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Abstract

To support C++ exception handling, compilers generate metadata
that is a rich source of information about the code layout. On
Linux, this metadata is also used to support stack tracing, thread
cleanup and other functions. For this reason, Linux binaries contain
code-layout-revealing metadata for C-code as well. Even hand-
written assembly in low-level system libraries is covered by such
metadata. We investigate the implications of this metadata in this
paper, and show that it can be used to (a) improve accuracy of
disassembly, (b) achieve significantly better accuracy at function
boundary identification as compared to previous research, and (c)
as a rich source of information for defeating fine-grained code
randomization.
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1 Introduction

Binary instrumentation [6, 11, 21, 34, 39, 41, 45] is a well-established
technique for security hardening, application monitoring and de-
bugging, profiling, and so on. Binary instrumentation is more de-
sirable than source-code instrumentation because the vast major-
ity of today’s software, including most open-source software, is
distributed in binary form. Furthermore, the use of binary-only
third-party libraries and hand-written assembly in large software
packages make source-based approaches incomplete. Instrumenting
all parts of code is critical for many applications, especially those in
security, such as CFI [1, 43, 46], SFI [22, 36, 42], program hardening
[9, 18, 26, 31, 47], code randomization [5, 14, 25, 29, 38, 40, 44], etc.

Binary instrumentation techniques fall into two broad categories:
dynamic [6, 21] and static [20]. Dynamic instrumentation tools have
proved to be robust, but they incur high performance overheads
for many applications. Static instrumentation incurs much lower
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overheads, but has been held back by challenges in accurate dis-
assembly and code pointer identification. With the emergence of
position-independent (or relocatable) binaries as the dominant for-
mat in recent years, researchers have been able to address these
challenges, e.g., in Egalito [41], RetroWrite [11] and SBR [28, 29]
systems.

Despite recent advances, deployability of binary instrumentation
continues to face significant challenges. One of the major concerns
is compatibility. In particular, existing static binary instrumentation
tools tend to break stack tracing (for C and C++) as well as C++
exception handling. While compatibility with these features may
not be important for proof-of-concept instrumentations, it is hardly
a viable option for any software meant for wide deployment.

Although there have been a few research efforts in exception-
compatible binary instrumentation (e.g., Zipr++ [15]), most con-
temporary works [11, 40, 41] tend to dismiss off these compatibility
issues as engineering problems. However, we show in this paper
that the impact of stack-tracing and exception compatibility is much
more fundamental. This is because the metadata required to support
these features is a rich source of information about the binaries.
This information can significantly simplify some aspects of instru-
mentation (e.g., disassembly and function identification), while
introducing new challenges in other aspects (e.g., fine-grained code
randomization). We analyze these impacts in this paper, and make
the following contributions:

e We show how disassembly can be a challenge for some complex
binaries, and discuss how exception handling metadata can help.

o There have been many recent papers on accurate function bound-
ary identification [2, 3, 30, 32]. Many of them rely on complex
machine learning or static analysis techniques, yet suffer from
significant error rates. In contrast, we show how exception-
handling metadata can provide a simple yet far more accurate
solution. In particular we can achieve an F1-score of 0.96 by
just using the EH metadata, and improve it further to 1.0 with a
simple analysis.

e We point out how code randomization techniques can be signifi-
cantly degraded by exception-handling metadata since it reveals
information such as function boundaries, as well as the location
of some key instructions that are often targeted in ROP attacks.

Our study is focused on the Linux/x86 platform, with implementa-
tion results obtained on 64-bit (x86_64) binaries.

This work was supported by ONR (N00014-17-1-2891) and in part by NSF (CNS-
1918667).
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2 C++ Exception Handling and Stack Tracing

In C++, exception handling is implemented using try/catch blocks.
Catch blocks immediately follow a try block and contain handlers
for one or more exceptions that may arise within the try block. If
an exception arises outside of a try-block (or if that exception is
not handled in the catch blocks associated with the current try-
block) then the C++ runtime looks for a try-block in the caller of
the current function, or its caller, and so on. Thus, the C++ runtime
needs to “walk up the stack” from a callee function to its callers.
The C++ compiler generates exception-handling (EH) metadata
[24] that is used to perform this stack unwinding step.

Stack unwinding may also be needed for generating stack traces
when programs crash or experience unrecoverable errors, or when
threads exit. On Linux, the same EH-metadata is used to support
these features as well. For this reason, EH-metadata is present
in Linux for all codel, not just C++. In fact, most hand-written
assembly code in low-level libraries such as glibc include stack
unwinding information, put in place using the GNU assembler’s
.cfi directive (which stands for call frame information).

On Linux, EH metadata is stored in the sections eh_frame,
eh_frame_hdr and gcc_except_table. Only the first two are needed
for stack-unwinding, so the third table is present only for C++ func-
tions. Unlike debugging information that may be present in a binary
but not loaded into a process memory, all these sections must be
loaded into readable regions of process memory.

The eh_frame_hdr section is a binary search table that maps a
function to its FDE (Frame description entry), a descriptor for its
stack frame. These FDE records are present in eh_frame section. FDE
records contain special instructions describing how to restore callee
saved registers and the stack pointer. These instructions effectively
partition the function body into smaller blocks called unwinding
blocks. Each unwinding block comprises of a set of contiguous
instructions that share the same state of the callee-saved registers
and the stack pointer.

Consider an instruction that pushes a callee-saved register on
the stack. It requires a corresponding restoration operation that will
load that register from the stack and then restore the original stack
pointer value. Clearly, this is an additional restoration operation
that would not have been needed for the preceding instruction.
Hence any instruction that changes the stack pointer, including all
pushes and pops, results in a new unwinding block. If an instruction
saves a callee-saved register to another register or memory, that may
also create a new unwinding block. As a result, many unwinding
blocks are short, e.g., a push or a pop instruction. This leads to
their proliferation, with a typical function containing about a dozen
unwinding blocks on Linux.

The gcc_except_table contains locations of try/catch blocks for
every function. Additionally it holds pointers to destructor routines
for any object that is created on stack.

In summary, EH metadata contains the following information:
e Function boundary information,

e Pointers to catch routines,

!The compiler option -funwind-tables is enabled by default on Linux/x86. Some
projects (e.g., Chromium) override this default option, typically to reduce the space over-
head of EH metadata, but naturally, this requires foregoing the use of C++ exceptions.
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Application Library with data | Library

within code size
Firefox libxul.so 126 MB
Chromium, gedit | libffi.so 31 KB
LibreOffice, gedit | libgnutls.so 1.4 MB

libgerypt.so 2.3 MB
gimp, vlc, ssh, libgerypt.so 2.3 MB
evince, apt-get

Table 1: A few packages with data in the midst of code

e Pointers to destructor routines of objects created on stack,
o Start address of each unwinding block, and

e Arithmetic or load/store operations needed to restore callee
saved registers and stack pointers.

3 Disassembly

Accurate disassembly of stripped binaries is a challenging problem
for variable-length instruction sets such as those of the Intel x86
architecture. There are two basic techniques for disassembly: linear
disassembly and recursive disassembly. Linear disassembly is in
general unsound, i.e., it can misclassify data as code. Recursive
disassembly can be sound, but is incomplete: it tends to miss code
that is only reached via indirect transfers. A number of researchers
have proposed heuristics to overcome these drawbacks, but these
heuristics are not always successful, and cannot guarantee accurate
disassembly in general. Another alternative is exhaustive disassem-
bly that treats every possible offset as an instruction. Multiverse
[4] develops such an approach, and has been further improved by
Miller et al [23]. However, there is significant overhead in terms of
code size as well as runtime overhead, about 60% on SPEC CPUZ.

Unsoundness of linear disassembly stems from the presence of
data or padding in the midst of code. Modern compilers such as
GCC and Clang have come to avoid inclusion of data in the midst
of code, and to use NOPs for padding. This enabled recent binary
instrumentation efforts [11, 29, 41] to rely on linear disassembly
in their systems. Unfortunately, the assumption about separation
of data and code does not always hold, as shown in Table 1. Even
without a systematic search, we were able to identify several bi-
naries with embedded data by simply examining a few complex
applications such as Firefox and LibreOffice on Linux. Most binary
instrumentation tools will fail on these binaries due to incorrect
disassembly, or because they transform (and hence corrupt) the
data in the midst of code.

In our SECRET [44] work, we suggested the use of EH infor-
mation for recognizing embedded data. But the focus wasn’t on
disassembly since SECRET uses the error-correcting disassembly
technique [46] provided by our PSI [45] 32-bit x86 binary instru-
mentation platform. More importantly, no systematic analysis was
undertaken in that work to assess the coverage of EH metadata
across a large number of binaries. In this work, we performed such
an analysis. We examined each binary in /bin and /1ib on a default
64-bit Ubuntu 18.04 Desktop Linux distribution to determine the

2This overhead results from the inability to identify and transform all code pointers at
instrumentation time. Instead, code pointers require additional processing at runtime.
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percentage of the code that is covered by EH metadata. The aver-
age of these percentages across these binaries was 94.7%, showing
high coverage. Moreover, as we discuss in the next section, the
remaining 5% consists mainly of a few functions that are inserted
into every binary by the compiler, which means that almost all of
the application-specific code is covered by EH metadata. Thus, EH
metadata is a promising source for identifying and marking off data
in the midst of code, and designing simple yet robust disassembly
techniques that avoid these gaps.

4 Function Identification

Function identification is an essential component of many binary
analysis and reverse-engineering tools. It serves as a starting point
for recovering other high level program elements such as function
parameters and local variables. Many security policy enforcement
techniques also operate at function granularity. Other applications
of function identification include binary code search [12], binary
analysis [33, 37], vulnerability detection [35], and so on.

Recovering functions from stripped COTS binaries is difficult, as
much of the symbol and debugging information is lost. In binaries,
functions can be defined as a contiguous block of code with one
or more entry points and one or more exit points. Function entry
points are usually reached by call instructions, except special cases
such as a tail call®. For direct calls, the target of the call is present
in the call instruction itself. The start of functions reached by direct
calls can hence be identified by traversing the call graph of a pro-
gram. However, indirectly reached functions cannot be identified
this way.

State-of-the-art approaches for function identification rely on
pattern matching, machine learning or static analysis. None of these
approaches are 100% accurate and typically result in both misiden-
tifications (false positive) and missed functions (false negatives).
Missed functions can affect the coverage of a binary instrumenta-
tion tool. Misidentified functions or false positives are often more
problematic, and can break the instrumented application, lead to
crashes or malfunction. Thus, for robust instrumentation, it is de-
sirable to achieve as close to a zero false positive rate as possible.

4.1 Previous Work on Function Identification

Pattern matching based approaches. Many tools combine call
graph traversal with function prologue matching [7, 13, 16, 33] to
identify function starts. However, pattern matching in general is
not a robust approach and can result in high error rate in terms of
both false positives and false negatives. This is because, function
prologues/signatures can vary across compilers. Moreover, compiler
optimizations may split or reorder the prologue code sequences,
thereby degrading the effectiveness of this technique.

Machine learning based approaches. BYTEWEIGHT [3] and
Shin et al. [32] employ machine learning to identify function starts.
By training a model using a large enough set of binaries compiled
with multiple compilers, it is possible to improve accuracy across
compilers. However, machine learning techniques are never 100%
accurate and result in false positives and false negatives. No matter

3Tail calls result from a compiler optimization that replaces a call instruction by a
jump instruction in the special case where the call instruction just precedes a return.
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how small the number of misidentifications are, they can affect the
usability of any instrumentation tool. Shin et al. achieved a precision
of 95%. However, a 5% false positive is too high for practical pur-
poses. Moreover, datasets can be skewed to increase the accuracy
rate. Nucleus [2] did an independent validation of datasets used by
BYTEWEIGHT and found out that many functions were duplicated
across training and test datasets, thereby resulting in a better score.
When evaluated with a different dataset, BYyTEWEIGHT’s accuracy
dropped to 60%.

Static analysis based approaches. Nucleus [2] and our previous
work FIA [30] rely on static analysis to identify functions. Nucleus
relies on control-flow analysis to infer indirectly reached functions.
It can achieve an accuracy (i.e., F1-score) slightly over 90% across
a set of benchmarks. FIA treats any unidentified code region be-
tween directly reached functions as a potential function body. It
then uses a novel static analysis called function interface analysis
to discard most false positives. This improved analysis enables FIA
to achieve about 99% accuracy. While this is significantly higher
than other approaches mentioned above, a 1% error rate can trans-
late to many false positives and false negatives on large binaries.
In combination with the complexity of function interface analy-
sis, this non-negligible error rate prompts researchers to continue
to seek techniques that offer a better trade-off between accuracy,
complexity and performance.

4.2 Exploiting EH metadata to Identify Functions

Function boundary information is included in EH metadata by de-
fault. In particular, function start and size is stored in FDE records
in eh_frame sections. As pointed out in the previous section, this
metadata must cover all functions of a binary and must be present
in stripped binaries to support exception handling and stack un-
winding at the runtime. Of course, it is possible that real-world
binaries may exclude some functions from EH metadata. We have
therefore carried out an experimental evaluation that uses EH meta-
data and compared the results with the previous works described
above. In the subsequent sections, we will use the term EMFI to
refer to function identification using EH metadata.

4.3 Experimental Evaluation

Datasets. We reused the same datasets used in previous works,
except that we limited ourselves to 64-bit x86 binaries, as our
prototype is currently limited to this architecture. Specifically,
BYTEWEIGHT and Shin et al. were evaluated on coreutils, binu-
tils and findutils (Dataset 1). FIA uses SPEC CPU 2006 benchmarks
(Dataset 2) and GLIBC (Dataset 3) in addition to dataset 1. Note that
we did not use the exact same versions of these datasets. Specifically,
we used coreutils-8.32, binutils-2.29.1, findutils-4.6.0, SPEC CPU
2017 benchmarks and GLIBC-2.27. We don’t expect these version
differences to change our results, but they can have a modest impact
on some of the previous works, especially those based on machine
learning.

Dataset 1 consists of 131 programs written in C and C++. SPEC
CPU 2017 consists of 23 programs written C, C++ and Fortran.
These programs and glibc were compiled using GCC compiler suite
(gcc, g++ and gfortran) on Ubuntu 18.04 (64-bit) operating system,
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Recall Precision F1-score
EMFI EMFI+ | EMFI & EMFI+ | EMFI EMFI+
SPEC 0.9379 | 1 1 0.9654 | 1
GLIBC 09993 | 1 1 0.999 | 1
Coreutils | 0.9371 1 1 0.9669 | 1
Binutils 09897 | 1 1 0.9941 1
Findutils | 0.9407 | 1 1 0.9692 | 1

Table 2: Function identification results obtained by exploiting EH metadata

and the resulting binaries used in our analysis. While our experi-
ments were performed on stripped binaries, symbol tables present
in unstripped binaries were used for ground truth determination.

Metrics. We use the same recall, precision and F1-score metrics as
previous works to measure accuracy. Recall represents the fraction
of correctly identified functions and is given by:

TP
TP+ FN

Here TP stands for true positives and FN stands for false nega-
tives. Precision represents the conditional probability that a func-
tion is identified correctly. It is given by:

Recall =

TP

TP +FP
Here FP stands for false positives. F1-score is the harmonic mean

of recall and precision and is given by:

Precision =

2 % Precision = Recall
F1=

Precision + Recall

Results summary Table 2 shows the accuracy measurement for
EMFI (i.e., using function boundaries present in EH metadata). By
using EH metadata, we are able to achieve zero false positive rates
on these datasets. Hence, we achieve a precision of 100%. The recall
value shows that on an average we miss 5% of functions.

On closer examination, we realized that the misses were all due
to 6 default initialization and clean-up functions inserted into every
binary by the compiler. Moreover, pointers to these functions are
present in the binary. So, we extended our technique so as to follow
function pointers contained in sections of the binaries, specifically,
dynamic symbol table and other sections that contain definite code
pointers®. We follow direct calls recursively from these function
bodies. We add any new function found in this manner to our list of
identified functions. Note that a new function is added this way only
if it is not already covered by EH metadata. We call this enhanced
technique as EMFI+.

We note that our base EMFI technique achieves 100% precision,
which is better than all previous approaches. EMFTs F1-score is
better than ByTEWEIGHT, Shin et al. and Nucleus, but lags FIA on
most benchmarks. Our EMFI+ technique achieves an F1-score of
100% on all datasets, and hence outperforms all previous techniques.

Table 3 compares the function identification scores on Dataset 1
(coreutils, binutils and findutils), which is common to all previous
methods. Note that we are simply quoting the numbers from the
respective papers [3, 30, 32]. Version differences in the benchmark
programs, and especially the compiler, can impact these numbers

4 init_array and .fini_array contain pointers to initialization and clean up functions of
ELF executables
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Recall | Precision | Fl-score
BYTEWEIGHT | 0.9252 | 0.9322 0.9287
Shin et al. 0.8991 | 0.9485 0.9232
FIA 0.9900 | 0.9912 0.9906
EMFI 0.944 1 0.9706
EMFI+ 1 1 1

Table 3: Function identification between different approaches - Dataset 1

Recall | Precision | Fl-score
FIA 0.9861 | 0.9927 0.9905
Nucleus | 0.90 0.97 0.9905
EMFI 0.9379 | 1 0.9654
EMFI+ 1 1 1

Table 4: Function identification comparison with Nucleus and FIA for SPEC

to some extent. To evaluate the effect of compiler versions on our
EMFI and EMFI+, we repeated our experiments with two versions of
gee (gee-7.5.0 and gee-4.8.4) as well as 1lvm-6.0.0. For llvm, we only
evaluated coreutils and findutils as binutils is not compatible with
this compiler. For EMFI we obtained 0 false positives and thereby
a precision of 1 across all these compilers. We also observed the
same functions (6 in total) missing from the EH metadata across
all the compilers. This means that the F1-score of 1.0 achieved by
EMFI+ will be unchanged across these compilers.

5 Code Randomization

Modern Linux distributions apply ASLR to all binaries that are
loaded into a process image, including the executable and all li-
braries. This means that attackers can no longer apriori predict
the locations of gadgets they wish to use in a code reuse attack.
However, ASLR is considered a relatively weak defense, as a single
leaked code pointer can reveal the entire layout of a binary. In
response to information leakage, fine-grained code randomization
techniques have been proposed [5, 8, 10, 14, 17, 19, 25, 38, 40]. Even
if attackers are able to use leaked pointers to determine the base
address of a binary, fine-grained code randomization makes it very
difficult to predict the locations of the gadgets of interest to them.
However, we show that the presence of EH metadata significantly
degrades the effectiveness of most of these techniques.

In the rest of this section, we discuss categories of code ran-
domization techniques and how EH metadata degrades their ef-
fectiveness. We then suggest some mitigation techniques aimed at
restoring their effectiveness. This section assumes that EH meta-
data is correctly updated after code randomization to ensure stack
unwinding compatibility.”

Function Reordering. Function reordering is a popular tech-
nique used in almost every previous code randomization method.
This technique involves permuting the order of functions in a bi-
nary. Even with a small binary containing 50 functions, there are
50! possible permutations, yielding a randomization entropy of
log,(50!) ~ 214 bits. Moderate to large binaries yield thousands of
bits of entropy, which seems secure against even strong adversaries.

5Some code randomization techniques break some of the assumptions underlying
stack unwinding, e.g., that function bodies are contiguous. Such techniques need
modifications before they can achieve exception compatibility, but a discussion of the
specifics is beyond the scope of this paper.
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1 attempt | 2 attempts | 3 or more attempts
SPEC 47% 19% 34%
Coreutils | 58% 31% 11%
Binutils 28% 23% 49%
Findutils | 49% 37% 14%

Table 5: Percentage of functions identified by function size in EH metadata

Some of the earlier techniques [5, 17] rely entirely on function
reordering. Many of the more recent techniques [10, 19, 40] combine
function reordering with fine-grained code randomization within
each function. Even so, many of them derive significant entropy
from function reordering.

As we noted before, EH metadata contains (a) the starting lo-
cation and (b) the size of every function in a Linux/x86 binary. It
should also be noted that EH metadata is present in readable mem-
ory or else stack unwinding will break. If the attacker targets and
leaks this metadata, then they can largely defeat function reordering
on its own. This is because function sizes tend to vary considerably,
so0 an attacker can often identify a function just by its size. Table 5
shows the percentage of functions that can be correctly identified
within 1, 2 or more attempts using function size information. Iden-
tification in one attempt means that the size uniquely identifies a
function. Identification in two attempts means that there are just
two functions of a given size.

Across these benchmarks, an average of 45% of functions can
be uniquely identified from their size. If the attacker focuses his
gadget search to this 45% of functions, then, they can carry out
their attack as if no function reordering had been done. This is
because they can look up the base of address of each of these
functions in the EH metadata from their size. Moreover, with just
function reordering, the location of every instruction in a function
is uniquely determined from its base address. Thus the attacker
can determine the location of every gadget of their interest that is
located in these 45% of functions.

A simple work-around against this attack is to add random-
size gaps within functions so that each function size cannot be
related to its original size. This technique introduces a memory
overhead in terms of increased code space. This increased code
size footprint usually translates into a modest runtime overhead as
well, but this increase is unlikely to deter the use of this mitigation.
At the same time, it should be noted that this mitigation offers
only incomplete protection: for performance reasons, padding size
needs to be limited, e.g., it may be limited to less than 100% of
code size. While this introduces considerable uncertainty, the size
information will still allow an attacker to considerably narrow
down the functions that may be located at each of the function base
addresses mentioned in EH metadata.

Unfortunately, function sizes, which are present in eh_frame,
represent the tip of the iceberg in terms of the information an
attacker can use to compromise a code randomization technique.
Using information in eh_frames, it is possible to defeat more fine-
grained randomization techniques, as we discuss below.

Fine-grained Code Randomization. Even if EH metadata is
not leaked, function reordering is vulnerable to pointer disclosure
attacks. These attacks involve leaking pointer values, e.g., return
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unwinding blocks unwinding block
with 1 or 2 instructions | as pop; ret;

SPEC 77% 23%
Coreutils | 73% 24%
Binutils 76% 29%
Findutils | 72% 22%

Table 6: Percentage of small unwinding blocks and simple gadgets

addresses on the stack. Attackers can then compute gadget lo-
cations in the same function as the return address by using the
distances between these gadgets and the return address. To thwart
such attacks, researchers have proposed many fine-grained code
randomizations that involve permuting code blocks (sequences of
instructions)[10, 38, 40] or introducing gaps between them [27].

Effectiveness of such fine-grained code randomization is coun-
tered by the availability of finer-grained information about code
blocks in eh_frames. Specifically, this data identifies the start and
size of every unwinding block within a function. Moreover, most of
these unwinding blocks are very small. As shown in Table 6, more
than 70% of unwinding blocks that have no more than 2 instruc-
tions. Moreover, the associated unwinding information specifies
key aspects of the semantics of these blocks such as (a) the amount
of change to the stack pointer, and (b) the register that is being
modified. From this information, the attacker can correctly retrieve
location of specific gadgets, e.g., pop; ret; or push; ret;. The exact
locations of such gadgets can be identified regardless of how much
randomization has been done.

We found that nearly 25% of unwinding blocks are pop; ret;
gadgets. Thus, an attacker can readily find such gadgets without
any search, once she leaks EH metadata.

Another important point to note is that stack pivoting instruc-
tions can often be identified from their metadata. Such instructions
are often used to corrupt the stack pointer and change it to point to
attacker-controlled region of memory. The change happens from
loading the stack pointer from memory or another register. Being
an instruction that changes the stack pointer, it will be identified
as an unwinding block with unwinding information that unmasks
its semantics. Although not necessarily mandatory, stack pivoting
instructions are very important in practice to launch code reuse
attacks, thus often desired by attackers.

In addition to revealing the location of useful instructions and
gadgets mentioned above, attackers can also find other gadgets that
are very close to these gadgets. Chances are that the randomization
technique did not randomize the locations that were just one or
two bytes from these instructions. The attacker can hence access
such very close-by gadgets to these revealed unwinding blocks.

One way to mitigate such attacks is to introduce gaps in code,
together with fake unwinding blocks for these gaps. This technique
will confuse the attacker. However, this may not be enough to
thwart the attack completely. We recently developed an alternative
approach that combines a new exception-compatible high-entropy
code randomization technique with optimized EH metadata that
exposes much less information [29]. Additional research is needed
to systematically explore the full range of options for mitigating
the security impact of exception compatibility.
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6 Conclusions

To be widely deployable, static binary instrumentation techniques
must be compatible with error-handling and reporting mechanisms,
such as stack tracing and C++ exceptions. Previous research has
tended to dismiss off these compatibility concerns as “engineer-
ing” In contrast, we showed that these error-handling features
have a much more fundamental impact on binary instrumentation
techniques and tools. Specifically, stack-unwinding metadata that
underpins these features can provide the basis for improving dis-
assembly accuracy in complex binaries. We also showed that this
metadata enables a simple function boundary identification method
that is far more accurate than previous methods. On the negative
side, we showed that stack unwinding metadata introduces a ma-
jor point of weakness in fine-grained code randomization. This
weakness is most pronounced on the Linux/x86 platform, where
stack unwinding information is present for almost every function
in every binary. Its impact may be lesser on other platforms, as they
may limit unwinding information to just C++ code.
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