
HOLMES: Real-time APT Detection through Correlation
of Suspicious Information Flows

Sadegh M. Milajerdi∗, Rigel Gjomemo∗, Birhanu Eshete†,1, R. Sekar‡, V.N. Venkatakrishnan∗

∗University of Illinois at Chicago †University of Michigan-Dearborn ‡Stony Brook University
{smomen2,rgjome1,venkat}@uic.edu birhanu@umich.edu sekar@cs.stonybrook.edu

Abstract—In this paper, we present HOLMES, a system that
implements a new approach to the detection of Advanced and
Persistent Threats (APTs). HOLMES is inspired by several case
studies of real-world APTs that highlight some common goals
of APT actors. In a nutshell, HOLMES aims to produce a
detection signal that indicates the presence of a coordinated
set of activities that are part of an APT campaign. One of the
main challenges addressed by our approach involves developing
a suite of techniques that make the detection signal robust and
reliable. At a high-level, the techniques we develop effectively
leverage the correlation between suspicious information flows that
arise during an attacker campaign. In addition to its detection
capability, HOLMES is also able to generate a high-level graph that
summarizes the attacker’s actions in real-time. This graph can be
used by an analyst for an effective cyber response. An evaluation
of our approach against some real-world APTs indicates that
HOLMES can detect APT campaigns with high precision and low
false alarm rate. The compact high-level graphs produced by
HOLMES effectively summarizes an ongoing attack campaign and
can assist real-time cyber-response operations.

I. INTRODUCTION

In one of the first ever detailed reports on Advanced and
Persistent Threats (entitled APT1 [8]), the security firm Mandi-
ant disclosed the goals and activities of a global APT actor. The
activities included stealing of hundreds of terabytes of sensitive
data (including business plans, technology blueprints, and test
results) from at least 141 organizations across a diverse set of
industries. They estimated the average duration of persistence
of malware in the targeted organizations to be 365 days. Since
then, there has been a growing list of documented APTs
involving powerful actors, including nation-state actors, on the
global scene.

Understanding the motivations and operations of the APT
actors plays a vital role in the challenge of addressing these
threats. To further this understanding, the Mandiant report
also offered an APT lifecycle model (Fig. 1), also known
as the kill-chain, that allows one to gain perspective on
how the APT steps collectively achieve their actors’ goals.
A typical APT attack consists of a successful penetration
(e.g., a drive-by-download or a spear-phishing attack), re-
connaissance, command and control (C&C) communication
(sometimes using Remote Access Trojans (RATs)), privilege
escalation (by exploiting vulnerabilities), lateral movement
through the network, exfiltration of confidential information,
and so on. In short, the kill-chain provides a reference to
understand and map the motivations, targets, and actions of
APT actors.

1The third author performed this work as a postdoctoral associate at the
University of Illinois at Chicago.

Initial
Compromise

Establish
Foothold

Escalate
Privileges

Complete
Mission

Internal
Recon

Move
Laterally

Maintain
Presence

Fig. 1. APT Lifecycle.

APTs have grown in sophistication since the publication
of the first Mandiant report. The details of various exploits
used have varied over the years, but the high-level steps have
remained mostly the same. While surveying about 300 APT
reports [3], we observed that

• the goal of an APT actor is either to obtain and exfiltrate
highly confidential information, e.g., source code of spe-
cific proprietary technology; or to damage the victim by
compromising high-integrity resources, e.g., PLCs com-
promised in the Stuxnet worm, and

• this goal is accomplished primarily through steps that
conform to the kill-chain shown in Fig. 1.

Existing IDS/IPS systems in an enterprise may detect
and produce alerts for suspicious events on a host. However,
combining these low-level alerts to derive a high-level picture
of an ongoing APT campaign remains a major challenge.

State of the art. Today, alert correlation is typically per-
formed using Security Information and Event Management
(SIEM) systems such as Splunk [10], LogRhythm [7] and IBM
QRadar [6]. These systems collect log events and alerts from
multiple sources and correlate them. Such correlation often
makes use of readily available indicators, such as timestamps
for instance. These correlation methods are useful, but they
often lack (a) an understanding of the complex relationships
that exist between alerts and actual intrusion instances and (b)
the precision needed to piece together attack steps that take
place on different hosts over long periods of time (weeks, or
in some cases, months).
Problem Statement. The main problem tackled in this paper
is to detect an ongoing APT campaign (that consists of many
disparate steps across many hosts over a long period of time)
in real-time and provide a high-level explanation of the attack
scenario to an analyst, based on host logs and IPS alerts from
the enterprise.

There are three main aspects to this problem, and they are
as follows:

• Alert generation: Starting from low-level event traces from
hosts, we must generate alerts in an efficient manner. How
do we generate alerts that attempt to factor any significant
steps the attacker might be taking? Additionally, care must
be taken to ensure that we do not generate a large volume
of noisy alerts.

• Alert correlation: The challenge here is to combine these
alerts from multiple activities of the attacker into a reliable
signal that indicates the presence of an ongoing APT
campaign.

• Attack scenario presentation: Indicators of an ongoing
APT campaign needs to be communicated to a human be-
ing (a cyber-analyst). To be effective, this communication
must be intuitive and needs to summarize the attack at a
high level such that the analyst quickly realizes the scope
and magnitude of the campaign.

Approach and Contributions. We present a system called
HOLMES in this paper that addresses all the above aspects.
HOLMES begins with host audit data (e.g., Linux auditd or
Windows ETW data) and produces a detection signal that maps
out the stages of an ongoing APT campaign. At a high level,
HOLMES makes novel use of the APT kill-chain as the pivotal
reference in addressing the technical challenges involved in the
above three aspects of APT detection. We describe our key
ideas and their significance below, with a detailed technical
description appearing in Section III.

First, HOLMES aims to map the activities found in host
logs as well as any alerts found in the enterprise directly to
the kill chain. This design choice allows HOLMES to generate
alerts that are semantically close to the activity steps (“Tactics,
Techniques and Procedures” (TTPs)) of APT actors. By doing
so, HOLMES elevates the alert generation process to work
at the level of the steps of an attack campaign, than about
how they manifest in low-level audit logs. Thus, we solve an
important challenge in generating alerts of significance. In our
experiments, we have found that a five-day collection of audit
logs contains around 3M low-level events, while HOLMES only
extracts 86 suspicious activity steps from them.

A second important idea in HOLMES is to use the informa-
tion flow between low-level entities (files, processes, etc.) in the
system as the basis for alert correlation. To see this, note that
the internal reconnaissance step in the kill-chain depends on a
successful initial compromise and establishment of a foothold.
In particular, the reconnaissance step is typically launched
using the command and control agent (process) installed by the
attacker during foothold establishment, thus exhibiting a flow
between the processes involved in the two phases. Moreover,
reconnaissance often involves running malware (files) down-
loaded during the foothold establishment phase, illustrating a
file-to-process flow. Similarly, a successful lateral movement
phase, as well as the exfiltration phase, uses data gathered by
the reconnaissance phase. Thus, by detecting low-level events
associated with APT steps and linking them using information
flow, it is possible to construct the emerging kill-chain used
by an APT actor.

A third main contribution in HOLMES is the development
of a high-level scenario graph (HSG). The nodes of the HSG
correspond to TTPs, and the edges represent information flows
between entities involved in the TTPs. The HSG provides
the basis for detecting APTs with high confidence. For this

purpose, we develop several new ideas. First is the concept of
an ancestral cover in an HSG. We show how this concept
can help to assess the strength of dependencies between
HSG nodes. Weak dependencies can then be pruned away
to eliminate many false alarms. Second, we develop noise
reduction techniques that further de-emphasize dependencies
that are known to be associated with benign activities. Third,
we develop ranking and prioritization techniques to prune
away most nodes and edges unrelated to the APT campaign.
These steps are described in detail in Sections IV-D, IV-E, and
IV-F. Using these techniques, we demonstrate that HOLMES
is able to make a clear distinction between attack and benign
scenarios.

Finally, the HSG provides a very compact, visual summary
of the campaign at any moment, thus making an important
contribution for attack comprehension. For instance, starting
from a dataset of 10M audit records, we are able to summarize
a high-level attack campaign using a graph of just 16 nodes. A
cyber-analyst can use the presented HSG to quickly infer the
big picture of the attack (scope and magnitude) with relative
ease.
Evaluation. We evaluated HOLMES on data generated by
DARPA Transparent Computing program that involved a
professional red-team simulating multiple cyber-attacks on a
network consisting of different platforms. We implemented
appropriate system audit data parsers for Linux, FreeBSD, and
Windows, to process and convert their audit data to a common
data representation and analysis format. The advantage of
using system audit data is that it is a reliable source of
information and is free of unauthorized tamper (under a threat
model of non-compromised kernel).

Evaluation of HOLMES on nine real-life APT attack sce-
narios, as well as running it as a real-time intrusion detection
tool in a live experiment spanning for two weeks, show that
HOLMES is able to clearly distinguish between attack and
benign scenarios and can discover cyber-attacks with high
precision and recall (Sec. VI).

II. A RUNNING EXAMPLE

In this section, we present a running example used through
the paper to illustrate our approach. This example represents
an attack carried out by a red-team as part of a research
program organized by a government agency (specifically, US
DARPA). In this attack, a vulnerable Nginx web server runs on
a FreeBSD system. Its operations (system calls) are captured
in the system audit log. From this audit data, we construct
a provenance graph, a fragment of which is shown in Fig. 2.
Nodes in this graph represent system entities such as processes
(represented as rectangles), files (ovals), network connections
(diamonds), memory objects (pentagons), and users (stars).
Edges correspond to system calls and are oriented in the
direction of information flow and/or causality. Note that our
provenance graph has been rendered acyclic using the (opti-
mized) node versioning technique described in Reference [23].

The goal of the attacker is to exfiltrate sensitive information
from the system. The attacker’s activities are depicted at the
bottom of Fig. 2, and consist of the following steps:

• Initial Compromise. The attacker sends a malicious pay-
load on the socket (S1) listening on port 80. As a result,
Nginx makes some part of its memory region (M1) ex-

nginx

/usr/bin/
procstat

pipe pipe
/usr/bin/
procstatmemory

M1

P1nginx nginx P2 nginx P3 nginx P4 nginx P7

/usr/log/nginx-
error.log

mprotect_exec

U1
root

Setuid

/etc/group

/etc/passwd

/etc/shadowF2

F3

F4

IN OUT

Untrusted external Address

exec exec

P6P5 hostnamewhoami

/usr/local/www/
nginx/stats.html

unlink

/usr/local/www/
nginx/stats.html F5

Untrusted
external
 Address

S1 S2

OUT S3

nginx

php-fpm

pipe pipe

php-fpm

nginx

/usr/local/www/
nginx/index.php

/var/log/nginx-
access.log

IN OUT
Untrusted external Address

nginx

php-fpm

pipe pipe

php-fpm

nginx

/usr/local/www/
nginx/index.php

/var/log/nginx-
access.log

IN OUT
Untrusted external Address

sshd

IN
Trusted Address

bashcat

/dev/tty

sshd

sshd

IN
Trusted Address

sshd

IN

sudo nginx
-s reload

syslogdpipe

/var/log/
auth.log

nginx

memory
mprotect_exec

exec
execexec

execexecexecexec

nginx

kill

/lib/
libc.so.7

/libexec/
ld-elf.so.1 /etc/

localtime/etc/
nsswitch

.conf

/etc/
spwd.db

/usr/lib/
libbsm.so.3

/lib/libz/so.6

Untrusted external Address

bash

execexecexecexec

Other
actions

exec

exec

exec

exec

F1

Benign
Activities

Attacker
Activities

write
read

read

Fig. 2. Provenance Graph of the Running Example.

ecutable. Next, the attacker gains control over the Nginx
process by using a reflective self-loading exploit.

• C&C Communications. The compromised Nginx process
makes a connection (S2) to the C&C server to receive
commands from the attacker.

• Privilege Escalation. The attacker exploits an existing
vulnerability to escalate the privilege of Nginx to root (U1).

• Internal Reconnaissance. Next, the attacker issues com-
mands such as whoami (P5) and hostname (P6). These
commands were used by the red team to simulate access
to confidential/proprietary data. The attacker also reads
usernames and password hashes (F2, F3, F4) and writes
all this information to a temporary file.

• Exfiltration. Next, the attacker transfers the file containing
the gathered information to her/his machine (S3).

• Cleanup. In the last step of the attack, the attacker removes
the temporary file (F5) to clean up any attack remnants.

This example illustrates many key challenges described below:
Stealthy Attacks. This attack leaves a minimal footprint on
the system. The first step of the attack, the initial compromise
of the Nginx server, is executed in main memory and does not
leave any visible traces such as downloaded files. Moreover,
the payload runs within the existing Nginx process. It is very
challenging to detect such stealthy attacks, where attacker
activities blend in seamlessly with normal system operation.
Needle in a haystack. Even a single host can generate tens of
millions of events per day. All but a very tiny fraction of these
— typically much less than 0.01% — correspond to benign
activities. (The top portion of Fig. 2 shows a small subset
of benign activities in the audit log.) It is difficult to detect
such rare events without a high rate of false alarms. More
importantly, it is very challenging to filter out these benign
events from the attack summaries presented to analysts.
Real-time detection. We envision HOLMES to be used in
conjunction with a cyber-response system, so it is necessary
to detect and summarize an ongoing campaign in a matter of
seconds. Real-time detection poses additional challenges and
constraints for the techniques used in HOLMES.

To overcome these challenges, note that, despite blending
seamlessly into benign background activity, two factors stand
out regarding the attack. First, the attack steps achieve ca-
pabilities corresponding to some of the APT stages. Second,
the attack activities are connected via information flows. In
the next section, we describe the HOLMES approach based on
these two key observations.

III. APPROACH OVERVIEW

The central insight behind our approach is that even though
the concrete attack steps may vary widely among different
APTs, the high-level APT behavior often conforms to the same
kill-chain introduced in Section I (Figure 1). Our analysis of
hundreds of APT reports from [3] suggests that most APTs
consist of a subset, if not all, of those steps. More importantly,
we make the observation that these steps need to be causally
connected, and this connectedness is a major indication that
an attack is unfolding.

Note that the concrete manifestation of each APT step may
vary, e.g., an initial compromise may be executed as a drive-
by-download or as a spear-phishing attack with a malicious
file that is executed by a user. Regardless, the APT steps
themselves represent a high-level abstraction of the attacker’s
intentions, and hence they must manifest themselves even if
the operational tactics used by attackers vary across APTs.
Moreover, information flow or causal relations must neces-
sarily exist between them since the APT steps are logically
dependent on each other, e.g., exfiltration is dependent on
internal reconnaissance to gather sensitive data.

The research question, therefore, is whether we can base
our detection on

• an APT’s most essential high-level behavioral steps, and
• the information flow dependencies between these steps.

A major challenge in answering this question is the large
semantic gap between low-level audit data and the very high-
level kill-chain view of attacker’s goals, intentions, and capa-
bilities.
Bridging the Semantic Gap. To bridge the semantic gap
between low-level system-call view and the high-level kill-

Untrusted Read

Initial Compromise

APT Stages

TTPs & HSG

Audit Logs

Establish Foothold Internal Recon Privilege Escalation

Executable Mem
Untrusted Exec

Bash Exec
rc.common

C&C Comms

Sensitive Read

Sensitive Comm

Sudo Exec

Switch User

Fig. 3. HOLMES Approach: From Audit Records to High-Level APT Stages

chain view, we build an intermediate layer as shown in
Fig. 3. The mapping to this intermediate layer is based on
MITRE’s ATT&CK framework [2], which describes close to
200 behavioral patterns defined as Tactics, Techniques, and
Procedures (TTPs) observed in the wild.

Each TTP defines one possible way to realize a particular
high-level capability. For instance, the capability of persistence
in a compromised Linux system can be achieved using 11
distinct TTPs, each of which represents a possible sequence
of lower level actions in the ATT&CK framework, e.g., in-
stallation of a rootkit, modification of boot scripts, and so on.
These lower level actions are closer to the level of abstraction
of audit logs, so it is possible to describe TTPs in terms of
nodes and edges in the provenance graph.
Technical challenges. The main technical challenges in real-
izing the approach summarized in Fig. 3 are:

• efficient matching of low-level event streams to TTPs,
• detecting correlation between attack steps, and
• reducing false positives.

We solve these challenges through several design innovations.
For efficient matching, we use a representation of the audit
logs as a directed provenance graph (Section IV) in main
memory, which allows for efficient matching. This graph also
encodes the information flow dependencies that exist between
system entities (such as processes and files). TTPs are specified
as patterns that leverage these dependencies. For instance, in
order to match a maintain persistence TTP, an information
flow dependency must exist from a process matching an initial
compromise TTP to the maintain persistence TTP.

For detecting correlations between attack steps, we build
a High-level Scenario Graph (HSG) as an abstraction over
the provenance graph. Each node in the HSG represents a
matched TTP, while the edges represent information flow and
causality dependencies among those matched TTPs. An HSG
is illustrated in the middle layer of Fig. 3 by nodes and edges
in boldface. (We refer the reader to Fig. 5 for the HSG of the
running example.) To determine the edges among nodes in the
HSG, use the prerequisite-consequence patterns of among the
TTPs and the APT stages.

To reduce the number of false positives (i.e., HSGs that do
not represent attacks), we use a combination of: (a) learning
benign patterns that may produce false positive TTPs and, (b)
heuristics that assign weights to nodes and paths in the graph
based on their severity, so that the HSGs can be ranked, and
the highest-ranked HSGs presented to the analyst.

In summary, the high-level phases of an APT are opera-
tionalized using a common suite of tactics that can be observed
from audit data. These observations provide evidence that some
malicious activity may be unfolding. The job of HOLMES,
then, is to collect pieces of evidence and infer the correlations
among them and use these correlations to map out the overall
attack campaign.

IV. SYSTEM DESIGN

Like most previous works [12], [18], [34], [39] that rely
on OS audit data, we consider the OS kernel and the auditing
engine as part of the trusted computing base (TCB). In other
words, attacks on the OS kernel, the auditing system and the
logs produced by it are outside the scope of our threat model.
We also assume that the system is benign at the outset, so the
initial attack must originate external to the enterprise, using
means such as remote network access, removable storage, etc.

A. Data Collection and Representation
Our system relies on audit logs retrieved from multiple

hosts that may run different operating systems (OSes). 2 For
Linux, the source of audit data is auditd, while it is dtrace
for BSD and ETW for Windows. This raw audit data is
collected and processed into an OS-neutral format. This is the
input format accepted by HOLMES. This input captures events
relating to principals (users), files (e.g., operations for I/O, file
creation, ownership, and permission), memory (e.g., mprotect
and mmap) processes (e.g., creation, and privilege change),
and network connections. Although the default auditing system
incurs nontrivial overheads, recent research has shown that
overheads can be made small [12], [46].

The data is represented as a graph that we call the prove-
nance graph. The general structure of this graph is similar to
that of many previous forensic analysis works [27], [34], [39]:
the nodes of the graph include subjects (processes) and objects
(files, pipes, sockets) and the edges denote the dependencies
between these entities and are annotated with event names.
There are some important differences as well: our subjects,
as well as objects, are versioned. A new version of a node is
created before adding an incoming edge if this edge changes
the existing dependencies (i.e., the set of ancestor nodes) of the
node. Versioning enables optimizations that can prune away
a large fraction of events in the audit log without changing

2The design of HOLMES makes it possible to take additional inputs such as
events and alerts from a variety of IDS/IPS, but we do not discuss this aspect
of the system further in paper.

APT Stage TTP Event Family Events Severity Prerequisites

Initial
Compromise(P)

Untrusted
Read(S, P)

READ
FileIoRead (Windows),
read/pread/readv/preadv
(Linux,BSD)

L S.ip /∈ {Trusted IP Addresses}

Make Mem
Exec(P,M)

MPROTECT VirtualAlloc (Windows), mpro-
tect (Linux,BSD) M

$PROT EXEC$ ∈ M.flags
∧ ∃ Untrusted Read(?, P ′) :
path factor(P ′, P) <= path thres

Establish
Foothold(P)

Shell
Exec(F, P)

EXEC ProcessStart (Windows),
execve/fexecve (Linux,BSD) M

F.path ∈ {Command Line Utilities}
∧ ∃ Initial Compromise(P ′) :
path factor(P ′, P) <= path thres

TABLE 4. Example TTPs. In the Severity column, L=Low, M=Moderate, H=High, C=Critical. Entity types are shown by the characters: P=Process,
F=File, S=Socket, M=Memory, U=User.

the results of forensic analysis [23]. Moreover, this versioned
graph is acyclic, which can simplify many graph algorithms.

Another significant point about our provenance graph is
that it is designed to be stored in main memory. We have
developed a highly compact provenance graph representation
in our previous work [22], [23] that, on average, required less
than 5 bytes of main memory per event in the audit log. This
representation enables real-time consumption of events and
graph construction over prolonged periods of time. It is on
this provenance graph that our analysis queries for behavior
that matches our TTP specifications.

B. TTP Specification
TTP specifications provide the mapping between low-level

audit events and high-level APT steps. Therefore, they are a
central component of our approach. In this subsection, we
describe three key choices in the TTP design that enable
efficient and precise attack detection.

Recall that in our design, TTPs represent a layer of
intermediate abstraction between concrete audit logs and high-
level APT steps. Specifically, we rely on two main techniques
to lift audit log data to this intermediate layer: (a) an OS-
neutral representation of security-relevant events in the form
of the provenance graph and (b) use of information flow
dependencies between entities involved in the TTPs. Taken
together, these techniques enable high-level specifications of
malicious behavior that are largely independent of many TTP
details such as the specific system calls used, names of
malware, intermediate files that were created and the programs
used to create them, etc. In this regard, our information flow
based TTP specification approach is more general than the use
of misuse specifications [32], [47] from the IDS literature. Use
of information flow dependencies is crucial in the detection of
stealthy APTs that hide their activities by using benign system
processes to carry out their goals.

In addition to specifying the steps of a TTP, we need to
capture its prerequisites. Prerequisites not only help reduce
false positives but also help in understanding the role of a TTP
in the larger context of an APT campaign. In our TTP specifi-
cations, prerequisites take the form of causal relationships and
information flows between APT stages.

Finally, TTP matching needs to be efficient, and must not
require expensive techniques such as backtracking. We find
that most TTPs can be modeled in our framework using a
single event, with additional preconditions on the subjects and
objects involved.

An example of a TTP rule specification is shown in Table
4, with additional rules appearing in Section V. In Table 4, the
first column represents the APT stage, and the second column
represents the associated TTP name and the entities involved in

the TTP. The third column specifies the event family associated
with the TTP. For ease of illustration, some of the specific
events included in this family are shown in the fourth column,
but note that they are not part of a TTP rule. (Event classes
are defined once, and reused across all TTP rules.)

The fifth column represents a severity level associated with
each TTP. We use this severity level to rank alarms raised by
our system, prioritizing the most severe alarms. Our current as-
signment of the severity levels is based on the Common Attack
Pattern Enumeration and Classification (CAPEC) list defined
by US-CERT and DHS with the collaboration of MITRE [4]
but can be tailored to suit the needs of a particular enterprise.
We also provide another customization mechanism, whereby
each severity level can be mapped to an analyst-specified
weight that reflects the relative importance of different APT
stages in a deployment context.

The last column specifies the prerequisites for the TTP rule
to match. The prerequisites can specify conditions on the pa-
rameters of the TTP being matched, e.g., the socket parameter
S for the Untrusted Read TTP on the first row. Prerequisites
can also contain conditions on previously matched TTPs
and their parameters. For instance, the prerequisite column
of the Make Mem Exec(P,M) TTP contains a condition
∃ Untrusted Read(?, P ′). This prerequisite is satisfied only
if an Untrusted Read TTP has been matched for a process
P ′ earlier, and if the processes involved in the two TTPs have
a path factor (defined below) less than a specified threshold.

Prerequisites can capture relations between the entities
involved in two TTPs, such as the parent-child relation on
processes, or information flow between files. They can also
capture the condition that two TTPs share a common parent.
Using prerequisites, we are able to prune many false positives,
i.e., benign activity resembling a TTP.

C. HSG Construction
Fig. 5 illustrates an HSG for the running example. The

nodes of this graph represent matched TTPs and are depicted
by ovals in the figure. Inside each oval, we represent the
matched provenance graph entities in grey. For illustration
purposes, we have also included the name of the TTP, the
APT stage to which each TTP belongs, and the severity level
(Low, Medium or High) of each TTP. The edges of the graph
represent the prerequisites between different TTPs. The dotted
lines that complete a path between two entities represent the
prerequisite conditions. For instance, the Make Mem Exec
TTP has, as a prerequisite, an Untrusted Read TTP, repre-
sented by the edge between the two nodes.

The construction of the HSG is primarily driven by the
prerequisites: A TTP is matched and added to the HSG if all
its prerequisites are satisfied. This factor reduces the number

APT Stage: Privilege Escalation

APT Stage: Establish Foothold

APT Stage: Internal Recon

APT Stage: Cleanup

P1S1

M1 P1

Untrusted Read

Make Mem Exec

P2 S2

U1P3

C&C
Communication

Switch SU

P3F2

Sensitive
Command

Sensitive
Command

Sensitive Read

P7 S3 Sensitive
Leak

P7 F5

Sensitive Read

APT Stage: Initial Compromise

Sensitive Read P3F4

P4

P4

P5

P6

P3F3 APT Stage: Exfiltration

Sensitive
Temp Rm

LL

M

H

M

M

M

H

H

H

M

Fig. 5. High-Level Scenario Graph for the Running Example.

of TTPs in the HSG at any time, making it possible to
carry out sophisticated analyses without impacting real-time
performance.

D. Avoiding Spurious Dependencies
By spurious dependencies, we refer to uninteresting and/or

irrelevant dependencies on the attacker’s activities. For in-
stance, in Fig. 2, the process nginx (P2) writes to the file
/usr/log/nginx-error.log, and the cat process later reads
that file. However, even though there is a dependency between
cat and the log file, cat is unrelated to the attack and is
invoked independently through ssh. More generally, consider
any process that consumes secondary artifacts produced by
the attack activity, e.g., a log rotation system that copies a
log file containing some fraction of entries produced by an
attacker’s process. Such processes, although they represent
benign background activity, will be flagged in the provenance
graph as having a dependence on the attacker’s processes. If
these spurious dependencies aren’t promptly pruned, there can
be a dependence explosion that can enormously increase the
size of HSGs. As a result, the final result presented to the
analyst may be full of benign activities, which can cause the
analyst to miss key attack steps embedded in a large graph. For
this reason, we prioritize stronger dependencies over weaker
ones, pruning away the latter as much as possible.

Intuitively, we can say that a process Pd has a strong
dependency on a process Pa if Pd is a descendant process
of Pa. Similarly, a file or a socket has a strong dependency
on a process Pa if Pa or its descendant processes write to
this file/socket. More generally, consider two entities and a
path between them in the provenance graph that indicates an
information between them. Determining if this flow represents
a strong or weak information flow is equivalent to determining
if the entities in the flow share compromised ancestors. If they
share compromised ancestors, they are part of the attacker’s
activities, and there is a strong dependency among them, which

must be prioritized. Otherwise, we consider the dependency to
be weak and deemphasize it in our analysis.

To generalize the above discussion to a case where there
may be multiple compromised processes, we introduce the
following notion of an ancestral cover AC(f) of all processes
on an information flow path f :

∀p ∈ f ∃a ∈ AC(f) a = p or a is an ancestor of p

Note that non-process nodes in f don’t affect the above defi-
nition. A minimum ancestral cover, ACmin(f) is an ancestral
cover of minimum size. Intuitively, ACmin(f) represents the
minimum number of ancestors that an attacker must compro-
mise (i.e., the number of exploits) to have full control of the
information flow path f . For instance, consider again the flow
from the nginx process, which is under the control of the
attacker, to the cat process. Since these two processes share
no common ancestors, the minimum ancestral cover for the
path among them has a size that is equal to 2. Therefore, to
control the cat process, an attacker would have to develop
an additional exploit for cat. This requires the attacker to first
find a vulnerability in cat, then create a corresponding exploit,
and finally, write this exploit into the log file. By preferring
an ancestral cover of size 1, we capture the fact that such an
attack involving cat is a lot less likely than one where the
attack activities are executed by nginx and its descendants.

We can now define the notion of path factor(N1, N2)
mentioned earlier in the discussion of TTPs. Intuitively, it
captures the extent of the attacker’s control over the flow from
N1 to N2. Based on the above discussion of using minimum
ancestral covers as a measure of dependency strength, we
define path factor as follows. Consider all of the information
flow paths f1, ..., fn from N1 to N2, and let mi be the mini-
mum ancestral cover size for fi. Then, path factor(N1, N2)
is simply the minimum value among m1, . . . ,mn.

Note that if process N2 is a child of N1, then there
is a path with just a single edge between N1 to N2. The
size of minimum ancestral cover for this path is 1 since
N1 is an ancestor of N2. In contrast, the (sole) path from
nginx to cat has a minimum ancestral cover of size 2, so
path factor(nginx, cat) = 2.

We describe an efficient computation of path factor in
Section V. In our experience, the use of path factor greatly
mitigated dependency explosions by prioritizing attacker-
influenced flows.

E. Noise Reduction
One of the challenges in the analysis of audit logs for attack

detection and forensics is the presence of noise, i.e., benign
events matching TTP rules. Long-living processes such as
browsers, web servers, and SSH daemons trigger TTP matches
from time to time. To cut down these false positives, we
incorporate noise reduction rules based on training data. We
leverage two notions: (1) benign prerequisite matches and (2)
benign data flow quantity.
Noise reduction based on benign prerequisites. For each
process, our system learns prerequisites that fired frequently
when the system is run in a benign context. At runtime, when
the prerequisites of a triggered TTP match the prerequisites
that were encountered during training, we ignore the match.

Provenance Graph

Detection
Engine

Audit Stream

Audit Stream

Audit

Stream

High-Level Scenario GraphPolicy
Definitions

Normal
Model Weights/

Threshold

Policy
Matching

Engine

Noise
Filtering
Engine

ALARM

Causality
TrackerStream Processor

Fig. 6. HOLMES Architecture.

Noise reduction based on data flow quantity. Filtering
based on benign prerequisites may lead to false negatives: a
malicious event may go unnoticed because it matches behavior
observed during the learning phase. For instance, even with-
out any attack, nginx reads /etc/passwd during its startup
phase. However, if we were to whitelist all nginx access
to /etc/passwd, then a subsequent read by a compromised
nginx server will go unnoticed.

To tackle this problem, we enhance our learning to in-
corporate quantities of information flow, measured in bytes
transferred. For instance, the amount of information that can
flow from the file /etc/passwd to nginx is equal to the size of
that file, since nginx reads that file only once. Therefore, if sig-
nificantly more bytes are observed flowing from /etc/passwd
to nginx, then this flow may be part of an attack. To determine
the cut-off points for information quantity, we observe process-
file and process-socket pairs over a period in a benign setting.

F. Signal Correlation and Detection
Given a set of HSGs, how do we distinguish the ones that

constitute an attack with a high confidence? We address this
challenge by assigning a severity score to each HSG. This
assignment proceeds in two steps further described below.
Threat Tuples. First, we represent the attacker’s progress in a
campaign by an abstract threat tuple associated with the cor-
responding HSG. In particular, for every HSG, a threat tuple
is a 7-tuple ⟨S1, S2, S3, ..., S7⟩ where each Si corresponds to
the severity level of the APT stage at index i of the HSG. We
chose 7-tuples based on an extensive survey of APTs in the
wild [3], but other choices are possible as well.

Since different TTPs belonging to a certain APT stage may
have different severity levels, there are usually multiple candi-
dates to pick from. It is natural to choose the highest severity
level among these candidates. For instance, the threat tuple
associated with the HSG of Fig. 5 is ⟨M,L,H,H,−, H,M⟩.
This tuple contains 6 entries because its matched TTPs belong
to 6 different APT stages. The entries are ordered according
to the order of the APT stages in the kill-chain. For instance,
the first entry of the tuple is M since the most severe TTP be-
longing to Initial Reconnaissance in the graph has severity M.
HSG Ranking and Prioritization. To rank HSGs, we first
transform a threat tuple to a numeric value. In particular,
we first map each element of a threat tuple to a numerical
value based on the conversion table (Table 7) included in
the Common Vulnerability Scoring System (CVSS), a vendor-
neutral industry standard created through the collaboration
of security professionals across commercial, non-commercial,
and academic sectors [5]. Alternative scoring choices may be
made by an enterprise, taking into context its perceived threats

and past threat history.

Qualitative level Quantitative Range Rounded up
Average Value

Low 0.1 - 3.9 2.0
Medium 4.0 - 6.9 6.0

High 7.0 - 8.9 8.0
Critical 9.0 - 10.0 10.0

TABLE 7. NIST severity rating scale

Next, we combine the numeric scores for the 7 APT stages
into a single overall score. The formula that we use to compute
this score was designed with two main criteria in mind: (1)
flexibility and customization, and (2) the correlation of APT
steps is reflected in the magnification of the score as the
steps unfold. To address these criteria, we associate a weight
with each entry in the converted threat tuple and calculate a
weighted product of the threat tuple as the score. These weights
are configurable by a system administrator, and they can be
used to prioritize detection of specific stages over other stages.

Using a training set, we performed several experiments and
compared results using other schemes, such as weighted sum,
exponential sum, and geometric sum. For each equation, we
measured the average margin between the benign subgraph
scores and the attack subgraph scores after normalization and
found that the weighted product had the best results. Hence
we use the following criteria to flag an APT attack:

n∏︂
i=1

(Si)
wi ≥ τ (1)

Here, n is the number of APT stages, wi and Si denote
respectively the weight and severity of stage i, and τ is the
detection threshold. If no TTP occurs in stage i, we set Si = 1.

V. IMPLEMENTATION

Stream Consumption for Provenance Graph Construction.
Fig. 6 shows the architecture of HOLMES. To achieve platform
independence, audit records from different OSs are normal-
ized to a common data representation (CDR) with shared
abstractions for various system entities. For streamlined audit
data processing, CDR-based audit records are published to a
stream processing server (Kafka) and real-time analysis and
detection proceeds by consuming from the streaming server.
We use our SLEUTH system [22] for stream consumption,
causality tracking, and provenance graph construction, so we
don’t describe those steps in detail here.
Policy Matching Engine and HSG Construction. The Policy
Matching Engine takes the TTP rule specifications as input
and operates on the provenance graph. A representative set of
the TTP rule specifications used in the current implementation

APT Stage TTP Event
Family Severity Prerequisites

Initial
Compromise(P)

Untrusted Read(S, P) READ L S.ip /∈ {Trusted IP Addresses}

Make Mem Exec(P,M) MPROTECT M $PROT EXEC$ ∈ M.flags
∧ ∃ Untrusted Read(?, P ′) : path factor(P ′, P) <= path thres

Make File Exec(P, F) CHMOD H $PROT EXEC$ ∈ F.mode
∧ ∃ Untrusted Read(?, P ′) : path factor(P ′, F) <= path thres
∧ ∃ Untrusted Read(?, P ′′) : path factor(P ′′, P) <= path thres

Untrusted File Exec(F, P) EXEC C ∃ Untrusted Read(?, P ′) : path factor(P ′, F) <= path thres
Establish
Foothold(P)

Shell Exec(F, P) EXEC M F.path ∈ {Command Line Utilities}
∧ ∃ Initial Compromise(P ′) : path factor(P ′, P) <= path thres

CnC(P, S) SEND L S.ip /∈ {Trusted IP Addresses} ∧ ∃ Initial Compromise(P ′) :
path factor(P ′, P) <= path thres

Privilege
Escalation(P)

Sudo Exec(F, P) EXEC H F.path ∈ {SuperUser Tools} ∧ ∃ Initial Compromise(P ′) :
path factor(P ′, P) <= path thres

Switch SU(U, P) SETUID H U.id ∈ {SuperUser Group} ∧ ∃ Initial Compromise(P ′) :
path factor(P ′, P) <= path thres

Internal
Recon(P)

Sensitive Read(F, P) READ M F.path ∈ {Sensitive Files}
∧ ∃ Initial Compromise(P ′) : path factor(P ′, P) <= path thres

Sensitive Command(P, P ′) FORK H P ′.name ∈ {Sensitive Commands}
∧ ∃ Initial Compromise(P ′′) : path factor(P ′′, P) <= path thres

Move
Laterally(P)

Send Internal(P, S) SEND M S.ip ∈ {Internal IP Range}
∧ ∃ Initial Compromise(P ′) : path factor(P ′, P) <= path thres

Complete
Mission(P)

Sensitive Leak(P, S) SEND H S.ip /∈ {Trusted IP Addresses} ∧ ∃ Internal Reconnaissance(P ′) :
path factor(P ′, P) <= path thres
∧ ∃ Initial Compromise(P ′′) : path factor(P ′′, P) <= path thres

Destroy System(F, P)
WRITE/
UNLINK C F.path ∈ {System Critical Files}

∧ ∃ Initial Compromise(P ′) : path factor(P ′, P) <= path thres
Cleanup
Tracks(P)

Clear Logs(P, F) UNLINK H F.path ∈ {Log Files}∧ ∃ Initial Compromise(P ′) :
path factor(P ′, P) <= path thres

Sensitive Temp RM(P, F) UNLINK M ∃ Internal Reconnaissance(P ′) : path factor(P ′, F) <=
path thres
∧ ∃ Initial Compromise(P ′′) : path factor(P ′′, P) <= path thres

Untrusted File RM(P, F) UNLINK M ∃ Initial Compromise(P ′) : path factor(P ′, F) <= path thres
∧ ∃ Initial Compromise(P ′′) : path factor(P ′′, P) <= path thres

TABLE 8. Representative TTPs. Event family denotes a set of corresponding events in Windows, Linux, and FreeBSD. In the Severity column, L=Low,
M=Moderate, H=High, C=Critical. Entity types are shown by the characters: P=Process, F=File, S=Socket, M=Memory, U=User.

of HOLMES is shown in Table 8. To match a TTP, as the
provenance graph is being built, the policy matching engine
iterates over each rule in the rules table and its prerequisites.
A particularly challenging part of this task is to check, for
each TTP, the prerequisite conditions about previously matched
TTPs and the path factor. In fact, previously matched TTPs
may be located in a distant region of the graph and the
path factor value may depend on long paths, which must
be traversed. We note that a common practice in prior work
[22], [28], [34], [39] on attack forensics is to do backward
tracking from a TTP matching point to reach an initial compro-
mise point. Unfortunately, this is a computationally expensive
strategy in a real-time setting as the provenance graph might
contain millions of events.

To solve this challenge without backtracking, we use an
incremental matching approach that stores the results of the
previous computations and matches and propagates pointers to
those results along the graph. When a specific TTP, which may
appear as a prerequisite condition in other TTPs, is matched,
we create the corresponding node in the HSG and a pointer to
that node. The pointer is next propagated to all the low-level
entities that have dependencies on the entities of that matched
TTP.

The path factor is similarly computed. In particular, given
a matched TTP represented as a node in the HSG, a
path factor value is incrementally computed for the nodes of
the provenance graph that have dependencies on the entities
of the matched TTP. Assuming N1 as a process generating
an event matching a TTP, path factor(N1, N1) is initially
assigned to 1. Subsequently, when an edge (N1, N2) is added
to the provenance graph, path factor(N1, N2) will be 1 if

N2 is a non-process node or if it is a process with at least one
common ancestor with N1. Otherwise, the path factor value
increases by 1. In cases that an information flow happens from
N2 to N3 while both N2 and N3 already have a dependency
flow from N1, a new version of N3 is constructed, and the
path factor(N1, N3 new) is set to the minimum among the
path factors calculated by both flows. Note that in the
acyclic provenance graph which is built based on this ver-
sioning system, the path factor(N1, N2) never changes once
it is set. Finally, when an event corresponding to a TTP event
is encountered, we can reuse the pointer to the prerequisite
TTPs and the precomputed path factor immediately if they
are available.

An expected bottleneck for this pointer-based correlation
of the two layers (provenance graph and HSG) is the space
overhead and complexity it adds as the provenance graph
grows over time. Our operational observation is that, typically,
a large number of entities point to the same set of TTPs;
This phenomenon is not random and is actually the result of
the propagation of pointers in the process tree, from parent
processes to all their descendants. It is, in fact, rare that new
pointers get added as the analysis proceeds. In general, the key
implementation insight is to maintain an intermediate object
that maps entities of the provenance graph to TTPs of the HSG.
Therefore, each entity in the provenance graph has only one
pointer pointing to the intermediate mapper, and the mapper
object contains the set of pointers.
Noise Filtering and Detection Engines. The Noise Filtering
Engine identifies benign TTP matches so that they can be
excluded from the HSG. It takes as input the normal behavior
model learned on benign runs. This model contains a map of

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100

pu
bl

is
he

d
re

co
rd

s
(m

ill
io

n)

trace duration (%)

Stream 1
Stream 2
Stream 3
Stream 4
Stream 5
Stream 6
Stream 7

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

T
op

ic
 S

iz
e

(M
B

)

trace duration (%)

Stream 1
Stream 2
Stream 3
Stream 4
Stream 5
Stream 6
Stream 7

Fig. 9. (Left): Number (millions) of published records vs. % of trace duration. (Right): Topic Size (MB) vs. % of trace duration.

the TTPs that are matched in benign runs and the threshold on
the number of bytes read from or written to system objects on
these runs. When the policy matching engine matches a new
TTP, the entities and prerequisites of that TTP are searched
in this model. If an entry exists in the model that contains
all the prerequisites and the matched event (having the same
entity names), then the total amount of transferred bytes is
checked against the benign threshold. If the total amount of
bytes transferred is lower than the benign threshold, then
the node corresponding to the matched TTP is filtered out;
otherwise, a node corresponding to it gets added to the HSG.
Finally, the detection engine computes the weighted sums of
the different HSGs and raises alarms when that value surpasses
the detection threshold.

VI. EXPERIMENTAL EVALUATION

Our experimental evaluation is done on red-team vs. blue-
team adversarial engagements organized by a government
agency (specifically, US DARPA). We first evaluated HOLMES
on a dataset that was available to us beforehand (Sections
VI-A,VI-B,VI-C,VI-D). Using this evaluation, we calculate
the optimal threshold value for HOLMES in Section VI-E,
and measure its performance in Section VI-F. Finally, in
Section VI-G, we explored applicability of HOLMES as a real-
world live detection system in a setting that we have no prior
knowledge of when or how red-team is conducting the attacks.
After our live experiment, this dataset has been released in the
public domain [26] to stimulate further research in this area.

Stream
No.

Duration Platform Scenario
No.

Scenario
Name

Attack
Surface

1 0d1h17m Ubuntu 14.04
(64bit)

1 Drive-by
Download

Firefox
42.0

2 2d5h8m Ubuntu 12.04
(64bit)

2 Trojan Firefox 20.0

3 1d7h25m Ubuntu 12.04
(64bit)

3 Trojan Firefox 20.0

4 0d1h39m Windows 7
Pro (64bit)

4 Spyware Firefox
44.0

5 5d5h17m Windows 7
Pro (64bit)

5.1 Eternal
Blue

Vulnerable
SMB

5.2 RAT Firefox
44.0

6 2d5h17m FreeBSD
11.0 (64bit)

6 Web-Shell Backdoored
Nginx

7 8d7h15m FreeBSD
11.0 (64bit)

7.1 RAT Backdoored
Nginx

7.2 Password
Hijacking

Backdoored
Nginx

TABLE 10. Datasets. Streams 5 and 7 contain two independent attack
vectors occurring on the same host.

A. Datasets
Attacks. The datasets we used for evaluation are summarized
in Table 10. This table shows nine APT scenarios from 7
hosts across three OS platforms. There are three scenarios for
each platform. Collectively, the streams cover 20 days’ worth
of audit logs collected using auditd, dtrace, and ETW from
Ubuntu, FreeBSD, and Microsoft Windows, respectively. Each
stream contains kernel audit logs of routine system activities
and attack activities. Attacks constitute less than 0.001% of
the audit data volume. Streams 5 and 7 each contain two
independent APT attacks, while the remaining streams contain
one APT attack each.

In a nutshell, the adversarial goals and activities in the
red team attack scenarios cover those of high-profile APT
campaigns. These include typical APT activities such as
browser-induced drive-by initial compromises, backdoor injec-
tion, privilege escalation, internal reconnaissance, exfiltration
of sensitive assets, and cleanup of attack footprints. In these
attacks, sophisticated attack vectors such as reflective loading,
web-shell capabilities, and in-memory module loading were
used by a red-team to evaluate the robustness of HOLMES
against APT attacks.
Benign data. To build noise reduction models, we used 4 days’
worth of benign audit data streamed from the target hosts.
These programs include browsers (e.g., Firefox), web servers
(e.g., Nginx), and various daemons (e.g., postfix, syslogd).

B. Setup
Before the engagement, each machine is set up with some

vulnerable software that later gets exploited. To further mix
normal and attack logs, the red-team also performed benign
activities on the target hosts in parallel with attacks. Routine
system activities include, but are not limited to, web browsing,
checking email, software upgrading, administrative tasks using
PowerShell (in Windows), running programs that require ad-
ministrative privileges, and so on. HOLMES subscribed to the
7 Kafka topics (one topic per host) to consume audit streams
and perform analysis and detection in real-time. The number of
records published (in millions) with regards to the percentage
growth of the audit trace duration is shown in Fig. 9 (left).
Note that HOLMES consumes as fast as the publishing rate
from the Kafka server. Fig. 9 (right) shows the incremental
growth in the size of records published into each Kafka topic.

We configured HOLMES with TTPs mentioned in Table 8
and set path thres = 3 for prerequisites on TTPs and weight =
(10+ i)/10 for APT stage i, which takes into account slightly
higher weights for later APT stages.

Scenario
No.

Threat Tuple Threat
Score

Highest Benign
Score in Dataset

1 ⟨C,M,−, H,−, H,M⟩ 1163881 61
2 ⟨C,M,−, H,−, H,−⟩ 55342 226
3 ⟨C,M,−, H,−, H,M⟩ 1163881 338
4 ⟨C,M,−, H,−,−,M⟩ 41780 5

5.1 ⟨C,L,−,M,−, H,H⟩ 339504 104
5.2 ⟨C,L,−,−,−,−,M⟩ 608
6 ⟨L,L,H,M,−, H,−⟩ 25162 137

7.1 ⟨C,L,H,H,−, H,M⟩ 4649220 133
7.2 ⟨M,L,H,H,−, H,M⟩ 2650614

TABLE 11. Scores Assigned to Attack Scenarios. L = Low, M =
Moderate, H = High, C = Critical. Note: for each scenario, Highest Benign
Score in Dataset is the highest threat score assigned to benign background
activities streamed during the audit log collection of a host (pre-attack, in

parallel to attack, and post-attack).

C. Results in a Nutshell
Table 11 summarizes the detection of the nine attack

scenarios. The second column shows the threat tuple of each
HSG matched during detection, and the third column shows
the corresponding threat score. The fourth column shows the
highest score among all benign scenarios of the machine on
which the attack scenario is exercised. These benign scenarios
might contain the exact programs in the corresponding attack
scenario.

The highest score assigned to benign HSGs is 338
(Scenario-3), and the lowest score assigned to attack HSGs
is 608 (Scenario-5.2) which is related to an incomplete attack
with no harm done to the system. This shows that HOLMES
has separated attack and benign scenarios into two disjoint
clusters, and makes a clear distinction between them.

The effect of learning noise reduction rules and path factor
are shown in Fig. 12. This plot shows threat score for all be-
nign and attack HSGs which are constructed after analyzing all
the seven streams. These scores are shown under three different
settings: default which both learning and path factor calcula-
tions are enabled, without learning, and without path factor.
It is obvious in the figure that with learning and path factor,
there is a more considerable margin between attack HSGs
and benign ones. Without learning or path factor, we notice
an increase in noise, which leads to false positives or false
negatives. The 10th percentile, first quartile, and median of
default box are all colliding on the bottom line of this box
(score= 2.1). This means that more than 50% of threat scores
are 2.1, which is the result of having many HSGs with only
one low severity Untrusted Read TTP.

100

101

102

103

104

105

106

107

108

default w/o learning w/o path_factor

T
hr

ea
t S

co
re

benign
attack

Fig. 12. Effects of Learning and path factor on Noise Reduction. Box covers
from first to third quartiles while a bar in the middle indicates median, and
whisker is extended from 10th to 90th percentile.

APT Stage: Establish Foothold

APT Stage: Internal Recon

 APT Stage: Cleanup

BA

B

Untrusted Read

Make File Exec

D A C&C
Communication

E F

Sensitive
Command

Sensitive
Command

Sensitive Read
EASensitive

Leak

EC

APT Stage: Initial Compromise

E H

E

J

I

E

E G

APT Stage: Exfiltration

Untrusted
File Rm

LL

H

H

H

H

H

M
H

M

C

DUntrusted
File Exec

C

C

D E
M

Shell
Exec

Sensitive
Command

Sensitive
Command

chmod
777

recv

exec

exec

send

fork

fork

fork

unlink

send

fork

read

Fig. 13. HSG of Scenario-1 (Drive-by Download). Notations: A= Untrusted
External Address; B= Firefox; C= Malicious dropped file (net); D= RAT
process; E= bash; F= whoami; G= uname; I= netstat; J= company secret.txt;

D. Attack Scenarios
We now describe an additional attack scenario detected by

HOLMES. For reasons of space, we include details of the rest
of the scenarios and the related figures in the appendix. We
note that Scenario-7.2 is discussed in section II and a portion
of its provenance graph and HSG are shown in Fig.s 2 and 5,
respectively.
Scenario-1: Drive-by Download. In this attack scenario (see
Fig. 13), the user visits a malicious website with a vulnerable
Firefox browser. As a result, a file named net is dropped
and executed on the victim’s host. This file, after execution,
connects to a C&C server, and a reverse shell is provided
to the attacker. The attacker then launches a shell prompt
and executes commands such as hostname, whoami, ifconfig,
netstat, and uname. Finally, the malicious executable exfiltrates
information to the IP address of the C&C server and then the
attacker removes the dropped malicious file.

As can be seen from Fig. 13, in the Initial Compromise
APT stage, an untrusted file is executed, which matches a TTP

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

100 101 102 103 104 105 106 107

R
at

e

Threshold

precision
recall

F-score

Fig. 14. Precision, Recall, and F-score of attack detection by varying the
threshold value.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90 100

P
ro

v.
 G

ra
ph

 S
iz

e
(1

00
0

ed
ge

)

consumed records (%)

Stream 1
Stream 2
Stream 3
Stream 4
Stream 5
Stream 6
Stream 7

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90 100

H
S

G
 S

iz
e

(e
dg

e)

consumed records (%)

Stream 1
Stream 2
Stream 3
Stream 4
Stream 5
Stream 6
Stream 7

Fig. 15. (Left): Provenance graph growth vs. consumed records. (Right): HSG growth vs. consumed records.

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

(M
B

)

consumed records (%)

Stream 1
Stream 2
Stream 3
Stream 4
Stream 5
Stream 6
Stream 7

 1

 4

 16

 64

 256

 1024

 4096

 1 4 16 64 256 1024

N
um

be
r

of
 D

ay
s

Number of Hosts

Stream 1
Stream 2
Stream 3
Stream 4
Stream 5
Stream 6
Stream 7

Fig. 16. (Left): Memory footprint (MB) vs. % of records consumed. (Right): Number of Days vs. extrapolated number of hosts that can be handled by HOLMES
in respect to Memory consumption

with the critical severity level. The final threat tuple for this
graph looks like ⟨C,M,−, H,−, H,M⟩ for all APT stages
(see Table 11). Consequently, the converted quantitative values
are ⟨10, 6, 1, 8, 1, 8, 6⟩, which results in a threat score equal to
1163881.

E. Finding the Optimal Threshold Value
To determine the optimal threshold value, we measured the

precision and recall by varying threshold values as shown in
Fig. 14. F-score, the harmonic mean of precision and recall,
is maximum at the interval [338.25, 608.26], which is the
range from the maximum score of benign subgraphs to the
minimum score of attack subgraphs. Therefore, by choosing
any threshold in this range, HOLMES makes a clear distinction
between attack and benign subgraphs in the tested datasets,
with accuracy and recall equal to 1.

To find the optimal value, we first transform the threat
scores to a linear scale by getting their nth root, where n
equals to

∑︁7
i=1 wi. The transformed value shows the average

contribution of each APT step to the overall threat score, and
it is a value in the range [1,10]. As all our tested datasets so
far belong to single hosts, we exclude the weight of lateral
movement step (w5), which leads to n = 8.3. After getting
the nth root, the interval of maximum F-score would change
to [2.01, 2.16]. Finally, we consider the middle of this range
(2.09) as the average severity that each APT step is allowed
to contribute to the overall threat score, in a benign setting.

F. Performance
Graph Size. Fig. 15 shows the comparison of the growth
trends for provenance graph in thousands of edges (left) and
the HSG in the number of edges (right). The graph size ratio
measured in edges is 1875:1, i.e., an 1875-fold reduction is

achieved in the process of mapping from the provenance graph
to the HSG.
Memory Use. HOLMES was tested on an 8 core CPU with
a 2.5GHz speed each and a 150GB of RAM. Fig. 16 (left)
shows the memory consumption of HOLMES with the number
of audit records. It shows a nearly linear growth in memory
consumption since our system operates on audit records in-
memory. Fig. 16 (right) shows extrapolation of how many hosts
HOLMES can support (regarding memory consumption) with
scalability to an enterprise of hundreds of hosts. It is evident
that as the number of hosts is increased, the duration that
we can keep the full provenance graph in memory decreases.
Notice that both x and y-axes are in log-2 scale.
Runtime. While HOLMES consumes and analyzes audit
records from a Kafka server as the records become available in
real-time, to stress-test its performance, we assumed that all the
audit records were available at once. Then, we measured the
CPU time for consuming the records, building the provenance
graph, constructing the HSG, and detecting APTs. We define
“CPU Utilization” as the ratio of required CPU time to
the total duration of a scenario. In Fig. 17, the bars show
CPU Utilization for each scenario, and the line shows an
extrapolation of how many hosts (of comparable audit trace
durations with the scenarios) HOLMES can support if CPU
was the limiting factor. This chart shows that our single CPU
can support an enterprise with hundreds of hosts.

G. Live Experiment
To explore how HOLMES would respond to attacks embed-

ded within a predominantly benign stream of events, we eval-
uated it as a live detection system. This experiment spanned 2
weeks, and during this period, audit logs of multiple systems,
running Windows, Linux, or BSD, were collected and analyzed

in real-time by HOLMES. In this experiment, an enterprise is
simulated with security-critical services such as a web server,
E-mail server, SSH server, and an SMB server for providing
shared access to files. Similar to the previous datasets, an
extensive set of normal activities are conducted during this
experiment, and red-team carried out a series of attacks. How-
ever, this time, we configured all the parameters beforehand
and had no prior knowledge of the attacks planned by the red-
team. Moreover, we had cross host internal connectivity, which
makes APT stage 5 (Move laterally) a possible move for
attackers. To this end, we set the detection threshold equal to
2.09

∑︁7
i=1 wi = 2.099.8 = 1378. Fig. 18 shows the cumulative

distribution function for attack and benign HSGs that HOLMES
constructs during this experiment. Note that there are some
points representing threat score of benign HSGs, that have
bypassed the threshold. We explain them as false positives in
the following and then discuss some potential false negative
scenarios.
False Positives. We noticed some false alarms because of SSH
connections made by system administrators. These connections
come from untrusted IP addresses, and subsequently, HOLMES
aggregates the severity scores of all the actions issued by the
system administrator via an SSH connection. In some cases,
the threat score bypasses our threshold. The solution is to
define a custom tagging policy for servers such as ssh that
perform authentication so that the children of such servers
aren’t marked as untrusted [22].

To further evaluate our system for false alarms, we also
evaluated it on another two weeks benign activity period.
During this time, a diverse set of normal activities were
conducted, (including software updates and upgrades through
package managers) and HOLMES generated no false alarms.

Based on our results, we claim that the false positive of
HOLMES is at an acceptable rate considering the benefits it
adds to an enterprise. Security analysts can manually check the
raised alarms and neutralize HSGs that are falsely constructed.
False Negatives. Although we did not observe any false
negatives during our experiments, here we discuss potential
scenarios HOLMES might miss.

Implicit causality between TTPs: For information flow that
avoids system calls, HOLMES have no direct visibility to the
causal relations between system entities. However, if the rest
of the attack unfolds with visibility through system calls,
HOLMES will still partially reconstruct the attack.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

Stream 1

Stream 2

Stream 3

Stream 4

Stream 5

Stream 6

Stream 7

 0

 500

 1000

 1500

 2000

C
P

U
 U

til
iz

at
io

n
R

at
io

E
xt

ra
po

la
te

d
N

um
be

r o
f H

os
ts

Fig. 17. CPU Utilization and the extrapolated number of hosts that can be
handled by HOLMES in respect to CPU time.

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106

C
D

F

Threat Score

Attack
Benign

Threshold

Fig. 18. Cumulative distribution function for attack vs. benign HSGs

Multiple entry points: As an active evasion technique,
attackers might exploit multiple entry points that result in
detached subgraphs. HOLMES follows every single entry point
until our detection threshold is satisfied and correlates TTPs
from disjoint subgraphs when there is information flow be-
tween them. Nevertheless, some additional analyses might be
needed to completely correlate attack steps, which are coming
from different entry points and have no information flow in
between.

VII. RELATED WORK

HOLMES makes contributions to the problems of real-time
alarm generation, alert correlation, and scenario reconstruction.
A central idea in HOLMES is the construction and use of a
high-level attack scenario graph as the underlying basis for all
the above problems. Below, we discuss related work in all of
the above areas.
Alarm Generation. Host-based intrusion detection ap-
proaches fall under three classes: (1) misuse-based [32], [47],
which detect behavior associated with known attacks; (2)
anomaly-based [13], [16], [17], [31], [35], [40], [49], [51],
which learn a model of benign behavior and detect devia-
tions from it; and (3) specification-based [29], [52], which
detect attacks based on policies specified by experts. While
the techniques of the first class cannot deal with unknown
attacks, those of the second class can produce many false
positives. Specification-based techniques can reduce false pos-
itives, but they require application-specific policies that are
time-consuming to develop and/or rely on expert knowledge.
At a superficial level, the use of TTPs in HOLMES can be seen
as an instance of misuse detection. However, our approach
goes beyond classic misuse detection [32], [47] in the use
of prerequisite-consequence patterns that are matched when
there exist information flow dependencies between the entities
involved in the matched TTP patterns.
Alarm Correlation. Historically, IDSs have tended to produce
alerts that are too numerous and low-level for human operators.
Techniques needed to be developed to summarize these low-
level alerts and greatly reduce their volume.

Several approaches use alarm correlation to perform de-
tection by clustering similar alarms and by identifying causal
relationships between alarms [15], [42], [43], [48], [54]. For
instance, BotHunter [21] employs an anomaly-based approach
to correlate dialog between internal and external hosts in a
network. HERCULE [45] uses community discovery techniques
to correlate attack steps that may be dispersed across multiple

logs. Moreover, industry uses similar approaches for building
SIEMs [6], [7], [10] for alert correlation and enforcement
based on logs from disparate data sources. These approaches
rely on logs generated by third-party applications running in
user-space. Moreover, alert correlation based on statistical fea-
tures like alert timestamps does not help in precise detection of
multi-stage APT attacks as they usually span a long duration.
In contrast to these approaches, HOLMES builds on information
flows that exist between various attack steps for the purpose
of alert correlation. The use of kernel audit data in this context
was first pursued in [55]. However, differently from HOLMES,
that work is purely misuse-based, and its focus is on using the
correlation between events to detect steps of an attack that are
missed by an IDS. HOLMES uses the same kernel audit data but
pursues a different approach based on building a main-memory
dependency graph with low memory footprint, followed by
the derivation of an HSG based on the high-level specification
of TTPs to raise alerts, and finally correlate alerts based on
the information flow between them. An additional line of
work on alert correlation relies on the proximity of alerts in
time [30]. HOLMES, in contrast, relies on information flow
and causality connections to correlate alerts and is therefore
capable of detecting even attacks where the steps are executed
very slowly.
Scenario Reconstruction. A large number of research efforts
have been focused on generation and use of system-call level
logs in forensic analysis, investigation and recovery [12], [18]–
[20], [27], [28], [34], [36]–[39], [46], [53]. Most forensic
analysis approaches trace back from a given compromise event
to determine the causes of that compromise. Among these,
BEEP [34], ProTracer [39], and MPI [38] use training and code
instrumentation and annotations to divide process executions
into smaller units, to address dependency explosion and pro-
vide better forensic analysis. PrioTracker [36] performs timely
causality analysis by quantifying the notion of event rareness
to prioritize the investigation of abnormal causal dependencies.
In contrast, HOLMES uses system event traces to perform real-
time detection, with integrated forensics capabilities in the
detection framework, in the form of high-level attack steps,
without requiring instrumentation.

Recent studies [22], [44], [50] have used system-call level
logs for real-time analytics. SLEUTH [22] presents tag-based
techniques for attack detection and in-situ forensics. HOLMES
makes several significant advances over SLEUTH. First, it
shows how to address the dependence explosion problem by
using the concept of minimum ancestral cover and developing
an efficient algorithm for its incremental computation. Second,
SLEUTH’s scenario graphs are at the same level of abstraction
as the provenance graph, which can be too low-level for
many analysts, and moreover, lacks the kind of actionable
information in HSGs. Third, SLEUTH’s graphs can become
too large on long-running attacks, whereas HOLMES generates
compact HSGs by using noise reduction and prioritization
techniques.
Attack Granularity. Sometimes, the coarse granularity of
audit logs may limit reasoning about information flows. For
example, if a process with a previously loaded sensitive file
is compromised, the attacker can search for sensitive content
inside its memory region without using system calls. However,
when such information is exfiltrated, HOLMES correlates the
exfiltration with the other actions of that process (i.e., the

sensitive file read) and eventually raises an exception. Further-
more, HOLMES can be adapted to take advantage of additional
works, which track information flows at finer granularities,
either by instrumenting additional instructions [11], [25] or
by decoupling taint tracking [14], [24], [33], [41]. Such fine-
grained information flow tracking can provide much more
precise provenance information at the cost of performance
overheads.

VIII. CONCLUSION

We present HOLMES, a real-time APT detection system
that correlates tactics, techniques, and procedures that might be
used to carry out each APT stage. HOLMES generates a high-
level graph that summarizes the attacker’s steps in real-time.
We evaluate HOLMES against nine real-world APT threats and
deploy it as a real-time intrusion detection tool. The results
show that HOLMES successfully detects APT campaigns with
high precision and low false alarm rates.

ACKNOWLEDGMENTS

We thank Guofei Gu for the helpful review comments
and suggestions to the manuscript. This work was primarily
supported by DARPA (under AFOSR contract FA8650-15-
C-7561) and in part by SPAWAR (N6600118C4035), NSF
(CNS-1319137, CNS-1514472, and DGE-1069311), and ONR
(N00014-15-1-2378, and N00014-17-1-2891). The views,
opinions, and/or findings expressed are those of the authors
and should not be interpreted as representing the official views
or policies of the Department of Defense, National Science
Foundation or the U.S. Government.

REFERENCES

[1] About the metasploit meterpreter. https://www.offensive-security.com/
metasploit-unleashed/about-meterpreter/.

[2] Adversarial tactics, techniques and common knowledge. https://attack.
mitre.org/wiki/Main Page.

[3] APT Notes. https://github.com/kbandla/APTnotes. Accessed: 2016-11-
10.

[4] CAPEC: Common Attack Pattern Enumeration and Classification. https:
//capec.mitre.org/index.html. Accessed: 2018-02-27.

[5] Common vulnerability scoring system v3.0: Specification document.
https://www.first.org/cvss/specification-document.

[6] IBM QRadar SIEM. https://www.ibm.com/us-en/marketplace/
ibm-qradar-siem.

[7] Logrhythm, the security intelligence company. https://logrhythm.com/.
[8] MANDIANT: Exposing One of China’s Cyber Espionage Units.

https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/
mandiant-apt1-report.pdf. Accessed: 2016-11-10.

[9] [ms-smb2]: Server message block (smb) protocol versions 2 and 3.
https://msdn.microsoft.com/en-us/library/cc246231.aspx.

[10] SIEM, AIOps, Application Management, Log Management, Machine
Learning, and Compliance. https://www.splunk.com/.

[11] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. SIGPLAN Not., 2014.

[12] Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas Moyer.
Trustworthy whole-system provenance for the linux kernel. In USENIX
Security, 2015.

[13] Konstantin Berlin, David Slater, and Joshua Saxe. Malicious behavior
detection using windows audit logs. In Proceedings of the 8th ACM
Workshop on Artificial Intelligence and Security, 2015.

https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/
https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/
https://attack.mitre.org/wiki/Main_Page
https://attack.mitre.org/wiki/Main_Page
https://github.com/kbandla/APTnotes
https://capec.mitre.org/index.html
https://capec.mitre.org/index.html
https://www.first.org/cvss/specification-document
https://www.ibm.com/us-en/marketplace/ibm-qradar-siem
https://www.ibm.com/us-en/marketplace/ibm-qradar-siem
https://logrhythm.com/
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://msdn.microsoft.com/en-us/library/cc246231.aspx
https://www.splunk.com/

[14] Jim Chow, Tal Garfinkel, and Peter M Chen. Decoupling dynamic
program analysis from execution in virtual environments. In USENIX
2008 Annual Technical Conference on Annual Technical Conference,
pages 1–14, 2008.

[15] Hervé Debar and Andreas Wespi. Aggregation and correlation of
intrusion-detection alerts. In RAID. Springer, 2001.

[16] Stephanie Forrest, Steven Hofmeyr, Aniln Somayaji, Thomas Longstaff,
et al. A sense of self for unix processes. In S&P. IEEE, 1996.

[17] Debin Gao, Michael K Reiter, and Dawn Song. Gray-box extraction of
execution graphs for anomaly detection. In CCS. ACM, 2004.

[18] Ashish Gehani and Dawood Tariq. Spade: support for provenance
auditing in distributed environments. In Proceedings of the 13th
International Middleware Conference. Springer, 2012.

[19] A. Goel, W. C. Feng, D. Maier, W. C. Feng, and J. Walpole. Forensix:
a robust, high-performance reconstruction system. In 25th IEEE In-
ternational Conference on Distributed Computing Systems Workshops,
2005.

[20] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal de Lara.
The taser intrusion recovery system. SIGOPS Oper. Syst. Rev., 2005.

[21] Guofei Gu, Phillip Porras, Vinod Yegneswaran, and Martin Fong.
Bothunter: Detecting malware infection through ids-driven dialog cor-
relation. In 16th USENIX Security Symposium (USENIX Security 07).
USENIX Association, 2007.

[22] Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang, Birhanu Eshete,
Rigel Gjomemo, R. Sekar, Scott Stoller, and V.N. Venkatakrishnan.
SLEUTH: Real-time attack scenario reconstruction from COTS audit
data. In 26th USENIX Security Symposium (USENIX Security 17), pages
487–504, Vancouver, BC, 2017. USENIX Association.

[23] Md Nahid Hossain, Junao Wang, R. Sekar, and Scott Stoller. Depen-
dence preserving data compaction for scalable forensic analysis. In
USENIX Security Symposium. USENIX Association, 2018.

[24] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia Fazzini,
Taesoo Kim, Alessandro Orso, and Wenke Lee. Rain: Refinable attack
investigation with on-demand inter-process information flow tracking.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 377–390. ACM, 2017.

[25] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Ange-
los D. Keromytis. Libdft: Practical Dynamic Data Flow Tracking for
Commodity Systems. SIGPLAN Not., 2012.

[26] Angelos D. Keromytis. Transparent computing engagement 3 data
release. https://github.com/darpa-i2o/Transparent-Computing, 2018.

[27] Samuel T King and Peter M Chen. Backtracking intrusions. In SOSP.
ACM, 2003.

[28] Samuel T King, Zhuoqing Morley Mao, Dominic G Lucchetti, and
Peter M Chen. Enriching intrusion alerts through multi-host causality.
In NDSS, 2005.

[29] Calvin Ko, Manfred Ruschitzka, and Karl Levitt. Execution monitoring
of security-critical programs in distributed systems: A specification-
based approach. In S&P. IEEE, 1997.

[30] Christopher Kruegel, Fredrik Valeur, and Giovanni Vigna. Intrusion de-
tection and correlation: challenges and solutions, volume 14. Springer
Science & Business Media, 2004.

[31] Christopher Kruegel and Giovanni Vigna. Anomaly detection of web-
based attacks. In CCS. ACM, 2003.

[32] Sandeep Kumar. Classification and detection of computer intrusions.
PhD thesis, PhD thesis, Purdue University, 1995.

[33] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-
Chuan Lee, Shiqing Ma, Xiangyu Zhang, Dongyan Xu, Somesh Jha,
Gabriela Ciocarlie, et al. Mci: Modeling-based causality inference in
audit logging for attack investigation. In Proc. of the 25th Network and
Distributed System Security Symposium (NDSS’18), 2018.

[34] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accuracy
attack provenance via binary-based execution partition. In NDSS, 2013.

[35] Wenke Lee, Salvatore J Stolfo, and Kui W Mok. A data mining
framework for building intrusion detection models. In S&P. IEEE,
1999.

[36] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu
Wu, Junghwan Rhee, and Prateek Mittal. Towards a timely causality

analysis for enterprise security. In Network and Distributed Systems
Security Symposium, 2018.

[37] Sadegh M. Milajerdi, Birhanu Eshete, Rigel Gjomemo, and V.N.
Venkatakrishnan. Propatrol: Attack investigation via extracted high-
level tasks. In International Conference on Information Systems
Security. Springer, 2018.

[38] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang,
and Dongyan Xu. Mpi: Multiple perspective attack investigation with
semantics aware execution partitioning. In 26th {USENIX} Security
Symposium ({USENIX} Security 17), pages 1111–1128, 2017.

[39] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. ProTracer: Towards
practical provenance tracing by alternating between logging and taint-
ing. In NDSS, 2016.

[40] Emaad Manzoor, Sadegh M Milajerdi, and Leman Akoglu. Fast
memory-efficient anomaly detection in streaming heterogeneous graphs.
In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1035–1044. ACM, 2016.

[41] Jiang Ming, Dinghao Wu, Jun Wang, Gaoyao Xiao, and Peng Liu.
Straighttaint: Decoupled offline symbolic taint analysis. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, pages 308–319. ACM, 2016.

[42] Peng Ning and Dingbang Xu. Learning attack strategies from intrusion
alerts. In CCS. ACM, 2003.

[43] Steven Noel, Eric Robertson, and Sushil Jajodia. Correlating intrusion
events and building attack scenarios through attack graph distances. In
ACSAC. IEEE, 2004.

[44] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier
Hermant, David Eyers, Jean Bacon, and Margo Seltzer. Runtime
analysis of whole-system provenance. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’18, pages 1601–1616, New York, NY, USA, 2018. ACM.

[45] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei
Wang, Zhiwei Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. Her-
cule: Attack story reconstruction via community discovery on correlated
log graph. In Proceedings of the 32Nd Annual Conference on Computer
Security Applications, pages 583–595. ACM, 2016.

[46] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin
Butler. Hi-fi: collecting high-fidelity whole-system provenance. In
ACSAC. ACM, 2012.

[47] Phillip A Porras and Richard A Kemmerer. Penetration state transition
analysis: A rule-based intrusion detection approach. In Computer
Security Applications Conference, 1992. Proceedings., Eighth Annual,
pages 220–229. IEEE, 1992.

[48] Xinzhou Qin and Wenke Lee. Statistical causality analysis of infosec
alert data. In RAID. Springer, 2003.

[49] R Sekar, Mugdha Bendre, Dinakar Dhurjati, and Pradeep Bollineni.
A fast automaton-based method for detecting anomalous program
behaviors. In S&P. IEEE, 2001.

[50] Xiaokui Shu, Frederico Araujo, Douglas L. Schales, Marc Ph. Stoecklin,
Jiyong Jang, Heqing Huang, and Josyula R. Rao. Threat intelligence
computing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, pages 1883–1898,
New York, NY, USA, 2018. ACM.

[51] Xiaokui Shu, Danfeng Yao, and Naren Ramakrishnan. Unearthing
stealthy program attacks buried in extremely long execution paths. In
CCS. ACM, 2015.

[52] Prem Uppuluri and R Sekar. Experiences with specification-based
intrusion detection. In RAID. Springer, 2001.

[53] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. Fear and
logging in the internet of things. In Network and Distributed Systems
Symposium, 2018.

[54] Wei Wang and Thomas E Daniels. A graph based approach toward
network forensics analysis. Transactions on Information and System
Security (TISSEC), 2008.

[55] Yan Zhai, Peng Ning, and Jun Xu. Integrating ids alert correlation
and os-level dependency tracking. In International Conference on
Intelligence and Security Informatics, pages 272–284. Springer, 2006.

https://github.com/darpa-i2o/Transparent-Computing

APPENDIX

Scenario-2: Trojan. This attack scenario (Fig. 19) begins
with a user downloading a malicious file. The user then
executes the file. The execution results in a C&C communi-
cation channel with the attacker’s machine. The attacker then
launches a shell and executes some information gathering com-
mands such as hostname, whoami, ifconfig, netstat, and uname.
Finally, the attacker exfiltrates some secret files. Note that this
attack scenario is similar to the Drive-by Download scenario
discussed earlier except that the initial compromise happens
via a program that the user downloads. Another important
insight from the detection results of this scenario is that it
was missing important events that are relevant to the C&C
communication (connect) and final cleanup (unlink) activity
of the attack. Even with such incomplete data, HOLMES was
able to flag this as an APT since the Threat score surpassed
the threshold.

APT Stage: Establish Foothold

APT Stage: Internal Recon

BAUntrusted Read

DAC&C
Communication

E F Sensitive
Command

Sensitive Read

E A Sensitive
Leak

APT Stage: Initial Compromise

E H

IE

E G

APT Stage: Exfiltration

L

L
H

H

H

M

H

DUntrusted
File Exec

C

C

D E
M

Shell
Exec

Sensitive
Command

Sensitive
Command

recv

exec

exec

send

fork

fork

fork

send

read

Fig. 19. HSG of Scenario-2. Notations: A= Untrusted External Address; B=
Firefox; C= Trojan File (diff); D= Executed Trojan Process; E= /bin/dash; F=
ifconfig; G= hostname; H= netstat; I= password.txt;

Scenario-3: Trojan. In this attack (Fig. 20), a user is
convinced to download a malicious Trojan program (texteditor)
via Firefox. Next, the user moves the executable file to another
directory, changes its name (tedit), and finally executes it.
After the execution, a C&C channel is created, and a reverse
shell is provided to the attacker. The attacker launches a shell
prompt and executes information gathering commands like
hostname, whoami, ifconfig, and netstat. The attacker then
deploys another malicious file, exfiltrates information, and
finally cleans up his footprints. This scenario differs from
Trojan-1 because it has an additional activity that remotely
deploys a new malicious executable.

Scenario-4: Spyware. This attack (Fig. 21) begins when
the red-team compromises Firefox. The user on the victim
host then loaded a hijacked remote URL. Next, a shellcode
from the URL is executed to connect to a C&C server from
which it downloaded a malicious binary, wrote it to disk, and
executed it. The execution of the malicious binary results in a
reverse shell channel for C&C communications. The attacker
then ran the shell command, resulting in a new cmd.exe
process and a new connection to the C&C server. The operator
ran reconnaissance commands (hostname, whoami, ipconfig,
netstat, uname). The attacker then exfiltrated the password.txt

APT Stage: Establish Foothold

APT Stage: Internal Recon
 APT Stage: Cleanup

D A C&C
Communication

H E Sensitive
Read

GC

APT Stage: Initial Compromise

J E

I E

Untrusted
File Rm

L

M

H

H

M

D E
M

Shell
Exec

Sensitive
Command

Sensitive
Command

fork

send

Read

fork

fork

unlink

A BUntrusted Read

L

DUntrusted
File Exec

C

C

recv

exec

GUntrusted
File Exec

C

F exec

G A
L

send

GFUntrusted
File Rm

M

unlink

GASensitive
Leak

APT Stage: Exfiltration
H

send
L E

K E
H

H

Sensitive
Command

Sensitive
Command

fork

fork

C&C
Communication

Fig. 20. HSG of Scenario-3. Notations: A= Untrusted External Address; B=
Firefox; C= Trojan File (tedit); D= Executed Trojan Process; E= /bin/dash;
F= Malicious Executable file (py); G= Executed Malicious Process; H=
password.txt; I= whoami; J= ifconfig; K= netstat; L= uname;

file and then deleted it. Finally, the malicious binary drops a
batch file that deletes attack footprints, including the malicious
binary itself.

APT Stage: Establish Foothold

APT Stage: Internal Recon

 APT Stage: Cleanup

D A C&C
Communication

H E Sensitive
Command

EC

APT Stage: Initial Compromise

J E

I E

Untrusted
File Rm

L

H

H

H

M

D E
M

Shell
Exec

Sensitive
Command

Sensitive
Command

fork

send

fork

fork

fork

unlink

A BUntrusted Read

L

DUntrusted
File Exec

C

C

recv

exec

GUntrusted
File Exec

C

F exec

G E
M

Shell
Execfork

EFUntrusted
File Rm

M

unlink

Fig. 21. HSG of Scenario-4. Notations: A= Untrusted External Address; B=
Firefox.exe; C= Malicious dropped file (procman.exe); D= Executed Malware
Process; E= cmd.exe; F= Malicious Batch file (burnout.bat); G= Executed
Batch Process; H= hostname; I= whoami; J= ipconfig;

Scenario-5.1: Eternal Blue. This APT exploits vulnerable
SMB [9] services in Windows. In this scenario (see Fig.

22), Meterpreter [1] was used with the recently implemented
Eternal Blue exploit and Double Pulsar reflective loading
capabilities. The attacker exploited the listening SMB service
on port 445 of the target. A shellcode was then down-
loaded and executed on the target. The shellcode performed
process injection into the lsass.exe process. lsass.exe then
launched rundll32.exe, which connected to the C&C server
and downloaded-and-executed Meterpreter. Next, Meterpreter
exfiltrated a sensitive file and cleared Windows event logs.

APT Stage: Establish Foothold

APT Stage: Internal Recon

 APT Stage: Cleanup

BA

B

Untrusted Read

Untrusted Inject

B A C&C
Communication

Secret Read

C A Secret
Leak

CE

APT Stage: Initial Compromise

DC

APT Stage: Exfiltration
Clear Logs

LL

C

M

H

H

C

C

L

C A
L

recv

recv

send

send

unlink

send

read

A

C&C
Communication

Untrusted Read

inject

Fig. 22. HSG of Scenario-5.1 (Eternal Blue). Notations: A= Untrusted
External Address; B= lsass.exe; C= rundll32.exe; D= password.txt; E= Winevt
logs;

Scenario-5.2: RAT. In this attack (Fig. 23), Firefox nav-
igates to a malicious website and gets exploited. Then, a
Remote Access Trojan (RAT) is uploaded to the victim’s
machine and executed. After execution, a connection to the
C&C server has happened, and the malicious RAT is deleted.
This attack scenario is incomplete, and no harm is done.

APT Stage: Establish Foothold

 APT Stage: Cleanup

D A C&C
Communication

BC

APT Stage: Initial Compromise

Untrusted
File Rm

L

M

send

unlink

A BUntrusted Read

L

DUntrusted
File Exec

C

C

recv

exec

Fig. 23. HSG of Scenario-5.2. Notations: A= Untrusted External Address;
B= Firefox.exe; C= Malicious dropped file (spd.exe); D= Executed Malware
Process;

Scenario-6: Web-Shell. The assumption in this attack (Fig.
24) is that Nginx web server has a vulnerability that gives
the attacker access to run arbitrary commands on the server
(similar to Shellshock bug). As a result, the attacker exfiltrates
a sensitive file. The important insight here is that by capturing
sufficiently strong APT signals of an ongoing attack through

APT Stage: Privilege Escalation

APT Stage: Establish Foothold

APT Stage: Internal Recon

BAUntrusted Read

B A

CB

C&C
Communication

Switch SU

BASensitive
Leak

APT Stage: Initial Compromise

APT Stage: Exfiltration

L

L

H

H

BDSensitive Read
M

recv

Read

send

setUid

send

Fig. 24. HSG of Scenario-6. Notations: A= Untrusted External Address; B=
Nginx; C= Root userID; D= Passwd.txt;

TTP matching, HOLMES accurately flags an APT, even when
a critical APT step is missing (initial compromise in this case).

Scenario-7.1: RAT. A vulnerable Nginx server was in-
stalled during the setup period. The attacker exploits the
Nginx server by throwing a malicious shell-code. Nginx runs
the malicious shell-code which results in the download and
execution of a malicious RAT. Next, RAT connects to a
C&C server and gives administrative privileges to the remote
attacker. The attacker remotely executes some commands. It
then deploys some malicious Python scripts and exfiltrates
information. The HSG of this attack is shown in Fig. 25.

APT Stage: Privilege Escalation

APT Stage: Establish Foothold

APT Stage: Internal Recon

APT Stage: Cleanup

BA

C B

Untrusted Read

Make Mem Exec

B A

DB

C&C
Communication

Switch SU

FGSensitive
Command

F A Sensitive
Leak

BE

Sensitive Read

APT Stage: Initial Compromise

FH
APT Stage: Exfiltration

Untrusted
File Rm

L
L

M

H

H

M

H

M

FEUntrusted Exec
C

recv

mprotect
777

exec

send

setUid

unlink

send

read

fork

Fig. 25. HSG of Scenario-7.1. Notations: A= Untrusted External Address;
B= Nginx; C= Memory; D= Root userID; E= Malicious dropped file (py); F=
Executed Malware Process; G= uname; H= /etc/shadow;

	Introduction
	A Running Example
	Approach Overview
	System Design
	Data Collection and Representation
	TTP Specification
	HSG Construction
	Avoiding Spurious Dependencies
	Noise Reduction
	Signal Correlation and Detection

	Implementation
	Experimental Evaluation
	Datasets
	Setup
	Results in a Nutshell
	Attack Scenarios
	Finding the Optimal Threshold Value
	Performance
	Live Experiment

	Related Work
	Conclusion
	References

