Practical Fine-Grained Binary Code RandomizationT

Soumyakant Priyadarshan
Stony Brook University, USA
spriyadarsha@cs.stonybrook.edu

Abstract

Despite its effectiveness against code reuse attacks, fine-grained
code randomization has not been deployed widely due to compati-
bility as well as performance concerns. Previous techniques often
needed source code access to achieve good performance, but this
breaks compatibility with today’s binary-based software distribu-
tion and update mechanisms. Moreover, previous techniques break
C++ exceptions and stack tracing, which are crucial for practical de-
ployment. In this paper, we first propose a new, tunable randomiza-
tion technique called LLR(k) that is compatible with these features.
Since the metadata needed to support exceptions/stack-tracing can
reveal considerable information about code layout, we propose a
new entropy metric that accounts for leaks of this metadata. We
then present a novel metadata reduction technique to significantly
increase entropy without degrading exception handling. This enables
LLR(k) to achieve strong entropy with a low overhead of 2.26%.

ACM Reference Format:

Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar. 2020. Practical Fine-
Grained Binary Code Randomization. In Annual Computer Security Appli-
cations Conference (ACSAC 2020), December 7-11, 2020, Austin, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3427228.3427292

1 Introduction

With widespread adoption of data execution prevention (DEP) on
modern operating systems, attackers have shifted their focus from
code injection to code reuse attacks, e.g., return-oriented program-
ming (ROP) [47] and jump-oriented programming (JOP) [7]. Ex-
isting defenses against code reuse attacks fall into two broad cate-
gories: control-flow integrity (CFI) [2, 15, 36, 52, 61, 64] and fine-
grained code randomization [6, 11, 14, 16, 18, 26, 30, 31, 38, 55, 57,
62]. Although the deterministic nature of CFI is attractive, as a
code-reuse defense, CFI has a few drawbacks:

o Use of CFI-permitted gadgets: With CFI, attackers are uncon-
strained if they target “legitimate gadgets,” i.e., gadgets that are
reachable as per the policy enforced by CFI In contrast, fine-
grained code randomization hides the location of every gadget,
thus requiring extra work (e.g., information leaks) before any of
them can be used in an attack.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC 2020, December 7-11, 2020, Austin, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12...$15.00
https://doi.org/10.1145/3427228.3427292

Huan Nguyen
Stony Brook University, USA
hnnguyen@cs.stonybrook.edu

R. Sekar
Stony Brook University, USA
sekar@cs.stonybrook.edu

o Lack of graceful degradation: If CFI instrumentation leaves out
some modules or code fragments, attackers can initiate a ROP at-
tack from these fragments. Once initiated, such an attack is free
to use unintended gadgets anywhere, including modules that
have the CFI instrumentation. This is because CFI checks are
applied only on legitimate instructions, e.g., intended returns,
rather than unintended ones!. This contrasts with randomiza-
tion, where weaknesses introduced by an unrandomized code
module are limited to the gadgets within that module.

o Compatibility: Higher precision (aka fine-grained) CFI [15, 36,
52] suffers from compatibility problems on complex code. Coarse-
grained CFI [1, 2, 61, 64] poses fewer compatibility challenges,
but is more easily defeated. Code randomization typically faces
far fewer compatibility problems than CFI techniques.

These factors have prompted substantial research on fine-grained
code randomization. Early works [6, 30] targeted the static ROP
threat model, where the attacker has a copy of the victim’s binary
code. By statically analyzing this code, he/she can identify gadgets
that can be used in an attack. Code reuse attacks have since evolved
to use dynamic probing of victim process code and/or data memory
by leveraging memory disclosure vulnerabilities:

o (Direct) JIT-ROP attacks [50] rely on the identification of gadgets
on the fly by disclosing victim’s code memory.

o Indirect disclosure ROP attacks leak just the data memory —
specifically, code pointers stored in data memory.

Like many recent works, we rely on execute-only code for thwarting
direct JIT-ROP. The new techniques developed in this paper are thus
aimed at the static ROP and indirect disclosure ROP threat models.

1.1 Motivation: Deployable Code Randomization

Despite advances in new code randomization techniques, they are
not widely deployed due to several concerns described below.

Need for Source Code. Many code randomization techniques
rely on a modified compiler [6, 14, 31] or special compiler options
[18, 30, 57] (e.g., debug or relocation flags) that aren’t enabled on
production binaries. This makes them incompatible with today’s
dominant software deployment and update mechanisms, which
involve the distribution of binary code. Even open-source software
is predominantly distributed in binary format for convenience.

Performance. A low overhead is critical for the deployment of
security hardening measures. Often, a 5% or lower threshold is
quoted. While techniques that rely on some level of compiler sup-
port [14, 18, 30, 31, 57] have met this threshold, most binary-based
techniques (e.g., [16, 26, 62]) tend to have higher overheads.

!The attacker can use any gadget beginning in the middle of a legitimate instruction,
as long as the indirect control flow instructions in the gadget are unintended.

fThe first two authors contributed equally to this work, which was supported by ONR
(N00014-17-1-2891). Third author’s work was also supported by NSF (CNS-1918667).

https://www.acsac.org/2020/submissions/papers/artifacts/
https://doi.org/10.1145/3427228.3427292
https://doi.org/10.1145/3427228.3427292

ACSAC 2020, December 7-11, 2020, Austin, USA

Compatibility with stack tracing and C++ exceptions. A chief
concern for deployed software is the support for error handling and
reporting. Unfortunately, existing fine-grained code randomization
techniques don’t support these features. While this incompatibility
may be acceptable for a proof-of-concept implementation, it is not a
viable option for platform-wide deployment. In particular, libraries
need to be compatible, or else exceptions and stack traces are broken
for every application that uses them.

Some techniques (e.g., Readactor [14]) are incompatible because
they violate a key assumption behind these mechanisms: that func-
tion bodies are contiguous. Many others [6, 11, 16, 18, 26, 30, 55,
57, 62] are incompatible because they fail to maintain the metadata
used by these mechanisms. More importantly, none of the pre-
vious techniques have considered the security implications
of this metadata. In particular, both stack tracing and exception
handling operate from the “stack unwinding” information stored in
the eh__frame section of Linux binaries. This section records the
addresses of the first and last instructions of (almost) every function
in the binary. It is important to note that this information is present
in stripped binaries, and is stored in readable memory at runtime.
Moreover, this information is not limited to C++, as stack traces
are needed for C-code as well. We found that this information is
present for 95% of the code on Ubuntu Linux.

Since attackers have proven adept at leaking information stored
in readable memory, it is necessary to develop randomization tech-
niques that are secure despite such leaks. In particular, many exist-
ing techniques derive the bulk of their randomness from permuting
the order of functions. The availability of eh_frame information
defeats the security of such schemes.

1.2 Approach Overview and Contributions

In this paper, we present Stony Brook Static Binary Randomizer
(SBR) that provides the following key features:

e Compatibility with exceptions and stack traces;

o Compatibility with COTS binaries, including low-level libraries
such as the system loader (1d) and the C-library (glibc);

e Support for code written in multiple languages, including C,
C++, Fortran and hand-written assembly, and compiled using
multiple compilers (e.g., gcc, llvm and gfortran); and

e Low runtime overhead.

SBR has been tested on 640MB of binaries. (This is about 2/31d
the size of all binaries on Ubuntu Desktop 18.04.) We plan to open-
source SBR in a few months. Our main contributions are as follows.

Stack-unwinding-compatible randomization. We present a
new technique called LLR(k) that provides the following benefits:

e Fach leaked code pointer reveals the locations of just k more
instructions. As a result, attackers need to leak many pointers
before they have sufficient gadgets for an effective payload.

o Users can easily make security vs performance trade-offs by tun-
ing k. Larger k values yield better performance, while smaller k
values offer increased security. Moreover, LLR(k) can be seam-
lessly combined with other randomization techniques.

o Our experimental results show that k = 16 achieves good secu-
rity (in the form of high entropy) with a low overhead of 2.26%.

Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

Unwinding Block Entropy and Reduced EH-Metadata. We
show that the metadata used for C++ exceptions and stack-tracing
reveals a lot of fine-grained information about instruction locations.

e We define a new entropy metric, unwinding block entropy, to
quantify the difficulty of attacks that exploit this metadata.

e We develop a novel approach for reducing the metadata such
that C++ exceptions would continue to work seamlessly, and
with the same performance as before.

e We show that this metadata reduction has a major impact on
our new entropy metric, increasing it by 8x.

Comparison of randomizing transformations. We present a
robust implementation of SBR that scales to complex binaries on 64-
bit x86/Linux systems. It randomizes all code, including executables
and all libraries. Using this implementation, we present a detailed
experimental evaluation of the security vs performance trade-off
offered by previous randomization techniques and our new LLR(k).

1.3 Paper Organization

Sec. 2 provides the background on stack unwinding, our threat
model, and previous randomization techniques. Our new LLR(k)
technique is introduced in Sec. 3. A new unwinding metadata opti-
mization is described in Sec. 4. Our new entropy metrics are pre-
sented in Sec. 5, followed by our binary instrumentation approach
in Sec. 6. Implementation and evaluation are the topics of Sec. 7 and
8, followed by discussion, related work, and conclusions in Sec. 9,
10 and 11.

2 Background and Threat Model
2.1 C++ Exception and Stack Tracing Compatibility

Modern C++ compilers and runtime systems implement a “zero
overhead” (aka “zero cost”) exception model. This model is aimed
at eliminating runtime overheads for any program that raises no
exceptions, even if it includes code that uses exceptions. This is
achieved by avoiding proactive book-keeping at runtime for excep-
tion handling. Instead, the compiler generates tables that include
all the information necessary to process exceptions at runtime. This
table is stored in read-only data sections in the binary that we will
collectively refer to as EH-metadata.

On GNU/Linux, stack tracing also uses EH-metadata, so this
metadata is included in code generated from many languages, in-
cluding C. Even hand-written assembly in many system libraries
contains EH-metadata. The vast majority of binary code on Linux
systems is covered by EH-metadata — for instance, 95% of all the
code in /bin and /lib/x86_64-linux-gnu on Ubuntu 18.04 Linux.

An operation central to exception processing as well as stack
tracing is stack unwinding. This operation involves restoring the
values of callee-saved registers, and restoring the stack pointer to
its value when the current function was entered. On completion
of unwinding, the stage is set for returning to the caller. The caller
may in turn perform its own unwinding and return to its caller, and
so on. For C++ programs, unwinding stops when it reaches a catch
block for the current exception, or the outermost stack frame.

EH-metadata specifies: (a) the start and end locations of each
function, (b) the beginning and end of each unwinding block, and (c)

Practical Fine-Grained Binary Code Randomization

the operations for unwinding. An unwinding block may correspond
to a try-block in a C++ program, or to instructions that change
the stack pointer and/or callee-saved registers. The operations for
unwinding a block are usually specified as a delta over a previous
unwinding block, thus revealing dependencies between them. More
details on EH-metadata can be found in [37, 42].

Key Implications and Requirements for Code Randomization.
e Exception metadata needs to be updated after code movement.
e This metadata reveals a lot of information useful to attackers:

(1) the start and end address of each function,
(2) the start and end of each unwinding block, and
(3) the dependence between unwinding blocks.

Our investigation shows that across a range of Linux/x86_64 bina-

ries, an average function contains about a dozen unwinding

blocks. So, unless care is taken, EH-metadata can leak a lot of
information about code locations, thereby greatly degrading the
effectiveness of code randomization. To address this threat, we need

e new code randomization techniques that can provide adequate
security despite such leaks (Sec. 3),

e new metadata optimization techniques that minimize the amount
of EH-metadata without impacting the functionality or perfor-
mance of exception handling (Sec. 4), and

e new entropy metrics that assess the security provided by code
randomization in the face of EH-metadata leaks (Sec. 5).

2.2 Threat Model and Security Goals

Our threat model is similar to previous work, with the key difference
that attackers are aware of SBR’s compatibility with stack traces
and exceptions and hence may:
e leverage the fact that function bodies are contiguous in order to
speed up their attack, and/or

o target EH-metadata specifically and disclose it. This is possible
because this metadata is present in stripped binaries, and is stored
in readable memory at runtime. Moreover, it typically covers 95%
of all functions, including most C-code and assembly.

With these differences in mind, we outline the three threat models
considered in code randomization research.

Static ROP. Although this threat model mentions ROP [47] specif-
ically, it is intended to include other code reuse attacks that rely on
existing code snippets such as JOP [7]. This threat model assumes
that (a) the attacker is able to exploit a vulnerability in the victim
program to hijack its control flow to start the execution of a gadget
chain, and (b) the locations of these gadgets are determined on
the basis of an attacker’s prior knowledge of the victim program’s
binary. All code randomization techniques aim to take away (b),
but don’t always do it completely. For instance, compiler-based
techniques don’t randomize low-level code written in assembly.
Our goal is to defeat static ROP by ensuring that the attacker
has no knowledge of any part of the binary code that executes at
runtime, and by introducing large entropy into this binary.

JIT-ROP. The JIT-ROP threat model assumes that the victim pro-
gram has a memory corruption vulnerability that provides (i) an
arbitrary read capability, and (ii) an ability to hijack control-flow.

ACSAC 2020, December 7-11, 2020, Austin, USA

It also assumes the availability of a scripting environment that (i)
executes attacker-provided scripts, and (ii) can exercise these vul-
nerabilities. State-of-art defense against JIT-ROP relies on execute-
only (i.e., non-readable) code. Since this technique imposes very
low overheads and is also very strong due to its reliance on hard-
ware memory protection, our approach will simply rely on this
technique to protect against JIT-ROP. (Note that our techniques are
compatible with execute-only code.)

Indirect (only) Disclosure ROP. This threat model assumes that
the victim program has a memory corruption vulnerability that en-
ables an attacker to read arbitrary memory locations. It also assumes
the availability of another vulnerability that enables control-flow
hijack. Finally, it assumes that code is protected from reads, so the
attacker cannot use leaked pointers to search the code for usable
gadgets. Instead, she targets gadgets that are adjacent to the leaked
code address, or at a short distance from it.

Attackers may very well use gadgets at the leaked pointers. Pre-
venting such reuse is hard, and is outside the scope of code randomi-
zation. Instead, our goal is to prevent attackers from using leaked
pointers to identify (the locations of) additional usable gadgets.

The availability of EH-metadata greatly increases useful in-
formation that may be leaked by indirect disclosures.

2.3 Common Randomizing Transformations

In this section, we summarize most of the fine-grained randomizing
transformations that have been proposed before. These transfor-
mations proceed in two phases. The first phase determines how a
function body is split into a set of partitions. In the second phase,
the partitions are permuted, and jumps introduced as needed to
preserve the original control-flow. Since the second phase is similar
for all transformations, we focus on the first phase below.

e Function Reordering (FR): Proposed in the earliest works on
code randomization [6, 30], this technique does not change
function bodies at all — it simply permutes the order of functions
in the code section. This achieves high entropy against static
ROP threat model, but FR is insufficient if code pointers or stack-
unwinding information can be leaked.

o ZeroJmp (ZJR): Koo et al [31] proposed to align code splits at lo-
cations terminating with unconditional jump instructions. With
this alignment, no new jumps are introduced for randomization;
instead, we simply adjust the targets of existing jumps after
permuting the blocks. As a result, Koo et al achieved nearly
zero overhead for this technique. We show, however, that ZJR is
relatively weak against adversaries that can leak code pointers.

o Basic Block Randomization (BBR): This technique splits func-
tion bodies at basic block boundaries. A basic block is an in-
struction sequence with no incoming control transfers except
to the first instruction, and no outgoing control transfers except
through the last instruction.

e Pointer-Hiding Randomization (PHR): Readactor [14] intro-
duced a pointer hiding defense against indirect disclosure attacks.
Specifically, for every indirectly called function, they introduce
a corresponding trampoline that then jumps to that function. It
is only the trampoline address that is stored in memory. Since
the trampoline is located randomly, it reveals no information

ACSAC 2020, December 7-11, 2020, Austin, USA

about possible gadgets at the beginning of the target functions.
To protect return addresses, each call is replaced with a jump
to a trampoline for that call-site, with the trampoline making a
call to the target function. As a result, the return address only
leaks the location of the trampoline.

Random placement of call-site trampolines will break stack-
unwinding. So, we consider a modification of Readactor’s tech-
nique that locates the trampoline at a random location within the
body of the caller. In addition, code blocks between successive
calls are permuted. We call this variant as PHR.

Phantom Blocks (PB): Instead of relying purely on permutation,
phantom blocks were introduced in kR'X [40] to create gaps
between blocks of original code. By randomly varying the size
of phantom blocks, entropy can be further increased. Moreover,
these blocks can be made into “traps” by filling them with invalid
code. This will cause any jumps into these blocks to terminate
the victim program.

Note that PB does not create new splits in the function body — in-
stead, it relies on other schemes such as BBR or PHR. Specifically,
kRX relies on the PHR variant described next.

One-side Pointer Hiding (OPHR): Note that call-site trampo-
lines of PHR require one jump into the trampoline, and a second
jump out of the trampoline. Performance can be improved by
removing one of these jumps. There is also a security cost, be-
cause the gadget location are hidden only on one side of the call:
the side that contains a jump.

3 LLR(k): Length Limiting Randomization

Existing randomization techniques outlined above do not satisfac-
torily address indirect disclosure ROP that leverages EH-metadata:
e PHR can stop attackers from computing additional gadgets ad-
jacent to a return address even after the attacker leaks that
return address. However, if the attacker leaks a code address
from EH-metadata, PHR cannot prevent attackers from knowing
the locations of nearby gadgets.
Z3JR and BBR don’t address indirect disclosures per se, but they
do have a secondary effect since they chop and permute func-
tion bodies. This means that a leaked return address exposes
the location of instructions in the same code block, but the gad-
gets in other blocks within the caller are still unknown to the
attacker. Unfortunately, Z7R blocks can be large. In the SPEC
suite, we observed thousands of blocks consisting of hundreds of
instructions. Although BBR blocks tend to be small on average,
there are still over a hundred blocks containing hundreds of
instructions. In fact, we find a basic block that is 8KB-long! As a
result, a leaked code address can allow an attacker to compute
a large number of additional gadgets.
PBs also don’t address indirect disclosures, so kR’ X [40] relies
on OPHR for this purpose. Being a weaker (but faster) form of
PHR, OPHR shares the weaknesses of PHR, i.e., no protection is
offered for addresses disclosed in the EH-metadata. In addition,
OPHR shares a drawback of ZJR: that the number of large OPHR
blocks is comparable to that of ZjR.
In contrast, we introduce a new technique, called Length Limiting
Randomization (LLR(k)), which limits the utility of any disclosed

Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

code address. The basic idea behind LLR(k) is very simple. Let s
be the size of a function. We generate p = |s/k]| distinct random
numbers r1, ...rp over the range [1,s—1]. We then proceed to create
a partition at each r;. Since the number of partitions is p + 1, the
average partition size is s/(p + 1) = s/(|s/k] + 1) < s/(s/k) = k.

Despite its simplicity, LLR(k) is quite powerful, and offers several
benefits over previous techniques:

o Tunable entropy and performance: Small values of k mean a large
number of small blocks. This increases entropy, but decreases
performance because frequent jumps increase code size, while
also decreasing cache locality. By the same reasoning, larger k
values provide better performance while decreasing entropy.

e Bounded utility for any disclosed address. Since the expected
length of any contiguous block of code is k, an attacker that
discloses an address can expect to be able to guess the locations
of up to k adjacent instructions. To access gadgets beyond this

range, the attacker will have to disclose additional addresses?.

e Higher entropy than other techniques for the same number of
partitions. For a given average partition size, LLR(k) provides
much higher entropy as compared to other schemes such as ZjR
or BBR. For instance, consider a function of size 100 instructions,
and let the average block size be 10. For this block size, both ZjR
and BBR yield an entropy of 22 bits, while LLR(k) yields 66 bits
of entropy! This is because LLR(k) introduces a lot of additional
randomness in the placement of breaks, whereas the placement
is deterministic for all other schemes discussed above.

o Can be seamlessly combined with other randomizations. We can
start with a base randomization scheme, such as ZJR, BBR, PHR,
or OPHR, and introduce additional randomness using LLR(k).
Suppose that the base scheme introduces breaks at m — 1 loca-
tions, thus yielding m partitions of a function. We then eliminate
these m — 1 locations (out of a total of s — 1 possible locations)
from consideration, and number the remaining locations from 1
to s—m. From these s—m locations, we choose p = |s/k] —m ran-
dom locations to create additional partitions. Note that the total
number of partitions is | s/k], thus ensuring the same average
block size as a pure LLR(k) scheme.

The most obvious combination is ZJR +LLR(k). In practice, there
is no reason to omit ZJR since it has nearly zero overhead. So, we
make ZJR +LLR(k) combination as the default, using the term LLR(k)
to refer to this combination. Stand-alone LLR(k)is called pure-LLR(k).

A second combination we consider is PHR + LLR(k). As compared
to PHR, we show that it provides a substantially higher entropy at
a small additional performance cost.

4 Limiting Disclosures in EH-metadata

By updating EH-metadata after code randomization, the function-
ality of C++ exceptions and stack tracing can be restored. Unfor-
tunately, the updated metadata reveals far too much information
about the new code layout that can be leveraged to defeat random-
ization. Recall from Sec. 2.1 that EH-metadata reveals:

2Since partitions are determined by a random number generator, some LLR(k) partitions
can be larger than k. However, unlike randomization schemes where the attacker
knows the larger blocks ahead of time, the attacker cannot predict which LLR(k) blocks
will be large. This is why we consider the expected length k as a limit on the number
of gadgets an attacker can determine from a disclosed address.

Practical Fine-Grained Binary Code Randomization

(a) the start and end of each unwinding block,
(b) the dependence between successive unwinding blocks, and
(c) the operations for unwinding the stack and restoring registers.

It is easy to see that the amount of metadata is directly proportional
to the number of unwinding blocks. Thus, in order to minimize
disclosures through EH-metadata, we describe in Sec. 4.1 our tech-
nique for eliminating most unwinding blocks without impacting
exception handling. Next, in Sec. 4.2, we discuss the spectrum of
possible code transformations that preserve unwinding compatibil-
ity for the remaining blocks, and justify our specific design choice.

4.1 Reducing EH-metadata Stored in Memory

A key observation we make is that small unwinding blocks fre-
quently consist of instructions such as push or pop that won’t
trigger C++ exceptions. This is because C++ exceptions are ulti-
mately triggered by a call to a throw function in the standard C++
library. This means that only those unwinding blocks that contain
call instructions can be involved in a C++ exceptions. All other
unwinding blocks could only be used in stack tracing, which is
typically used when a process terminates due to a fatal error. This
may include the case of unhandled signals, e.g., due to memory
faults, divide by zero, etc.

Based on the above observation, our design generates two ver-
sions of EH-metadata: a full version that includes all unwinding
blocks, and a reduced version that only stores information for call-
containing unwinding blocks. The full version is stored in a region
of memory that is made unreadable, so it cannot leak to the attacker.
The reduced version is the EH-metadata that is available at runtime.

When C++ exceptions occur, the above design ensures that our
reduced EH-metadata will include the information needed for un-
winding all the code blocks in the current call chain. Consequently,
exception handling will continue to work as before.

Typically, stack tracing is invoked when a process encounters a
serious error. Such an error may be detected by the program, and
it may respond by calling a library function for printing the stack
trace and exiting; or, it may be an unhandled error that manifests
as a UNIX signal. In the former case, since a function is being
invoked, all the relevant unwinding information will already be in
the reduced EH-metadata. To handle the latter case, we can install
a signal handler in the instrumented binary to check if the error
is due to a fault triggered by an instruction execution. If so, SBR
will replace the reduced EH-metadata with the full version. After
completing its task, SBR’s signal handler will transfer control to the
application’s signal handler. This kind of signal handler “hooking”
can be achieved by instrumenting glibc functions used for signal
handler registration. This is feasible since SBR instruments all
binaries, including glibc and the system loader. However, we have
not implemented this yet.

Note that the above design can support C++ exceptions as well
stack tracing for programs written in C or other languages. We add
no additional overheads for C++ exceptions, or any explicit calls to
functions that perform stack-unwinding. There is additional over-
head in the remaining cases, but since those cases typically occur
in conjunction with process or thread termination, the additional
overheads seem acceptable.

ACSAC 2020, December 7-11, 2020, Austin, USA

Function Unwinding operations for original blocks
100:push%rbp //Block A; | A1[100-100]: RBP = *(RSP); RSP = RSP + 8

102:sub $20,%rsp//Block Ay | A2[102-102]: {RSP = RSP + 20}

106:push%r8 //Block A3 + unwind operations of A;
108:call 140 A3[106-108]: {R8 = *(RSP); RSP = RSP + 8}
10d:pop %18 //Block Ay + unwind operations of Ay

10f: call 120 A4[10d-10f]: unwinding operations of A,
114:add $20,%rsp//Block As | As[114-114]: unwinding operations of A,
118:pop %rbp //Block Ag | Ag[118-11a]:{};

1a:ret Unwinding operations post-optimization
A13[100-108]: R8 = *(RSP); RSP = RSP+28;
RBP = *(RSP); RSP = RSP+8
Aye[10d-11a]: RSP = RSP+20;
RBP = *(RSP); RSP = RSP+8

Fig. 1: Unwinding blocks example

Fig. 1 illustrates our optimization on an example function with 6
unwinding blocks, A; through Ag. The second column in the figure
shows the unwinding operations for A; to Ag. Note that the unwind-
ing operations for A; undo the effect of its only instruction push
%rbp on the stack and callee-saved registers. Unwind operations
for Az need to undo the effect of its instruction sub $20, %rsp
and those of the blocks that preceded it. Rather than duplicating
the unwind operations of A; within those of Ay, a dependency on
A1 is indicated in the metadata. At runtime, the stack unwinder
will observe this dependence and perform A;’s unwind operations
following those of Az. Note that the first instruction in A4 undoes
the effect of A3 on the stack and callee-saved register. Realizing this,
the compiler simply records a dependence from A4 to the block A
preceding As.

Since Aj, Az, As and Ag contain no calls, our optimization can
delete them. In addition, we perform an additional optimization:

Expanding call-containing blocks: While unwinding blocks
without calls have been removed, their presence may be partially
revealed by the gaps in the ranges of remaining blocks. To avoid
this, we expand call-containing blocks until they meet each other.
Instead of a deterministic choice, we pick the meeting point at
random so as to increase attacker effort. In the example above, A3
has been expanded to Aj3, and its range 100-108 combines those
of Ay to As. Unwinding operations from Aj, A and A3 have been
consolidated in reverse order into A13, ensuring the same behavior
as the original code if any exception occurs within this call. A4 has
similarly been expanded to Age.

4.2 Unwinding-Compatible Code Randomization

After expanding unwinding blocks as described in the previous
section, the next step is to randomize the code within these blocks.
We discuss two possible options in this regard and justify our choice.

Whole function randomization. This choice is motivated by
the fact that the number of possible randomizations is significantly
larger if we permute the whole function without placing additional
constraints on the basis of unwinding blocks. Unfortunately, this
increase in apparent entropy does not necessarily provide more
security in our threat model. Consider two successive unwinding
blocks A and B in the original code. Suppose that A is broken into
fragments A; and Ay and B is broken up into B; and Bj and the
code rearranged in the order A; B1A2By, and then jumps are intro-
duced to maintain the original control flow. Since By requires a

ACSAC 2020, December 7-11, 2020, Austin, USA

different set of unwinding operations, it has to reside in a distinct
unwinding block from A; and Aj. In other words, four unwind-
ing blocks would be needed now, thus reversing the benefits of
the optimization described in the last section, and exposing more
information about the code layout in EH-metadata. Moreover, it
is often possible to infer the dependence between A; and Ay (and
the lack of dependence between A; and By or By and A3) from the
associated unwinding data. Worse, the attacker can now determine
the length of blocks A1 and Az, thereby pinpointing the locations
where the original code blocks have been partitioned. Using depen-
dency and block boundaries, an attacker can potentially determine
the permutation that has been applied, thus negating the security
benefits of randomization.

Intra-block randomization. This is the simplest option to imple-
ment because it does not change unwinding block boundaries. As
such, EH-metadata remains unchanged after randomization. This
implies that (a) leaks of this metadata will reveal nothing about
the code randomizations performed on any block, and (b) the func-
tionality as well as the time and space overhead of the exception
handling will be exactly as before randomization. We have there-
fore chosen intra-block randomization in SBR. Experimental results
show that our expanded unwinding blocks are above 50% of the
function size on average, so we can achieve sufficient entropy.

It should be noted that SBR’s randomization is confined to our
expanded unwinding blocks. As a result, they will break up some of
the original unwinding blocks, e.g., A1, A2, etc. Hence the full EH-
metadata that will be used for stack tracing can contain even more
unwind blocks than the original, a factor we evaluate in Sec. 8.6.

5 Entropy: Quantifying Randomization Strength

Entropy is calculated using its information theoretic definition as
2, —pilog pi, where there are n possible outcomes, with the ith
outcome having a probability of p;. (When all outcomes are equally
likely, as is the case in most of our transformations, this formula
simplifies to logn.) As is common, we use 2 as the base for log
operations below, and hence report entropy in bits. We define four
distinct entropy metrics: two that have been used in previous works,
and two that we introduce in this paper.

o Global Entropy (GE): This quantity measures the global entropy
across an entire binary. If a randomization scheme can generate
V distinct variants of a binary, each with a probability of 1/V,
then the GE of the binary is log V.

A high global entropy is an effective defense against static
ROP. However, it is not a useful security measure in our threat
model, where code locations may be revealed via code pointers
or EH-metadata3. Hence we leave GE out of further discussion.

e Function Entropy (FE): This quantity measures the entropy
of a single function. The FE of an entire binary is taken as the
arithmetic mean of the FE’s of all the functions in the binary.

3For instance, function reordering has high global entropy even for modest size binaries
that have a few dozen functions. However, an attacker that leaks the location of a single
instruction can immediately determine the locations of all the remaining instructions
within the same function. Worse, an attacker that leaks EH-metadata (specifically,
eh_ frame_ hdr) knows the location of every instruction in the binary. Thus, high
global entropy means little in the context of our threat model.

Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

When function bodies are contiguous, as is common with
many randomization schemes, FE provides a good measure of
security against conventional indirect disclosure attacks that
leak code pointers. Although it is not as meaningful in the face of
EH-metadata disclosures, we still use it in our evaluation since
it is well known, and hence makes our results easier to interpret.
Full Unwinding Block Entropy (FUBE): This quantity mea-
sures the entropy of a single unwinding block. It is defined
similar to FE, but instead of applying it at the granularity of
functions, we apply it at the granularity of unwinding blocks.
FUBE represents the mean entropy across all unwinding blocks.

FUBE targets indirect disclosure attacks that leak unmodified
EH-metadata, before any of our reduction techniques (Sec. 4.1)
are applied. In such a case, the attacker knows the boundaries
of every unwinding block, so a randomization scheme is limited
to randomizing instructions within each such block.

Reduced Unwinding Block Entropy (RUBE): This quantity is
similar to FUBE, except that it is applied to the reduced/optimized
EH-metadata described in Sec. 4.1.

Our experimental results show that relatively high values of
FE and RUBE can be achieved using our LLR(k) technique, thus
showing that exception-handling compatibility does not have to
come at the cost of security. Below, we outline the computation of
entropy metrics for different randomization schemes.

ZJR, BBR and PHR. Computation of function entropy of these
three methods is similar. Let m be the number of blocks after ZJR
(or BBR or PHR) is used to partition a function. These blocks can be
permuted in m! ways, thus yielding an entropy of log m!.

LLR(k). Recall that we apply LLR(k) over ZJR: we start with the
m partitions produced by ZJR, and then introduce p = |s/k] —m
partitions using LLR(k). The partitions introduced by ZJjR are de-
terministic, but there is randomness in the way LLR(k) generates
partitions. Recall that we choose these p locations out of s — m
possible locations, so these LLR(k) partitions introduce log (S;)m)
bits of entropy. In the second phase, we permute p+m blocks, which
yields an entropy of log(p + m)!. Thus the total function entropy,
in bits, is given by

log (s ;'”) +log(p +m)!

Our experimental results show that the first term has a substantial
value, thus making our LLR(k) technique more effective as compared
to previous techniques in terms of entropy. We can loosely view the
second term as the entropy gained by “paying” the performance
cost of the p newly introduced jumps. The first term can then be
viewed as a “bonus” that is gained without a performance price.

For the same number of partitions, pure-LLR(k) will yield higher
entropy than the hybrid scheme above (but may have a higher per-
formance cost since every jump is newly introduced). This entropy
can be found by setting m = 1 in the above formula:

log (s;1) +log(p+ 1) =log(p+1)(s—1)(s—2) -+ (s— p)

Practical Fine-Grained Binary Code Randomization

6 Binary Analysis and Instrumentation

The central challenge in static binary instrumentation is that of
accurately identifying code pointers. Since instrumentation typi-
cally changes code sizes, these pointers have to be “fixed up” to
point to the correct post-instrumentation locations of their original
targets*. Unfortunately, without relocation information that may
not be included in COTS binaries, it is not possible to determine
if a constant in a binary represents a code pointer or a data value.
CCFIR [61] authors made the key observation that the widespread
deployment of ASLR on Windows necessitated the inclusion of relo-
cation information: Windows has long relied on position-dependent
DLLs, so applying ASLR to DLLs involves a library transformation
(called rebasing) that requires relocation information [33]. By lever-
aging this information, CCFIR achieved robust and efficient CFI
instrumentation for Windows binaries.

Unix systems have long relied on position-independent libraries
that can support ASLR without needing relocation information.
However, on 32-bit x86 architecture, position-independence was
achieved using ad-hoc, compiler-specific techniques that made it
impossible to reliably identify code pointers. Moreover, executa-
bles were typically position-dependent,® and contained hard-coded
pointers. For these reasons, approaches for static instrumentation of
COTS Linux binaries often relied on address translation [49, 63, 64],
a technique originally developed in dynamic binary instrumenta-
tion systems [8, 34] for runtime fix-up of code pointers. Unfortu-
nately, address translation introduces significant complexity and
runtime overhead. However, as vendors continue the push for ap-
plying ASLR to all binaries (including executables), almost all bina-
ries on recent Unix systems have become position-independent®.
Moreover, modern 64-bit platforms consistently use PC-relative
addressing to create code pointer constants, or identify such con-
stants using relocation information. Leveraging this, recent research
[19, 41, 58] has shown that code pointers can be reliably identified
and fixed up statically on these platforms. This enables fully static
binary instrumentation with zero base overhead, while avoiding
significant complexity that comes with address translation. The
approach described below builds on these works, specifically [41].

Disassembly. Over the years, compilers on Linux have become
increasingly strict about moving all data out of code segments and
into a data segment. As a result, linear disassembly can achieve high
accuracy [3]. Recent works such as RetroWrite [19] and Egalito [58]
have also shown that complex Linux binaries can be successfully
disassembled using linear disassembly.

Function Identification. Since most of our randomizing trans-
formations operate on one function at a time, the next step is to di-
vide the disassembled code into functions. We rely on EH-metadata
to identify function boundaries. Recent work shows [42] that on
Linux/x86_64 (our implementation platform), this technique is more
accurate than many techniques specialized for accurate function
identification [4, 5, 43, 48]. Although EH metadata may not be as
complete on other platforms, this won’t affect SBR’s correctness:
4For instance, the starting point of a function f may change from a location 0x1000
to 0x1050 after instrumentation. This requires every constant value 0x1000, if it
represents a pointer to f, to be changed to 0x1050.

5This also means that they are not randomized by ASLR.
6 About 99% of binaries on a default Ubuntu 18.04 install are position-independent.

ACSAC 2020, December 7-11, 2020, Austin, USA

Randomized code
L1200: lea L1300(%rip), %rdi
L1209: mov L310(%rip), %rax

Original code
1200:lea Oxf7(%rip), %rdi
1209: mov -Oxefe(%rip), %rax

// load function pointer from location 30c
120e: call *%rax L120e: call *%rax
jmp L1211

// Jump table targets...
L122a: ...
L1270: ...
L1298: ...
L1211:lea L300(%rip), %rdi
L1218: cmp $0x14, %rax
Li121c:jge Li12ff

Li121e: add %rdi,%rax
L1221: mov (%rax), %rax
L1226: add %rax,%rdi
L1229: jmp *%rdi

1211:lea -0xf18(%rip),%rdi
1218: cmp $0x14, %rax
121c:jge 12ff
12le:add %rdi,%rax
1221: mov (%rax), %rax
1226: add %rax,%rdi
1229: jmp *%rdi
// Indirect jump using jump table

122a: - - - // code for jmp table entry 1

1270: - - - // code for jump table entry 2

1298: - - - // code for jump table entry 3

12fF: ret L12fF: ret

1300: push %rbp
1301: sub $0x20, %rsp

L1300: push %rbp
L1301: sub $0x20, %rsp

Static data: Static data:

// Jump table... // Rewritten jump table
300: Oxf2a L300: long L122a-L300
304: 0xf70 L304: long L1270-L300
308: 0xf98 L308: .long L1298-L300
// Pointer constant marked for relocation

310: 0x1500 L310: .8byte L1500

Fig. 2: Intra-function randomization. To highlight correspondence between
instructions before and after randomization, (a) vertical space has been intro-
duced to align instructions, and (b) only one code permutation is shown.

our sole correctness-critical use of function boundaries occurs in
the context of preserving the unwinding blocks that are actually
present in the EH-metadata.

Pointer Identification and Remapping We illustrate pointer
identification and remapping using the code snippet on the left of
Fig. 2. Its randomized version is shown at the right of this figure.

On Linux/x86_64, there are three ways for PIC to create pointers.
The first is the use of PC-relative addressing to compute the address
of static data or code, e.g., the lea 0xf7(%rip), %rdi instruction at
location 1200. This instruction moves the value 1300 into the %rdi
register. (Note: the PC register %rip points to the next instruction at
1209, so 0xf7+1209 = 1300.) The second way is by loading a pointer
that is stored within the static data (or possibly the code), e.g., the
instruction mov -Oxefe(%rip),%rax at location 1209. This instruc-
tion moves the contents of location 120e — efe = 310 into %rax.
We identify the loaded value as a pointer because location 310 is
marked for relocation. For both instructions, we ensure that the
references point to the correct location after binary instrumentation
by replacing the constants with labels. We use the style of BinCFI
[64], where the location information produced by a disassembler
(e.g., 1300) is turned into a label (e.g., L1300). These symbolic ref-
erences are resolved by the assembler when we reassemble the
randomized code shown on the right in Fig. 2.

ACSAC 2020, December 7-11, 2020, Austin, USA

The third way pointers are created is through pointer arithmetic.
There is no need to “fix up” data pointer arithmetic: it involves
adding a value to a base address, and since SBR does not change
the distances within the data segment, there is no need to adjust
this value. However, code layout is altered, so we need to adjust
the new pointer value so that it accesses the same logical target as
the original code. To do this, we need to know the exact value that
is being added, which will be known only at runtime. Fortunately,
code pointer arithmetic tends to occur only in the context of jump
tables, which are typically generated by compilers from C-style
switch statements. We have developed a static analysis to identify
the use of jump tables and fix up the targets. This analysis is able
to handle all of the binaries we have tested in our evaluation. Our
analysis is similar to that of Egalito [58], so we omit a description
of the analysis in order to conserve space. Instead, we illustrate
how jump table accesses are processed using the example of Fig. 2.

Jump table use begins with the instruction at 1211 which loads
the base address of the jump table into %rdi register. The index
value is stored in %rax. This value is bounds-checked at 121c, and
if this fails, the function returns by jumping to the ret instruction at
12f f. Otherwise, this index is added to the base address of the jump
table, and the resulting location dereferenced and loaded into %rax
at 1221. Our analysis determines that the location dereferenced is
one of 300, 304, or 308; that each of them point within the read-only
data segment; and that they contain the values f2a, f70, and {98
respectively. Based on the instructions at 1211 and 1226, our analysis
also determines that (a) these values are added to a base address
300 of the jump table, and (b) the resulting values are 122a, 1270
and 1298 respectively. It can be seen that if the jump table entries
are modified as shown in Fig. 2, then the fixup will be correct. In
this way, SBR is able to statically fixup pointer constants regardless
of the manner in which they are created.

Control Flow Graph (CFG) Construction. The first step in CFG
construction is to identify basic blocks, which are contiguous se-
quences of instructions with a single entry and a single exit. The
body of the function is first broken up into blocks at control-flow
transfer instructions. Since a call is a control-transfer, it terminates
the current basic block, just like jumps.

Next, we break these blocks further at every control flow target.
Since code pointers have been identified by now, we can introduce
breaks at indirect control flow targets as well. If these breaks occur
in the midst of an instruction, a disassembly error is flagged, unless
they immediately follow an x86 instruction prefix, e.g., lock.

As the last step in CFG building, edges are created between basic
blocks to capture control flow transfers. These edges encode the
type of the branch instruction (conditional or unconditional, jump
or call, direct or indirect, etc.) and the target (for direct transfers).

Randomizing Transformations At this point, SBR has all the
information needed for randomizing transformations: function
boundaries (for FR and LLR(k)), unwinding block boundaries (for
EH-metadata-reducing transformations), and the locations of un-
conditional branches (for ZJR), basic blocks (for BBR), and call
instructions (for PHR and OPHR). Based on this information, code
is broken up at the desired locations and permuted according to the
description of each of these transformations earlier in this paper.

Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

Labels derived from the original locations of instructions are
maintained during code permutation, thereby simplifying the
introduction of jumps between them. For instance, in Fig. 2, a break
was introduced just before the instruction at 1211, so we add a jmp
L1211 after the preceding instruction at 120e. To make it easy to
see the correspondence between the original and randomized in-
structions, we purposely limited ourselves to a single permutation
in this example, and did not reorder functions. (Code reached via
the jump table has also been moved, but this does not require the
introduction of additional jumps since these locations were already
preceded by unconditional jumps.)

Exception handling metadata regeneration. We generate both
the reduced and full unwinding information as described in Sec. 4,
and then encode them into the EH-metadata sections as follows:

e eh_frame_ hdr: This section consists of a binary search table
that maps a function to its corresponding frame descriptor entry
(FDE) in the eh__frame section. Each record of this table is pair
of function start and the address of corresponding FDE. We
update this information using the labels of these instructions,
in the same way data values are updated using labels in Fig 2.

e eh_ frame: This section contains the FDEs for each function.
The FDE contains the function start and size which we update
using labels. The FDE also contains information about each un-
winding block, and the associated unwinding operations. We
specify the block boundaries using labels, and have implemented
an encoder for recording the unwinding operations and depen-
dencies on preceding blocks.

e gcc_except_table: This section encodes the address of try
blocks, the corresponding catch blocks, and any destructor calls
needed (to clean up stack-allocated objects) during stack un-
winding. The only change we needed to make here is to update
code locations using our labels.

We used labels and assembler directives (e.g., .byte) to specify EH-
metadata sections. This enables the randomized code with regener-
ated metadata to be reassembled by the system assembler. We have
fully tested exception handling after this transformation.

Reassembly and ELF header update Since our transformation
produces valid assembly code, as illustrated in Fig. 2, it can be
assembled into an object file by the system assembler. This avoids
the need to implement low-level operations, such as the computa-
tion of instruction or data offsets, in SBR. We then use objcopy
to extract relevant sections of this object file and inject it into the
original binary. Currently, due to some engineering limitations, we
leave the original code section in its place, and add a new section
with the new code. (The original code is zeroed out, so this lim-
itation has no security impact.). We then update the ELF header
to reflect the new entry point for the binary. We also update the
program headers and the dynamic symbol table sections to reflect
the new locations in the modified binary.

7 Implementation

SBR implementation consists of 15.8KLoC of C++. We have de-
veloped our own ELF parsers and EH metadata decoders rather
than employing pre-existing utilities. We use objdump for linear

Practical Fine-Grained Binary Code Randomization

Program | Exec. | #of Libr. Total | Description
size | libs size size
(KB) (MB) (MB)
apt-get 43 19 9.6 9.7 | Run “apt-get upgrade”
enscript 281 3 3.7 4.0 | Convert text file of
size > 50MB to pdf
scp 100 5 23 2.4 | Copy 100MB file
gedit 10 | 110 59 59 | Open, edit and
save a text file
evince 442 70 30 30 | Open a PDF file,
view pages
gimp 6058 63 23 29 | Open a JPEG image,
edit(crop, blur, etc)
and save. Create a
drawing and save file
Wireshark 8430 77 156 164 | Capture network
packets for 30 mins
perl | 2098 5 4 6 | Run a perl script to parse
a file using regex
vim 2671 14 9.6 12.3 | Open a text file, edit,
copy, paste, search and
replace and save
vle 14 13 6.6 6.6 | Play video from a
network stream
pdflatex 826 25 13.4 14.2 | Compile .tex files
having a total
size of 100KB
Python2.7 3642 6 4 7.7 | Run Pystonel.1
benchmark
tar 423 7 29 3.3 | Compress a directory
of size 3GB

[[Aggregate] 25MB [202 [197MB | 222MB | [

Table 3: Functionality testing on common applications

disassembly, operating on small sections at a time. As noted earlier,
the implementation of signal handler hooking is not complete yet.

For jump table analysis, we first use our architecture-neutral
approach for [24, 25] for lifting assembly. Our system Lisc [35] lifts
assembly to an intermediate representation (IR), specifically, gcc’s
RTL. Jump table analysis is then performed on this IR.

For entropy calculations, SBR generates logs during the random-
ization process that captures detailed information such as the size
and location of functions, unwinding blocks, the partition locations
for ZJR, BBR and PHR, and the locations of any trampolines intro-
duced. This is processed by a C++ program that contains 270 lines
of entropy calculation code based on the formulas from Sec 5, and
another 800 lines for input/output,

8 Experimental Evaluation

Evaluation of SBR was carried out on a Ubuntu 18.04.3 system
equipped with an Intel Xeon Silver 4114 2.20GHz CPU and 384GB
RAM. Functionality and compatibility tests were performed on a
collection of frequently used applications and the SPECspeed 2017
benchmark suite. In-depth evaluation of performance and security
of ZJR, BBR, PHR, LLR(k) and PHR +LLR(k) were based on the SPEC
suite.” For measuring security, we used FE, FUBE and RUBE.

"We omitted FR and PB randomization techniques because they do not, by themselves,
address indirect disclosures; and OPHR because of its similarity to PHR.

ACSAC 2020, December 7-11, 2020, Austin, USA

I I . 6
400 |- ZJR N
—%— BBR
—a— PHR
300 |- —e— LLR(k) K i
£ —o— PHR +LLR(k)
\é 16 *
£ 200 7
=1
3} 16
A
100 |- N
| | |
0 5 10 15

Runtime Overhead (%)
Fig. 4: Function Entropy vs Runtime Overhead (SPECspeed 2017)

8.1 Functionality Evaluation

Low-level Libraries. We randomized glibc (libc-2.27.s0), the
loader (1d-2.27.s0) and libpthread (libpthread-2.27.so). They con-
tain about 2.3MB of low-level code, with significant amount of hand-
written assembly. We replaced these standard libraries with their ran-
domized versions and rebooted the system, and verified that the system
started up properly. We used a variety of command-line and graphi-
cal applications and verified that they worked as expected. These
tests were repeated for all randomization techniques. Note that ev-
ery application on the system was using SBR-randomized versions
of these libraries, but the application code was not randomized in
this test. Tests involving application code are described below.

Commonly Used Applications. We have tested SBR with many
common applications shown in Table 3. The table shows the appli-
cation name, the size of the executable, the number and aggregate
sizes of libraries used by the executable, etc. It also describes the test
performed to check its functionality. Altogether, these tests required
the transformation of 197MB of binaries contained in 202 shared
libraries, as shown in Table 9 on Page 14.

SPECspeed 2017. This benchmark consists of 19 programs® in 3
languages: C, C++ and Fortran. We compiled these programs using
gec, llvm and gfortran. The total size of these binaries was 420MB.
We verified that the randomization techniques discussed in Sec. 2.3
and Sec. 3 preserve the functionality of all the resulting binaries, i.e.,
they continue to produce the correct results. Two of these programs,
omnetpp and leela, use exceptions, and they continued to work
correctly with our reduced metadata.

8.2 Performance vs Security Trade-off

Fig. 4 plots the entropy against the runtime overhead of various
randomization techniques. While this chart is based on function
entropy, a chart based on RUBE, which measures resistance against
EH-metadata-aware attacks, is very similar. (See Fig. 8 on Page 14.)
Deterministic techniques such as ZjR, BBRand PHR represent single
points in this graph. But since LLR(k) and PHR +LLR(k) provide a

8The benchmark contains 20 programs, but we found that one of them (cam4) always
exits with a segmentation fault. We have not been able to determine the cause, but
since the problem occurs with the base version, before any processing by SBR, we
excluded it in our experiments.

ACSAC 2020, December 7-11, 2020, Austin, USA

tunable parameter k, we can obtain different entropies at different
performance costs.

From the chart, it is clear that neither ZJR nor BBRis an attractive
choice for deployment. ZJR sports a low 1% overhead, but its low
entropy, at about one-sixth of LLR(16)’s, makes it vulnerable in our
threat model. While BBR offers a high entropy, this comes at a steep
14% overhead. From the chart, we can see that LLR can match BBR’s
entropy at just half its overhead. Alternatively, LLR can be tuned to
match the performance of BBR while providing 60% more entropy.

LLR(16) provides a good combination of per-function entropy
(140 bits average) and low overhead (2.26%) across the SPEC suite.
PHR’s entropy is very close to LLR(16)’s, but it has a 70% higher
overhead than LLR(16).

Where security is a priority, PHR +LLR(16) is an excellent choice.
It deterministically protects all code pointers in data, and in addition,
offers the assurance of LLR(16) that each EH-metadata leak will
reveal the location of at most 16 other instructions. Its overhead is
not negligible, but 5% is acceptable in many settings.

8.3 Function Entropy

Although ZJR has very low overhead, its FE, shown in Table 5, is
way too low — just 25 bits. This makes it vulnerable to indirect
disclosure attacks.

BBR provides the highest FE of any randomization technique
discussed so far, at 228 bits. However, as discussed before, LLR as
well as PHR +LLR can achieve a better combination of entropy and
performance.

PHR ensures that leaked pointers, including function pointers
and return addresses, don’t reveal the locations of instructions
adjacent to the pointer. However, in a randomization scheme that
keeps function bodies together, this is not sufficient to prevent the
attacker from accessing other instructions in the same function.
Thus, the only protection comes in the form of entropy — making it
difficult to predict the instruction that the attacker is able to access.
PHR’s entropy of 147 bits is quite good (and comparable to LLR(k)).

PHR +LLR(16) offers a 40% improvement in entropy over PHR at a
33% higher overhead. From Fig. 4, it is easy to see that this technique
offers the best combination of security strength and performance
in contexts where overheads > 5% are acceptable.

8.4 Full & Reduced Unwind Block Entropy (FUBE & RUBE)

While FE has the benefit of familiarity, it is not very useful in our
threat model where the attacker can target EH-metadata and stack-
unwinding-compatibility. In Sec. 5, we developed two new metrics,
FUBE and RUBE, for this specific purpose. We use them to evaluate
BBR, PHR, LLR(k) and PHR +LLR(k) below.

FUBE. This metric captures the difficulty of attacks when all
of the EH-metadata generated by the compiler is included in the
binary. As shown in Table 6, FUBE is very low across the board
for all randomization schemes. In other words, it is not feasible
to develop a secure randomization scheme if the full unwinding
information generated by the compiler is left in the binary.

RUBE. This metric captures the difficulty of carrying out attacks
after the metadata reduction and optimization techniques described
in Sec. 4 have been applied. RUBE values in Table 6 show a dramatic

Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

Program ZJR | BBR | PHR LLR(16) PHR +

LLR(16)
perlbench 35 246 148 58 150
gee 31 262 178 55 179
bwaves 4 60 64 165 159
mcf 11 81 42 29 44
cactuBSSN 71 407 279 149 312
Ibm 5 24 21 42 47
omnetpp 13 61 71 16 72
wrf 34 442 333 446 492
xalancbmk 20 102 92 26 92
X264 18 154 87 88 108
pop2 14 234 206 168 238
deepsjeng 20 159 81 54 87
imagick 27 | 255 215 81 221
leela 28 144 146 51 149
nab 17 145 103 61 112
exchange2 80 804 149 375 352
fotonik3d 18 394 301 438 489
roms 28 298 244 332 384
Xz 10 61 38 21 43

[[Mean [[25228 w7][140 196 ||

Table 5: Function Entropy on SPECspeed 2017

improvement over that of FUBE. In fact, they are about half of the
FE values shown in Table 5. This is because the techniques of Sec. 4
were able to remove 85% of all the unwinding blocks that were
originally present. This translates to a 6.7x reduction in the number
of unwinding blocks. As a result, there are just under 2 unwinding
blocks per function on average, as compared with 13 generated by
the compiler. It can be seen from the entropy formulas in Sec. 5
that the entropy increases roughly linearly with the size s of the
entity being randomized. Given that unwinding blocks, which are
the entities being randomized, are about half the size of functions,
it is understandable that RUBE is roughly half of FE.

Fig. 8 on Page 14 provides a way to compare different random-
ization techniques. It is qualitatively similar to Fig. 4 that is based
on FE. Thus, we can make the following observations: (a) LLR(k)
can be tuned to provide the same entropy as BBR at about half the
performance cost, or about 2x the entropy at the same cost, (b) PHR
+LLR(k) provides the best combination of security and performance
in contexts where a runtime overhead > 5% is acceptable.

8.5 Runtime Overhead

Table 7 compares the runtime overhead of LLR(k) with previous
code randomization techniques. Each SPECspeed binary was ran-
domized with 5 distinct random seeds. Each randomized variant
was run 5 times, and the average of the medians for each variant
was taken as the runtime of a randomized binary.

Runtime overhead for a randomized executable can be attributed
to (i) additional jump instructions introduced and (ii) negative effect
of code reordering on cache locality. Since ZJR doesn’t introduce
any new jumps, its overhead must purely be from cache locality
effects. Almost every binary in the table has close to zero overhead
for ZjR except xalancbmk at 6%. CCR [31] also reports a 5% overhead
on this benchmark.

Practical Fine-Grained Binary Code Randomization

ACSAC 2020, December 7-11, 2020, Austin, USA

Program Full Metadata Reduced Metadata
ZJR| BBR| PHR|LLR(16)] PHR+ || ZJR|BBR|PHR|LLR(16)] PHR+ Program size ZJR BBR | PHR || LLR(16) | PHR+
LLR(16) LLR(16) LLR(16)
perlbench 20 17| 10 4 10 12| 93| 55 24 55 perlbench IMB 0.3% 56.7% 15.5% 1.2% 14.5%
gcee 31 23| 15 5 16 17| 149| 100 31 101 gee 54MB 3.2% 35.5% 13.3% 4.8% 13.8%
bwaves o 4| 4 11 11 0 43| 42 127 125 bwaves 0.2MB -0.5% -0.4% -0.4% -0.6% -1.0%
mcf 1 7 4 3 4 5| 58| 30 22 32 mcf 0.1IMB 1.1% 17.4% 5.1% 1.7% 6.0%
cactuBSSN 5 28| 18 11 21 39| 215 140 83 160 cactuBSSN 17.4MB 1.3% 3.8% 2.4% 3.5% 4.6%
Ibm 1 4 3 7 8 1| 15| 12 34 35 Ibm 67KB 0.0% -2.1% -1.0% -3.0% -1.8%
omnetpp 1 6 7 2 7 8| 38| 44 10 44 omnetpp 24MB 1.0% 10.4% 5.0% 2.3% 4.3%
wrf 1| 11 7 11 12 11| 147 105 145 165 wrf 57MB 0.0% 3.2% 0.5% 1.3% 0.8%
xalancbmk 20 12| 11 3 11 15| 77| 69 20 69 xalancbmk 70MB 6.0% 35.4% 10.2% 6.5% 9.7%
x264 1| 13 7 7 9 11| 95| 55 53 69 X264 2.8MB -1.5% 9.6% 0.0% 9.1% 12.2%
pop2 1| 10 9 7 11 4| 77| 67 58 83 pop2 169MB 2.2% 10.0% 2.2% 5.3% 3.7%
deepsjeng 2| 14 7 5 8 11| 92| 50 32 52 deepsjeng 0.4MB 0.1% 23.6% 8.5% 2.4% 10.2%
imagick 1| 13 9 4 10 6| 62| 46 22 49 imagick 8.3MB 0.1% 11.1% 0.3% 1.6% 0.6%
leela 31 15| 16 6 16 21(118] 123 48 126 leela 3.5MB -0.4% 20.0% 10.4% 2.3% 11.8%
nab 1| 11 8 5 9 71 72| 52 34 58 nab 0.9MB 0% 3.0% 0.3% 1.0% 0.6%
exchange2 8| 83| 15 40 37 66| 812| 167 439 401 exchange2 0.1MB 1.5% 54.3% 1.8% 12.9% 12.2%
fotonik3d 1| 27| 21 32 37 8| 241| 190 289 331 fotonik3d 0.8MB 0.7% -1.4% 0.6% -1.1% 1.1%
roms 1| 12| 10 13 18 10| 107| 92 119 151 roms 2.2MB 0.0% 0.3% -0.2% 0.2% 0.0%
XZ 1 6 3 2 4 6| 38| 22 14 25 XZ 1MB 0.2% 6.2% 0.7% 2.2% 2.0%

[Mean [[2] 17] 10] o] 14 [13[13a] 77] s4] 112 | [Geo. Mean | [[0.88% | 14.13% [3.86% || 2.26% | 5.14% |

Table 6: Full & Reduced Unwind Block Entropy (FUBE & RUBE) on SPEC 2017.

BBRincurs a significant 14.13% overhead because (a) it introduces
many new jumps, and (b) the cache effects of permuting at much
finer granularity than ZJR will correspondingly be larger. One factor
in this high overhead is that we treat a call as an end of a basic block,
which may not be the case in alternative BBR implementations.

PHR is implemented on top of ZJR. Of the trampolines added by
PHR (see Sec. 2.3), the ones with the most performance impact are
the two jumps surrounding each call. As a result of these, programs
that make frequent calls can have overheads as high as 15%. The
average is a moderate 3.86% overhead.

LLR(16) is also implemented on top of ZJR, and its overhead is
proportional to the additional partitions that it introduces. Although
there are two benchmarks with 9% or slightly higher overheads,
the average is a relatively low 2.26%.

Since PHR +LLR(16) introduces more partitions than either PHR
or LLR(16), we expect its overhead to be higher than both. In fact,
the overhead of PHR +LLR(16) tends to be close to the maximum of
the PHR and LLR(16), with an average close to 5%.

8.6 Memory Overhead

Our approach of intra-block randomization does not change the
number of unwinding blocks or the data associated with them, and
hence should have zero space overhead. However, in practice, our
implementation uses labels, and cannot encode constants into the
smallest number of bytes. This results in a 13.8% overhead when re-
creating the EH-metadata. With more engineering effort, this can
be brought down to zero, but we have not pursued this because our
main focus is on the size after the metadata reduction techniques
of Sec. 4 have been applied. We find that after the reduction, EH-
metadata has shrunk to 50% of the original size. (Although the
number of unwinding blocks have been decreased by more than 6x,
the reduction in metadata size is more modest. This is because, as

Table 7: Runtime overhead on SPECspeed 2017 benchmark suite.

illustrated in Fig. 1, the unwind data for the merged blocks tends
to accumulate much of the data from the original blocks.)

We also need to generate the full metadata that will be used
for stack tracing on faults. As discussed before, because we have
expanded call-containing blocks into nearby blocks that don’t con-
tain calls, and permuted these merged blocks, we have effectively
done something similar to whole function randomization: we have
chopped up existing unwinding blocks into pieces and permuted
them. As a result, there are many more unwinding blocks in this
case, so the metadata increases by 45%.

9 Discussion

Code Signing. Linux distributions verify code signatures at the
time of software installation and updates. Our system performs its
randomization on the installed (or patched) versions, and hence
does not interfere in any way with current distribution models.
This same comment applies to software updates and patches as
well: signature checking is performed on the update, and after
that, the concerned binaries are updated. SBR can then randomize
these updated binaries, thus making it compatible with prevalent
software distribution and update mechanisms on Linux.

Rerandomization. Our system can support periodic rerandom-
ization of binaries on the disk. Such rerandomization may be initi-
ated on a regular basis, e.g., every few days. Alternatively, it may be
triggered after a binary has been loaded a certain number of times.

COOP and AOCR. Code randomization techniques excel at stop-
ping attacks that access code snippets that won’t be used by le-
gitimate code. Stopping attacks that use legitimate targets, such
as entire functions, is much harder. SBR can prevent control-flow
hijacks that employ whole function code reuse only to the extent

ACSAC 2020, December 7-11, 2020, Austin, USA

that the attacker does not know the function’s location. However,
if the attacker can find its location through leaked pointers, then
attacks that reuse the target function cannot be stopped by SBR.
Hence SBR, like previous code randomization techniques, is vul-
nerable to counterfeit object oriented programming (COOP) [46]
and address-oblivious code reuse (AOCR) [45] attacks.

10 Related work

Control Flow Integrity. Control flow integrity (CFI) [1, 2] tech-
niques monitor indirect control flow transfers, permitting only
those that are consistent with a statically inferred control-flow
graph. They provide a principled foundation for building other
security mechanisms such as software fault isolation [54, 59] and
other forms of policy enforcement [21, 65]. However, as mentioned
in the introduction, they have several weaknesses as a defense
against code reuse attacks, and have been shown to be vulnerable
[10, 46]. Coarse-grained CFI techniques are particularly vulnerable,
while fine-grained techniques tend to be less compatible. To address
compatibility, researchers have focused on solutions that target spe-
cific code pointer types such as those used in C++ virtual calls
[23, 60] and returns [9, 17, 44]. There have also been recent works
[20, 28, 29, 39, 53] utilizing hardware features for performance.

Code Randomization. Since its introduction by Bhatkar et al [6],
fine-grained code randomization has been the focus of numerous
research efforts over the past fifteen years [11, 13, 14, 16, 18, 26,
27,30-32, 38, 55, 57, 62]. Earlier techniques [6, 13, 18, 26, 27, 30, 32,
38, 55] were focused on the static-ROP threat model. More recent
techniques (e.g., [11, 14, 16, 57, 62]) address JIT-ROP and indirect
disclosure based ROP, as discussed below.

Isomeron develops a defense against JIT-ROP attacks that relies
on randomly switching between two copies of a program’s code at
runtime, while ensuring that calls from one copy return to the same
copy. The mechanism for ensuring this is similar to shadow stack,
with its potential for impacting compatibility. More important, the
content of the shadow stack needs to be protected from disclosures.

Rather than protecting code pointers from being leaked, SECRET
[62] leverages its use of runtime code pointer translation to make
leaked pointers useless. In particular, this translation can incorpo-
rate a random permutation of the code space, thereby destroying
any relationship between a leaked pointer and the locations of
nearby gadgets. Unfortunately, address translation imposes signifi-
cant overhead. CodeArmor [11] reduces this overhead by using a
random linear offset for translation, instead of the hashtable needed
for a permutation. However, this makes the method susceptible to
attacks that infer this random value. This is mitigated by CodeAr-
mor’s ability for runtime re-randomization.

Shuffler [57] is another technique that implements runtime re-
randomization. It only adds redirection to indirect jump/call tar-
gets while relying on heuristics to protect return addresses. While
Shuffler required compiler help to randomize binaries, Egalito [58]
eliminates this requirement for x86_64 binaries.

Whereas the above techniques use a combination of techniques
to protect against code disclosures, recent works have gravitated

Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

towards execute-only (i.e., non-readable) code [12, 22, 51, 56] for
defending against JIT-ROP attacks. Since this technique imposes
very low overheads and is also very strong due to its reliance on
hardware memory protection, we will also rely on existing imple-
mentations of this mechanism for JIT-ROP defense.

Readactor [14] is a comprehensive compiler-based mitigation
for code reuse attacks. As noted earlier, PHR is a stack-unwinding-
compatible version of their pointer hiding. Our PHR implementation
protects all the pointers protected by Readactor, but unlike Readac-
tor, we do not require source code. Their performance overhead
of 4.6% (which includes 0.5% for code-data separation and 4.1% for
pointer hiding reported [14]) is a bit higher than our overhead of
3.86% for PHR, but a direct comparison is not possible because they
use SPEC 2006 vs our SPEC 2017. Their design can also offer higher
entropy (as the trampolines can be located far from the rest of pro-
gram code) at the expense of breaking C++ exceptions and stack
tracing. Our design maintains compatibility with these features,
while still achieving a high average function entropy of 147 bits.

kR'X [40] is a compiler-based defense that combines code di-
versification with execute-only memory and other techniques in
order to thwart JIT-ROP in kernel code. Their phantom blocks idea,
discussed in Sec. 2.3, can provide an additional improvement to the
entropy of our LLR(k). However, we have not considered it in our
implementation because phantom blocks do not directly address
indirect disclosures, and moreover, have a significant memory cost.

CCR is a hybrid approach to achieve fine-grained randomization
at a low performance overhead. It includes (a) a compiler plugin
to extract metadata, and (b) a static binary rewriter. This hybrid
approach maintains compatibility with prevalent software distribu-
tion models, while avoiding the high overhead associated with most
previous techniques that offered a similar level of compatibility.
SBR is able to achieve its performance without compiler help.

We make several new contributions over all the above works.
Ours is the first work to systematically study how EH-metadata
can undermine code randomization, and to propose a secure code
randomization defense that is compatible with exceptions and stack-
tracing. Our technique offers low performance overheads while
operating on COTS binaries. Moreover, they can be tuned to achieve
a range of security and performance goals.

11 Conclusions

In this paper, we presented SBR, a new approach for fine-grained
code randomization. By operating on COTS binaries, our technique
maintains full compatibility with today’s software distribution and
patching mechanisms. Unlike previous works, our approach is com-
patible with C++ exceptions and stack tracing, two features that are
crucial for deployment. We show that the metadata needed by these
features can be abused by attackers. We presented several new tech-
niques that, together, achieve fine-grained code randomization that
is robust in this threat model, and achieves excellent performance.
We expect to open-source SBR in the coming months. Our experi-
mental results show that SBR offers a compelling combination of
features, making it suitable for deployment.

Practical Fine-Grained Binary Code Randomization

References

=
st

[10]

(1

[12]

[13]

[14

[16]

[17

(18]

[19

[20

[21

[22]

[23

[24]

[25

[26]
[27]

[28]

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. CFI: Principles,
implementations, and applications. In ACM CCS.

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-flow
integrity principles, implementations, and applications. ACM TISSEC (2009).
Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert
Bos. 2016. An in-depth analysis of disassembly on full-scale x86/x64 binaries. In
USENIX Security Symposium.

Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-agnostic
function detection in binaries. In IEEE European Symposium on Security and
Privacy.

T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley. 2014. BYTEWEIGHT:
Learning to Recognize Functions in Binary Code. In USENIX Security.

Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. 2005. Efficient techniques
for comprehensive protection from memory error exploits. In USENIX Security
Symposium.

Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-
oriented programming: a new class of code-reuse attack. In ASIACCS.

Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An infrastruc-
ture for adaptive dynamic optimization. In Code Generation and Optimization.
Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining light
on shadow stacks. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
985-999.

Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R
Gross. 2015. Control-flow bending: On the effectiveness of control-flow integrity.
In USENIX Security Symposium.

Xi Chen, Herbert Bos, and Cristiano Giuffrida. 2017. CodeArmor: Virtualizing
the code space to counter disclosure attacks. In Euro S&P.

Yaohui Chen, Dongli Zhang, Ruowen Wang, Rui Qiao, Ahmed Azab, Long Lu,
Hayawardh Vijayakumar, and Wenbo Shen. 2017. NORAX: Enabling Execute-
Only Memory for COTS Binaries on AArch64. In IEEE Security and Privacy.
Mauro Conti, Stephen Crane, Tommaso Frassetto, Andrei Homescu, Georg Kop-
pen, Per Larsen, Christopher Liebchen, Mike Perry, and Ahmad-Reza Sadeghi.
2016. Selfrando: Securing the tor browser against de-anonymization exploits.
Proceedings on Privacy Enhancing Technologies (2016).

Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readactor:
Practical code randomization resilient to memory disclosure. In IEEE Security
and Privacy.

Lucas Davi, Ra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten Holz, Ralf
Hund, Stefan Niirnberger, and Ahmad reza Sadeghi. 2012. MoCFI: a framework
to mitigate control-flow attacks on smartphones. In NDSS.

Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and
Fabian Monrose. 2015. Isomeron: Code randomization resilient to (just-in-time)
return-oriented programming. In NDSS.

Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPdefender: a
detection tool to defend against return-oriented programming attacks. In ASI-
ACCS.

Lucas Vincenzo Davi, Alexandra Dmitrienko, Stefan Niirnberger, and Ahmad-
Reza Sadeghi. 2013. Gadge me if you can: secure and efficient ad-hoc instruction-
level randomization for x86 and ARM. In ACM CCS.

Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization.
In IEEE Symposium on Security and Privacy.

Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and Wenke
Lee. 2017. Efficient protection of path-sensitive control security. In USENIX
Security Symposium.

Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and George C
Necula. 2006. XFI: Software guards for system address spaces. In Operating
systems design and implementation.

Jason Gionta, William Enck, and Peng Ning. 2015. HideM: Protecting the Contents
of Userspace Memory in the Face of Disclosure Vulnerabilities. In Data and
Application Security and Privacy (CODASPY).

Istvan Haller, Enes Goktasg, Elias Athanasopoulos, Georgios Portokalidis, and
Herbert Bos. 2015. Shrinkwrap: Vtable protection without loose ends. In ACSAC.
Niranjan Hasabnis and R Sekar. 2016. Extracting Instruction Semantics Via Sym-
bolic Execution of Code Generators. In ACM Foundations of Software Engineering.
Niranjan Hasabnis and R Sekar. 2016. Lifting assembly to intermediate repre-
sentation: A novel approach leveraging compilers. In Architectural Support for
Programming Languages and Operating Systems.

Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W Davidson.
2012. ILR: Where’d my gadgets go?. In IEEE Security and Privacy.

Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler, and Michael
Franz. 2013. Profile-guided automated software diversity. In CGO.

Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R
Harris, Taesoo Kim, and Wenke Lee. 2018. Enforcing unique code target property

ACSAC 2020, December 7-11, 2020, Austin, USA

for control-flow integrity. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security.

Mustakimur Rahman Khandaker, Wenging Liu, Abu Naser, Zhi Wang, and Jie
Yang. 2019. Origin-sensitive control flow integrity. In USENLX Security Sympo-
sium.

Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. 2006.
Address space layout permutation (ASLP): Towards fine-grained randomization
of commodity software. In Annual Computer Security Applications Conference.
Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P Kemerlis, and Michalis
Polychronakis. 2018. Compiler-assisted code randomization. In Security and
Privacy.

Hyungjoon Koo and Michalis Polychronakis. 2016. Juggling the gadgets: Binary-
level code randomization using instruction displacement. In Asia CCS.

Lixin Li, Jim Just, and R. Sekar. 2006. Address-space randomization for windows
systems. In Annual Computer Security Applications Conference.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
Programming language design and implementation.

Huan Nguyen, Niranjan Hasabnis, and R Sekar. 2019. LISC v2: Learning Instruc-
tion Semantics from Code Generators. http://www.seclab.cs.sunysb.edu/seclab/
liscV2/. Accessed: 2019-06-03.

Ben Niu and Gang Tan. 2014. Rock]JIT: Securing just-in-time compilation using
modular control-flow integrity. In ACM CCS.

James Oakley and Sergey Bratus. 2011. Exploiting the Hard-Working DWARF:
Trojan and Exploit Techniques with No Native Executable Code. In WOOT.
Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. 2012. Smash-
ing the gadgets: Hindering return-oriented programming using in-place code
randomization. In Security and Privacy.

Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. 2013. Transpar-
ent ROP Exploit Mitigation Using Indirect Branch Tracing. In USENIX Security.
Marios Pomonis, Theofilos Petsios, Angelos D Keromytis, Michalis Polychronakis,
and Vasileios P Kemerlis. 2017. kR X: Comprehensive kernel protection against
just-in-time code reuse. In EuroSys.

Soumyakant Priyadarshan. [n.d.]. A Study of Binary Instrumentation Techniques.
Research Proficiency Report, Secure Systems Lab, Stony Brook University, http:
//seclab.cs.sunysb.edu/seclab/pubs/soumyakant_rpe.pdf. Accessed: 2020-08-30.
Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar. 2020. On the Impact of
Exception Handling Compatibility on Binary Instrumentation. In ACM FEAST.
Rui Qiao and R Sekar. 2017. A Principled Approach for Function Recognition in
COTS Binaries. In Dependable Systems and Networks (DSN).

Rui Qiao, Mingwei Zhang, and R Sekar. 2015. A Principled Approach for ROP
Defense. In Annual Computer Security Applications Conference.

Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson,
Stephen Crane, Christopher Liebchen, Per Larsen, Lucas Davi, Michael Franz,
et al. 2017. Address Oblivious Code Reuse: On the Effectiveness of Leakage
Resilient Diversity. In NDSS.

Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit object-oriented programming:
On the difficulty of preventing code reuse attacks in C++ applications. In IEEE
Security and Privacy.

Hovav Shacham et al. 2007. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In ACM CCS.

Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
functions in binaries with neural networks. In USENIX Security Symposium.
Matthew Smithson, Khaled EIWazeer, Kapil Anand, Aparna Kotha, and Rajeev
Barua. 2013. Static binary rewriting without supplemental information: Over-
coming the tradeoff between coverage and correctness. In Working Conference
on Reverse Engineering (WCRE).

Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On the
Effectiveness of Fine-Grained Address Space Layout Randomization. In IEEE
Security and Privacy.

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2015. Heisenbyte:
Thwarting memory disclosure attacks using destructive code reads. In ACM CCS.
Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ulfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC and LLVM. In USENIX Security.

Victor Van der Veen, Dennis Andriesse, Enes Goktas, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical context-
sensitive CFL In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. 927-940.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
Efficient software-based fault isolation. In SOSP.

Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhigiang Lin. 2012.
Binary stirring: Self-randomizing instruction addresses of legacy x86 binary code.
In ACM CCS.

http://www.seclab.cs.sunysb.edu/seclab/liscV2/
http://www.seclab.cs.sunysb.edu/seclab/liscV2/
http://seclab.cs.sunysb.edu/seclab/pubs/soumyakant_rpe.pdf
http://seclab.cs.sunysb.edu/seclab/pubs/soumyakant_rpe.pdf

ACSAC 2020, December 7-11, 2020, Austin, USA

[56]

[57]

[58

[59]

[60

[61]

(62

[63

[64]

o
)

Jan Werner, George Baltas, Rob Dallara, Nathan Otterness, Kevin Z Snow, Fabian
Monrose, and Michalis Polychronakis. 2016. No-execute-after-read: Preventing
code disclosure in commodity software. In ASIACCS.

David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake,
Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang,
and William Aiello. 2016. Shuffler: Fast and deployable continuous code re-
randomization. In OSDL.

David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Pat-
terson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P Kemerlis. 2020.
Egalito: Layout-Agnostic Binary Recompilation. In ASPLOS.

Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native
Client: A Sandbox for Portable, Untrusted x86 Native Code. In IEEE Symposium
on Security and Privacy.

Chao Zhang, Chengyu Song, Z. Kevin Chen, Zhaofeng Chen, and Dawn Song.
2015. VTint: Protecting Virtual Function Tables’ Integrity. In NDSS.

Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-
Camant, Dawn Song, and Wei Zou. 2013. Practical control flow integrity and
randomization for binary executables. In IEEE Security and Privacy.

Mingwei Zhang, Michalis Polychronakis, and R Sekar. 2017. Protecting COTS Bi-
naries from Disclosure-guided Code Reuse Attacks. In Annual Computer Security
Applications Conference.

Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R Sekar. 2014. A platform for
secure static binary instrumentation. ACM VEE (2014).

Mingwei Zhang and R Sekar. 2013. Control flow integrity for COTS binaries. In
USENIX Security.

Mingwei Zhang and R Sekar. 2015. Control flow and code integrity for COTS
binaries: An effective defense against real-world ROP attacks. In ACSAC.

I I

ZIR 6
—e— BBR
—a— PHR
200~| _@— LLR(k)
—o— PHR+LLR(k)

Entropy (bits)

100

| | |
0 5 10 15

Runtime Overhead (%)

Fig. 8: Reduced Unwinding Block Entropy vs Runtime Overhead (SPECspeed
2017)

Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar

H Module name Size H
libwireshark.so.11.1.10 77.95MB
libicudata.s0.60.2 25.66MB
libgtk-3.50.0.2200.30 7.01MB
1libQt5Core.s0.5.9.5 5.28MB
libpython3.6m.s0.1.0 4.47MB
libgtk-x11-2.0.50.0.2400.32 4.25MB
libicui18n.s0.60.2 2.63MB
libpoppler.so.73.0.0 2.58MB
libc-2.27.s0 1.94MB
libxml2.50.2.9.4 1.75MB
libapt-pkg.s0.5.0.2 1.74MB
libicuuc.s0.60.2 1.71IMB
libm-2.27.s0 1.62MB
libgio-2.0.50.0.5600.4 1.61MB
libQt5Network.s0.5.9.5 1.54MB
libstdc++.50.6.0.25 1.52MB
libunistring.so.2.1.0 1.49MB
libnss3.so 1.26MB
libgstreamer-1.0.50.0.1405.0 1.23MB
1ibX11.50.6.3.0 1.22MB
libp11-kit.s0.0.3.0 1.18MB
libcairo.s0.2.11510.0 1.11MB
libQt5Multimedia.s0.5.9.5 1.09MB
libglib-2.0.50.0.5600.4 1.09MB
libvlccore.s0.9.0.0 1.05MB
libepoxy.s0.0.0.0 1IMB
libgdk-3.50.0.2200.30 0.96MB
libgedit.so 0.87MB
libkrb5.50.3.3 0.84MB
libspandsp.s0.2.0.0 0.77MB
libgdk-x11-2.0.50.0.2400.32 0.71MB
libfreetype.s0.6.15.0 0.7MB
libvorbisenc.s0.2.0.11 0.66MB
libaspell.s0.15.2.0 0.65MB
libpixman-1.50.0.34.0 0.64MB
libgegl-0.3.50.0.330.0 0.63MB
libgtksourceview-3.0.s0.1.8.0 | 0.63MB
libharfbuzz.s0.0.10702.0 0.62MB
libGLdispatch.s0.0.0.0 0.58MB
libsystemd.s0.0.21.0 0.51MB
libgmp.s0.10.3.2 0.5MB
libpulsecommon-11.1.s0 0.49MB
liborc-0.4.50.0.28.0 0.49MB
libzstd.so0.1.3.3 0.48MB
libsndfile.s0.1.0.28 0.46MB
libtiff.s0.5.3.0 0.46MB
libFLAC.s0.8.3.0 0.46MB
libgstbase-1.0.50.0.1405.0 0.46MB
libnl-route-3.50.200.24.0 0.45MB
Other libraries 27.56MB
I Total 197MB ||

Table 9: 50 largest Low-level Libraries transformed by SBR

	Abstract
	1 Introduction
	1.1 Motivation: Deployable Code Randomization
	1.2 Approach Overview and Contributions
	1.3 Paper Organization

	2 Background and Threat Model
	2.1 C++ Exception and Stack Tracing Compatibility
	2.2 Threat Model and Security Goals
	2.3 Common Randomizing Transformations

	3 LLR(k): Length Limiting Randomization
	4 Limiting Disclosures in EH-metadata
	4.1 Reducing EH-metadata Stored in Memory
	4.2 Unwinding-Compatible Code Randomization

	5 Entropy: Quantifying Randomization Strength
	6 Binary Analysis and Instrumentation
	7 Implementation
	8 Experimental Evaluation
	8.1 Functionality Evaluation
	8.2 Performance vs Security Trade-off
	8.3 Function Entropy
	8.4 Full & Reduced Unwind Block Entropy (FUBE & RUBE)
	8.5 Runtime Overhead
	8.6 Memory Overhead

	9 Discussion
	10 Related work
	11 Conclusions
	References

