boundaries, an attacker can potentially determine

the permutation that has been applied, thus negating the security

benefits of randomization.

Intra-block randomization. This is the simplest option to imple-

ment because it does not change unwinding block boundaries. As

such, EH-metadata remains unchanged after randomization. This

implies that (a) leaks of this metadata will reveal nothing about

the code randomizations performed on any block, and (b) the func-

tionality as well as the time and space overhead of the exception

handling will be exactly as before randomization. We have there-

fore chosen intra-block randomization in SBR. Experimental results

show that our expanded unwinding blocks are above 50% of the

function size on average, so we can achieve sufficient entropy.

It should be noted that SBR’s randomization is confined to our

expanded unwinding blocks. As a result, they will break up some of

the original unwinding blocks, e.g., 𝐴1, 𝐴2, etc. Hence the full EH-

metadata that will be used for stack tracing can contain even more

unwind blocks than the original, a factor we evaluate in Sec. 8.6.

5 Entropy: Quantifying Randomization Strength
Entropy is calculated using its information theoretic definition as∑︁𝑛
𝑖=1 −𝑝𝑖 log𝑝𝑖 , where there are 𝑛 possible outcomes, with the 𝑖th

outcome having a probability of 𝑝𝑖 . (When all outcomes are equally

likely, as is the case in most of our transformations, this formula

simplifies to log𝑛.) As is common, we use 2 as the base for log

operations below, and hence report entropy in bits. We define four

distinct entropy metrics: two that have been used in previous works,

and two that we introduce in this paper.

• Global Entropy (GE): This quantity measures the global entropy

across an entire binary. If a randomization scheme can generate

𝑉 distinct variants of a binary, each with a probability of 1/𝑉 ,
then the GE of the binary is log𝑉 .

A high global entropy is an effective defense against static

ROP. However, it is not a useful security measure in our threat

model, where code locations may be revealed via code pointers

or EH-metadata
3
. Hence we leave GE out of further discussion.

• Function Entropy (FE): This quantity measures the entropy

of a single function. The FE of an entire binary is taken as the

arithmetic mean of the FE’s of all the functions in the binary.

3
For instance, function reordering has high global entropy even for modest size binaries

that have a few dozen functions. However, an attacker that leaks the location of a single

instruction can immediately determine the locations of all the remaining instructions

within the same function. Worse, an attacker that leaks EH-metadata (specifically,

eh_frame_hdr) knows the location of every instruction in the binary. Thus, high

global entropy means little in the context of our threat model.

When function bodies are contiguous, as is common with

many randomization schemes, FE provides a good measure of

security against conventional indirect disclosure attacks that

leak code pointers. Although it is not as meaningful in the face of

EH-metadata disclosures, we still use it in our evaluation since

it is well known, and hence makes our results easier to interpret.

• Full Unwinding Block Entropy (FUBE): This quantity mea-

sures the entropy of a single unwinding block. It is defined

similar to FE, but instead of applying it at the granularity of

functions, we apply it at the granularity of unwinding blocks.

FUBE represents the mean entropy across all unwinding blocks.

FUBE targets indirect disclosure attacks that leak unmodified

EH-metadata, before any of our reduction techniques (Sec. 4.1)

are applied. In such a case, the attacker knows the boundaries

of every unwinding block, so a randomization scheme is limited

to randomizing instructions within each such block.

• Reduced Unwinding Block Entropy (RUBE): This quantity is

similar to FUBE, except that it is applied to the reduced/optimized

EH-metadata described in Sec. 4.1.

Our experimental results show that relatively high values of

FE and RUBE can be achieved using our LLR(k) technique, thus
showing that exception-handling compatibility does not have to

come at the cost of security. Below, we outline the computation of

entropy metrics for different randomization schemes.

ZJR, BBR and PHR. Computation of function entropy of these

three methods is similar. Let𝑚 be the number of blocks after ZJR
(or BBR or PHR) is used to partition a function. These blocks can be

permuted in𝑚! ways, thus yielding an entropy of log𝑚!.

LLR(k). Recall that we apply LLR(k) over ZJR: we start with the

𝑚 partitions produced by ZJR, and then introduce 𝑝 = ⌊𝑠/𝑘⌋ −𝑚

partitions using LLR(k). The partitions introduced by ZJR are de-

terministic, but there is randomness in the way LLR(k) generates
partitions. Recall that we choose these 𝑝 locations out of 𝑠 −𝑚

possible locations, so these LLR(k) partitions introduce log
(︁𝑠−𝑚

𝑝

)︁
bits of entropy. In the second phase, we permute 𝑝+𝑚 blocks, which

yields an entropy of log(𝑝 +𝑚)!. Thus the total function entropy,

in bits, is given by

log

(︃
𝑠 −𝑚

𝑝

)︃
+ log(𝑝 +𝑚)!

Our experimental results show that the first term has a substantial

value, thusmaking our LLR(k) techniquemore effective as compared

to previous techniques in terms of entropy. We can loosely view the

second term as the entropy gained by “paying” the performance

cost of the 𝑝 newly introduced jumps. The first term can then be

viewed as a “bonus” that is gained without a performance price.

For the same number of partitions, pure-LLR(k) will yield higher
entropy than the hybrid scheme above (but may have a higher per-

formance cost since every jump is newly introduced). This entropy

can be found by setting𝑚 = 1 in the above formula:

log

(︃
𝑠 − 1

𝑝

)︃
+ log(𝑝 + 1)! = log(𝑝 + 1) (𝑠 − 1) (𝑠 − 2) · · · (𝑠 − 𝑝)

Practical Fine-Grained Binary Code Randomization ACSAC 2020, December 7–11, 2020, Austin, USA

6 Binary Analysis and Instrumentation
The central challenge in static binary instrumentation is that of

accurately identifying code pointers. Since instrumentation typi-

cally changes code sizes, these pointers have to be “fixed up” to

point to the correct post-instrumentation locations of their original

targets
4
. Unfortunately, without relocation information that may

not be included in COTS binaries, it is not possible to determine

if a constant in a binary represents a code pointer or a data value.

CCFIR [61] authors made the key observation that the widespread

deployment of ASLR onWindows necessitated the inclusion of relo-

cation information:Windows has long relied on position-dependent

DLLs, so applying ASLR to DLLs involves a library transformation

(called rebasing) that requires relocation information [33]. By lever-

aging this information, CCFIR achieved robust and efficient CFI

instrumentation for Windows binaries.

Unix systems have long relied on position-independent libraries

that can support ASLR without needing relocation information.

However, on 32-bit x86 architecture, position-independence was

achieved using ad-hoc, compiler-specific techniques that made it

impossible to reliably identify code pointers. Moreover, executa-

bles were typically position-dependent,
5
and contained hard-coded

pointers. For these reasons, approaches for static instrumentation of

COTS Linux binaries often relied on address translation [49, 63, 64],

a technique originally developed in dynamic binary instrumenta-

tion systems [8, 34] for runtime fix-up of code pointers. Unfortu-

nately, address translation introduces significant complexity and

runtime overhead. However, as vendors continue the push for ap-

plying ASLR to all binaries (including executables), almost all bina-

ries on recent Unix systems have become position-independent
6
.

Moreover, modern 64-bit platforms consistently use PC-relative

addressing to create code pointer constants, or identify such con-

stants using relocation information. Leveraging this, recent research

[19, 41, 58] has shown that code pointers can be reliably identified

and fixed up statically on these platforms. This enables fully static

binary instrumentation with zero base overhead, while avoiding

significant complexity that comes with address translation. The

approach described below builds on these works, specifically [41].

Disassembly. Over the years, compilers on Linux have become

increasingly strict about moving all data out of code segments and

into a data segment. As a result, linear disassembly can achieve high

accuracy [3]. Recent works such as RetroWrite [19] and Egalito [58]

have also shown that complex Linux binaries can be successfully

disassembled using linear disassembly.

Function Identification. Since most of our randomizing trans-

formations operate on one function at a time, the next step is to di-

vide the disassembled code into functions. We rely on EH-metadata

to identify function boundaries. Recent work shows [42] that on

Linux/x86_64 (our implementation platform), this technique is more

accurate than many techniques specialized for accurate function

identification [4, 5, 43, 48]. Although EH metadata may not be as

complete on other platforms, this won’t affect SBR’s correctness:

4
For instance, the starting point of a function 𝑓 may change from a location 0x1000

to 0x1050 after instrumentation. This requires every constant value 0x1000, if it

represents a pointer to 𝑓 , to be changed to 0x1050.
5
This also means that they are not randomized by ASLR.

6
About 99% of binaries on a default Ubuntu 18.04 install are position-independent.

Original code Randomized code
1200: lea 0xf7(%rip), %rdi L1200: lea L1300(%rip), %rdi

1209: mov -0xefe(%rip), %rax L1209: mov L310(%rip), %rax

// load function pointer from location 30c

120e: call *%rax L120e: call *%rax

jmp L1211

// Jump table targets...

L122a: . . .

L1270: . . .

L1298: . . .

1211: lea -0xf18(%rip),%rdi L1211: lea L300(%rip), %rdi

1218: cmp $0x14, %rax L1218: cmp $0x14, %rax

121c: jge 12ff L121c: jge L12ff

121e: add %rdi,%rax L121e: add %rdi,%rax

1221: mov (%rax), %rax L1221: mov (%rax), %rax

1226: add %rax,%rdi L1226: add %rax,%rdi

1229: jmp *%rdi L1229: jmp *%rdi

// Indirect jump using jump table

122a: · · · // code for jmp table entry 1

1270: · · · // code for jump table entry 2

1298: · · · // code for jump table entry 3

12ff: ret L12ff: ret

1300: push %rbp L1300: push %rbp

1301: sub $0x20, %rsp L1301: sub $0x20, %rsp

· · · · · ·
Static data: Static data:
// Jump table... // Rewritten jump table

300: 0xf2a L300: .long L122a-L300

304: 0xf70 L304: .long L1270-L300

308: 0xf98 L308: .long L1298-L300

// Pointer constant marked for relocation

310: 0x1500 L310: .8byte L1500

Fig. 2: Intra-function randomization. To highlight correspondence between
instructions before and after randomization, (a) vertical space has been intro-
duced to align instructions, and (b) only one code permutation is shown.

our sole correctness-critical use of function boundaries occurs in

the context of preserving the unwinding blocks that are actually

present in the EH-metadata.

Pointer Identification and Remapping We illustrate pointer

identification and remapping using the code snippet on the left of

Fig. 2. Its randomized version is shown at the right of this figure.

On Linux/x86_64, there are three ways for PIC to create pointers.

The first is the use of PC-relative addressing to compute the address

of static data or code, e.g., the lea 0xf7(%rip), %rdi instruction at

location 1200. This instruction moves the value 1300 into the%rdi

register. (Note: the PC register%rip points to the next instruction at

1209, so 0𝑥 𝑓 7+1209 = 1300.) The second way is by loading a pointer

that is stored within the static data (or possibly the code), e.g., the

instructionmov -0xefe(%rip),%rax at location 1209. This instruc-

tion moves the contents of location 120𝑒 − 𝑒 𝑓 𝑒 = 310 into %rax.

We identify the loaded value as a pointer because location 310 is

marked for relocation. For both instructions, we ensure that the

references point to the correct location after binary instrumentation

by replacing the constants with labels. We use the style of BinCFI

[64], where the location information produced by a disassembler

(e.g., 1300) is turned into a label (e.g., 𝐿1300). These symbolic ref-

erences are resolved by the assembler when we reassemble the

randomized code shown on the right in Fig. 2.

ACSAC 2020, December 7–11, 2020, Austin, USA Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

The third way pointers are created is through pointer arithmetic.

There is no need to “fix up” data pointer arithmetic: it involves

adding a value to a base address, and since SBR does not change

the distances within the data segment, there is no need to adjust

this value. However, code layout is altered, so we need to adjust

the new pointer value so that it accesses the same logical target as

the original code. To do this, we need to know the exact value that

is being added, which will be known only at runtime. Fortunately,

code pointer arithmetic tends to occur only in the context of jump

tables, which are typically generated by compilers from C-style

switch statements. We have developed a static analysis to identify

the use of jump tables and fix up the targets. This analysis is able

to handle all of the binaries we have tested in our evaluation. Our

analysis is similar to that of Egalito [58], so we omit a description

of the analysis in order to conserve space. Instead, we illustrate

how jump table accesses are processed using the example of Fig. 2.

Jump table use begins with the instruction at 1211 which loads

the base address of the jump table into %rdi register. The index

value is stored in%rax. This value is bounds-checked at 121𝑐 , and

if this fails, the function returns by jumping to the ret instruction at

12𝑓 𝑓 . Otherwise, this index is added to the base address of the jump

table, and the resulting location dereferenced and loaded into%rax

at 1221. Our analysis determines that the location dereferenced is

one of 300, 304, or 308; that each of them point within the read-only

data segment; and that they contain the values 𝑓 2𝑎, 𝑓 70, and 𝑓 98

respectively. Based on the instructions at 1211 and 1226, our analysis

also determines that (a) these values are added to a base address

300 of the jump table, and (b) the resulting values are 122𝑎, 1270

and 1298 respectively. It can be seen that if the jump table entries

are modified as shown in Fig. 2, then the fixup will be correct. In

this way, SBR is able to statically fixup pointer constants regardless

of the manner in which they are created.

Control Flow Graph (CFG) Construction. The first step in CFG

construction is to identify basic blocks, which are contiguous se-

quences of instructions with a single entry and a single exit. The

body of the function is first broken up into blocks at control-flow

transfer instructions. Since a call is a control-transfer, it terminates

the current basic block, just like jumps.

Next, we break these blocks further at every control flow target.

Since code pointers have been identified by now, we can introduce

breaks at indirect control flow targets as well. If these breaks occur

in the midst of an instruction, a disassembly error is flagged, unless

they immediately follow an x86 instruction prefix, e.g., lock.

As the last step in CFG building, edges are created between basic

blocks to capture control flow transfers. These edges encode the

type of the branch instruction (conditional or unconditional, jump

or call, direct or indirect, etc.) and the target (for direct transfers).

Randomizing Transformations At this point, SBR has all the

information needed for randomizing transformations: function

boundaries (for FR and LLR(k)), unwinding block boundaries (for

EH-metadata-reducing transformations), and the locations of un-

conditional branches (for ZJR), basic blocks (for BBR), and call

instructions (for PHR and OPHR). Based on this information, code

is broken up at the desired locations and permuted according to the

description of each of these transformations earlier in this paper.

Labels derived from the original locations of instructions are

maintained during code permutation, thereby simplifying the

introduction of jumps between them. For instance, in Fig. 2, a break

was introduced just before the instruction at 1211, so we add a jmp

L1211 after the preceding instruction at 120𝑒 . To make it easy to

see the correspondence between the original and randomized in-

structions, we purposely limited ourselves to a single permutation

in this example, and did not reorder functions. (Code reached via

the jump table has also been moved, but this does not require the

introduction of additional jumps since these locations were already

preceded by unconditional jumps.)

Exception handling metadata regeneration. We generate both

the reduced and full unwinding information as described in Sec. 4,

and then encode them into the EH-metadata sections as follows:

• eh_frame_hdr: This section consists of a binary search table

that maps a function to its corresponding frame descriptor entry

(FDE) in the eh_frame section. Each record of this table is pair

of function start and the address of corresponding FDE. We

update this information using the labels of these instructions,

in the same way data values are updated using labels in Fig 2.

• eh_frame: This section contains the FDEs for each function.

The FDE contains the function start and size which we update

using labels. The FDE also contains information about each un-

winding block, and the associated unwinding operations. We

specify the block boundaries using labels, and have implemented

an encoder for recording the unwinding operations and depen-

dencies on preceding blocks.

• gcc_except_table: This section encodes the address of try

blocks, the corresponding catch blocks, and any destructor calls

needed (to clean up stack-allocated objects) during stack un-

winding. The only change we needed to make here is to update

code locations using our labels.

We used labels and assembler directives (e.g., .byte) to specify EH-

metadata sections. This enables the randomized code with regener-

ated metadata to be reassembled by the system assembler. We have

fully tested exception handling after this transformation.

Reassembly and ELF header update Since our transformation

produces valid assembly code, as illustrated in Fig. 2, it can be

assembled into an object file by the system assembler. This avoids

the need to implement low-level operations, such as the computa-

tion of instruction or data offsets, in SBR. We then use objcopy

to extract relevant sections of this object file and inject it into the

original binary. Currently, due to some engineering limitations, we

leave the original code section in its place, and add a new section

with the new code. (The original code is zeroed out, so this lim-

itation has no security impact.). We then update the ELF header

to reflect the new entry point for the binary. We also update the

program headers and the dynamic symbol table sections to reflect

the new locations in the modified binary.

7 Implementation
SBR implementation consists of 15.8KLoC of C++. We have de-

veloped our own ELF parsers and EH metadata decoders rather

than employing pre-existing utilities. We use objdump for linear

Practical Fine-Grained Binary Code Randomization ACSAC 2020, December 7–11, 2020, Austin, USA

Program Exec. # of Libr. Total Description

size libs size size

(KB) (MB) (MB)

apt-get 43 19 9.6 9.7 Run “apt-get upgrade”

enscript 281 3 3.7 4.0 Convert text file of

size > 50MB to pdf

scp 100 5 2.3 2.4 Copy 100MB file

gedit 10 110 59 59 Open, edit and

save a text file

evince 442 70 30 30 Open a PDF file,

view pages

gimp 6058 63 23 29 Open a JPEG image,

edit(crop, blur, etc)

and save. Create a

drawing and save file

Wireshark 8430 77 156 164 Capture network

packets for 30 mins

perl 2098 5 4 6 Run a perl script to parse

a file using regex

vim 2671 14 9.6 12.3 Open a text file, edit,

copy, paste, search and

replace and save

vlc 14 13 6.6 6.6 Play video from a

network stream

pdflatex 826 25 13.4 14.2 Compile .tex files

having a total

size of 100KB

Python2.7 3642 6 4 7.7 Run Pystone1.1

benchmark

tar 423 7 2.9 3.3 Compress a directory

of size 3GB

Aggregate 25MB 202 197MB 222MB

Table 3: Functionality testing on common applications

disassembly, operating on small sections at a time. As noted earlier,

the implementation of signal handler hooking is not complete yet.

For jump table analysis, we first use our architecture-neutral

approach for [24, 25] for lifting assembly. Our system Lisc [35] lifts

assembly to an intermediate representation (IR), specifically, gcc’s

RTL. Jump table analysis is then performed on this IR.

For entropy calculations, SBR generates logs during the random-

ization process that captures detailed information such as the size

and location of functions, unwinding blocks, the partition locations

for ZJR, BBR and PHR, and the locations of any trampolines intro-

duced. This is processed by a C++ program that contains 270 lines

of entropy calculation code based on the formulas from Sec 5, and

another 800 lines for input/output,

8 Experimental Evaluation
Evaluation of SBR was carried out on a Ubuntu 18.04.3 system

equipped with an Intel Xeon Silver 4114 2.20GHz CPU and 384GB

RAM. Functionality and compatibility tests were performed on a

collection of frequently used applications and the SPECspeed 2017

benchmark suite. In-depth evaluation of performance and security

of ZJR, BBR, PHR, LLR(k) and PHR +LLR(k) were based on the SPEC

suite.
7
For measuring security, we used FE, FUBE and RUBE.

7
We omitted FR and PB randomization techniques because they do not, by themselves,

address indirect disclosures; and OPHR because of its similarity to PHR.

0 5 10 15

100

200

300

400

6

9

16

6

9

16

Runtime Overhead (%)

E
n
t
r
o
p
y
(
b
i
t
s
)

ZJR
BBR
PHR
LLR(k)

PHR +LLR(k)

Fig. 4: Function Entropy vs Runtime Overhead (SPECspeed 2017)

8.1 Functionality Evaluation

Low-level Libraries. We randomized glibc (libc-2.27.so), the

loader (ld-2.27.so) and libpthread (libpthread-2.27.so). They con-

tain about 2.3MB of low-level code, with significant amount of hand-

written assembly.We replaced these standard libraries with their ran-
domized versions and rebooted the system, and verified that the system
started up properly. We used a variety of command-line and graphi-

cal applications and verified that they worked as expected. These

tests were repeated for all randomization techniques. Note that ev-

ery application on the system was using SBR-randomized versions

of these libraries, but the application code was not randomized in

this test. Tests involving application code are described below.

Commonly Used Applications. We have tested SBR with many

common applications shown in Table 3. The table shows the appli-

cation name, the size of the executable, the number and aggregate

sizes of libraries used by the executable, etc. It also describes the test

performed to check its functionality. Altogether, these tests required
the transformation of 197MB of binaries contained in 202 shared
libraries, as shown in Table 9 on Page 14.

SPECspeed 2017. This benchmark consists of 19 programs
8
in 3

languages: C, C++ and Fortran. We compiled these programs using

gcc, llvm and gfortran. The total size of these binaries was 420MB.

We verified that the randomization techniques discussed in Sec. 2.3

and Sec. 3 preserve the functionality of all the resulting binaries, i.e.,

they continue to produce the correct results. Two of these programs,

omnetpp and leela, use exceptions, and they continued to work

correctly with our reduced metadata.

8.2 Performance vs Security Trade-off

Fig. 4 plots the entropy against the runtime overhead of various

randomization techniques. While this chart is based on function

entropy, a chart based on RUBE, which measures resistance against

EH-metadata-aware attacks, is very similar. (See Fig. 8 on Page 14.)

Deterministic techniques such as ZJR, BBR and PHR represent single
points in this graph. But since LLR(k) and PHR +LLR(k) provide a

8
The benchmark contains 20 programs, but we found that one of them (cam4) always

exits with a segmentation fault. We have not been able to determine the cause, but

since the problem occurs with the base version, before any processing by SBR, we
excluded it in our experiments.

ACSAC 2020, December 7–11, 2020, Austin, USA Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

tunable parameter 𝑘 , we can obtain different entropies at different

performance costs.

From the chart, it is clear that neither ZJR nor BBR is an attractive
choice for deployment. ZJR sports a low 1% overhead, but its low

entropy, at about one-sixth of LLR(16)’s, makes it vulnerable in our

threat model. While BBR offers a high entropy, this comes at a steep

14% overhead. From the chart, we can see that LLR can match BBR’s
entropy at just half its overhead. Alternatively, LLR can be tuned to

match the performance of BBR while providing 60% more entropy.

LLR(16) provides a good combination of per-function entropy

(140 bits average) and low overhead (2.26%) across the SPEC suite.

PHR’s entropy is very close to LLR(16)’s, but it has a 70% higher

overhead than LLR(16).
Where security is a priority, PHR +LLR(16) is an excellent choice.

It deterministically protects all code pointers in data, and in addition,

offers the assurance of LLR(16) that each EH-metadata leak will

reveal the location of at most 16 other instructions. Its overhead is

not negligible, but 5% is acceptable in many settings.

8.3 Function Entropy

Although ZJR has very low overhead, its FE, shown in Table 5, is

way too low — just 25 bits. This makes it vulnerable to indirect

disclosure attacks.

BBR provides the highest FE of any randomization technique

discussed so far, at 228 bits. However, as discussed before, LLR as

well as PHR +LLR can achieve a better combination of entropy and

performance.

PHR ensures that leaked pointers, including function pointers

and return addresses, don’t reveal the locations of instructions

adjacent to the pointer. However, in a randomization scheme that

keeps function bodies together, this is not sufficient to prevent the

attacker from accessing other instructions in the same function.

Thus, the only protection comes in the form of entropy — making it

difficult to predict the instruction that the attacker is able to access.

PHR’s entropy of 147 bits is quite good (and comparable to LLR(k)).
PHR +LLR(16) offers a 40% improvement in entropy over PHR at a

33% higher overhead. From Fig. 4, it is easy to see that this technique

offers the best combination of security strength and performance

in contexts where overheads ≥ 5% are acceptable.

8.4 Full & Reduced Unwind Block Entropy (FUBE & RUBE)

While FE has the benefit of familiarity, it is not very useful in our

threat model where the attacker can target EH-metadata and stack-

unwinding-compatibility. In Sec. 5, we developed two new metrics,

FUBE and RUBE, for this specific purpose. We use them to evaluate

BBR, PHR, LLR(k) and PHR +LLR(k) below.

FUBE. This metric captures the difficulty of attacks when all

of the EH-metadata generated by the compiler is included in the

binary. As shown in Table 6, FUBE is very low across the board

for all randomization schemes. In other words, it is not feasible

to develop a secure randomization scheme if the full unwinding

information generated by the compiler is left in the binary.

RUBE. This metric captures the difficulty of carrying out attacks

after the metadata reduction and optimization techniques described

in Sec. 4 have been applied. RUBE values in Table 6 show a dramatic

Program ZJR BBR PHR LLR(16) PHR +

LLR(16)

perlbench 35 246 148 58 150

gcc 31 262 178 55 179

bwaves 4 60 64 165 159

mcf 11 81 42 29 44

cactuBSSN 71 407 279 149 312

lbm 5 24 21 42 47

omnetpp 13 61 71 16 72

wrf 34 442 333 446 492

xalancbmk 20 102 92 26 92

x264 18 154 87 88 108

pop2 14 234 206 168 238

deepsjeng 20 159 81 54 87

imagick 27 255 215 81 221

leela 28 144 146 51 149

nab 17 145 103 61 112

exchange2 80 804 149 375 352

fotonik3d 18 394 301 438 489

roms 28 298 244 332 384

xz 10 61 38 21 43

Mean 25 228 147 140 196

Table 5: Function Entropy on SPECspeed 2017

improvement over that of FUBE. In fact, they are about half of the

FE values shown in Table 5. This is because the techniques of Sec. 4

were able to remove 85% of all the unwinding blocks that were

originally present. This translates to a 6.7x reduction in the number

of unwinding blocks. As a result, there are just under 2 unwinding

blocks per function on average, as compared with 13 generated by

the compiler. It can be seen from the entropy formulas in Sec. 5

that the entropy increases roughly linearly with the size 𝑠 of the

entity being randomized. Given that unwinding blocks, which are

the entities being randomized, are about half the size of functions,

it is understandable that RUBE is roughly half of FE.
Fig. 8 on Page 14 provides a way to compare different random-

ization techniques. It is qualitatively similar to Fig. 4 that is based

on FE. Thus, we can make the following observations: (a) LLR(k)
can be tuned to provide the same entropy as BBR at about half the

performance cost, or about 2x the entropy at the same cost, (b) PHR
+LLR(k) provides the best combination of security and performance

in contexts where a runtime overhead ≥ 5% is acceptable.

8.5 Runtime Overhead

Table 7 compares the runtime overhead of LLR(k) with previous

code randomization techniques. Each SPECspeed binary was ran-

domized with 5 distinct random seeds. Each randomized variant

was run 5 times, and the average of the medians for each variant

was taken as the runtime of a randomized binary.

Runtime overhead for a randomized executable can be attributed

to (i) additional jump instructions introduced and (ii) negative effect

of code reordering on cache locality. Since ZJR doesn’t introduce

any new jumps, its overhead must purely be from cache locality

effects. Almost every binary in the table has close to zero overhead

forZJR except xalancbmk at 6%. CCR [31] also reports a 5% overhead

on this benchmark.

Practical Fine-Grained Binary Code Randomization ACSAC 2020, December 7–11, 2020, Austin, USA

Program Full Metadata Reduced Metadata

ZJR BBR PHR LLR(16) PHR + ZJR BBR PHR LLR(16) PHR +
LLR(16) LLR(16)

perlbench 2 17 10 4 10 12 93 55 24 55

gcc 3 23 15 5 16 17 149 100 31 101

bwaves 0 4 4 11 11 0 43 42 127 125

mcf 1 7 4 3 4 5 58 30 22 32

cactuBSSN 5 28 18 11 21 39 215 140 83 160

lbm 1 4 3 7 8 1 15 12 34 35

omnetpp 1 6 7 2 7 8 38 44 10 44

wrf 1 11 7 11 12 11 147 105 145 165

xalancbmk 2 12 11 3 11 15 77 69 20 69

x264 1 13 7 7 9 11 95 55 53 69

pop2 1 10 9 7 11 4 77 67 58 83

deepsjeng 2 14 7 5 8 11 92 50 32 52

imagick 1 13 9 4 10 6 62 46 22 49

leela 3 15 16 6 16 21 118 123 48 126

nab 1 11 8 5 9 7 72 52 34 58

exchange2 8 83 15 40 37 66 812 167 439 401

fotonik3d 1 27 21 32 37 8 241 190 289 331

roms 1 12 10 13 18 10 107 92 119 151

xz 1 6 3 2 4 6 38 22 14 25

Mean 2 17 10 9 14 13 134 77 84 112

Table 6: Full & Reduced Unwind Block Entropy (FUBE & RUBE) on SPEC 2017.

BBR incurs a significant 14.13% overhead because (a) it introduces

many new jumps, and (b) the cache effects of permuting at much

finer granularity than ZJRwill correspondingly be larger. One factor
in this high overhead is that we treat a call as an end of a basic block,

which may not be the case in alternative BBR implementations.

PHR is implemented on top of ZJR. Of the trampolines added by

PHR (see Sec. 2.3), the ones with the most performance impact are

the two jumps surrounding each call. As a result of these, programs

that make frequent calls can have overheads as high as 15%. The

average is a moderate 3.86% overhead.

LLR(16) is also implemented on top of ZJR, and its overhead is

proportional to the additional partitions that it introduces. Although

there are two benchmarks with 9% or slightly higher overheads,

the average is a relatively low 2.26%.

Since PHR +LLR(16) introduces more partitions than either PHR
or LLR(16), we expect its overhead to be higher than both. In fact,

the overhead of PHR +LLR(16) tends to be close to the maximum of

the PHR and LLR(16), with an average close to 5%.

8.6 Memory Overhead

Our approach of intra-block randomization does not change the

number of unwinding blocks or the data associated with them, and

hence should have zero space overhead. However, in practice, our

implementation uses labels, and cannot encode constants into the

smallest number of bytes. This results in a 13.8% overhead when re-

creating the EH-metadata. With more engineering effort, this can

be brought down to zero, but we have not pursued this because our

main focus is on the size after the metadata reduction techniques

of Sec. 4 have been applied. We find that after the reduction, EH-

metadata has shrunk to 50% of the original size. (Although the

number of unwinding blocks have been decreased by more than 6x,

the reduction in metadata size is more modest. This is because, as

Program size ZJR BBR PHR LLR(16) PHR +

LLR(16)

perlbench 9MB 0.3% 56.7% 15.5% 1.2% 14.5%

gcc 54MB 3.2% 35.5% 13.3% 4.8% 13.8%

bwaves 0.2MB -0.5% -0.4% -0.4% -0.6% -1.0%

mcf 0.1MB 1.1% 17.4% 5.1% 1.7% 6.0%

cactuBSSN 17.4MB 1.3% 3.8% 2.4% 3.5% 4.6%

lbm 67KB 0.0% -2.1% -1.0% -3.0% -1.8%

omnetpp 24MB 1.0% 10.4% 5.0% 2.3% 4.3%

wrf 57MB 0.0% 3.2% 0.5% 1.3% 0.8%

xalancbmk 70MB 6.0% 35.4% 10.2% 6.5% 9.7%

x264 2.8MB -1.5% 9.6% 0.0% 9.1% 12.2%

pop2 169MB 2.2% 10.0% 2.2% 5.3% 3.7%

deepsjeng 0.4MB 0.1% 23.6% 8.5% 2.4% 10.2%

imagick 8.3MB 0.1% 11.1% 0.3% 1.6% 0.6%

leela 3.5MB -0.4% 20.0% 10.4% 2.3% 11.8%

nab 0.9MB 0% 3.0% 0.3% 1.0% 0.6%

exchange2 0.1MB 1.5% 54.3% 1.8% 12.9% 12.2%

fotonik3d 0.8MB 0.7% -1.4% 0.6% -1.1% 1.1%

roms 2.2MB 0.0% 0.3% -0.2% 0.2% 0.0%

xz 1MB 0.2% 6.2% 0.7% 2.2% 2.0%

Geo. Mean 0.88% 14.13% 3.86% 2.26% 5.14%

Table 7: Runtime overhead on SPECspeed 2017 benchmark suite.

illustrated in Fig. 1, the unwind data for the merged blocks tends

to accumulate much of the data from the original blocks.)

We also need to generate the full metadata that will be used

for stack tracing on faults. As discussed before, because we have

expanded call-containing blocks into nearby blocks that don’t con-

tain calls, and permuted these merged blocks, we have effectively

done something similar to whole function randomization: we have

chopped up existing unwinding blocks into pieces and permuted

them. As a result, there are many more unwinding blocks in this

case, so the metadata increases by 45%.

9 Discussion
Code Signing. Linux distributions verify code signatures at the

time of software installation and updates. Our system performs its

randomization on the installed (or patched) versions, and hence

does not interfere in any way with current distribution models.

This same comment applies to software updates and patches as

well: signature checking is performed on the update, and after

that, the concerned binaries are updated. SBR can then randomize

these updated binaries, thus making it compatible with prevalent

software distribution and update mechanisms on Linux.

Rerandomization. Our system can support periodic rerandom-

ization of binaries on the disk. Such rerandomization may be initi-

ated on a regular basis, e.g., every few days. Alternatively, it may be

triggered after a binary has been loaded a certain number of times.

COOP and AOCR. Code randomization techniques excel at stop-

ping attacks that access code snippets that won’t be used by le-

gitimate code. Stopping attacks that use legitimate targets, such

as entire functions, is much harder. SBR can prevent control-flow

hijacks that employ whole function code reuse only to the extent

ACSAC 2020, December 7–11, 2020, Austin, USA Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

that the attacker does not know the function’s location. However,

if the attacker can find its location through leaked pointers, then

attacks that reuse the target function cannot be stopped by SBR.
Hence SBR, like previous code randomization techniques, is vul-

nerable to counterfeit object oriented programming (COOP) [46]

and address-oblivious code reuse (AOCR) [45] attacks.

10 Related work

Control Flow Integrity. Control flow integrity (CFI) [1, 2] tech-

niques monitor indirect control flow transfers, permitting only

those that are consistent with a statically inferred control-flow

graph. They provide a principled foundation for building other

security mechanisms such as software fault isolation [54, 59] and

other forms of policy enforcement [21, 65]. However, as mentioned

in the introduction, they have several weaknesses as a defense

against code reuse attacks, and have been shown to be vulnerable

[10, 46]. Coarse-grained CFI techniques are particularly vulnerable,

while fine-grained techniques tend to be less compatible. To address

compatibility, researchers have focused on solutions that target spe-

cific code pointer types such as those used in C++ virtual calls

[23, 60] and returns [9, 17, 44]. There have also been recent works

[20, 28, 29, 39, 53] utilizing hardware features for performance.

Code Randomization. Since its introduction by Bhatkar et al [6],

fine-grained code randomization has been the focus of numerous

research efforts over the past fifteen years [11, 13, 14, 16, 18, 26,

27, 30–32, 38, 55, 57, 62]. Earlier techniques [6, 13, 18, 26, 27, 30, 32,

38, 55] were focused on the static-ROP threat model. More recent

techniques (e.g., [11, 14, 16, 57, 62]) address JIT-ROP and indirect

disclosure based ROP, as discussed below.

Isomeron develops a defense against JIT-ROP attacks that relies

on randomly switching between two copies of a program’s code at

runtime, while ensuring that calls from one copy return to the same

copy. The mechanism for ensuring this is similar to shadow stack,

with its potential for impacting compatibility. More important, the

content of the shadow stack needs to be protected from disclosures.

Rather than protecting code pointers from being leaked, Secret

[62] leverages its use of runtime code pointer translation to make

leaked pointers useless. In particular, this translation can incorpo-

rate a random permutation of the code space, thereby destroying

any relationship between a leaked pointer and the locations of

nearby gadgets. Unfortunately, address translation imposes signifi-

cant overhead. CodeArmor [11] reduces this overhead by using a

random linear offset for translation, instead of the hashtable needed

for a permutation. However, this makes the method susceptible to

attacks that infer this random value. This is mitigated by CodeAr-

mor’s ability for runtime re-randomization.

Shuffler [57] is another technique that implements runtime re-

randomization. It only adds redirection to indirect jump/call tar-

gets while relying on heuristics to protect return addresses. While

Shuffler required compiler help to randomize binaries, Egalito [58]

eliminates this requirement for x86_64 binaries.

Whereas the above techniques use a combination of techniques

to protect against code disclosures, recent works have gravitated

towards execute-only (i.e., non-readable) code [12, 22, 51, 56] for

defending against JIT-ROP attacks. Since this technique imposes

very low overheads and is also very strong due to its reliance on

hardware memory protection, we will also rely on existing imple-

mentations of this mechanism for JIT-ROP defense.

Readactor [14] is a comprehensive compiler-based mitigation

for code reuse attacks. As noted earlier, PHR is a stack-unwinding-

compatible version of their pointer hiding. Our PHR implementation

protects all the pointers protected by Readactor, but unlike Readac-

tor, we do not require source code. Their performance overhead

of 4.6% (which includes 0.5% for code-data separation and 4.1% for

pointer hiding reported [14]) is a bit higher than our overhead of

3.86% for PHR, but a direct comparison is not possible because they

use SPEC 2006 vs our SPEC 2017. Their design can also offer higher

entropy (as the trampolines can be located far from the rest of pro-

gram code) at the expense of breaking C++ exceptions and stack

tracing. Our design maintains compatibility with these features,

while still achieving a high average function entropy of 147 bits.

kRˆ︁X [40] is a compiler-based defense that combines code di-

versification with execute-only memory and other techniques in

order to thwart JIT-ROP in kernel code. Their phantom blocks idea,

discussed in Sec. 2.3, can provide an additional improvement to the

entropy of our LLR(k). However, we have not considered it in our

implementation because phantom blocks do not directly address

indirect disclosures, and moreover, have a significant memory cost.

CCR is a hybrid approach to achieve fine-grained randomization

at a low performance overhead. It includes (a) a compiler plugin

to extract metadata, and (b) a static binary rewriter. This hybrid

approach maintains compatibility with prevalent software distribu-

tion models, while avoiding the high overhead associated with most

previous techniques that offered a similar level of compatibility.

SBR is able to achieve its performance without compiler help.

We make several new contributions over all the above works.

Ours is the first work to systematically study how EH-metadata

can undermine code randomization, and to propose a secure code

randomization defense that is compatible with exceptions and stack-

tracing. Our technique offers low performance overheads while

operating on COTS binaries. Moreover, they can be tuned to achieve

a range of security and performance goals.

11 Conclusions

In this paper, we presented SBR, a new approach for fine-grained

code randomization. By operating on COTS binaries, our technique

maintains full compatibility with today’s software distribution and

patching mechanisms. Unlike previous works, our approach is com-

patible with C++ exceptions and stack tracing, two features that are

crucial for deployment. We show that the metadata needed by these

features can be abused by attackers. We presented several new tech-

niques that, together, achieve fine-grained code randomization that

is robust in this threat model, and achieves excellent performance.

We expect to open-source SBR in the coming months. Our experi-

mental results show that SBR offers a compelling combination of

features, making it suitable for deployment.

Practical Fine-Grained Binary Code Randomization ACSAC 2020, December 7–11, 2020, Austin, USA

References
[1] Martın Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. CFI: Principles,

implementations, and applications. In ACM CCS.
[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

integrity principles, implementations, and applications. ACM TISSEC (2009).

[3] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert

Bos. 2016. An in-depth analysis of disassembly on full-scale x86/x64 binaries. In

USENIX Security Symposium.

[4] Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-agnostic

function detection in binaries. In IEEE European Symposium on Security and
Privacy.

[5] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley. 2014. BYTEWEIGHT:

Learning to Recognize Functions in Binary Code. In USENIX Security.
[6] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. 2005. Efficient techniques

for comprehensive protection from memory error exploits. In USENIX Security
Symposium.

[7] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-

oriented programming: a new class of code-reuse attack. In ASIACCS.
[8] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An infrastruc-

ture for adaptive dynamic optimization. In Code Generation and Optimization.
[9] Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining light

on shadow stacks. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
985–999.

[10] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R

Gross. 2015. Control-flow bending: On the effectiveness of control-flow integrity.

In USENIX Security Symposium.

[11] Xi Chen, Herbert Bos, and Cristiano Giuffrida. 2017. CodeArmor: Virtualizing

the code space to counter disclosure attacks. In Euro S&P.
[12] Yaohui Chen, Dongli Zhang, Ruowen Wang, Rui Qiao, Ahmed Azab, Long Lu,

Hayawardh Vijayakumar, and Wenbo Shen. 2017. NORAX: Enabling Execute-

Only Memory for COTS Binaries on AArch64. In IEEE Security and Privacy.
[13] Mauro Conti, Stephen Crane, Tommaso Frassetto, Andrei Homescu, Georg Kop-

pen, Per Larsen, Christopher Liebchen, Mike Perry, and Ahmad-Reza Sadeghi.

2016. Selfrando: Securing the tor browser against de-anonymization exploits.

Proceedings on Privacy Enhancing Technologies (2016).
[14] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,

Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readactor:

Practical code randomization resilient to memory disclosure. In IEEE Security
and Privacy.

[15] Lucas Davi, Ra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten Holz, Ralf

Hund, Stefan Nürnberger, and Ahmad reza Sadeghi. 2012. MoCFI: a framework

to mitigate control-flow attacks on smartphones. In NDSS.
[16] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and

Fabian Monrose. 2015. Isomeron: Code randomization resilient to (just-in-time)

return-oriented programming. In NDSS.
[17] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPdefender: a

detection tool to defend against return-oriented programming attacks. In ASI-
ACCS.

[18] Lucas Vincenzo Davi, Alexandra Dmitrienko, Stefan Nürnberger, and Ahmad-

Reza Sadeghi. 2013. Gadge me if you can: secure and efficient ad-hoc instruction-

level randomization for x86 and ARM. In ACM CCS.
[19] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.

RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization.

In IEEE Symposium on Security and Privacy.
[20] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and Wenke

Lee. 2017. Efficient protection of path-sensitive control security. In USENIX
Security Symposium.

[21] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and George C

Necula. 2006. XFI: Software guards for system address spaces. In Operating
systems design and implementation.

[22] Jason Gionta,William Enck, and Peng Ning. 2015. HideM: Protecting the Contents

of Userspace Memory in the Face of Disclosure Vulnerabilities. In Data and
Application Security and Privacy (CODASPY).

[23] Istvan Haller, Enes Göktaş, Elias Athanasopoulos, Georgios Portokalidis, and

Herbert Bos. 2015. Shrinkwrap: Vtable protection without loose ends. In ACSAC.
[24] Niranjan Hasabnis and R Sekar. 2016. Extracting Instruction Semantics Via Sym-

bolic Execution of Code Generators. In ACM Foundations of Software Engineering.
[25] Niranjan Hasabnis and R Sekar. 2016. Lifting assembly to intermediate repre-

sentation: A novel approach leveraging compilers. In Architectural Support for
Programming Languages and Operating Systems.

[26] JasonHiser, AnhNguyen-Tuong,Michele Co,MatthewHall, and JackWDavidson.

2012. ILR: Where’d my gadgets go?. In IEEE Security and Privacy.
[27] Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler, and Michael

Franz. 2013. Profile-guided automated software diversity. In CGO.
[28] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R

Harris, Taesoo Kim, and Wenke Lee. 2018. Enforcing unique code target property

for control-flow integrity. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security.

[29] Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, and Jie

Yang. 2019. Origin-sensitive control flow integrity. In USENIX Security Sympo-
sium.

[30] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. 2006.

Address space layout permutation (ASLP): Towards fine-grained randomization

of commodity software. In Annual Computer Security Applications Conference.
[31] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P Kemerlis, and Michalis

Polychronakis. 2018. Compiler-assisted code randomization. In Security and
Privacy.

[32] Hyungjoon Koo and Michalis Polychronakis. 2016. Juggling the gadgets: Binary-

level code randomization using instruction displacement. In Asia CCS.
[33] Lixin Li, Jim Just, and R. Sekar. 2006. Address-space randomization for windows

systems. In Annual Computer Security Applications Conference.
[34] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:

building customized program analysis tools with dynamic instrumentation. In

Programming language design and implementation.
[35] Huan Nguyen, Niranjan Hasabnis, and R Sekar. 2019. LISC v2: Learning Instruc-

tion Semantics from Code Generators. http://www.seclab.cs.sunysb.edu/seclab/

liscV2/. Accessed: 2019-06-03.

[36] Ben Niu and Gang Tan. 2014. RockJIT: Securing just-in-time compilation using

modular control-flow integrity. In ACM CCS.
[37] James Oakley and Sergey Bratus. 2011. Exploiting the Hard-Working DWARF:

Trojan and Exploit Techniques with No Native Executable Code. In WOOT.
[38] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. 2012. Smash-

ing the gadgets: Hindering return-oriented programming using in-place code

randomization. In Security and Privacy.
[39] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. 2013. Transpar-

ent ROP Exploit Mitigation Using Indirect Branch Tracing. In USENIX Security.
[40] Marios Pomonis, Theofilos Petsios, Angelos D Keromytis, Michalis Polychronakis,

and Vasileios P Kemerlis. 2017. kRˆ X: Comprehensive kernel protection against

just-in-time code reuse. In EuroSys.
[41] Soumyakant Priyadarshan. [n.d.]. A Study of Binary Instrumentation Techniques.

Research Proficiency Report, Secure Systems Lab, Stony Brook University, http:

//seclab.cs.sunysb.edu/seclab/pubs/soumyakant_rpe.pdf. Accessed: 2020-08-30.

[42] Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar. 2020. On the Impact of

Exception Handling Compatibility on Binary Instrumentation. In ACM FEAST.
[43] Rui Qiao and R Sekar. 2017. A Principled Approach for Function Recognition in

COTS Binaries. In Dependable Systems and Networks (DSN).
[44] Rui Qiao, Mingwei Zhang, and R Sekar. 2015. A Principled Approach for ROP

Defense. In Annual Computer Security Applications Conference.
[45] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson,

Stephen Crane, Christopher Liebchen, Per Larsen, Lucas Davi, Michael Franz,

et al. 2017. Address Oblivious Code Reuse: On the Effectiveness of Leakage

Resilient Diversity. In NDSS.
[46] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza

Sadeghi, and Thorsten Holz. 2015. Counterfeit object-oriented programming:

On the difficulty of preventing code reuse attacks in C++ applications. In IEEE
Security and Privacy.

[47] Hovav Shacham et al. 2007. The geometry of innocent flesh on the bone: return-

into-libc without function calls (on the x86). In ACM CCS.
[48] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing

functions in binaries with neural networks. In USENIX Security Symposium.

[49] Matthew Smithson, Khaled ElWazeer, Kapil Anand, Aparna Kotha, and Rajeev

Barua. 2013. Static binary rewriting without supplemental information: Over-

coming the tradeoff between coverage and correctness. InWorking Conference
on Reverse Engineering (WCRE).

[50] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher

Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On the

Effectiveness of Fine-Grained Address Space Layout Randomization. In IEEE
Security and Privacy.

[51] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2015. Heisenbyte:

Thwarting memory disclosure attacks using destructive code reads. In ACM CCS.
[52] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar

Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-

Flow Integrity in GCC and LLVM. In USENIX Security.
[53] Victor Van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,

Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical context-

sensitive CFI. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. 927–940.

[54] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.

Efficient software-based fault isolation. In SOSP.
[55] Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhiqiang Lin. 2012.

Binary stirring: Self-randomizing instruction addresses of legacy x86 binary code.

In ACM CCS.

http://www.seclab.cs.sunysb.edu/seclab/liscV2/
http://www.seclab.cs.sunysb.edu/seclab/liscV2/
http://seclab.cs.sunysb.edu/seclab/pubs/soumyakant_rpe.pdf
http://seclab.cs.sunysb.edu/seclab/pubs/soumyakant_rpe.pdf

ACSAC 2020, December 7–11, 2020, Austin, USA Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

[56] Jan Werner, George Baltas, Rob Dallara, Nathan Otterness, Kevin Z Snow, Fabian

Monrose, and Michalis Polychronakis. 2016. No-execute-after-read: Preventing

code disclosure in commodity software. In ASIACCS.
[57] David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake,

Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang,

and William Aiello. 2016. Shuffler: Fast and deployable continuous code re-

randomization. In OSDI.
[58] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Pat-

terson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P Kemerlis. 2020.

Egalito: Layout-Agnostic Binary Recompilation. In ASPLOS.
[59] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis

Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native

Client: A Sandbox for Portable, Untrusted x86 Native Code. In IEEE Symposium
on Security and Privacy.

[60] Chao Zhang, Chengyu Song, Z. Kevin Chen, Zhaofeng Chen, and Dawn Song.

2015. VTint: Protecting Virtual Function Tables’ Integrity. In NDSS.
[61] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-

Camant, Dawn Song, and Wei Zou. 2013. Practical control flow integrity and

randomization for binary executables. In IEEE Security and Privacy.
[62] Mingwei Zhang, Michalis Polychronakis, and R Sekar. 2017. Protecting COTS Bi-

naries from Disclosure-guided Code Reuse Attacks. In Annual Computer Security
Applications Conference.

[63] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R Sekar. 2014. A platform for

secure static binary instrumentation. ACM VEE (2014).

[64] Mingwei Zhang and R Sekar. 2013. Control flow integrity for COTS binaries. In

USENIX Security.
[65] Mingwei Zhang and R Sekar. 2015. Control flow and code integrity for COTS

binaries: An effective defense against real-world ROP attacks. In ACSAC.

0 5 10 15

100

200

6

9

16

6

9

16

Runtime Overhead (%)

E
n
t
r
o
p
y
(
b
i
t
s
)

ZJR
BBR
PHR
LLR(k)

PHR +LLR(k)

Fig. 8: Reduced Unwinding Block Entropy vs Runtime Overhead (SPECspeed
2017)

Module name Size

libwireshark.so.11.1.10 77.95MB

libicudata.so.60.2 25.66MB

libgtk-3.so.0.2200.30 7.01MB

libQt5Core.so.5.9.5 5.28MB

libpython3.6m.so.1.0 4.47MB

libgtk-x11-2.0.so.0.2400.32 4.25MB

libicui18n.so.60.2 2.63MB

libpoppler.so.73.0.0 2.58MB

libc-2.27.so 1.94MB

libxml2.so.2.9.4 1.75MB

libapt-pkg.so.5.0.2 1.74MB

libicuuc.so.60.2 1.71MB

libm-2.27.so 1.62MB

libgio-2.0.so.0.5600.4 1.61MB

libQt5Network.so.5.9.5 1.54MB

libstdc++.so.6.0.25 1.52MB

libunistring.so.2.1.0 1.49MB

libnss3.so 1.26MB

libgstreamer-1.0.so.0.1405.0 1.23MB

libX11.so.6.3.0 1.22MB

libp11-kit.so.0.3.0 1.18MB

libcairo.so.2.11510.0 1.11MB

libQt5Multimedia.so.5.9.5 1.09MB

libglib-2.0.so.0.5600.4 1.09MB

libvlccore.so.9.0.0 1.05MB

libepoxy.so.0.0.0 1MB

libgdk-3.so.0.2200.30 0.96MB

libgedit.so 0.87MB

libkrb5.so.3.3 0.84MB

libspandsp.so.2.0.0 0.77MB

libgdk-x11-2.0.so.0.2400.32 0.71MB

libfreetype.so.6.15.0 0.7MB

libvorbisenc.so.2.0.11 0.66MB

libaspell.so.15.2.0 0.65MB

libpixman-1.so.0.34.0 0.64MB

libgegl-0.3.so.0.330.0 0.63MB

libgtksourceview-3.0.so.1.8.0 0.63MB

libharfbuzz.so.0.10702.0 0.62MB

libGLdispatch.so.0.0.0 0.58MB

libsystemd.so.0.21.0 0.51MB

libgmp.so.10.3.2 0.5MB

libpulsecommon-11.1.so 0.49MB

liborc-0.4.so.0.28.0 0.49MB

libzstd.so.1.3.3 0.48MB

libsndfile.so.1.0.28 0.46MB

libtiff.so.5.3.0 0.46MB

libFLAC.so.8.3.0 0.46MB

libgstbase-1.0.so.0.1405.0 0.46MB

libnl-route-3.so.200.24.0 0.45MB

Other libraries 27.56MB

Total 197MB

Table 9: 50 largest Low-level Libraries transformed by SBR

	Abstract
	1 Introduction
	1.1 Motivation: Deployable Code Randomization
	1.2 Approach Overview and Contributions
	1.3 Paper Organization

	2 Background and Threat Model
	2.1 C++ Exception and Stack Tracing Compatibility
	2.2 Threat Model and Security Goals
	2.3 Common Randomizing Transformations

	3 LLR(k): Length Limiting Randomization
	4 Limiting Disclosures in EH-metadata
	4.1 Reducing EH-metadata Stored in Memory
	4.2 Unwinding-Compatible Code Randomization

	5 Entropy: Quantifying Randomization Strength
	6 Binary Analysis and Instrumentation
	7 Implementation
	8 Experimental Evaluation
	8.1 Functionality Evaluation
	8.2 Performance vs Security Trade-off
	8.3 Function Entropy
	8.4 Full & Reduced Unwind Block Entropy (FUBE & RUBE)
	8.5 Runtime Overhead
	8.6 Memory Overhead

	9 Discussion
	10 Related work
	11 Conclusions
	References

