
Article

Refined Mode-Clustering via the Gradient of Slope

Kunhui Zhang * and Yen-Chi Chen

����������
�������

Citation: Zhang, K.; Chen, Y.-C.

Refined Mode-Clustering via the

Gradient of Slope. Stats 2021, 4,

486–508. https://doi.org/10.3390/

stats4020030

Academic Editors: Marta Nai

Ruscone and Daniel Fernández

Received: 9 April 2021

Accepted: 24 May 2021

Published: 1 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Statistics, University of Washington, Seattle, WA 98195, USA; yenchic@uw.edu
* Correspondence: zhangkh@uw.edu

Abstract: In this paper, we propose a new clustering method inspired by mode-clustering that not
only finds clusters, but also assigns each cluster with an attribute label. Clusters obtained from
our method show connectivity of the underlying distribution. We also design a local two-sample
test based on the clustering result that has more power than a conventional method. We apply our
method to the Astronomy and GvHD data and show that our method finds meaningful clusters. We
also derive the statistical and computational theory of our method.

Keywords: clustering; mode-clustering; gradient descent; two-sample test

1. Introduction

Mode-clustering is a clustering analysis method that partitions the data into groups
by the local modes of the underlying density function [1–4]. A density local mode is often
a signature of a cluster, so mode-clustering leads to clusters that are easy to interpret. In
practice, we estimate the density function from the data and perform mode-clustering via
the density estimator. When we use a kernel density estimator (KDE), there exists a simple
and elegant algorithm called the mean-shift algorithm [5–7] that allows us to compute
clusters easily. The mean-shift algorithm has made the mode-clustering a numerically
friendly problem.

When applied to a scientific problem, we often use a clustering method to gain insight
from the data [8,9]. Sometimes, finding clusters is not the ultimate goal. The connectivity
among clusters may yield valuable information for scientists. To see this, consider the
galaxy sample from the Sloan Digital Sky Survey [10] in Figure 1. While the original data
is 3D, here we use a 2D slice of the original data to illustrate the idea. Each black dot
indicates the location of a galaxy at a particular location in the sky. Astronomers seek to
find clusters of galaxies and their connectivity, since these quantities (clusters and their
connections) are associated with the large-scale structures in the universe. Our method
finds the underlying connectivity structures without assuming any parametric form of
the underlying distribution. In the middle panel, we display the results by the usual
mode-clustering method, which only shows clusters, but not how they connect with each
other. On the other hand, our proposed method is given in the right panel, which finds a set
of dense clusters (purple regions) along with some regions serving as bridges connecting
clusters (green areas) and a set of low-density regions (yellow regions). Thus, our clustering
method allows us to better identify the structures of galaxies.

We improve the usual mode-clustering method by (1) adding additional clusters that
can further partition the entire sample space, and (2) assigning an attribute label to each
cluster. The attribute label will indicate if this cluster is a ‘robust cluster’ (a cluster around a
local mode; purple regions in Figure 1), a ‘boundary cluster’ (a cluster bridging two or more
robust clusters; green regions in Figure 1), or an ‘outlier cluster’ (a cluster representing
low-density regions; yellow regions in Figure 1). With this refined clustering result, we
gain further insights into the underlying density function and are able to infer the intricate
structure behind the data. Furthermore, we can apply our improved clustering method to
the two sample tests. In this case, we can identify the local differences between the two

Stats 2021, 4, 486–508. https://doi.org/10.3390/stats4020030 https://www.mdpi.com/journal/stats

https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://doi.org/10.3390/stats4020030
https://doi.org/10.3390/stats4020030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/stats4020030
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats4020030?type=check_update&version=1

Stats 2021, 4 487

populations and provide a more sensitive result. Note that in the usual case of cluster
analysis, adding more clusters is not a preferred idea. However, if our goal is to detect
the underlying structures (such as finding the connectivity of high-density regions in the
galaxy data in Figure 1), using more clusters as an intermediate step to find connectivity
could be a plausible approach.

Version May 5, 2021 submitted to Stats 2

Figure 1. Using two clustering methods to learn the cosmic webs. Left: the raw galaxy data from
the Sloan Digital Sky Survey. Middle: the clustering result using the conventional mode/mean-
shift clustering. This conventional mode clustering method fails to detect the connectivity among
clusters. Right: the clustering result based on our method, where the color indicates different
types of clusters.

We improve the usual mode clustering by (1) adding additional clusters that can32

further partition the entire sample space, and (2) assigning an attribute label to each33

cluster. The attribute label will indicate if this cluster is a ‘robust cluster’ (a cluster34

around a local mode; purple regions in Figure 1), a ‘boundary cluster’ (a cluster bridging35

two or more robust clusters; green regions in Figure 1) or an ‘outlier cluster’ (a cluster36

representing low density regions; yellow regions in Figure 1). With this refined clustering37

result, we gain further insights into the underlying density function and are able to38

infer the intricate structure behind the data. Furthermore, we can apply our improved39

clustering method to the two sample test. In this case, we can identify the local differences40

between the two populations and provide a more sensitive result. Note that in the usual41

case of cluster analysis, adding more clusters is not a preferred idea. However, if our goal42

is to detect the underlying structures (such as finding the connectivity of high density43

regions in the galaxy data in Figure 1), using more clusters as an intermediate step to44

find connectivity could be a plausible approach.45

To summarize, our main contributions are as follows:46

• We propose a new clustering method by the slope function that has an additional47

attribute label of each cluster (Section 3).48

• We propose a new two-sample tests using the clustering result (Section 4).49

• We introduce a visualization method using the detected clusters (Algorithm 3).50

• We derive both statistical and computational guarantees of the proposed method51

(Section 7).52

Related work. The idea of using local modes to cluster observations can be dated53

back to [5], where the authors used local modes of the KDE to cluster observations and54

propose the mean-shift algorithm for this purpose [5,11]. Mode clustering has been55

widely studied in statistics and machine learning community [3,4,7,12–14]. However,56

the KDE is not the only option for the mode clustering, [1,15] proposed a Gaussian57

mixture model method and [16] used a fuzzy clustering algorithm and [17] introduced a58

nearest-neighbor density method.59

Outline. The paper is organized as follows. We start with a brief review on mode60

clustering in Section 2 and formally introduce our method in Section 3. In Section 4,61

we combine two-sample test and our approach to create a local two-sample test. We62

use simulations to illustrate our method on simple examples in Section 5. We show the63

applicability of our approach to three real datasets in Section 6 Finally, we study both64

statistical and computational theories of our method in Section 7.65

2. Review of Mode Clustering66

We start with a review of mode clustering [2,4,12,18]. Mode clustering is a nonparametric67

clustering method that assigns each observation to a nearby density local mode by a68

gradient ascent flow. The concept of mode clustering is based on the rationale of as-69

Figure 1. Using two clustering methods to learn the cosmic webs. Left: the raw galaxy data from
the Sloan Digital Sky Survey. Middle: the clustering result using the conventional mode/mean-shift
clustering. This conventional mode-clustering method fails to detect the connectivity among clusters.
Right: the clustering result based on our method, where the color indicates different types of clusters.

To summarize, our main contributions are as follows:

• We propose a new clustering method by the slope function that has an additional
attribute label of each cluster (Section 3).

• We propose new two-sample tests using the clustering result (Section 4).
• We introduce a visualization method using the detected clusters (Algorithm 3).
• We derive both statistical and computational guarantees of the proposed method

(Section 7).

Related work. The idea of using local modes to cluster observations can be dated back
to [5], where the authors used local modes of the KDE to cluster observations and pro-
pose the mean-shift algorithm for this purpose [5,11]. mode-clustering has been widely
studied in statistics and the machine-learning community [3,4,7,12–14]. However, the KDE
is not the only option for mode-clustering—[1,15] proposed a Gaussian mixture model
method, and [16] used a fuzzy clustering algorithm, and [17] introduced a nearest-neighbor
density method.

Outline. The paper is organized as follows. We start with a brief review on mode-
clustering in Section 2 and formally introduce our method in Section 3. In Section 4, we
combine the two-sample test and our approach to create a local two-sample test. We use
simulations to illustrate our method on simple examples in Section 5. We show the applica-
bility of our approach to three real datasets in Section 6. Finally, we study both statistical and
computational theories of our method in Section 7.

2. Review of Mode-Clustering

We start with a review of mode-clustering [2,4,12,18]. The concept of mode-clustering
is based on the rationale of associated clusters to the regions around the modes of the
density. When the density function is estimated by the kernel density estimator, there is an
elegant algorithm called the mean-shift algorithm [5] that can easily perform the clustering.

In more detail, let p be a probability density function with a compact support K ⊂ Rd.
Starting at any point x, mode-clustering creates a gradient ascent flow γx(t) such that

γx(0) = x, γ′x(t) = ∇p(γx(t)).

Namely, the flow γx(t) starts at point x and moves according to the gradient at the
present location. Let γx(∞) = limt→∞ γx(t) be the destination of the flow γx(t). According
to the Morse theory [19,20], when the function is smooth (being a Morse function), such a
flow converges to a local maximum of p except for starting points in a set of the Lebesgue

Stats 2021, 4 488

measure 0. The mode-clustering partitions the space according to the destination of the
gradient flow, that is, for two points x, y, they will be assigned to the same cluster if γx(∞) =
γy(∞). For a local mode η, we define its basin of attraction as D(η) = {x : γx(∞) = η}.
The basin of attraction describes the set of points that belongs to the same cluster.

In practice, we do not know p, so we replace it by a density estimator, p̂n. A common
approach to estimate p as the kernel density estimator, in which p̂n is

p̂n(x) =
1

nhd

n

∑
i=1

K
(

x− Xi
h

)
,

where K is a smooth function (also known, according to the Morse theory, as the kernel
function), such as a Gaussian kernel, and h > 0 is the smoothing bandwidth that determines
the amount of smoothness. Since we used a nonparametric density estimator, we did not
need to assume any parametric assumptions on the shape of the distribution.) With this
choice, we the define a sample analogue to the flow γx(t) as

γ̂x(0) = x, γ̂′x(t) = ∇ p̂(γ̂x(t))

and partition the space according to the destination of γ̂x.

3. Clustering via the Gradient of Slope
3.1. Refining the Clusters by the Gradient of Slope

As is mentioned previously, the mode-clustering has some limitations that the resulting
clusters do not provide enough information on the finer structure of the density. To resolve
this problem, we introduce a new clustering method by considering gradient descent
flows of the ‘slope’ function. Let ∇p(x) be the gradient of p. Define the slope function
of p as s(x) = ‖∇p(x)‖2. Namely, the slope function is the squared amplitude of the
density gradient.

An interesting property of the slope function is that the minimal points
{x : s(x) = 0} = {x : ∇p(x) = 0} = C form the collection of critical points of p, so
it contains local modes of p as well as other critical points, such as saddle points and local
minima. According to the Morse theory [21,22], there is a saddle point between two nearby
local modes when the function is a Morse function. A Morse function is a smooth function
f , such that all eigenvalues of Hessian Matrix of f at every critical point are away from
0. This implies that saddle points may be used to bridge connecting regions around two
local modes.

With this insight, we propose to create clusters using the gradient ‘descent’ flow of
s(x). Let ∇s(x) be the gradient of the slope function. Given a starting point x ∈ Rd, we
construct a gradient descent flow as follows:

πx(0) = x, π′x(t) = −∇s(πx(t)). (1)

That is, πx is a flow starting from x and moving along the direction of ∇s. Similar to
mode-clustering, we use the destination of gradient flows to cluster the entire sample space.

Note that if the slope function s is a Morse function, the corresponding PDF p will
also be a Morse function, as described in the following Lemma.

Lemma 1. If s(x) is a Morse function, then p(x) is a Morse function.

Throughout this paper, we will assume that the slope function is Morse. Thus, the
corresponding PDF will also be a Morse function and all critical points of the PDF will be
well-separated.

Stats 2021, 4 489

3.2. Type of Clusters

Recall that C is the collection of critical points of density p. Let S be the collection of
local minima of the slope function s(x). It is easy to see C ⊂ S , since any critical point of p
has gradient 0, so it is also a local minimum of s.

Thus, the gradient flow in Equation (1) leads to a partition of the sample space.
Specifically, let πx(∞) be the destination of the gradient flow πx(t). For an element m ∈ C,
let S(m) = {x : πx(∞) = m} be its basin of attraction.

We use the sign of eigenvalues of ∇2 p(x) to assign an additional attribute to each
basin, so the set {S(m) : m ∈ C} forms a collection of meaningful disjoint regions. In more
detail, for a critical point m ∈ C such that p(m) > δ for a small threshold δ, its S(m) is
classified according to

S(m) is a


robust cluster if s(m) = 0, λ1(m) < 0;
outlier cluster if s(m) = 0, λd(m) > 0;
boundary cluster otherwise,

(2)

where λl(x) is the l-th ordered eigenvalue of ∇2 p(x) (λ1(x) ≥ . . . ≥ λd(x)). In the case of
p(m) ≤ δ, we always assign it as an outlier cluster. Note that the threshold δ was added
to stabilize the numerical calculation. In other words, we refer to a basin of attraction in
S(m) as a robust cluster if m ∈ C is a local mode of p. If m is a local minimum of p, then
we call its basin of attraction an outlier cluster. The remaining clusters, which are regions
connecting robust clusters, are denoted as boundary cluster. Note that the regions outside
the support are, by definition, a set of local minima. We assign the same cluster label to
those x whose destination πx(∞) is outside the support, which is an outlier cluster.

Our classification of S(m) is based on the following observations. Regions around local
modes of p are where we have strong confidence that these points should belong to the
cluster represented by their nearby local modes. Regions around local minima of p are the
low-density areas where we should treat them as anomaly points/outliers. Figure 1 pro-
vides a concrete example that our clustering method could lead to more scientific insight–the
connectivity among robust clusters may reveal intricate structure of the underlying distribu-
tion.

Defining different types of clusters allows us to partition the whole space into mean-
ingful subregions. Given a random sample, to assign the cluster label to each of them, we
simply examine which basins of attraction these data points fall in and pass the cluster
labels from the regions to the data points. After assigning cluster labels to data points, the
cluster categories in Equation (2) provide additional information about the characteristics
of each data point. Those data points in robust clusters are data points that are highly
clustered together; points in the outlier clusters are data points in low-density regions,
which could be viewed as anomalies; the rest of points are in the boundary clusters, where
these points are not well-clustered and are on the connection regions among different
robust clusters.

3.3. Estimators

The above procedure is defined when we have access to the true PDF p. In practice,
we do not know p, but we have an IID random sample X1, . . . , Xn from p with a compact
support K. So we estimate p using X1, . . . , Xn and then use the estimated PDF to perform
the above clustering task.

While there are many choices of density estimators, we consider the kernel den-
sity estimator (KDE) in this paper, since it has a nice form and its derivatives are well-
established [14,23–25]. In more detail, the KDE is

p̂n(x) =
1

nhd

n

∑
i=1

K
(

x− Xi
h

)
, ŝn(x) = ‖∇ p̂n(x)‖2,

Stats 2021, 4 490

where K is a smooth function (also known as the kernel function) such as a Gaussian kernel,
and h > 0 is the smoothing bandwidth that determines the amount of smoothness. Note
that the bandwidth h in the KDE could be replaced by hi that depends on each observation.
This is called the variable bandwidth KDE in Breiman et al. [26]. However, since the choice
of how hi depends on each observation is a non-trivial problem, so to simplify the problem,
we set all bandwidths to be the same.

Based on ŝn(x), we first construct a corresponding estimated flow using ∇ŝn(x):

π̂x(0) = x; π̂′x(t) = −∇ŝn(π̂x(t)). (3)

An appealing feature is that ∇ŝn(x) has an explicit form:

∇ŝn(x) = ∇2 p̂n(x)∇ p̂n(x), (4)

where ∇ p̂n(x) and ∇2 p̂n(x) are the estimated density gradient and Hessian matrix of p.
Thus, to numerically construct the gradient flow π̂x(t), we update x by

x ← x− γ · ∇2 p̂n(x)∇ p̂n(x), (5)

where γ > 0 is the learning rate parameter. Algorithm 1 summarizes the gradient de-
scent approach.

Algorithm 1: Slope minimization via gradient descent.

1. Input: p̂n(x) and a point x.
2. Initialize x0 = x and iterate the following equation until convergence: (γ is a

step size that could be set to a constant)

xt = xt−1 − γ · ∇2 p̂n(xt−1)∇ p̂n(xt−1).

3. Output: x∞ .

With an output from Algorithm 1, we can group observations into different clusters,
with each cluster labeled by a local minimum of ŝn. We assign an attribute to each cluster via
the rule in Equation (2). Note that the smoothing bias could cause some biases around the
boundary of clusters. However, when h→ 0, this bias will asymptotically be negligible.

4. Enhancements in Two-Sample Tests

Our clustering method can be used as a localized two-sample test. An overview of
the idea is as follows. Given two random samples, we first merge them and use clustering
method to form partitions of the sample space. Under the null hypothesis, the two samples
are from the same distribution, so the proportion of each sample within each cluster should
be similar. By comparing the difference in proportion, we obtain a localized two-sample
test. Algorithm 2 summarizes the procedure.

In more detail, suppose we want to compare two samples G1 = {X1, X2, . . . , XN} and
G2 = {Y1, Y2, . . . , YM}. Let X1, . . . XN ∼ PX and Y1, . . . , YM ∼ PY. The null hypothesis we
want to test is H0 : PX = PY against H1 : PX 6= PY.

Under H0, the two samples are from the same distribution, so they have the same PDF
q. We first pull both samples together to form a joint dataset

Gall = {X1, . . . , XN , Y1, . . . , YM}.

We then compute the KDE p̂n using Gall and compute the corresponding estimated slope
function ŝn and apply Algorithm 1 to form clusters. Thus, we obtain a partition of Gall.
Under H0, the proportion of Sample 1 in each cluster should be roughly the same as
the global proportion N

N+M . Therefore, we can apply a simple test of the proportion
within each cluster to obtain a p-value. In practice, we often only focus on the robust and

Stats 2021, 4 491

boundary clusters and ignore the outlier clusters because of sample size consideration. Let
D1, . . . , DJ ⊂ Gall be the robust and boundary clusters, and

r0 = N/(N + M); (6)

be the global proportion, and

rj =
|Dj ∩ G1|
|Dj|

. (7)

be the observed proportion of cluster Dj. We use the test statistic

Zj =
rj − r0√

r0(1− r0)/nj

,

where nj = |Dj| is the total number of the pulled sample within cluster Dj, when H0 is true
and the test statistic Zj follows from a standard normal distribution asymptotically. Note
that since we are conducting multiple tests, we reject the null hypothesis after applying the
Bonferroni correction.

Algorithm 2: Local two-sample test.

1. Combine two samples (G1 and G2) into one, called Gall and compute r0 = N
N+M

from Equation (6).
2. Construct a kernel density estimator using Gall and its slope function and apply
Algorithm 1 to form clusters based on the convergent point.

3. Assign an attribute to each cluster according to Equation (2).
4. Let robust clusters and boundary clusters be D1, D2, . . . , DJ , where Dj ⊂ Gall for

each j.
5. For each cluster Dj, compute rj from Equation (7) and construct Z statistic:

Zj =
rj − r0√

r0(1− r0)/nj

.

Find the corresponding p-value pj.
6. Reject H0 if pj < α/J for some j under the significance level α.

We can apply this idea to other clustering algorithms. However, we need to be very
careful when implementing it because we are using data twice–first to form clusters,
then again to do two-sample tests. This could inflate the Type 1 error. Our approach is
asymptotically valid because the clusters from the estimated slope converge to the clusters
of the population slope (see Section 7). Note that our method may not control the Type 1
error in the finite sample situation, but our simulation results in Section 5.2 show that this
procedure still controls the Type 1 error. This might be due to the conservative result of the
Bonferroni correction.

The advantage of this new two-sample test is that we are using the local information,
so if the two distributions only differ in a small region, this method will be more powerful
than a conventional two-sample test. In particular, the robust clusters are often the ones
with more power because they have a higher sample size, and the bumps in the pulled
sample’s density could be created by a density bump of one sample but not the other,
leading to a region with high testing power. In Section 5, we demonstrate this through
some numerical simulations.

4.1. An Approximation Method

The major computational burden of Algorithm 2 comes from Step 2, where we apply
Algorithm 1 to ‘every observation’. This may be computationally heavy if the sample size
is large. Here we propose a quick approximation to the clustering result.

Stats 2021, 4 492

Instead of applying Algorithm 1 to every observation, we randomly subsample the
original data (large dimension) or create a grid (low dimension) of points and only apply
Algorithm 1 to this smaller set of points. This gives us an approximated set of local minima
of the slope function. We then assign a cluster label of each observation according to the
‘nearest’ local minima.

5. Simulations

In this section, we demonstrate the applicability of our method by applying it to some
simulation setups. Note that in practice, we need to choose the smoothing bandwidth
h in the KDE. Silverman’s rule [27] is one of the most popular methods for bandwidth
selection. The idea is to find the optimal bandwidth by minimizing the mean integrated
squared error of the estimated density. Silverman [27] proposed to use the normal density
to approximate the second derivative of the true density, and use the interquartile range
providing a robust estimation of the sample standard deviation. For the univariate case, it
is defined as follows:

hs = 1.06 min{ IQR
1.34

, σ̂}n−1/5,

where σ̂ is the sample standard deviation and IQR is the interquartile range. As discussed

earlier, we choose h = C′
(

log n
n

) 1
d+8 , where C′ is a constant. This choice is motivated by

theoretical analysis in Section 7 (Theorem 1). In practice, we do not know C′, so we applied
a modification of Silverman’s rule [27]:

h = min

(
1
d

d

∑
k=1

σ̂k,
1
d

d

∑
k=1

IQRk
1.34

)
n−1/(8+d), (8)

where σ̂k is the standard deviation of the samples on kth dimension, IQRk is the interquartile
range on kth dimension, and k = 1, 2, . . . , d. Note that our procedure involves estimating
both the gradient and Hessian of the PDF. The optimal bandwidth of the two quantities
are different, so one may apply two separated bandwidths for gradient and Hessian
estimation. However, our empirical studies show that a single bandwidth (optimal for
Hessian estimation) still leads to reliable results. Note that this bandwidth selector tends to
oversmooth the data in the sense that some density peaks in Figure 6b were not detected
(not in purple color).

5.1. Clustering

Two-Gaussian mixture. We sample n = 400 points from a mixture of two-dimensional
normals N(µ1, Σ) and N(µ2, Σ) with equal proportions under the following three scenarios:

• Spherical: µ1 = 0, µ2 = 3e1 + 3e2, and Σ = I2.
• Elliptical: µ1 = 0, µ2 = 3e1 + 3e2, and Σ = diag(1, 3). (Note that these clusters are

elongated in noise directions.)
• Outliers: Same construction as Spherical, but with 60 random points (noise) from a

uniform distribution over (−5, 8)× (−5, 8). By design, the outliers differ in such a
way that they can only add a little ambiguity.

Note that ei is the ith standard basis vector, and I2 is the 2× 2 identity matrix. For each
scenario, we apply the gradient flow method and draw the contour. If points are outliers,
their destinations go to infinity. Thus, we set a threshold to stop them from moving and
assign them to outlier clusters.

Figure 2 demonstrates that we identify both two clusters and the boundary of these
two clusters. Each colored region is the basin of attraction of a local minimum of s(x) in the
picture (a–c). Picture (d–f) provide examples of data points clustering. Given the setting
of two equal-sized Gaussian mixture, it is straightforward to verify that the gradient flow
algorithm can successfully distinguish points according to their destinations. The purple
points represent points that belong to corresponding clusters with strong confidence, while

Stats 2021, 4 493

green points represent points in low-density areas that belong to the connection regions
among clusters. The yellow points represent points that are not important to any of the
clusters. In summary, our proposed method performs well and is not affected by the
changes of covariance and outliers.

Version May 25, 2021 submitted to Stats 8

(a) Spherical (b) Elliptical (c) Outliers

(d) Spherical (e) Elliptical (f) Outliers
Figure 2. Simulations with different data settings. Picture (a) and (d), picture (b) and (e), and
picture (c) and (f) display respectively the three different simulation scenarios: Spherical, Elliptical,
and Outliers. In picture (a), (b), and (c), each colored region is the basin of attraction of a local
minimum of s(x), while the grey regions are the regions that belong to outlier clusters. Picture (d),
(e), and (f) provide an example of clustering of data points. Points that labeled purple, green, and
orange are assigned to robust, boundary, and outlier clusters respectively.

selector tends to oversmooth the data in the sense that some density peaks in Figure 6206

(b) were not detected (not in purple color).207

5.1. Clustering208

Two-Gaussian mixture. We sample n = 400 points from a mixture of two-dimensional209

normals N(µ1, Σ) and N(µ2, Σ) with equal proportions under the following three sce-210

narios:211

• Spherical: µ1 = 0, µ2 = 3e1 + 3e2, and Σ = I2.212

• Elliptical: µ1 = 0, µ2 = 3e1 + 3e2, and Σ = diag(1, 3). (Note that these clusters are213

elongated in noise directions.)214

• Outliers: Same construction as Spherical, but with 60 random points (noise) from a215

uniform distribution over (−5, 8)× (−5, 8). By design, the outliers differ in such a216

way that they can only add a little ambiguity.217

Note that ei is the ith standard basis vector, and I2 is the 2× 2 identity matrix. For each218

scenario, we apply the gradient flow method and draw the contour. If points are outliers,219

their destinations go to infinity. Thus, we set a threshold to stop them from moving and220

assign them to outlier clusters.221

Figure 2 demonstrates that we identify both two clusters and the boundary of these222

two clusters. Each colored region is the basin of attraction of a local minimum of s(x)223

in the picture (a),(b), and (c). Picture (d), (e), and (f) provide examples of data points224

clustering. Given the setting of two equal-sized Gaussian mixture, it is straightforward225

to verify that the gradient flow algorithm can successfully distinguish points according226

to their destinations. The purple points represent points that belong to corresponding227

clusters with strong confidence, while green points represent points in low density areas228

that belong to the connection regions among clusters. The yellow points represent points229

that are not important to any of the clusters. In summary, our proposed method performs230

well and is not affected by the changes of covariance and outliers.231

Four-Gaussian mixture. To show how boundary clusters can serve as bridges232

among robust clusters, we consider a four-Gaussian mixture. We sample n = 800233

Figure 2. Simulations with different data settings. Picture (a,d), picture (b,e), and picture (c,f) display,
respectively, the three different simulation scenarios: Spherical, Elliptical, and Outliers. In picture (a–c),
each colored region is the basin of attraction of a local minimum of s(x), while the grey regions are
the regions that belong to outlier clusters. Picture (d–f) provides an example of clustering of data
points. Points that labeled purple, green, and orange are assigned to robust, boundary, and outlier
clusters, respectively.

Four-Gaussian mixture. To show how boundary clusters can serve as bridges among
robust clusters, we consider a four-Gaussian mixture. We sample n = 800 from a mixture
of four two-dimensional normals N(0, 0.1I2), N(0.5e1, 0.1I2), N(0.5e2, 0.1I2) and N(0.5e1 +
0.5e2, 0.1I2) with equal proportion. Then we apply our method and display the result in
Figure 3. Each colored region is the basin of attraction of a local minimum of s(x). The red
‘+’s are the corresponding local minima to each of the basin of attraction. Clearly, we see
how robust clusters are connected by the boundary clusters so the additional attributes
provide useful information on the connectivity among density modes.

Stats 2021, 4 494

Figure 3. Example of the basins of attraction of a Gaussian mixture. Four groups of data are separated
into three types of clusters. We partition the space into 10 parts. ‘R’ represents the region of the
robust cluster, ‘B’ represents the region of the boundary cluster, and ‘O’ represents the region of the
outlier cluster.

Comparison. To better illustrate the strength of our proposed method, we generate
an unbalanced four-Gaussian mixture. We sample n = 2400 from a mixture of four two-
dimensional normals N(0, 0.5I2), N(2e1, 0.5I2), N(5e2, 0.5I2) and N(2e1 + 5e2, 0.5I2) with
proportion 5

12 , 5
12 , 1

12 , 1
12 , respectively. Then we apply our method and compare it with

the density-based spatial clustering of applications with noise (DBSCAN) [28] in Figure 4.
DBSCAN is a classical non-parametric, density-based clustering method that estimates the
density around each data point by counting the number of points in a certain neighborhood
and applies a threshold minPts to identify core, border and noise points. DBSCAN requires
two parameters: the minimum number of nearby points required to form a core point
(minPts) and the radius of a neighborhood with respect to a certain point (eps). Two points
are connected if they are within the distance of eps. Clusters are the connected components
of connected core points. Border points are points connected to a core point, but which do
not have enough neighbors to be a core point. Here, we investigate the feasibility of using
border points to detect the connectivity of clusters. These two parameters, minPts and eps,
are very hard to choose. In the top two rows of Figure 4, we set minPts equal to 5 and
10 and change the value of eps to see if we can find the connectivity of core points using
border points (gray points). Our results show that it is not possible to use border points to
find the connectivity of the top two clusters and the bottom two clusters at the same time.
When we are able to detect the connectivity of bottom two clusters (panel (f)), we are not
able to find the top two clusters. On the other hand, when we can find the connectivity of
the top two clusters (panel (c,h)), the bottom two clusters have already merged into a single
cluster. The limitation of DBSCAN is that it is based on the density level set, so when the
structures involve different density values, DBSCAN will not be applicable. In contrast, our
method only requires one parameter, bandwidth, and it has good performance in this case.
From Figure 4i–l, our method detects four robust clusters and their boundaries correctly. In
addition, this result also shows that our method is robust to the bandwidth selection.

Stats 2021, 4 495

Version May 25, 2021 submitted to Stats 10

−1 0 1 2 3

−
2

0
2

4
6

minPts = 5 ; eps = 0.06

X
[,2
]

(a)

−1 0 1 2 3

−
2

0
2

4
6

minPts = 5 ; eps = 0.12

X
[,2
]

(b)

−1 0 1 2 3

−
2

0
2

4
6

minPts = 5 ; eps = 0.18

X
[,2
]

(c)

−1 0 1 2 3

−
2

0
2

4
6

minPts = 5 ; eps = 0.24

X
[,2
]

(d)

−1 0 1 2 3

−
2

0
2

4
6

minPts = 10 ; eps = 0.06

X
[,2
]

(e)

−1 0 1 2 3

−
2

0
2

4
6

minPts = 10 ; eps = 0.12

X
[,2
]

(f)

−1 0 1 2 3

−
2

0
2

4
6

minPts = 10 ; eps = 0.18

X
[,2
]

(g)

−1 0 1 2 3

−
2

0
2

4
6

minPts = 10 ; eps = 0.24

X
[,2
]

(h)

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●

●●

●

●

●

●

●
● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3

−
2

0
2

4
6

Bandwidth = 0.5 h

X
[,2
]

(i)

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●

●●

●

●

●

●

●
● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3

−
2

0
2

4
6

Bandwidth = 0.8 h

X
[,2
]

(j)

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●

●●

●

●

●

●

●
● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3

−
2

0
2

4
6

Bandwidth = 1 h

X
[,2
]

(k)

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●

●●

●

●

●

●

●
● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3

−
2

0
2

4
6

Bandwidth = 1.5 h

X
[,2
]

(l)
Figure 4. Picture (a) - (f) display the simulations using DBSCAN with different parameters settings,
where minPts represents the the minimum number of points required to form a dense region
and eps represents the radius of a neighborhood with respect to certain point. Picture (i) - (l)
display the simulations using our proposed method with different bandwidth, where h represents
the bandwidth selected according to Equation (8). In picture (a) - (h), each colored region is the
cluster detected by DBSCAN, while the gray and black points are points that are border points and
outliers, respectively. In picture (i) - (l), points that labeled blue, orange, and green are assigned to
robust, boundary, and outlier clusters respectively.

Figure 4. Picture (a–f) displays the simulations using DBSCAN with different parameters settings,
where minPts represents the the minimum number of points required to form a dense region and
eps represents the radius of a neighborhood with respect to certain point. Picture (i–l) displays the
simulations using our proposed method with different bandwidth, where h represents the bandwidth
selected according to Equation (8). In Picture (a–h), each colored region is the cluster detected by
DBSCAN, while the gray and black points are points that are border points and outliers, respectively.
In Picture (i–l), points that are labeled blue, orange, and green are assigned to robust, boundary, and
outlier clusters, respectively.

5.2. Two-Sample Test

In this section, we carry out simulation studies to evaluate the performance of the
two-sample test in Section 4. We compare our method to three other popular approaches:
the energy test [29], the kernel test [30], and KS [31] tests based on each of the two variables.

Our simulation is designed as follows. We draw random samples from a two-Gaussian
mixture model in Equation (9):

p(x) = aφ(µ1, Σ1) + (1− a)φ(µ2, Σ2), (9)

where φ(·) is a cumulative distribution function of normal distribution. For the first group,
we choose the parameters as a = 0.7, µ1 = (−1, 0), µ2 = (0, 1), Σ1 = diag(0.3, 0.3), and
Σ2 = diag(0.3, 0.3).

In our first experiment (left panel of Figure 5), we generate the second sample
from a Gaussian mixture with identical setup, except that the second covariance matrix
Σ2 = diag(σ2, 0.3), and we gradually increase σ2 from 0.3 (H0 is correct) to 0.8 to see how
the power of the test changes. We generate n1 = n2 = 500 observations in both samples and
repeat the process 500 times to compute the power of the test. This experiment investigates
the power as a function of signal strength.

Stats 2021, 4 496

In the second experiment (right panel of Figure 5), we consider a similar setup ex-
cept that we fix Σ2 = diag(0.35, 0.3) and vary the sample size from n1 = n2 = 500 to
n1 = n2 = 4000 and examine how the power changes under different sample size. This
experiment examines the power as a function of sample size.

Figure 5. Power analysis of the proposed method. We compare the power of our two-sample test
with three other approaches: the energy test, the kernel test, the KS test with only the first variable,
and the KS test with only the second variable. In the left panel, we vary the variance of the second
Gaussian. In the right panel, we fix the two distributions and increase the sample size. In both cases,
our method has a higher power than the other three naive approaches.

In both experiments, all methods control the Type 1 errors. However, our method has
better power in both experiments compared to the other alternatives. Our method is more
powerful because we utilize the local information from clustering. In this simulation setup,
the difference between the two distributions is the width of second Gaussian component.
Our method is capable of capturing this local difference and using it as evidence in the
hypothesis test.

Finally, we would like to emphasize again that two-sample test after clustering has to
be used with caution; we are using data twice, so we may not be able to control the Type 1
error. One needs to theoretically justify that the resulting clusters converge to a population
limit and apply numerical analysis to investigate the finite-sample coverage.

6. Real Data Application
6.1. Applications to Astronomy

We apply our method to detect the Cosmic Webs [32] from the galaxy sample of
the Sloan Digital Sky Survey [10]. It is known that galaxies inside our universe are not
uniformly distributed. There are low-dimensional structures where matters are aggregated
together. Roughly speaking, there are four types of structures in the Cosmic Webs: galaxy
clusters, filaments, sheets, and voids [32]. Galaxy clusters are small regions with lots
of matter. Filaments are regions with moderate matter density which connect galaxy
clusters. Sheets are weakly dense regions where clusters and filaments are distributed.
Voids are vast regions with very low matter density. Because of their properties, galaxy
clusters are like zero-dimensional objects (points), filaments are one-dimensional curve-
like structures, sheets are two-dimensional surface-like structures, and voids are three-
dimensional regions.

Figure 6 displays our result. Note that it is the same data as Section 1. Panel (a) of
Figure 6 shows the scatter plot of galaxies in the thin slice of the universe. In Panel (b), we

Stats 2021, 4 497

color galaxies according to the types of clusters they belong to; purple, green and orange
regions are the robust boundary and outlier clusters, respectively. We mark the locations of
known galaxy clusters as blue “×”s [33]. These galaxy clusters are obtained using imaging
analysis [34], which is a completely different approach. As can easily be seen, there is a
strong agreement between galaxy clusters and the robust regions. Out of the 21 galaxy
clusters, 85.71% fall into the robust clusters, and 14.29% fall into the boundary clusters.
Moreover, the boundary clusters (green), connecting the robust clusters (purple), behave
like the filaments in the Cosmic Webs, and the low-density outlier clusters are similar
to the void structures. Figure 6 As for comparison, we display the results from k-means
(Figure 6c), traditional mode-clustering (Figure 6d), and Gaussian mixture model
(Figure 6e), which are not structurally correlated with the locations of blue “×”s.

Version May 25, 2021 submitted to Stats 13

(a) Original Cosmic Web data (b) Three types of clusters with data

(c) k-means for Cosmic Web data (d) Mode clustering for Cosmic Web data

(e) Gaussian mixture model for Cosmic
Web data

Figure 6. We show that the gradient flow method is better in detecting the ‘Cosmic Web’ [31] in
our universe. For comparison, we perform the k-means clustering method with 20 centers and
traditional mode clustering to show that our proposed method is better to detect the ‘Cosmic Web’
in our universe. The blue “×"s are the points from image analysis. The results do not structurally
correlate with the locations of blue “×”s.

Figure 6. We show that the gradient flow method is better in detecting the ‘Cosmic Web’ [32] in
our universe. For comparison, we perform the k-means clustering method with 20 centers and
traditional mode-clustering to show that our proposed method is better to detect the ‘Cosmic Web’
in our universe. The blue “×”s are the points from image analysis. The results do not structurally
correlate with the locations of blue “×”s.

Stats 2021, 4 498

Thus, this analysis reveals the potential of our approach as a good method for detecting
the Cosmic Webs with less information. Note that, since our dataset is two-dimensional,
we cannot define the cosmic sheet structures.

6.2. Application to GvHD Data

We also apply our method to the GvHD (Graft-versus-Host Disease) data from [35].
The GvHD is a famous example for two-sample test problem. It contains a positive/disease
sample and a control/normal sample. There are 9083 observations in the positive sample
and 6809 observations in the control sample. Each observation consists of four biomarkers:
CD4, CD8b, CD3, and CD8. Our goal is to test whether the positive sample and control
sample are from the same distribution or not.

Since the sample size is non-trivial and the dimension is 4, naively applying Algorithm 2
will be computationally heavy, so we apply the approximation method in Section 4.1. We
first random select 5% of the whole dataset, including both positive and control samples,
as initial points in Algorithm 2. Then, the algorithm to find the local minima and add the
attribute label is based on Equation (2). Finally, we assign a cluster label and attribute it to
each observation according to an observation’s nearest detected local minima of the slope.

Having identified clusters, we perform the two-sample test, and the result is summa-
rized in Table 1. According to Table 1, all groups are significantly different. Thus, we can
conclude that the positive sample is from a different distribution than the control sample.

Table 1. Summary of estimated proportion in each group. Note that “Proportion” in the table is
referred to as the proportion of the positive group.

Cluster Proportion 5% CI 95% CI Z Score Cluster Type

1 0.910 0.900 0.920 46.980 Robust Cluster
2 0.010 0.010 0.020 −69.620 Robust Cluster
3 0.680 0.650 0.720 5.550 Robust Cluster
4 0.370 0.350 0.390 −17.570 Boundary Cluster
5 0.800 0.770 0.830 11.470 Boundary Cluster
6 0.410 0.380 0.440 −9.920 Boundary Cluster
7 0.920 0.900 0.940 19.170 Robust Cluster
8 0.420 0.370 0.470 −5.930 Boundary Cluster
Overall 0.570Proportion

The clustering result can be used to visualize the data, since the robust and boundary
clusters characterize regions with non-trivial probability mass and each cluster is rep-
resented by a minimum of the slope function. The slope minimum within each cluster
is the center of that cluster. Algorithm 3 provides a summary of the visualization algo-
rithm. In more detail, we first compute the minimal distance of two different clusters to
decide whether two clusters (robust or boundary) are connected. If the value is less than
4×
√

h2 × d, two clusters are connected (neighboring to each other), where d is the number
of dimensions. Then we apply multi-dimensional scaling to the centers of robust and
boundary clusters to reduce the dimension to 2. Each of these points represents a particular
cluster. If two clusters are connected, we add an edge to them on the graph. Finally, we
add a pie chart at each cluster’s center with a radius corresponding to the total number of
observations in that cluster, and partition the pie chart according to the composition from
the two samples. Figure 7 shows the 2D visualization of the GvHD data, along with the
composition of the two samples in each cluster.

Stats 2021, 4 499

Algorithm 3: Visualization based on slope function.
1–4. The same steps as Algorithm 2.
5. Let robust clusters be {R1, R2, . . . , RJ1} and boundary clusters be
{B1, B2, . . . , BJ2}.

6. For each pair of Rj1 and Bj2 , compute their Hausdorff distance (minimal
distance of all pairs):

edgej1,j2
= Haus

(
Rj1 , Bj2

)
.

7. Apply multidimensional scaling to local minima corresponding to robust and
boundary clusters. Let their 2 dimensional representation point be s∗1 , · · · s∗J1+J2

.
8. For each cluster Dj in {R1, R2, . . . , RJ1 , B1, B2, . . . , BJ2}, plot a pie chart centered

at corresponding s∗j with radius proportional to
√
|Dj|. The pie chart contains

two groups, each with ratio
(|Dj∩G1|
|Dj | ,

|Dj∩G2|
|Dj |

)
.

9. Label the robust clusters and boundary clusters, and add an edge between a
pair of robust cluster Rj1 and boundary cluster Bj2 if edgej1,j2

≤ 4×
√

h2 × d,
where d is the number of dimensions.

Figure 7. Visualization of GvHD dataset. We apply Algorithm 3 for visulization. Blue lines represent
the connections among clusters. Each pie chart describes the total amount of corresponding clusters
that is divided between the positive group and the control group.

7. Theory

In this section, we study both statistical and algorithmic convergence of our method.
We start with the convergence of estimated minima Ŝ to the population minima S along
with the convergence of the gradient flow. Then we discuss the algorithmic convergence of
Algorithm 1.

For a set D, we denote its cardinality by |D|. For a function f , we define
‖ f ‖∞ = supx | f (x)| to be the L∞-norm. Let ∇ f and ∇2 f be the gradient and Hessian
matrix of f , respectively. We define ‖ f ‖l,∞ as the element-wise L∞-norm for l-th order
derivatives of f . Specifically, ‖ f ‖0,max = ‖ f ‖∞,

‖ f ‖1,max = max
k
‖[∇ f (x)]k‖∞ , ‖ f ‖2,max = max

kk′
‖[∇2 f (x)]kk′‖∞,

for k = 1, 2, . . . , d and k′ = 1, 2, . . . , d. A twice-differentiable function f is called Morse [19–21]
if all eigenvalues of the Hessian matrix of f at critical points are away from 0.

Recall that our data are random sample X1, . . . , Xn from a PDF p(x) and
s(x) = ‖∇p(x)‖2

2. Additionally, p̂n, ∇ p̂n and ∇2 p̂n are the estimated PDF, gradient,
and Hessian matrix, respectively. In our analysis, we consider the following assumptions.

Assumptions.

(P) The density function p(x) is four-times bounded and continuously differentiable.
(L) s(x) is a Morse function.

Stats 2021, 4 500

(K) The kernel K is four-times bounded and continuously differentiable. Moreover, the
collection of kernel functions and their partial derivatives up to the third order satisfy
the VC-type conditions in Giné and Guillou [36]. See Appendix A for more details.

Assumption (P) is slightly stronger than the conventional assumptions for density
estimation that we need to be four-times differentiable. This is because we are working
with gradient of ‘slope’, which already involves second derivatives. To control the bias, we
need additionally two derivatives, leading to a requirement on the fourth-order derivatives.
Assumption (L) is slightly stronger than the conventional Morse function assumption on
p(x). We need the slope function to be Morse so that the gradient system is well-behaved.
In fact, Assumption (L) implies that p(x) is Morse function due to Lemma 1. Assumption
(K) is a common assumption to ensure uniform convergence of a kernel-type estimator;
see, for example [37,38].

7.1. Estimation Consistency

With the above assumption, we can show that the local minima of ŝn converge to the
local minima of s.

Theorem 1 (Consistency of local minima of s). Assume (K), (P) and (L). Let c1 be the bound for
the partial derivatives of s up to the third order and denote the l-th largest eigenvalues of∇2s(x) by
λ(s,l)(x) (l = 1, 2, . . . , d, where d is the dimension). Assume:

(A1) There exists η1 > 0 such that for any point x with ‖∇s(x)‖ ≤ η1 and 0 > −λ′0/2 ≥
λ(s,d)(x), we have minm∈S ‖m− x‖ ≤ λ′0

2dc1
, where 0 < λ′0 ≤ |λ(s,l)(m)| for l = 1, 2, . . . , d

and m ∈ S .

When ‖ p̂n − p‖4,max is sufficiently small, we have

• |S| = |Ŝ |, and
• for every point m ∈ S , there exists a unique element m̂ ∈ Ŝ such that

‖m̂−m‖ = O(h2) + OP

(√
1

nhd+4

)
.Theorem 1 shows two results. First, asymptotically, there will be a one–one cor-

responding relationship between a population’s local minimum and an estimated local
minimum. The second result shows the rate of convergence, which is the rate of estimating
second derivatives. This is reasonable, since the local minima of s is defined through the
gradient of s(x) = ‖∇p(x)‖2, which requires second derivatives of p.

Note that the fourth-order derivative assumption (P) can be relaxed to a smoothed
third-order derivative conditions. We use this stronger condition to simplify the derivation,
since the global minima of s are the critical points of p, the consistency of estimating a global
minimum only requires a third-order derivative (or a smooth second-order derivative)
assumption; see, for example [39,40].

Theorem 1 also implies the rate of the set estimator Ŝ in terms of the Hausdorff
distance. For given two sets A, B, their Hausdorff distance is

Haus(A, B) = max

{
sup
x∈A

d(x, B), sup
x∈B

d(x, A)

}
,

where d(x, A) = infy∈A ‖x− y‖ is the projection distance from point x to the set A.

Corollary 1. Assume (K),(P), (L), and (A1). When ‖ p̂n − p‖4,max is sufficiently small,

Haus(Ŝ ,S) = O(h2) + OP

(√
1

nhd+4

)
.

Stats 2021, 4 501

The above results describe the statistical consistency of the convergent points (local
minima) of a gradient flow system. In what follows, we show that the gradient flows will
also converge under the same set of assumptions.

Theorem 2 (Consistency of gradient flows). Assume (K), (P) and (L). Then for a fixed point x,
when nhd+8

log n → ∞, h→ 0,

sup
t≥0
‖π̂x(t)− πx(t)‖ =

{
O(h2α) + OP

((
log n
nhd+4

) α
2
)}
∧
{

O(h) + OP

(
4

√
log n
nhd

)}
,

where µmin(x) and µmax(x) are the minimal and maximal eigenvalues of the Hessian matrix of s
evaluated at the destination πx(∞), and α = µmin(x)/(µmin(x) + µmax(x)).

Theorem 2 is mainly inspired by Theorem 2 in Arias-Castro et al. [3]. It shows that
starting at a given point x, the estimated gradient flow π̂x(t) is a consistent estimator to the
population gradient flow πx(t). One may notice that this result shows that the convergence
rate is slowed down by the factor α, which comes from the curvature of s around the local
minimum. This is due to the fact that when a flow is close to its convergent point (a local
minimum), the speed of flow is decreasing until 0 (when it arrives at a minimum), so the
eigenvalues determine the rate of how fast the speed of a flow decreases along a particular
direction. When the eigengap (difference between µmin(x) and µmax(x)) is large, even a
small perturbation could change the orientation of the flow drastically, leading to a slower
convergence rate.

Remark. It is possible to obtain the clustering consistency in the sense that the
clustering based on s and ŝn are asymptotically the same [41]. In [41], the authors placed
conditions on the density function and showed that the mode-clustering of p̂ leads to a
consistent partition of the data compared to the mode-clustering of p. If we generalize their
conditions to the slope s, we will obtain a similar clustering consistency result.

7.2. Algorithmic Consistency

In this section, we study the algorithmic convergence of Algorithm 1. For simplicity,
we consider the case where the gradient descent algorithm is applied to s. The conver-
gence analysis of gradient descent has been well studied in the literature [42,43] under
convex/concave setups. Our algorithm is a gradient descent algorithm but is applied to a
non-convex scenario. Fortunately, if we consider a small ball around each local minimum,
the function s will still be a convex function, so the conventional techniques apply.

Specifically, we need an additional assumption that is slightly stronger than (L).

(A2) There are positive numbers R0, η1, λ0 > 0 such that for all x ∈ B(m, R0), where m ∈ S ,
and B(m, R0) is a ball with center m and radius R0, all eigenvalues of Hessian matrix
∇2s(x) are above λ0 and ‖∇s(x)‖ ≤ η1.

The assumption (A2) is a local strongly convex condition.

Theorem 3 (Convergence of Algorithm 1). Assume conditions (P), (K), (A1) and (A2). Let the
step size in Algorithm 1 be γ. Recall that xt is the point at iteration time t and x0 is the initial point.
Assume that the step size γ < 1/L, where L = supx ‖∇s(x)‖. For any initial point x0 within the
ball B(m, R0), there exists a constant C0 < 1 such that:

‖xt −m‖ ≤ (1− γL)t‖x0 −m‖,
‖s(xt)− s(m)‖ ≤ Ct

0‖s(x0)− s(m)‖.

Note that λ0 is the constant in assumption (A2) and satisfies λ0 ≤ L; see the proof of
this theorem.

Stats 2021, 4 502

Theorem 3 shows that when the initial point is sufficiently close to a local minimum,
the algorithm converges linearly [42,43] to the local minimum. Additionally, this implies
that the ball B(m, R0) is always in the basin of attraction of m. However, note that the
actual basin could be much larger than B(m, R0).

8. Conclusions

In this paper, we introduced a novel clustering approach based on the gradient of the
slope function. The resulting clusters are associated with an attribute label, which provides
additional information on each cluster. With this new clustering method, we propose a
two-sample test using local information within each cluster, which improves the testing
power. Finally, we developed an informative visualization tool that gives the structure of
multi-dimensional data.

We studied our improved method’s performance empirically and theoretically. Simula-
tion studies show that our refined clustering method is capable of capturing fine structures
within the data. Furthermore, as a two-sample test procedure, our clustering method has
better power than conventional approaches. The analysis on Astronomy and GvHD data
shows that our method finds meaningful clusters. Finally, we studied both statistical and
computational theory of our proposed method. Our proposed method demonstrated good
empirical performance and statistical and numerical properties. Finally, we would like to
note that while our method works well for the GvHD data (d = 4), it may not be applicable
for any higher dimensional data, since our method is a nonparametric procedure involving
derivative estimation. The curse of dimensionality prevents us from applying it to data
with more dimensions.

Author Contributions: Conceptualization, Y.-C.C.; methodology, K.Z.; software and validation, K.Z.;
original draft preparation, K.Z.; review and editing, Y.-C.C. and K.Z.; visualization, K.Z.; supervision,
Y.-C.C. All authors have read and agreed to the published version of the manuscript.

Funding: Chen is supported by National Science Foundation DMS-1810960 and DMS-1952781 and
National Institutes of Health U01-AG0169761.

Institutional Review Board Statement: Ethical review and approval were waived for this study.
There is no human-related subject in this project so no need for IRB review.

Informed Consent Statement: Not applicable.

Data Availability Statement: Codes are available in https://github.com/khzhang/Clustering.git,
accessed on 5 May 2021.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proofs

To explicitly describe the kernel assumption (K), we need to define a few notations
first. A vector α = (α1, α2, . . . , αd) of non-negative integers is called a multi-index with
|α| = α1 + α2 + · · ·+ αd and the corresponding derivative operator is

Dα =
∂α1

∂xα1
1
· · · ∂αd

∂xαd
d

,

where Dα f is often written as f (α). The assumption (K) requires the followings. Let

K =

{
y 7→ K(α)

(
x− y

h

)
: x ∈ Rd, |α| = l

}
,

https://github.com/khzhang/Clustering.git

Stats 2021, 4 503

where K(α) is the partial derivative along α = (α1, · · · , αd) direction and let K∗r = ∪r
l=0Kl .

K∗r is the partial derivatives of the kernel function up to fourth-order. We assume that K∗4
is a VC-type class. that is, there exists constants A, v, and constant envelope b0 such that

sup
Q

N
(
K∗4 ,L2(Q), b0ε

)
≤
(

A
ε

)v
,

where N(T′, dT , ε) is the ε-covering number for a semi-metric set T′ with metric dT and
L2(Q) is the L2 norm with respect to the probability measure Q. While this condition looks
complicated, the Gaussian kernel and any smooth compactly supported kernel satisfy this
condition; see [36].

For simplicity, we describe some notations which will be used across all proofs. We
denote gs(x) = ∇s(x) be the gradient of s(x) and Hs(x) = ∇2s(x) be the Hessian matrix.
Denote ĝs(x) = ∇ŝn(x) and Ĥs(x) = ∇2 ŝn(x), where ŝn is the estimator of function s. Let
g(x) = ∇p(x) be the gradient of p(x) and H(x) = ∇2 p(x) be the Hessian matrix. Denote
ĝn(x) = ∇ p̂n(x) and Ĥn(x) = ∇2 p̂n(x), where p̂n is the estimator of function p. For a
smooth function f , recall that we define ‖ f ‖l,∞ be the L∞-norm of l-th order derivative.
For instance,

‖ f ‖0,∞ = sup
x
‖ f (x)‖, ‖ f ‖1,∞ = sup

x
‖∇ f (x)‖max, ‖ f ‖2,∞ = sup

x
‖∇2 f (x)‖max.

Proof of Lemma 1: Recall that s(x) = ‖g(x)‖2 and ∇s(x) = H(x)g(x). Thus, C ⊂ S ,
where S is the collection of critical points of s(x). In addition, the Hessian matrix of s(x) is

∇2s(x) = T(x),

where Tkk′(x) =
[
H2(x)

]
kk′ + ∑d

l=1
∂H(x)

∂xl
gl(x) and gl(x) is the l-th component of g(x).

For any m ∈ C, since C is the collection of critical points of the density p, we have
g(m) = 0 and the Hessian of slope function T(m) = H2(m), since we assume s is a Morse
function, the eigenvalues of T(m) is non-zero, which implies the eigenvalues of H(m) is
non-zero, thus completes the proof.

Proof of Theorem 1: We will prove the convergence rate and the one-one correspondence.
The first assertion (estimated number of local minima equals the population number of
local minima) follows from the one-one correspondence.

Our proof consists of two steps. First, we show that there is a one to one mapping
between an estimated local minimum and the corresponding true local minimum. Then we
can obtain the rate for the distance by using derivative estimation under assumption (K).

The one to one mapping assertion for local minima can be satisfied by modifying the
result of Theorem 1 in [4]. Recall that m is a local minimum of s, let m̂n be a local minimum
of ŝn. From the first two steps of the proof of Theorem 1 in [4], we can get:

min
m∈S
‖m̂n −m‖ ≤ λ′0

2dc1

when ‖ p̂n − p‖4,max is sufficiently small. Such a local minimum m̂n of ŝn is unique, which
means there cannot be another critical point for that given local minimum of s. In other
words, each m only corresponds to one m̂n and vice versa. This completes the proof of one
to one mapping assertion for local minima.

To derive the rate for the distance ‖m̂n − m‖, note that ĝs(m̂n) = gs(m) = 0. By
Taylor’s theorem,

ĝs(m)− gs(m) = ĝs(m)− ĝs(m̂n) = Ĥs(m)(m− m̂n) + O(‖m̂n −m‖2).

Stats 2021, 4 504

After rearrangement, we obtain:

m̂n −m = −Ĥ−1
s (m)(ĝs(m)− gs(m)) + O(‖m̂n −m‖2) = −Ĥ−1

s (m)ĝs(m) + Rn,

where Rn = O
(
‖H−1

s (m)− Ĥ−1
s (m)‖ · ‖ĝs(m)‖+ ‖m̂n −m‖2), which is a second order term,

since Hs(m) is a positive definite matrix due to Lemma 1 and assumption (L), the rate
of m̂n − m is determined by the rate of ĝs(m). By the definition of ŝ, ĝs(x) = ∇ŝ(x) =
Ĥn(x)ĝn(x). ĝn(x) = ∇ p̂n(x) and Ĥn(x) = ∇2 p̂n(x) are the gradient and Hessian matrix
of kernel density estimator p̂(x), and g(x) = ∇p(x) and H(x) = ∇2 p(x) are the gradient
and Hessian matrix of true density function p(x). Thus,

ĝs(m) = ĝs(m)− gs(m) = Ĥn(m)ĝn(m)− Hn(m)gn(m)

= Ĥn(m)ĝn(m)− Hn(m)ĝn(m) + Hn(m)ĝn(m)− Hn(m)gn(m)

=
(

Ĥn(m)− Hn(m)
)

ĝn(m) + Hn(m)(ĝn(m)− gn(m))

=
(

Ĥn(m)− Hn(m)
)
(ĝn(m)− gn(m)) + Hn(m)(ĝn(m)− gn(m))

Let [β] = (β1, β2, . . . , βd) be a multi-index (each βl ∈ [β] is a non-negative integer
and |[β]| = ∑d

l=1 βl). Define D[β] = ∇β1

∇x
β1
1

· · · ∇βd

∇x
βd
d

to be the [β]-th order partial derivative

operator [14].
Under smoothness condition [24],

D[β] p̂n(x)− D[β]pn(x) = O(h2) + OP

(√
1

nhd+2|[β]|

)
.

Thus, under assumption (K), for a fixed point x,

Ĥn(x)− H(x) = O(h2) + OP

(√
1

nhd+4

)

ĝn(x)− g(x) = O(h2) + OP

(√
1

nhd+2

)

So ĝs(m) = O(h2) + OP

(√
1

nhd+4

)
, which leads to

m̂n −m = O(h2) + OP

(√
1

nhd+4

)
.

Before we discuss the proof of Theorem 2, we first recall a useful result:

Theorem A1 (Rate of convergence of KDE; page 17 of [38]). Assume (P) and (K). Let p̂n(x)
be the kernel density estimator. For each l = 0, 1, 2, 3, 4, when h→ 0 and nhd+2l

log n → ∞,

‖ p̂n − p‖l,∞ = O(h2) + OP

(√
log n

nhd+2l

)

Theorem A2 ((Modified) Theorem 2 in Arias-Castro et al. [3]). Suppose f and f̃ are two
smooth functions that are three times differentiable. Given a point x0, let (x(t): t > 0) be the
gradient flow of f starting from x0, and (x̃(t): t > 0) be the gradient flow of f̃ starting from the
same point x0. Assume that x(t) ends at the local mode x∗ and the eigenvalues of ∇2 f (x∗) are in

Stats 2021, 4 505

the interval [v1, v2] where ∞ > v2 ≥ v1 > 0. Then there exists a constant C depends only on f ,
x0, v1, v2 such that when max {‖ f − f̃ ‖l,∞ : l = 0, 1, 2, 3} < max {C, C−1},

sup
t≥0
‖x̃(t)− x(t)‖ ≤ Cmax

{√
‖ f − f̃ ‖0,∞, ‖ f − f̃ ‖α0

1,∞

}
,

where α0 = v1
v1+v2

.

Proof of Theorem 2: The main idea for this proof is to reverse the direction of the gradient
flows described in Theorem 2 in Arias-Castro et al. [3], which establish a stability result
for gradient flows of smooth functions f . To apply Theorem A2, the corresponded smooth
function f (x) is s(x), and s(x) = ‖∇p(x)‖2 in our case. Thus, assumption (P) guarantees
that s(x) is three times differentiable, since in Theorem A2, it requires max{‖ f − f̃ ‖l,∞ : l =
0, 1, 2, 3} < max{C, C−1}, which means max

{
‖s(x)− s̃(x)‖l,∞ : l = 0, 1, 2, 3

}
is sufficient

small. That is max{‖p(x)− p̃(x)‖l,∞ : l = 0, 1, 2, 3, 4} should be small. By Theorem A1, we
can get log n

nhd+8 → 0 if h→ 0, which guarantees our assumptions.
Recall that µmin(x) and µmax(x) are the smallest and largest eigenvalue of Hs(πx(∞)).

Thus, all eigenvalues of Hs(πx(∞)) fall into [µmin(x), µmax(x)], which means µmin(x) and
µmax(x) are corresponding v1 and v2 in Theorem A2. Then, we can obtain

sup
t≥0
‖π̂x(t)− πx(t)‖ =

{
O(h2α) + OP

((
log n
nhd+4

) α
2
)}
∧
{

O(h) + OP

(
4

√
log n
nhd

)}
,

where α = µmin(x)
µmax(x)+µmin(x) .

Finally, the proof of Lemma A1 relies on some useful properties from convex opti-
mization. We first recall a useful lemma.

Lemma A1. According to Chapter 2 in [42], we have several properties below.

• Property 1: When a function f (x) has an L-Lipschitz continuous gradient, then

f (x)− f (y) ≤ 〈x− y,∇ f (y)〉+ L
2
‖x− y‖2 for every x, y ∈ Rn. (A1)

In addition, constant L is greater than or equal to the maximum eigenvalue of Hessian matrix
of f (x).

• Property 2:
Let f ∗ = f (x∗) = minx f (x), where x∗ is the true minimum of the function f (x). The
function f (x) is called Cm strongly convex if and only if there exists a constant Cm > 0 such
that the f (x)− Cm

2 ‖x‖2 is a convex function. In addition, for each step t, we have:

f ∗ − f (xt) ≥ (x∗ − xt)
T∇ f (xt) +

Cm

2
‖x∗ − xt‖2, (A2)

which implies

(xt − x∗)T∇ f (xt) ≥ f (xt)− f ∗ +
Cm

2
‖x∗ − xt‖2. (A3)

• Property 3: Let f ∗ = f (x∗) = 0, where x∗ is the true minimum of the function f (x). Assume
function f (x) has an L-Lipschitz continuous gradient. Then, we have:

f (x) ≥ 1
2L
‖∇ f (x)‖2 + f ∗. (A4)

• Property 4: By the settings in Property 2 and Property 3, we have:

‖∇ f (x)‖2 ≥ C2
m‖x− x∗‖2 ≥ 2(f (x)− f ∗)C2

m
L

≥ 2 f (x)C2
m/L. (A5)

Stats 2021, 4 506

Proof of Lemma A1: Property 1 can be directly obtained by the definition of L-Lipschitz
continuity. For property 2, f (x) is strongly convex, so ‖∇ f (x)‖ ≥ Cm‖x − x∗‖, where
Cm is smaller than or equal to the minimum eigenvalue of Hessian matrix of f (x). For
property 3, f (x) is L-Lipschitz, so f (x) ≤ L

2 ‖x − x∗‖2 + f ∗. According to the fact that
f (x) ≥ f ∗ = 0, then,

− f (xt) + f ∗ ≤ f (xt+1)− f (xt)

= f (xt − γ∇ f (xt))− f (xt)

≤ f (xt −
1
L
∇ f (xt))− f (xt)

≤ − 1
L
‖∇ f (xt)‖2 +

1
2L
‖∇ f (xt)‖2

= − 1
2L
‖∇ f (xt)‖2.

(A6)

Thus, the results are as desired. The Cm-strongly convexity implies ‖∇ f (x)‖ ≥ Cm‖x−
x∗‖ and the L-Lipscthitz gradient implies f (x) − f ∗ ≤ L

2 ‖x − x∗‖. Thus, the Property
4 holds.

Proof of Theorem 3: From assumptions (A1) and (A2), there exists a ball with certain
radius R0 around each minimum of s such that all points within that ball have all positive
eigenvalues of the Hessian matrix. Let a starting point within a ball to be x0. Note
that within each ball, s(x) is λ0-strongly convex, since the Hessian matrix has all of its
eigenvalues bounded [42]. The constant λ0 is from assumption (A2).

According to assumption (P) and (L), s is a continuously differentiable function with
Lipschitz continuous gradient and Lipschitz constant L. Consider a minimum mj ∈ S and
let s∗ = s(mj) = 0. According to Property 3 and Property 4 in Lemma A1, we have:

s(xt) ≥
1

2L
‖∇s(xt)‖2 ≥ 1

2L
2s(xt)λ

2
0/L. (A7)

After rearrangement, we obtain:

1 ≥ λ2
0

L2 . (A8)

For step t + 1,

‖xt+1 −mj‖2 = ‖xt −mj − γ∇s(xt)‖
= ‖xt −mj‖2 − 2γ(xt −mj)

T∇s(xt) + γ2‖∇s(xt)‖2

≤ ‖xt −mj‖2 − 2γ(s(xt)− s∗ +
λ0

2
‖mj − xt‖2) + γ2‖∇s(xt)‖2

≤ ‖xt −mj‖2(1− γλ0)− 2γs(xt) + γ2‖∇s(xt)‖2

≤ ‖xt −mj‖2(1− γλ0)− 2γs(xt) + γ2 ∗ 2Ls(xt)

≤ ‖xt −mj‖2(1− γλ0)

≤ ‖x0 −mj‖2(1− γλ0)
t+1

(A9)

The first and third inequalities are due to Equations (A3) and (A4). By Equation (A8),
0 < γλ0 ≤ λ0

L ≤ 1. This proves the first statement.

Stats 2021, 4 507

Applying L-Lipschitz again and according to the Property 4 from Lemma A1, we have:

s(xt+1)− s(xt) = s(xt − γ∇s(xt))− s(xt)

≤ −γ‖∇s(xt)‖2 +
Lγ2

2
‖∇s(xt)‖2

= −γ(1− Lγ

2
)‖∇s(xt)‖2

≤ −γ(1− Lγ

2
)

2(s(xt)− s∗)λ2
0

L
.

(A10)

By rearrangements,

s(xt+1) ≤ s(xt)

(
1− 2γ

(
1− Lγ

2

)
λ2

0
L

)

= s(xt)

(
1− λ2

0
L2 + λ2

0

(
γ− 1

L

)2
)

.

(A11)

Recall that x0 is the initial point. By telescoping, we can get:

s(xt+1)− s(m) = s(xt+1)− s∗

≤ s(x0)

(
1− λ2

0
L2 + λ2

0

(
γ− 1

L

)2
)t+1

= (s(x0)− s(m))

(
1− λ2

0
L2 + λ2

0

(
γ− 1

L

)2
)t+1

.

since 0 < γ ≤ 1/L, − λ2
0

L2 + λ2
0

(
γ− 1

L

)2
lies in range (0, λ2

0
L2]. By Equation (A8), λ2

0
L2 ≤ 1,

1− λ2
0

L2 + λ2
0

(
γ− 1

L

)2
< 1. This completes the proof.

References
1. Li, J.; Ray, S.; Lindsay, B.G. A Nonparametric Statistical Approach to Clustering via Mode Identification. J. Mach. Learn. Res. 2007,

8, 1687–1723.
2. Chacón, J.E. Clusters and water flows: A novel approach to modal clustering through Morse theory. arXiv 2012, arXiv:1212.1384.
3. Arias-Castro, E.; Mason, D.; Pelletier, B. On the Estimation of the Gradient Lines of a Density and the Consistency of the Mean-Shift

Algorithm. J. Mach. Learn. Res. 2016, 17, 1–28.
4. Chen, Y.C.; Genovese, C.R.; Wasserman, L. A comprehensive approach to mode-clustering. Electron. J. Stat. 2016, 10, 210–241.

[CrossRef]
5. Fukunaga, K.; Hostetler, L. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE

Trans. Inf. Theory 1975, 21, 32–40. [CrossRef]
6. Cheng, Y. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 790–799. [CrossRef]
7. Carreira-Perpiñán, M.Á. A review of mean-shift algorithms for clustering. arXiv 2015, arXiv:1503.00687.
8. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer New York Inc.:

New York, NY, USA, 2001.
9. Hennig, C.; Meila, M.; Murtagh, F.; Rocci, R. Handbook of Cluster Analysis; CRC Press: Boca Raton, FL, USA, 2015.
10. York, D.G.; Adelman, J., Jr.; Anderson, J.J.E.; Bahcall, N.A.; Yasuda, N. The Sloan Digital Sky Survey: Technical Summary. Astron.

J. 2000, 120, 1579–1587. [CrossRef]
11. Comaniciu, D.; Meer, P. Mean shift analysis and applications. In Proceedings of the Seventh IEEE International Conference on

Computer Vision, Corfu, Greece, 20–27 September 1999; Volume 2, pp. 1197–1203.
12. Chacón, J.E.; Duong, T. Data-driven density derivative estimation, with applications to nonparametric clustering and bump

hunting. Electron. J. Stat. 2013, 7, 499–532. [CrossRef]
13. Chacón, J.E. A population background for nonparametric density-based clustering. Stat. Sci. 2015, 30, 518–532. [CrossRef]
14. Chen, Y.C. A tutorial on kernel density estimation and recent advances. Biostat. Epidemiol. 2017, 1, 161–187. [CrossRef]

http://doi.org/10.1214/15-EJS1102
http://dx.doi.org/10.1109/TIT.1975.1055330
http://dx.doi.org/10.1109/34.400568
http://dx.doi.org/10.1086/301513
http://dx.doi.org/10.1214/13-EJS781
http://dx.doi.org/10.1214/15-STS526
http://dx.doi.org/10.1080/24709360.2017.1396742

Stats 2021, 4 508

15. Scrucca, L. Identifying Connected Components in Gaussian Finite Mixture Models for Clustering. Comput. Stat. Data Anal. 2016,
93, 5–17. [CrossRef]

16. Bonis, T.; Oudot, S. A fuzzy clustering algorithm for the mode-seeking framework. Pattern Recognit. Lett. 2018, 102, 37–43.
[CrossRef]

17. Jiang, H.; Kpotufe, S. Modal-set estimation with an application to clustering. In Artificial Intelligence and Statistics; PMLR: Fort
Lauderdale, FL, USA, 2017; pp. 1197–1206.

18. Menardi, G. A Review on Modal Clustering. Int. Stat. Rev. 2015, 84. [CrossRef]
19. Morse, M. Relations Between the Critical Points of a Real Function of n Independent Variables. Trans. Am. Math. Soc. 1925, 27,

345–396.
20. Milnor, J.; Spivak, M.; Wells, R. Morse Theory. (AM-51); Annals of Mathematics Studies, Princeton University Press: Princeton, NJ,

USA, 1963; Volume 51.
21. Banyaga, A.; Hurtubise, D. Lectures on Morse Homology; Texts in the Mathematical Sciences; Springer: Amsterdam, The Netherlands,

2013.
22. Matsumoto, Y. An introduction to Morse Theory; American Mathematical Society: Providence, RI, USA, 2002.
23. Wasserman, L. All of Nonparametric Statistics (Springer Texts in Statistics); Springer: Berlin/Heidelberg, Germany, 2006.
24. Chacón, E.J.; Duong, T.; Wand, P.M. Asymptotics for general multivariate kernel density derivative estimators. Stat. Sin. 2011,

21, 807. [CrossRef]
25. Scott, D. Multivariate Density Estimation: Theory, Practice, and Visualization; Wiley Series in Probability and Statistics; Wiley:

Hoboken, NJ, USA, 2015.
26. Breiman, L.; Meisel, W.; Purcell, E. Variable Kernel Estimates of Multivariate Densities. Technometrics 1977, 19, 135–144. [CrossRef]
27. Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman and Hall: London, UK, 1986.
28. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA,
2–4 August 1996; pp. 226–231.

29. Székely, G.J.; Rizzo, M.L. Testing for equal distributions in high dimensions. InterStat 2004, 5, 1249–1272.
30. Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A. A Kernel Two-sample Test. J. Mach. Learn. Res. 2012, 13, 723–773.
31. Massey, F.J. The Kolmogorov-Smirnov Test for Goodness of Fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [CrossRef]
32. Bond, J.R.; Kofman, L.; Pogosyan, D. How filaments of galaxies are woven into the cosmic web. Nature 1996, 380, 603. [CrossRef]
33. Koester, B.; McKay, T.; Annis, J.; Wechsler, R.H.; Evrard, A.; Bleem, L.; York, D. A MaxBCG catalog of 13,823 galaxy clusters from

the sloan digital sky survey. Astrophys. J. 2007, 660, 239–255. [CrossRef]
34. Koester, B.P.; McKay, T.A.; Annis, J.; Wechsler, R.H.; Evrard, A.E.; Rozo, E.; Bleem, L.; Sheldon, E.S.; Johnston, D. MaxBCG: A

Red-Sequence Galaxy Cluster Finder. Astrophys. J. 2007, 660, 221–238. [CrossRef]
35. Brinkman, R.R.; Gasparetto, M.; Lee, S.J.J.; Ribickas, A.J.; Perkins, J.; Janssen, W.; Smiley, R.; Smith, C. High-Content Flow Cytometry

and Temporal Data Analysis for Defining a Cellular Signature of Graft-Versus-Host Disease. Biol. Blood Marrow Transplant. 2007, 13,
691–700. [CrossRef]

36. Giné, E.; Guillou, A. Rates of strong uniform consistency for multivariate kernel density estimators. In Annales de l’Institut Henri
Poincare (B) Probability and Statistics; Elsevier: Amsterdam, The Netherlands, 2002; Volume 38, pp. 907–921.

37. Genovese, C.R.; Perone-Pacifico, M.; Verdinelli, I.; Wasserman, L. The geometry of nonparametric filament estimation. J. Am. Stat.
Assoc. 2012, 107, 788–799. [CrossRef]

38. Genovese, C.R.; Perone-Pacifico, M.; Verdinelli, I.; Wasserman, L. Nonparametric ridge estimation. Ann. Stat. 2014, 42, 1511–1545.
[CrossRef]

39. Vieu, P. A note on density mode estimation. Stat. Probab. Lett. 1996, 26, 297–307. [CrossRef]
40. Chazal, F.; Fasy, B.; Lecci, F.; Michel, B.; Rinaldo, A.; Rinaldo, A.; Wasserman, L. Robust topological inference: Distance to a

measure and kernel distance. J. Mach. Learn. Res. 2017, 18, 5845–5884.
41. Chen, Y.C.; Genovese, C.R.; Wasserman, L. Statistical inference using the Morse-Smale complex. Electron. J. Stat. 2017, 11, 1390–1433.

[CrossRef]
42. Nesterov, Y. Introductory Lectures on Convex Optimization: A Basic Course, 1st ed.; Springer Publishing Company: New York, NY,

USA, 2014.
43. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.

http://dx.doi.org/10.1016/j.csda.2015.01.006
http://dx.doi.org/10.1016/j.patrec.2017.11.019
http://dx.doi.org/10.1111/insr.12109
http://dx.doi.org/10.5705/ss.2011.036a
http://dx.doi.org/10.1080/00401706.1977.10489521
http://dx.doi.org/10.1080/01621459.1951.10500769
http://dx.doi.org/10.1038/380603a0
http://dx.doi.org/10.1086/509599
http://dx.doi.org/10.1086/512092
http://dx.doi.org/10.1016/j.bbmt.2007.02.002
http://dx.doi.org/10.1080/01621459.2012.682527
http://dx.doi.org/10.1214/14-AOS1218
http://dx.doi.org/10.1016/0167-7152(95)00024-0
http://dx.doi.org/10.1214/17-EJS1271

	Introduction
	Review of Mode-Clustering
	Clustering via the Gradient of Slope
	Refining the Clusters by the Gradient of Slope
	Type of Clusters
	Estimators

	Enhancements in Two-Sample Tests
	An Approximation Method

	Simulations
	Clustering
	Two-Sample Test

	Real Data Application
	Applications to Astronomy
	Application to GvHD Data

	Theory
	Estimation Consistency
	Algorithmic Consistency

	Conclusions
	Proofs
	References

