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Abstract. A quantification learning task estimates class ratios or class
distribution given a test set. Quantification learning is useful for a vari-
ety of application domains such as commerce, public health, and politics.
For instance, it is desirable to estimate the proportion of customer sat-
isfaction in different aspects to improve customer relationships with less
effort. We formulate the quantification learning problem as a maximum
likelihood problem and propose the first end-to-end Deep Quantification
Network (DQN) framework. DQN jointly learns quantification feature
representations and directly predict the class distribution. Compared to
classification-based quantification methods, DQN avoids three separate
steps: classification of individual instances, calculation of the predicted
class ratios, and class ratio adjustment to account for classification er-
rors. We evaluated DQN on four public datasets, ranging from movie
and product reviews to multi-class news. We compared DQN against six
existing quantification methods and conducted a sensitivity analysis of
DQN performance. Compared to the best existing method in our study,
(1) DQN reduces Mean Absolute Error (MAE) by about 35%. (2) DQN
uses around 40% less training samples to achieve a comparable MAE.

Keywords: Quantification Learning · Class Distribution Estimate ·Deep
Learning.

1 Introduction

In various problem domains, it is important to estimate class ratios (class preva-
lence) of a subject of interest. For instance, in commerce, knowing the prevalence
of customer complaints in different aspects (e.g., packaging, durability, delivery
and after sale service) of a product is key to improve the product and customer
experience. In politics, knowing voters’ proportional interest in different pol-
icy areas (e.g., healthcare, education) is useful to improve political candidates’
campaign strategies to attract these voters. In healthcare, knowing the propor-
tion of residents in different age groups affected by a specific disease is vital for
determining appropriate prevention and treatment responses. Research in quan-
tification learning has been conducted in various disciplines, leading to different
terminologies, such as prior probability shift [1], prevalence estimation [2], or
class ratio estimation [3]. The earliest work dated back to the application in
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Fig. 1. Mismatch in performance when using classification for quantification

screening tests in epidemiology [4]. In this paper, we use class ratios and class
distribution interchangeably.

Forman [5] gave the first formal definition of quantification learning: “Given
a labeled training set, induce a quantifier that takes an unlabeled test set as
input and returns its best estimate of the class distribution.” Mathematically,
a quantification problem can be defined as follows. Let xi represent an instance
i, and C is the set of class labels with the cardinality denoted as |C|. Given
a training dataset D = {(x1, y1) , (x2, y2) , . . . , (xn, yn)}, where yi ∈ C is the
corresponding class label of xi, and a test dataset T =

{
xn+1, xn+2, . . . , xn+|T |

}
,

a quantifier outputs a vector P̂ =
[
p̂1, p̂2, . . . , p̂|C|

]
and p̂i is the predicted ratio

of the number of instances in class i to the total number of instances in the
test dataset. An instance can be a text document, an image, or an audio file,
depending on the applications.

With a large volume of data, manual estimation of class distribution is pro-
hibitively time-consuming and impractical. Although quantification and classi-
fication learning are both supervised learning tasks, quantification learning has
been relatively under-explored mainly because it is seen as a trivial and straight-
forward post-processing step of classification [6]. Quantification learning focuses
on correct predictions at the aggregate level while classification learning aims at
predicting the class of individual instances. When using a classifier to conduct
quantification and the classifier is not completely accurate, there is a mismatch
between classification and quantification performance. Fig. 1 illustrates the mis-
match between classification performance and quantification performance. Fig.
1(a) shows the women to men ratio of 1:1 in the ground truth. Fig. 1(b) demon-
strates that classifier J (with classification accuracy of 60% ) mis-predicting two
females as males and vice versa is able to give accurate class ratios of 1:1 as in
the ground truth. However, classifier K with a 10% higher classification accuracy
than classifier J gives a much worse estimate of four times the number of women
to the number of men.

Another major issue is that classification learning generally assumes that
training data and test data are independent and identically distributed (i.i.d) [7]
[8] whereas quantification learning does not make the i.i.d. assumption. When
there is a difference between the class distribution of the training data and that of
the test data, an over-estimate or under-estimate of the class distribution in the
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training data is likely to occur [5]. Therefore, quantification learning should be
investigated in its own right. Existing works in quantification learning show some
benefits of inducing a quantifier directly without classification [9][10], but none
has used deep learning for quantification. In this paper, we design a framework
for deep quantification learning to improve the effectiveness of quantification
learning as it does for classification. We mainly focus on the quantification of
text documents in this paper, but the framework is generic and can be extended
to other modalities.

Our contributions are as follows: (1) We formulate the quantification learning
problem as a maximum likelihood problem. We use a Jensen Shannon Divergence
as the loss function to allow for use of gradient descent optimizers. (2) We pro-
pose the first end-to-end DQN framework that jointly learns effective feature
representations and class distribution estimates. We introduce two strategies to
select a set of documents (termed a tuplet) for training to investigate how well
the induced quantifier generalizes to test sets with class distributions different
from that of the training set. We examine five methods to extract the feature
representations of tuplets. (3) We evaluated DQN variants on quantification
tasks of text documents on four public datasets with 2, 4, and 20 classes using
three metrics commonly used for measuring quantification errors: Mean Abso-
lute Error, Relative Mean Absolute Error, and Kullback-Leibler Divergence. We
performed a sensitivity analysis of DQN performance by varying tuplet sizes and
training dataset sizes. (4) The highlights of our findings are as follows. Compared
to the best existing method in our study, (i) DQN reduces Mean Absolute Er-
ror (MAE) by about 35%. (ii) DQN uses around 40% less training samples to
achieve a comparable MAE. Therefore, DQN is more desirable since it reduces
the manual labeling effort to create the training dataset significantly. We share
the source code at https://github.com/****.

2 Related Work

We categorize existing methods for quantification learning into two categories
based on whether the methods rely on the classification We further divide each
category into sub-categories based on whether the methods take extracted fea-
tures as input or they learn to extract features.

2.1 Classification-based Quantification

This category has two sub-categories: (a) Classify and Count and (b) Hybrid.

Classify and Count: Methods in this sub-category classify individual docu-
ments, count the number of documents predicted in each class, and calculate the
class ratios. The methods differ in either the counting step or the post-processing
steps.

Classify and Count (CC): Forman [5] and most authors published in this
field used this basic CC method as the baseline. CC overestimates when the
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prevalence of a class in the test dataset is lower than the prevalence of the same
class in the training data and underestimates when the prevalence of the class
in the test dataset is higher [5]. To address this drawback, several methods of
adjusting the predicted class ratios after CC have been proposed by [11][12].

Adjusted Classify and Count (ACC): Forman [11] proposed Equation (1)
to adjust the class ratios estimated by the CC method with tpr (true positive
rate) and fpr (false positive rate) obtained from cross-validation for a binary
class classification as follows:

p =
p̂− fpr
tpr − fpr

(1)

where p̂ is the predicted proportion of the positive class from a CC method and
p is the adjusted proportion. According to Equation (1), ACC is vulnerable to
tpr and fpr values. For example, when tpr is close to fpr, the denominator is
close to zero, which leads to a large value of p in Equation (1). Hopkins and
King generalized Equation (1) for a multi-class classification task [13].

Probabilistic Classify and Count (PCC): Bella et al. [14] proposed prob-
abilistic versions of Classify and Count (PCC) and adjusted Classify and Count
(PACC) using the posterior probabilities output by a classifier for counting.

Hybrid: This sub-category adapts traditional classification algorithms for quan-
tification tasks by either introducing a new combined loss function or using an
ensemble of quantification results.

Milli et al. [15] proposed Quantification Trees, which use either Decision Tree
or Random Forests for classification. They investigated two loss functions. Let
FPi and FNi be the numbers of false positives and false negatives for a class
i, respectively. One method calculates an error for the class i, Ei = |FPi −
FNi. The other method computes Ei = |FPi − FNi| × |FPi + FNi| where the
first term represents the quantification error and the second term represents the
classification error. Other methods in this category include [16][17]. Esuli and
Sebastiani’s quantifier [16] used SVMperf [18] as a classifier for quantification.
Barranquero et al. [17] proposed Q-measure as a loss function, an analogy to
F-measure for classification. Pérez-Gállego et al. proposed the first ensemble
quantifier for binary quantification [19], which is inspired by the idea of ensemble
learning for classification. Although the methods in the Hybrid category reduce
quantification errors, they still rely on the classification of individual documents.

2.2 Direct Quantification

King and Lu [20] presented a non-parametric approach (denoted as ReadMe) to
estimate the distribution of the cause-of-death without training a classifier. Hop-
kins and King applied this method to estimate document category distributions
[13]. The key assumption is that the proportions of the word patterns occurring
in documents in each class are the same for both the test and labeled datasets.
In simple terms, it means the same writing style for documents in each class in
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both test and labeled datasets. ReadMe works in iterations until the number of
iterations reaches the user-specified value. In each iteration, it randomly selects
k words to form word patterns and calculates the proportion of the word pat-
terns used in documents of different classes. ReadMe uses these proportions to
estimate the class distribution of the labeled dataset. The error of the estimate
and the truth gets smaller with more iterations. González et al. proposed meth-
ods based on Hellinger Distance (HD) [10] between two distributions and it was
used for quantification of image data. The authors assume that given a class la-
bel yi of document i, the probabilities of having the feature vector fi in both the
training and the test datasets are the same, i.e., Ptrain (fi|yi) = Ptest (fi|yi). The
method repeatedly generates a validation dataset V from the training dataset
with a given prior probability. Then, it uses the distribution of a validation
dataset V̂ with the least HD value to the distribution of the test dataset as the
estimated distribution.

In summary, the classification-based methods have these major drawbacks.
(1) They require separate steps (feature extraction, classifier training, counting,
and adjustment of the class ratios) that are not jointly optimized to reduce the
quantification error. (2) Except for the rare case of 100% accurate classification,
more accurate classifiers do not always lead to more accurate class distribution
estimates. See Fig. 1 example. (3) For the direct quantification category, the HD-
based method requires good feature representations of instances to begin with.
For ReadMe, the randomly chosen word patterns may not be good features for
estimating class ratios. Motivated by the nature of the quantification learning
problem, the major drawbacks of the existing methods, and the success of deep
learning in several tasks [21], we proposed DQN.

3 Problem Formulation of Quantification Learning

Recall in the introduction that given a labelled dataset D and a test dataset T ,
a quantifier estimates the class distribution of the entire dataset T . Therefore,
we design DQN that partitions the input D during training or T during testing)
into a number of tuplets. A tuplet is a set of m instances where m >= 1. This
enables the prediction of the class distribution for each tuplet and gives a reli-
able class distribution estimate using multiple tuplets. For ease of presentation,
we consider a binary quantification problem and formulate it as a maximum
likelihood problem as follows. Let the class ratio for a positive class be r; the
ratio of the negative class is then 1 − r. Tuplets are generated from original
dataset using one of methods introduced in Section 4.2, and corresponding class
distributions of tuplets are computed from class labels of instances in a tuplet.
As an analogy, a tuplet for DQN is same as an individual training data point for
classification, and the class distribution of the tuplet for DQN is same as class
label of the training data point for classification. Let N and M be the number of
tuplets in the training set and test set, respectively. Given a set of tuplets with
its corresponding class distribution, DT = {(t1, r1) , (t2, r2) , . . . , (tN , rN )} where
riε[0, 1] is the corresponding class ratio of the positive class of the tuplet ti, and
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a test dataset TT = {tN+1, tN+2, . . . , tN+M}, a quantifier outputs a value p̂ that
is the predicted ratio for the positive class of TT . We assume the conditional
probability of the class ratios given DT is the same as TT . Therefore, we can see
DQN as a function F that learns a complex mapping from ti to ri. We write it as
r ∼ F (t, Θ), where F is parameterized by the parameter set Θ. The conditional
probability of r given t is written as P (r|t, Θ). The likelihood function under F
is in Equation (2) and the log-likelihood function L(Θ) is given in Equation (3).

N∏
k=1

P (rk|tk, Θ) (2)

LL(Θ) =

N∑
k=1

log [P (rk|tk, Θ)] (3)

Maximizing the log-likelihood is the same as minimizing the negative log-
likelihood. We rewrite Equation (3) as the negative log-likelihood as in Equation
(4).

NLL(Θ) = −
N∑
k=1

log [P (rk|tk, Θ)] (4)

We use Jensen-Shannon Divergence (JSD) as our loss function. JSD is a
measure of similarity between two probability distributions [22] and is defined
as in Equation (5).

JSD(P‖P̂ ) =
1

2

(
D(P‖M) +

1

2
(D(P̂‖M)

)
(5)

where D(P‖P̂ ) is Kullback–Leibler Divergence (KLD) [23] between the two dis-
tributions and M = 1

2 (P + P̂ ). We use JSD ∈ [0, 1] because it has several
good properties compared to KLD. JSD is differentiable and has the symmetric
property where JSD(P‖P̂ ) = JSD(P̂‖P ). JSD has been applied in Generative
Adversarial Networks (GAN) [22] as well as in several other research fields. In
this problem formulation, P represents the class distribution of a tuplet from
the training data and P̂ represents the predicted class distribution of the tuplet.
Equation (4) with the JSD as the loss function can be solved to obtain an esti-

mated parameter set θ̂ using an optimizer such as gradient descent optimizers.

4 Deep Quantification Network (DQN) Framework

We present our DQN framework, the loss function, and the algorithms for train-
ing and testing. Fig. 2 shows the overall framework.
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Fig. 2. DQN framework; the top half of the diagram shows the training process. The
bottom half illustrates the test process; m is a DQN hyper-parameter; k1 and k2 are
the numbers of epochs for training and testing, respectively.

4.1 DQN Framework

Our problem formulation defines a tuplet as a set of m instances; m is the tuplet
size. Therefore, the first component of the framework is the tuplet generator
that assigns input instances to tuplets. Ideally, a tuplet should be large enough to
include samples of instances from all the classes in order to get a reasonable class
distribution estimate from a single tuplet. The tuplet size is a hyper-parameter
of DQN. On one extreme, when the tuplet size m is one (i.e., a tuplet with only
one instance), DQN degrades to a classification-based method for quantification.
On the other extreme, if the tuplet size is as large as the size of the training
dataset, we are restricted to only one tuplet with a fixed class distribution, which
makes the trained model unable to perform well for other datasets.

We describe our tuplet generation strategies in detail in Section 4.2.

During training (illustrated in the top half of Fig. 2), the tuplet generator
generates all the tuplets using all labeled instances in the training dataset as well
as calculates the corresponding class distribution for each tuplet. In each epoch,
the tuplet generator passes each tuplet to the sample feature learning compo-
nent. This component is a layer of neurons to learn parameters of a function that
extracts feature representation for each sample in a tuplet. Any deep learning ar-
chitecture that is effective for the modality of the instances (e.g., LSTM for text
documents, CNN for images) can be used. Since each tuplet has m instances,
this component outputs m feature vectors f1, . . ., fm. These vectors become the
input to the tuplet feature learning component to extract a tuplet feature vector
f . The feature vector is passed to one or more layers of neurons trained to esti-
mate the class distribution of a tuplet such that the quantification loss between
the predicted and the ground truth is optimized. During back-propagation, the
weights and biases are updated based on a gradient descend algorithm as done
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in classification learning. The entire process is repeated until the desired number
of epochs is reached.

During testing, for each epoch, the tuplet generator generates tuplets from all
unlabeled instances in the test dataset. The second component extracts a feature
vector for each sample in a tuplet using the pre-trained weights and biases. The
third component extracts the tuplet feature vector for the last component that
outputs the class distribution estimate of a tuplet. This process repeats for all the
generated tuplets in this epoch and the arithmetic mean of the estimated class
ratios for each class from all the tuplets is used as the class ratio estimate for the
class. Sub-sequent epochs follow the same process and averages all the estimated
class distributions of all the epochs as the final class distribution estimate.

4.2 Tuplet Generation

We introduce two strategies for assigning training instances to tuplets: the ran-
dom selection strategy and the Zipf distribution selection strategy. We use the
random selection strategy to establish the baseline performance. We introduce
the Zipf distribution [24] selection strategy to generate a variety of class distri-
butions that might be much different from the underlying class distribution in
the training dataset to enhance the generalization ability of the model for test
datasets with different class distributions.

Random Selection Strategy: This strategy randomly selects m instances
without replacement from the training dataset to form a tuplet. The already
selected instances are not eligible for assignment to subsequent tuplets in this
epoch. That is, an instance is assigned exclusively to one tuplet in each epoch.
For example, for the training dataset with 1,000 instances, if the tuplet size is
100, we have a total of 10 tuplets per epoch. In each epoch, we randomly choose
100 instances from the 1,000 instances and assign them to the first tupletcal-
culate the class ratio for each class for this tuplet based on the class labels of
the instances. Next, we randomly choose 100 instances from the 900 remaining
instances and assign them to the second tuplet. We repeat this process to cre-
ate more tuplets until the number of remaining instances is less than the tuplet
size. Finally, we get 10 tuplets for this epoch. For each subsequent epoch, we
get ten different tuplets due to random selection. Although random sampling
with replacement can also be considered, we are against it for two reasons. First,
some instances may be selected many more times than other instances, creating
a bias in training. Second, we cannot guarantee that all training instances are
selected per epoch unless we implement more constraints. We recommend using
more epochs with our random selection without replacement strategy than using
random selection with replacement.

Zipf Distribution Selection Strategy: Our goal is to prevent DQN from
overfitting the class distribution in the training dataset and to generalize DQN
for different class distributions of future test datasets. We propose to generate
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tuplets with different class distributions synthetically. Because many types of
data in physical and social sciences can be approximated well with Zipf distribu-
tion [24], we chose the Zipf distribution. That is, we use Equation (6) to calculate
numi, the number of instances in a class i in a tuplet.

numi =
m

iZ ∗
∑|C|
j=1 j

Z
(6)

where |C| is the number of classes and z ∈ [0, 1] is the skew factor. When the skew
factor value is zero, all classes have the same number of instances, i.e., uniform
distribution. When the skew factor is one, a few classes have many instances
while several classes have very few instances. After calculating the number of
instances for each class i for a tuplet, we randomly select numi instances without
replacement for each class i from the training dataset and assign them to the
tuplet. The already assigned instances are not eligible for other tuplets in this
epoch. The difference between the two strategies is the class distribution of each
tuplet. With the Zipf distribution selection strategy, the class distributions of
tuplets can vary significantly from the class distribution of the training dataset.

4.3 Sample Feature Learning/Extraction

To obtain feature representation of a tuplet, we first extract feature representa-
tion of each sample in the tuplet. To apply the DQN framework for a specific
application, it is necessary to choose an appropriate neural network (NN) archi-
tecture suitable for the modality of the data and the application (e.g., CNN for
images, 3D-CNN for videos). As we focus on the application of DQN on text
documents in this paper, we choose Long Short-Term Memory (LSTM) [25] to
learn effective feature representations for each sample (document) in a tuplet
during training. LSTM can deal with variable length documents and is good at
feature extraction of sequence data like text. This step outputs m fixed-length
vectors: f1, . . ., fm, where fi ∈ Rd and d is the number of elements in the fea-
ture vector f . During testing, the learned LSTM parameters are used to extract
sample feature vectors.

4.4 Tuplet Feature Learning/Extraction

We study five alternatives to obtain a tuplet feature vector f from the feature
vectors f1, . . ., fm of the samples in the tuplet. Let |f | denote the dimension of
the tuplet feature vector f .

1. Concatenation (CAT): We concatenate f1, . . ., fm one after another; there-
fore, |f | = d ∗m.

2. Average (AVG), Median (MED) and Maximum (MAX): we compute the
column-wise arithmetic average (or median or maximum) value for each
dimension of each feature vectors for m samples in a tuplet to obtain a
unified feature vector for the tuplet.
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3. Additional neural network (NN) layers: We feed f1 ,. . . , fm to the additional
NN layers such as a dense layer, or a convolutional layer. For these NN
layers, we do not use any architecture that is impacted by the order of
the samples in a tuplet (e.g., LSTM) since the order should not impact
quantification results. The dimension of the tuplet feature vector f depends
on the chosen NN architecture. During training, the parameters of the NN
layers are learned. During testing, the learned parameters are used to extract
one tuplet feature vector per tuplet.

4.5 Class Distribution Learning

The last component in Fig. 2 is a fully connected layer followed by a soft-max
layer. During training, this component takes the tuplet feature vector to learn
a probability-valued vector, which is the estimated class distribution of the tu-
plet. As we mentioned in Section 2, we use JSD as the loss function between
the estimated class distribution and the true class distribution during training.
During testing, this component uses the learned parameters to estimate the class
distribution.

4.6 Train and Test Algorithms

Fig. 3 outlines the algorithms for training and testing DQN, respectively.

Training Algorithm (Algorithm 1 in Fig. 3): Given a set of labeled in-
stances, denoted as D, the tuplet generator generates tuplets from D using one
of the methods proposed in Section 4.2. Either method generates the number of

tuplets per epoch of b |D|
m c.

The tuplets and their corresponding class distribution are given as input to
the sample feature-learning component in mini-batches. We use Equation (7) to
calculate the overall loss L for all the tuplets in a mini-batch.

L =
∑

JSD(P‖P̂ ) + λ
∑
θ∈Θ

θ2 (7)

where P is the real class distribution of a tuplet from the training data, and
P̂ is the estimated class distribution of the same tuplet in a mini-batch. We
update the hyper-parameters of Q using a gradient descent method. Finally, we
obtain the trained quantifier Q. The last term λ

∑
θ∈Θ θ

2 in Equation (7) is the
regularization term [21] to prevent overfitting and obtain a smooth model. λ is
the weight decay and Θ is the set of all parameters in the model.

Testing Algorithm (Algorithm 2 in Fig. 4): Given the trained quantifier Q
and a test dataset T, we use the random selection without replacement method
introduced in Section 4.2 to generate tuplets from T and input them into the pre-
trained quantifier Q. The test algorithm runs in multiple epochs. For each epoch,
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Fig. 3. Training and test algorithms for DQN. res and e are vectors; 0 is a zero vector.

Lines 4-7 find the average estimate of class distributions of all the tuplets for the
epoch and store it in the vector variable res. The average is averaged again over
the number of epochs in Line 8. Notice that in different epochs, the same instance
has a chance to be assigned with other tuplets. Hence, using a sufficiently large
number of epochs will produce different combinations of instances in tuplets.
This is to have a reliable estimate of the underlying class distribution in the test
data.

5 Experiments

5.1 Datasets

We used four public balanced datasets. The details are in Fig. 4. To evaluate the
performance of a quantifier on test dataset with different class ratios as done in
previous works [11], we created test datasets artificially from the original test
datasets. For binary quantification tasks, we extracted samples with a preva-
lence of the positive class varying from 0.1 to 0.9 with the interval of 0.1. For
instance, in a test dataset with the prevalence of the positive class of 0.1, the
prevalence of the negative class is 0.9 (1-0.1). To generate a test dataset with n
documents, we randomly selected 0.1∗ n positive samples and 0.9∗ n negative
samples from the positive and negative classes, respectively, in the original test
dataset. We repeated this process ten times for this prevalence and reported
the average of the quantification errors from the ten experiments. Hence, each
reported error for each method is the average of the errors from 90 experiments.
For multi-class quantification tasks, we synthetically created the test datasets
with different class ratios using the Zipf distribution in Equation (5) with dif-
ferent skew factors. We varied the skew factors from 0 (uniform distribution) to
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0.9 (highly skewed distribution) with the interval of 0.1. For each skew factor,
we created ten different test datasets and reported the average of the quantifica-
tion errors from the experiments on these datasets. Each reported error for each
method is the average of the errors from 100 experiments.

Fig. 4. Datasets used for performance evaluation.

5.2 Compared Methods

We compared DQN with six existing methods across all the categories of ex-
isting works: Classify and Count (CC), Adjusted Classify and Count (ACC),
Probabilistic Classify and Count (PCC), Probabilistic Adjusted Classify and
Count (PACC), Hybrid (HA), and Direct Quantification using ReadMe [13].
HA denotes a Hybrid method that uses the weighted sum of equally weighted
classification loss and quantification loss defined as 1

|C|
∑
c∈C |FPRc − FNRc|

with a similar idea as that of Quantification Tree [15]. FPRc and FNRc are
false positive and false negative rates for a class i, respectively. The compared
techniques were introduced in Section 2. ReadMe is the only existing direct quan-
tification method. Both ReadMe and DQN do not require features to be known
in advance. Therefore, we chose ReadMe to represent the existing work in the
direct quantification category. For all the compared methods except ReadMe,
we used the same LSTM architecture. This is to ensure that any performance
difference does not come from different types of classifiers used. We used Keras
and Scikit-learn to implement the proposed method and all the other methods
except ReadMe. For ReadMe, we ran the original code [13].

5.3 Hyper-Parameters Setting

Recall that DQN has four components (Fig. 2). For the tuplet generator using
the Zipf distribution selection (Section 4.2), during training, we varied the Zipf
skew parameter z value from 0.1 to 1.0 with an interval of 0.1. For the sample
feature learning component (Section 4.3), we used one shared LSTM layer with
128 neurons and ReLU as the activation function. For the tuplet feature learning
component that uses additional layers, we used one dense layer with 256 neurons



A Framework for Deep Quantification Learning 13

to extract a high-level representation for a tuplet. Finally, the class distribution
learning component (Section 4.4) had 256 nodes for the fully connected layer
with the sigmoid function as the activation function and |C| nodes for softmax
layers where |C|is the number of classes. We chose the hyper-parameter values
for our training empirically. For DQN, we set the mini-batch size to 8 and the
tuplet size to 100. We used stochastic gradient descent as the optimizer. We
used the dropout rate and the recurrent dropout rate of 0.2. The learning rate
was 1.0E-5. For the classification-based quantification methods, CC, ACC, PCC,
PACC and HA, to make the comparison fair, we used LSTM as the classifier; we
kept the same number of neurons, dropout rate and leaning rate as that of DQN,
but used cross-entropy as the loss function for the classifier. The mini-batch size
of the classifier was 64. The word embedding size was 150, the same for all the
methods.

5.4 Performance Metrics

We used three commonly used metrics: Mean Absolute Error (MAE), Rela-
tive Mean Absolute Error (RMAE), and Kullback-Leibler Divergence (KLD) to
quantify the errors [6]. Techniques that offer the lowest errors are most desirable.

MAE(P, P̂ ) =
1

|C|
∑
c∈C
|P (c)− P̂ (c)| (8)

RMAE(P, P̂ ) =
1

|C|
∑
c∈C

∣∣∣∣∣P (c)− P̂ (c)

P (c)

∣∣∣∣∣ (9)

KLD(P‖P̂ ) =
∑
c∈C

P (c) log
P (c)

P (c)
(10)

where P is the class distribution truth, and P̂ is the predicted class distribution.

5.5 Experimental Results & Discussion

Fig. 5 presents quantification errors on the four datasets when the quantifiers
were trained on their respective entire training dataset. In all the experimental
results, we used the following legends. DQN-R and DQN-Z denote DQN using
the random selection and the selection with Zipf distribution to generate tuplets
as previously discussed, respectively. The suffixes, CON, AVG, MED, MAX, NN
denote the tuplet feature learning/extraction method.

We have five findings as follows. (1) Our DQN variants perform better than all
the other compared methods regardless of binary and multi-class quantification
tasks. On average across the four datasets, DQN-Z-NN gives 35% lower MAE
achieved by the best existing methods. See finding 5 below. DQN learns good
feature representations for quantification and the tuplet generation strategy is
able to utilize combinations of individual training instances to generate many
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tuplets for optimizing parameters to avoid overfitting with the training class dis-
tribution. (2)DQN-Z consistently gives lower quantification errors than DQN-R
does in all four datasets. We trained DQN-Z with different class distributions of
training tuplets so that it learns feature representations and parameter values
for diverse class distributions that may occur in the test dataset. We recom-
mend using DQN-Z to predict class distributions, especially in the applications
that expect the class ratios to change significantly or periodically. (3) Fig. 5
also shows that DQN-Z-NN (with the dense layer of 256 neurons for tuplet fea-

Fig. 5. Quantification errors on different quantification tasks.

ture learning) achieves the lowest quantification errors among all the variants.
The additional dense layer can extract better tuplet feature representations.
4) Among the remaining tuplet feature extraction methods, MAX consistently
gives the lowest error below those of CAT, AVG, and MED. 5) The best existing
methods are as follows: PACC for IMDB, HA for YELP, ACC for AG-NEWS,
and ReadMe for 20-NEWS. The 20-NEWS dataset has long formal documents
similar to the datasets ReadMe was originally investigated [13]. Nevertheless,
both DQN-R and DQN-Z gave the lowest quantification errors in terms of three
metrics among all the compared methods across all four datasets. The p-value
of paired t-test (between best model of existing methods and DQN-Z-NN) re-
sults are 9.64E-7, 3.34E-7, 3.38E-6, 3.31E-6 for IMDB, YELPS, AG-NEWS and
20-NEWS, respectively.

5.6 Sensitivity Analysis

We demonstrate the impact of training dataset sizes and tuplet sizes on DQN
using IMDB (binary quantification) and AG-NEWS (multi-class quantification).
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We used the same strategy as mentioned in Section 5.3 for creating test datasets
artificially from the original test datasets to evaluate the performance of a quan-
tifier on different class ratios and report the average.

Impact of the training dataset size on DQN Our goal is to determine
robustness of different methods to training data, which has practical impact
on minimizing time-consuming manual labeling effort. Fig. 6 shows that ACC
and PACC perform consistently much better than CC and PCC, and DQN-Z-
NN gives the lowest quantification errors. Therefore, we selected these methods,
ACC, PACC, HA, ReadMe, and DQN-Z-NN to evaluate their performance un-
der different training set sizes. We varied the percentage of the training dataset
used to train the five quantifiers. We randomly selected p% documents from the
entire training dataset to create the limited training dataset according to the
specified percentage p ∈ {10, 20, . . . , 100}. We trained each of the quantifiers
using the limited training dataset and calculated MAE. Fig. 6 shows that DQN
consistently offers the lowest MAEs. For IMDB, ACC and PACC suffer the most
from the limited training data. For AG-News with short text documents, HA
and PACC suffer the most. These methods rely on correct prediction of indi-
vidual documents to estimate the class distribution. Both direct quantification
methods (ReadMe and DQN) are less impacted by the decrease in the training
dataset size. With around 60% of the entire training data, DQN reduces MAE
significantly down to around 0.07 and 0.051 for IMDB and AG-NEWS, respec-
tively. To offer the similar MAE, the other methods need 90% or more of the
training data.

Fig. 6. Impact of training dataset size on MAE on IMDB and AG-NEWS.

Impact of the tuplet size on DQN We investigated DQN-R and DQN-Z
with the NN tuplet feature learning when varying tuplet sizes on two datasets.
We varied the tuplet size as 2n ∗|C| where n is { 0, 1, 2, . . . , 7} and |C| is the
number of classes, which is 2 and 4 for IMDB and AG-NEWS, respectively. We
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Fig. 7. Impact of tuplet size on DQN; —C—: Number of classes.

have following findings. (1) Fig. 7 shows that, for these DQN variants, MAEs
reduce as the tuplet size increases. It is because that as tuplet size increases,
there are two main benefits. First, we have more combinations of instances to
generate a variety of tuplets. Second, the class ratios predicted from a large
tuplet are more reliable than those predicted from a small tuplet. (2) MAEs
of DQN reduce slowly at first and then faster after the tuplet size is 8 ∗ |C| .
However, after the tuplet size is around 32∗|C| , there is not much improvement.
Intuitively, each tuplet should have a sufficient number of documents for each
class to give an accurate prediction. We believe that when the tuplet size is too
small, it is difficult to extract patterns for quantification because there is not
much information about class ratios and word usage of documents in each class.
As we mentioned in the Section 1, when the tuplet size is 1, this special case
makes DQN degrade to classification (except the different loss function) and
counting. (3) DQN-R-NN performs a litter bit better than DQN-Z-NN when
the tuplet size is small and vice versa as the tuplet size increases. It is because
DQN-Z-NN needs a larger tuplet size to ensure that at least one training instance
belongs to each class in the tuplet. Recall DQN-Z-NN is trained on the tuplets
generated according to the Zipf distribution with different skew factors. In other
words, most of tuplets have a severe class imbalance. Therefore, we recommend
using a large tuplet size when expecting a severe imbalance.

6 Conclusion and Future Work

We present the first attempt to use deep learning for quantification tasks to
estimate the class distribution of a given dataset. We introduce DQN—a frame-
work for deep quantification learning applicable for various quantification tasks.
We present extensive evaluation results of DQN on four public datasets against
six existing methods in all categories in the literature. DQN outperforms these
methods on different types of text data and tasks, especially when the training
dataset is small. We performed sensitivity analyses on important parameters
of DQN. However, our work has some limitations. We did not evaluate DQN
performance on other data modalities such as audio, image, and graph data.
Nevertheless, we expect DQN to perform well when using an appropriate deep
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model for learning effective feature representations of the data. Second, interpre-
tation of DQN models in reaching the predicted class distribution is challenging
and critical to increase trust and transparency of the black-box quantification
model. We will explore these issues in our future work.
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