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Abstract

Given a domain Q C R with positive and finite Lebesgue measure and a discrete set A C R?,
we say that (Q, A) is a frame spectral pair if the set of exponential functions £(A) := {e2™*® .
X € A} is a frame for L?(Q). Special cases of frames include Riesz bases and orthogonal bases.
In the finite setting Z%;, d, N > 1, a frame spectral pair can be similarly defined. We show how
to construct and obtain new classes of frame spectral pairs in R? by “adding” frame spectral
pairs in R? and Z%. Our construction unifies the well-known examples of exponential frames
for the union of cubes with equal volumes. We also remark on the link between the spectral
property of a domain and sampling theory.

1 Introduction

Let Q C R? be a set with positive and finite Lebesgue measure, 0 < |Q| < oo, and let A C R? be
a discrete and countable set. Let £q(A) denote the set of exponentials, Eq(A) = {ey : @ — St |
ex(z) := ¥ A} For simplicity, we will drop the subscript  in the sequel and write £(A). The
set of exponentials £(A) is a frame for L?(Q) when there exist finite constants ¢ > 0 and C > 0
such that for any u € L?(Q)

clullfz) < D Hu,ex)® < CllulZz(q)- (1)
AEA

The constants ¢ and C' are called lower and upper frame constants (see the classical references [4, 3]
for the basic properties of frames). The set of exponentials £(A) is a Riesz sequence in L2(€2), if
there are positive constants ¢ > 0 and C' > 0 such that for any finite set of scalars {cx}rer (F C A
finite), the following inequalities hold:

ey e’ <

A€l

<C Z leal?. (2)

AEF

E CAEN

AEF

When only the right inequality in (2) holds, then £(A) is called a Bessel sequence. A Riesz sequence
is called a Riesz basis if it is complete. Any Riesz basis is a frame, while the converse is not always
true; see e.g. [4].

*The research of the first author was supported partially by the NSF grant DMS-1720306, and the research of
the second author was supported by an PSC-CUNY award and William P. Kelly Research Fellowship Award.



Definition 1. Given a set Q C R? and discrete and countable set A C R, we term (9, A) a frame
spectral pair when the system of exponentials E(A) is a frame for L*(Q).

For a given frame pair, when the frame is a Riesz basis, we shall call the pair a Riesz spectral
pair. When it is an orthogonal basis, we shall simply call the pair a spectral pair. Here, we aim to
study the following question:

Question A. Given a frame spectral pair in R, how can one construct a new frame spectral pair
in R, such that the frame is a Riesz basis or an orthogonal basis?

The study of frame spectral pairs in this paper is motivated by the interpolation formula for
bandlimited signals with structured spectra and the link between spectral properties of a domain
to its sampling properties.

1.1 Main contributions

To address Question A., the simplest and perhaps the most natural way of constructing a new frame
spectral pair in R¢ is by adding two frame spectral pairs in both finite and continuous settings in
‘an appropriate sense’. We shall answer the question in special cases.

Our main results are following:

Theorem 1. Suppose that Q1 C R? is a set with positive and finite Lebesgue measure, A; C R
1s a discrete and countable set, and N > 1 is an integer. Let A be any subset of Z‘Iiv for which the
translates of Q1 by A are disjoint, that is,

2 +anQy +d|=0,Va,a’ € A,a #d'. (3)
For a subset J C 7%, with §J > $A, define
9191+A, A:A1+J/N, (4)

where the sum is taken to be Minkowski addition. If (Q1, A1) is frame spectral pair in R with frame
constants o, B and (A, J) is a frame spectral pair in Zﬁl\, with frame constants ¢, C, then (9, A) is
also a frame spectral pair in R with frame constants ac, BC if the following condition is satisfied:

e2midia _ 1, Va € A,V € Aq. (5)

Theorem 2. With the assumptions of Theorem 1, E(A) is an Riesz basis for L?(Q) if £(A1) is a
Riesz basis for L?(21) and E(J) is a basis for (?(A) and (5) holds. In this case, the frame constants
are given as in Theorem 1.

Theorem 3. With the assumptions of Theorem 1, E(A) is an orthogonal basis for L*(Q) if (A1)
is an orthogonal basis for L*(Q1) and E(J) is an orthogonal basis for £2(A) and (5) holds.

1.2 Comparison with existing work

Regarding Theorem 1, any bounded domain Q with Lebesgue measure 0 < |Q| < oo admits an
exponential frame £(A) by projecting an exponential orthonormal basis of a cube (containing (2)



onto €. In this method, the frame spectrum A is necessary a lattice. In Theorem 1, we provide
an alternative method for the construction of exponential frames for bounded domains where the
frame spectrum is not necessarily a lattice.

Notice that Theorem 2 illustrates how to construct a Riesz spectrum for the union of domains
with equal measure. There are many cases where it is known that a set {2 admits a Riesz basis of
exponential functions, such as multi-tiling (bounded and unbounded) domains in R? [13, 22, 1, 12].
Recently, it was established in [32] that any convex polytope which is centrally symmetric and
whose faces of all dimensions are also centrally symmetric, admits a Riesz basis of exponentials.
For the existence of exponential Riesz bases in other special cases see, e.g., [26, 5] and the references
therein. While there are known cases where {2 does not admit an orthogonal basis of exponentials,
less is known about Riesz bases of exponentials. Finding a domain 2 that does not admit any Riesz
basis of exponentials is still an unsolved problem.

Below, we compare our results with some well-known results for exponential Riesz bases. Expo-
nential Riesz bases were constructed in [13], and later in [22] with fewer assumptions and a simpler
proof. In [22], the author considers a multi-tiling domain in R¢ which tiles the space by a lattice and
proves that the domain admits an exponential Riesz basis. The authors obtain a Riesz spectrum
using a finite union of translates of the dual lattice. The translation vectors e.g, in [22] depend on
the lattice points. In our result, we pick a set ©; with a (not necessarily a lattice) spectrum A4
and consider a union of disjoint multi-integer translations of the set. The result is not necessarily
a multi-tiling set. Then we prove the existence of a Riesz spectrum for this set by taking the union
of translations of the spectrum A; by finitely many rational vectors in [0, 1)?. Different than [22],
in our proof these vectors do not depend on the spectrum Aj.

Another well-known example of exponential Riesz bases for union of co-mensurable cubes has
been constructed by DeCarli [5] for the union of unit cubes. In her paper, the author takes a finite
set of vectors in R? with an arithmetic progression, and she proves that the union of shifts of Z¢
by these vectors is a Riesz spectrum for the union of the cubes if and only if the evaluation matrix
is invertible. Equivalently, for a given finite number of vectors in R?, the union of translations of
74 by the vectors is a Riesz spectrum if the matrix is an invertible Vandermonde matrix. Theorem
2 requires fewer assumptions to establish the existence of Riesz bases for a finite union of unit
cubes. More precisely, when 27 is a d-dimensional cube, we construct a Riesz spectrum by taking
the disjoint union of multi-rational shifts of Z¢ with the sufficient condition that the matrix is
invertible.

In Theorem 2, when € is a cube in R?, the structure of the Riesz spectrum for the union of
cubes is similar to the well-known example of sampling and interpolation sequence constructed by
Lyubarskii and Seip [33] for the union of intervals of equal length, and by Manzo [28] in higher
dimensions. In [33], the authors consider a union of p disjoint intervals with equal size and construct
a sampling and interpolation sequence for the set using the p shifts of the spectrum of a single
interval. Like in the current paper, the sufficient condition is the invertibility of an associated
matrix (6). Our result in Theorem 2 provides a machinery for such constructions with more general
domains beyond intervals (or cubes).

In recent years, research on orthogonal bases of exponentials has flourished in response to the
development of exponential bases in Banach spaces, and in particular, to the growing interest
in the Fuglede Conjecture [11]. The Fuglede Conjecture asserts that every domain of R? with
positive finite Lebesgue measure admits an orthogonal basis of exponentials if and only if it tiles
R? by translation. Although the Fuglede Conjecture is, in general, false, as shown by Tao in one
direction [31] and by Kolountzakis and Matolcsi in the other [23, 24, 29], it has given rise to active



investigations of the connections between orthogonal bases of exponentials and tilings in Euclidean
space. The conjecture has been proved affirmative in special cases in various settings (continuous
and discrete). See, for example, [14, 16, 18, 2, 7], and the references contained therein. There
are many cases where it is known that a domain admits no orthogonal exponential bases. See,
for example, [25, 17, 10, 15] and the references contained therein. The conjecture is still open in
dimensions d = 1,2. However, there are special cases in these dimensions where the conjecture has
been proved affirmative (see e.g. [17, 27]).

Regarding Theorem 3, we shall point it out that when ; is a d-dimensional cube, the new
spectrum set that we construct in Theorem 3 is different from the well-known spectrums in the
literature, namely, the one for the union of cubes in R¥(d > 5) that was presented by Tao in [31].
The example is used to disprove the direction “spectral /4 tiling” of the Fuglede Conjecture. In the
construction, Tao considers a union of translations of a spectral set in the finite domain Zg and lifts
it to a higher dimension. Our construction of a new spectral set is the result of adding a spectral
set in Zg to a spectral set in the continuous domain R?.

Another well-known example of a spectral set was constructed by Laba in dimension d = 1
[27]. In her paper, Laba characterizes the spectrum of the union of two co-measurable intervals.
When the left endpoints of the intervals are integers, the spectrum of the union coincides with the
construction of the spectrum we present in Theorem 3. In our result, we construct a spectral set
for any (> 2) union of co-measurable intervals.

Outline. This paper is organized as follows. After introducing the notations and preliminaries
in Section 2, we prove Theorem 1 in Section 3. In Section 4 we prove Theorem 2 and illustrate the
explicit structure of biorthogonal dual Riesz bases along with some examples for a special subclass
of Riesz spectral pairs and Riesz bases, using the techniques that were developed earlier by the
first listed author and Okoudjou in [9]. Results and examples of dual bases in both the continuous
and finite setting appear in Sections 4.1 and 4.2. In Section 5, we prove Theorem 3 followed by
examples of spectral pairs. In Section 5.2 we remark on the link between the spectral property of
a domain and sampling theory.

2 Notations and preliminaries

Throughout this paper, Q2 C R? is a Lebesgue measurable set with measure 0 < |Q| < oo, and
A C R? is countable and discrete. The inner product of u,v € L?(Q2) is defined by (u, V)r2(Q) =
fQ u(z)v(x)dz. In the sequel, we shall drop the subscripts and simply write (f, g) when the under-
lying Hilbert space is clear from the context. .

For f € L?(R%), we denote by f or F(f) the Fourier transform of f, and it is defined by f(¢) =
Jpa f@)e 2™ 8de, & € R, where, z- & = 2% 2;&; is the scalar products of two vectors. The
inverse Fourier transform, denoted by f’l(f) = f, is then given by f(z) = fRd f(m)ezm'””'gdx, T €
R,

Here, and in the sequel, we denote the cardinality of a finite set F' by §F. For d, N > 1, Z%
denotes the d-dimensional vector space over the cyclic group Zy. For any functions f, g € EQ(Z‘J{,),

the inner product is defined by (f,9)pze) = N Zmez% f(x)g(z). In general, for a function
f:72% — C, d > 1, the cyclic Fourier transform is given by f(z) = N—¢ ZyeZdN e2miya/N
A frame spectral pair in a finite setting can be defined in a fashion that is similar to the



continuous setting. Definition 1 can also be expressed in terms of matrices, as follows: Let d, N > 1,
and assume that A, J C Z‘]i\,, with §J > §A. Let F denote the N d « N discrete Fourier transform
matrix over Zy. For a pair (A, J), let F4 ; denote the submatrix of F (or evaluation matriz) with
columns indexed by J and rows indexed by A, i.e.

Fag = [wj.a}jel,aeA’ (6)

2

where w = e~ . We say that (4, J) is a frame spectral pair in Zf\, if

cllzlZecay < NFas@llzzcn < Cllzllzay, Vo€ CH,

where 0 < ¢ < C < co. The submatrix F4 s induces a Riesz basis (an orthogonal basis) for £2(A)
if f{A = #J and it is invertible (unitary).

Notice that the frame spectral property is a symmetry property when the frame is a Riesz basis
or an orthogonal basis. This can be easily verified using the associated submatrices of each system.
More precisely, if £(.J) is a Riesz (or orthogonal) basis for £2(A), then the submatrix Fu ; is an
invertible (or unitary) matrix. Since the transpose matrix preserves the invertibility and unitary
property, thus £(A) is a Riesz (or orthogonal) basis for £2(J), as claimed. The notion of symmetry
discussed above loses its meaning in the infinite or continuous setting, e.g., Z3¢ or R%. These settings
require a well-defined notion of symmetry, which is a challenging problem.

Notation: In the sequel, we use ey (z) = e?™* for exponential functions in R?, and E;(z) =
e?™F in the finite setting z%.

3 Proof of Theorem 1

Proof. Assume that  and A are given as in (4)—(3), and also assume that (5) holds. Let u € L?().
Then

2

Z | (u, 6/\+j/N>L2(Ql +A) |2 = Z Z (u, €A+j/N>L2(91 +a)

N J)EALXT (A\J)EA1 X T la€EA

= T T [ et aente o

(\j)EA X J lacA

-y (s

(N g)eEALXT acA

2

(7)

u(z + a)e;/n(x + a)) ex(z)dx

The last line follows from (5). For any fixed j € J, since (1,A1) is a frame spectral pair and
uj(x) ==Y, cqu(x +a)ej n(z+a) is in L*(€;), there exists an upper frame constant C' > 0 for
which

u(x + a)e;/n(x + a)

2
d;v—C/ Z| .T—i— ) €j/N gz(A)| dx.

1jeJ

<CZ/

jeJ 22

acA

<cp / (e + sy d = CBllulZac,



where 3 is the upper frame constant for the frame spectral pair (A, J) in Z%. This completes the
proof of the upper frame estimate for the pair (2, A) with the upper bound constant C'3. The lower
bound estimate is obtained similarly. The completeness of the frame sequence is obtained by the
frame lower bound property. O

We conclude this section with some examples.

FEzxamples:

1. For any given A, J C Z% and any frame pair (1, A1) in R?, the set of exponentials £(A) is a
Bessel sequence in L?(£2) with the Bessel constant fA#J. The Bessel sequence is a tight frame
when A = 1.

2. Let A C Z4 such that the frame lower bound holds for the exponentials £(A;) in L?(Qy).
Then the frame lower bound holds for £(A; +J) in L2(Q), for any J C Z%, Q = Use a1 +a.

The following result is of independent interest.

Proposition 1. Suppose that Q; C R? is a set with positive and finite Lebesque measure, Ay C R¢

is a discrete and countable set, and N > 1 is an integer. Let A and J be any two subsets of Z%
with | +anNQy +d|=0,Vd € A, d’ # a, and define

ngl—f—A, A=A1+J/N (8)

If E(Ay) is a complete set in L?(€21), then the family E(A) is also a complete set in L*(Q) if the

following condition is satisfied for all a € A: e*™ ¢ =1,

Proof. Let u € L?(Q) and A = \; + j/N € A. Then

(u,ex) L2y = (W, €x,4j/N) L2(21+a) (9)
acA
=Y (ul-+a),ex, 1w (- + )2y
acA
= <Z u( + a)ej/N(~ + a), 6)\1>L2(Ql).
a€A

Assume that (u,ex)r2() = 0 for all A = A\ +j € A, (i.e. forall j € J and A\; € Ay). By the
completeness of the pair (21, A1), by (9) for all j € J we obtain

Z u(r +a)ej/ny(x+a)=0 ae x€Q.
acA
Or,
Zu(m—i—a)ej/N(a) =0 ae xz€Q.
acA

By the completeness of the pair (A, J) in the setting of Z%, the preceding equality implies that for
alla € A,
ulz+a)=0 ae x€Qy,

or equivalently,
u(z) =0 a.e.x € +a.

This proves that « = 0 in L?(Q; + a) for all a € A and therefore v = 0 in L?(). O



4 Proof of Theorem 2

First we have a motivational result.

Proposition 2. Assume that £(A;) is a Bessel sequence in L*(1) with a Bessel constant C > 0,
and let A,J C R? be any finite sets. Define

Q=W +A, A=A+ J.

Then for the family of exponentials E(A) the Bessel inequality holds: For any finite set of scalars
{eopntoger, F=Tx1C Ay xJ, we have

2

> et <B Y el (10)

(AJ)eF L2(Q) (MJ)eF
where B = A§.J|Q].

Proof. The proof is obtained using the Cauchy-Bunyakovsky-Schwartz inequality:

2 2

Y conerts =1> (Z C(AJM) €j (11)
(NJ)EF L2(Q) JeI \Ael L2(Q)
2
<X |5 (S eon) o
a€A||jel \xel L2(@14a)
For a € A,
2 2
/ Z (Z C(A»j)ek(x)> ej(r)| dx < (ﬁl)/ Z ZC(AJ)@\(J:) dx
Qita | jer \er Q+a jer [xer
2
< (ﬁJ)Z/ ZC()\’j)e)\(.’L‘) dz
jer/Sata |\er
2
= (ﬁj)z ZC(AJ)G,\(@
JeI lIxel L2(Q+a)
<O D oyl
(N\Jj)EF

The last inequality is obtained using the Bessel property of £(A1). Now, using the inequality in
(11), the Bessel inequality (10) holds for £(A) in L?(Q) with a Bessel constant C; = C(£J). O

Theorem 2 improves the result of Proposition 2 in the sense that a Bessel sequence is a Riesz
sequence or a Riesz basis when additional assumptions on A, J and £(A;) are satisfied.



Proof of Theorem 2. The completeness of the exponentials £(A) in L?(Q) is due to Theorem 1.
Indeed, £(A) is a frame for L?(2) and is therefore complete. It is then sufficient to prove the Riesz
inequalities (2) for £(A). For this, let I be a finite index set as in Proposition 2 and {c(x ;) }(x,j)er
be any finite set of scalars. Using the equality in (11), we have

2 2
S o] =3 z(zc@,ﬂex) o
(\j)EF L) €A |l7el \aer L2(01 +a)
2

= Z/ ( c()\’j)ek(a?)> ej/N(x) dl‘

acA’ta e \aer
2

/ <Zc(/\,j)e)\+j/N(x)> ej/n(a)| dz. (12)
D qea JEI \Xel

The last equality is obtained after applying the assumption that ex(a) = 1, for all A € A; and
a € A.
For j € I, define dj;(x) := ej/n (%) D ycr crj)en(x) ae. x € Q. Then,

2

(12 = [ SIS di@eyma)] da. (13)

Since £(J) is a basis for £2(A), it is a Riesz basis by a result co-authored by the second author in
[8], and we have

(13) <B/ > ldj(@)*dx

1jel
2
=8 [ [ eoses)| dr
jel 2 xerl
2
=B |1D coner
jJEI [Ixel L2(0)
=BCY Y ol
jeI el

Notice that we obtained the last inequality by the Riesz basis property of £(A1) in L?(;). A lower
Riesz bound can be obtained with a similar calculation. This completes the proof. O

4.1 Explicit form of biorthogonal dual Riesz bases

It is known that any Riesz basis in a Hilbert space has a biorthogonal dual Riesz basis [4]. In the
setting of exponential Riesz bases, this statement reads as follows.



Proposition 3. Given any Riesz basis E(A) for L?(Q), there is a unique collection of functions
{ha}rea in L*(Q) such that the biorthogonality condition holds:

<h)\,6)\/> = |Q| (5)\()\/) A )\,)\/ € A.

Moreover {hy}xen is a Riesz basis for L*>(Q) and any u € L*(Q) can be represented uniquely as

h=1Q7") (uha)es =1Q7 > (u,ex)ha.

AEA AEA

Here, the Dirac d; is given by

&m):{1 if o=t

0 otherwise.

The basis {hy} is called biorthogonal dual Riesz basis for £(A). When £(A) is an orthogonal basis
for L?(Q), the system of exponentials is self-dual, i.e. ey = hy, and in (2) we have ¢ = C = |Q| L.

4.1.1 Finite case: Z4,

Let (A, J) be a Riesz spectral pair in Z%, and suppose that k = #A, that is, A = {a,}*_;, and
J = {js}*_,. This means that the k x k matrix F4 ; in (6) is invertible.
For F € (*(A),
k
(F.Ej) =Y Flan)w 7,

r=1

where w = e~27/N_ The reconstruction of F using the Riesz basis £ (J) is accomplished using the
linear system

<§7 gj1> ?(al)
( 5 ia) Fay (:az) (14)
(F.E,,) Flay)

Assume that {G;, }1<s<k is the dual in £2(A). Then, we see that by biorthogonality (G, E; ) =
#Ads(s"), we can recover the dual functions G;,. More precisley, for F' = G, in (14) we get

Gj,(a1)

Gj,(az)
}';i](kes) = : ,

Gj.(ak)

where e, is a k-dimensional vector with (eys); = 1 if ¢ = s and 0 elsewhere. In summary, the
biorthogonal dual Riesz basis can be obtained using the sth column of ]_-2,1‘]:

Gj(ar) = k(f;,b)r,s r=1,...,k. (15)

Notice that by (15), the dual basis is a also set of exponentials only when F4 s is a unitary matrix.



Figure 1: An example of a multi-tiling set of level k = 2 in dimention d = 2 and its Riesz spectrum.

4.1.2 Continuous case: multi-tiling domains

In this section, we shall illustrate an explicit form of the dual Riesz basis for a class of exponential
Riesz bases for a bounded domain 2 given as in Theorem 2 (although the result extends to a class
of unbounded domains).

Let A7 again be a full lattice with a fundamental domain II; and dual lattice A;. Then, let
A={a,}F_, CZ%, and let J = {js}*_; C Z4 be a finite set of vectors such that the k x k matrix
Fa,sin (6) is invertible. Then, (A, J) is a Riesz spectral pair. Assume that (€1, A1) is also a Riesz
spectral pair in RY, such that the assumptions (5) and (3) hold. Then £(A) is a Riesz basis for
L?(Q) as given in Theorem 2.

In the given situation, the associated biorthogonal Riesz basis to £(A) with A = A + %J has
been recently illustrated explicitly and constructively by the first author and Okoudjou in [9]. The
result is presented in [9] for a more general class of multi-tiling sets, but here we present the special
case where (2 is a multi-rectangle in R

Then for A € A; and 1 < s < k, the dual basis functions in L?(Q) are given by

Irtjo/N(T) = exyj N (@)(Gjs Ejoxmy, (= 9))r2(a) a.e. v € (. (16)

Here, xm,, denotes the indicator function of the domain II,,. For an illustration of a multi-tiling
set in dimension d = 2 see Figure 3.

Remark 1. If the system is self-dual, then this formula implies that (Fa.j)rs = %ezﬂi“T‘js/N =
qwr I In this case, (Q,A) is a spectral pair if and only if (Fa,;)*(Fa,s) = kI meaning that Fa
is a (log) Hadamard matric [24].

Remark 2. A special case is a 1-tiling with repect to the full lattice A with a fundamental domain
Q1 =11, and dual lattice Aq:

Y (frenea(@) =vol(A1) D flx = A") = vol(Ar) f(x).

A€M, A*EA]

Here we used the Poisson summation formula and the fact that Q1 is a fundamental domain of A}
(so in the last line, the only value of A* that gives a nonzero summand is \* = 0). This means that
for f € L*(),
1
flz) = m Z (frexea(z) = Z (frex)ga(@).

AEA AEAL

10



The biorthogonal dual Riesz basis is then given by
1

gr(z) = m@\(x).

4.2 Examples

In this section, we provide few examples of a Riesz spectral pair as well as the biorthogonal dual
basis (16) in dimension d = 2. Let A; = Z?, and let II5, = Qs be the unit square. For a pair of
distinct multi-integers a1, as € Ay, let

Q:=(Q2+a1)U(Qs + az).

The set 2 multi-tiles R? with the lattice Z2 at level k = 2. Let N > 2 be an integer and ji, jo be
any two vectors in Z? such that the following matrix is invertible:

ai-j1 az-j1

V= fA,J = (wal'j2 w2J2

Take

_ 1 w232 2
W= (]:A,J) ' = det(V) (wal'j2 (a1t ) :

Since det(F4,7) # 0, then the following system of exponential functions is a Riesz basis for L?(Q):

{entji/n (@) }neza Udentjo/n () bneza,
and by (16) the dual basis functions are given by
{ntjr/n (@) tneza U{gnrjo/n (T) bneza,
where
Intir/N (@) = 2e 45, 8 (@) (i1wi1XQ, (& — a1) + vizwai X, (T —a2)) 1 € Z7,
and
Gntjn/n (T) = 2€, 44, /N (@) (V21W12X 0, (T — @1) + V22waaX 0, (T — a2)) n € Z2

Example 1. (case d = 1) Following the notation in Section 4.2, let {a1 = 0,a2 = 2}, and let
{j1 = 0,42 = 1}, for any integer number N > 2. Then the matriz V in (17) is invertible, so (2, A)
18 a Riesz spectral pair, where

Q=[0,1]U[23], A=ZUZ+1/N.

Then the exponential Riesz basis constructed above coincides with the exponential Riesz basis
given as in Theorem 2, when Q, = [0,1],Ay = Z, A = {0,2}, J = {0,1}, and N > 2. By the
symmetry property, we obtain that Q@ = [0,2] and A = ZUZ + 2/N is also a Riesz spectral pair.
It can be readily verified that the system is an orthogonal basis only for N = 4; see Theorem 3. In
this case, V is a unitary matriz with V*V = 21 and the basis is self-dual.

11



Example 2. (case d = 2) As a concrete ezample in d = 2, let N = 4, a; = (0,0), az = (2,0),
Jj1=1(0,0), and jo = (1,0). For this choice, the matriz V in (17) is invertible, so the following pair
(Q,T) builds a Riesz spectral pair:

Q=Q,UQy+(2,0), A=7Z>UZ? + (1/4,0).

By the symmetry property, for Q = [0,2] x [0,1] and A = Z> UZ? + (1/2,0) = 271Z x Z, the pair
(Q, A) is also a Riesz spectral pair, as we expected.

5 Proof of Theorem 3

Given positive integers N,d > 1, and sets A, J C Z$ of the same cardinality, we say that the family
of exponentials {E£;(z) = >™7'2/N} .. ; is an orthogonal basis for ¢2(A) if the elements of £(.J) are
mutually orthogonal on A; that is

(Ej Byl = p_ ™00/ =0 Vjj'eJ j#j, and, (18)
acA

Notice that the orthogonality relation (18) can also be expressed as

Xa(j =) = N7y TN 0, i
acA

where x4 is the Fourier transform of the indicator function x 4.

Proof of Theorem 3. To prove mutual orthogonality of the exponentials £(A) in L?(Q2), let Ay +j1 /N
and A2 + jo/N be two distinct vectors in A. We have the following:

(X471 / N+ gt /N L2(@) = D €Ny 41 /N+ Ergia/N ) L2 (1 +a)
acA

= <Z 6A1+j1/zv(a)6xz+j2/zv(—a)> (exi41 /N> €xatia/N ) L2(00)  (19)
acA

= (Z ejl/N(a)ejz/N(_a)> (X441 /N Exatjn /N L2(021) (20)

a€A

= (€)1 €2 )12(A)(€xy 441 /N's EXg /N ) L2(2))- (21)

To pass from (19) to (20) we used the assumption that ey(a) = 1foralla € Aand A € Ay. If j; #

Ja2, by the orthogonality of £(.J), the first inner product in (21) is zero. If j; = ja, then by assumption

A1 # Ao and by the orthogonality of £(A1), (ex,+j, /N €xs4ja/N)L2(21) = (€15 €xy)12() = 0. The

completeness of £(A) in L?(Q) is obtained by a density condition (see [6]), or directly by Theorem
1 since £(A) is a frame for L?(1Q).

O

Remark 3. Note due to the symmetry property of spectral pairs in finite settings, by the assumption
of Theorem 3, the domain Q = Qi + J admits an orthogonal basis of exponentials E(A) with
A=A +A/N.
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Figure 2: The figure illustrates Q = [0, 1] U [2, 3] and its spectral set A=ZUZ+1/4ind = 1.

Remark 4. Let (Q1,A1) be a spectral pair. Assume that A C Z2 is finite and B C RY is a finite
set of rational numbers. Assume that $A = §B = d and there exists an integer number N > 1 such
that NB C Z%. Consider the d x d matriz V = (vap)acApen With entries given by

Vap = e—27rza»b'

If V is a unitary (or invertible) matriz, then E(A) is an orthogonal basis (or a Riesz basis) for
L2(Q), where

Q=0 +A, A=A, +B.

This can be readily obtained by Theorem 3 since (A, NB) is a spectral pair in Zﬁi\,. The proof of
the Riesz basis is due to Theorem 2 when V' is an invertible matriz.

5.1 Examples of spectral pairs

The first example shows that the sufficient condition (5) is also a necessary condition in Theorem
3.

Example 3. Let Q; = [0,2]. Take N € 6Z, and positive, A = {0,3}, J = {0, = N/6}.
Then (A,J) is a spectral pair in Z%, while (Q, A) fails to be a spectral pair in R?. Indeed, A =
271ZU271Z + 671, the exponentials E(A) are not mutually orthogonal on = [0,2]U[3,5]. Indeed,
let

Za={0}U{{ €R: xqa(£) =0}
If E(A) is an orthogonal set in L*()), then A C A — A C Zg. On the other hand, we have
Zo =272 U371 YZ. This is a contradiction, thus the functions in E(A) are not orthogonal on .

Example 4. Let N > 1, and assume that (A, J) is a spectral pair in Zy. Take Q := Ugeala,a+1).
Then, by Theorem 3, the pair (2, A) is spectral in R for A=Z+ J/N, if |Q+ j1 N Q1 + j2| =0 for
all j # j'.

Example 5 (d=1). Let N =4, A={0,2} and J = {0,1}. Define the 2 x 2 evaluation matriz

1 .
H=—(w")scaics-
\/5( ) €A jeJ

Then, H is a unitary matriz, that is, H*H = I. This proves that (A, J) is a spectral pair in Zs.
By Theorem 3, for Q =[0,1]U[2,3] and A = ZUZ+ 1/4, the pair (2, A) is a spectral pair R. This
example is illustrated in Figure 2.

By the symmetry property, the pair (J, A) is also a spectral pair. Therefore, using the result of
Theorem 3 we obtain the well-known spectral pair (2 = [0,2],A = 27'Z).

13
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Figure 3: An example of a spectral set with its spectrum in d = 2

Example 6 (d = 2). To construct a spectral pair in higher dimensions, one possible technique is
using the Cartesian product as in the results of Jorgensen and Pedersen in [21], Section 2. See also
[19, 20] for more on the construction and ‘closeness’ of spectral pairs in Cartesian settings. An
example of a spectral pair in dimension d = 2 is depicted in Figure 3. This example is constructed
from the self Cartesian product of the spectral pair given in Example 5.

5.2 Spectral set and function recovery

In this section, we remark on the link between spectral pairs and recovery problem, known as
Shannon Sampling theorem. First, we need the following general result for any pair in Z .

Lemma 1. Define Q =[0,1]+ A and A =Z + J/N for any sets A, J C Zy, and suppose that f
is a function in the Paley-Wiener space PWq = {f € L*(R) | (&) = 0 a.e. £ € Q}. Then, the
distribution

Fu(t) =Y f(NoA(t), teR (22)

AEA

has a Fourier transform given by

Fo©) => k) f(E—k) ae (e (23)

keZ

Proof. We express the distribution (general function) Fy as

Fo(t) = f(t)P(t) (24)

where P € %/(R) is a distribution, known as a (A-sampling) pattern function, given by

P(t):=> o\(t)=> 6u(t)* Y _ d;n(t), teR.

AEA nez jeJ

14
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Figure 4: The figure illustrates the sampling pattern A = ZUZ + 1/4 in d = 1.

An example of such pattern is illustrated in Figure 4. By applying the Fourier transform to
(24) we obtain

F,=fxP, (25)
where
PE) =FO 6)OFO _6;n)&), E€R. (26)
neZ jedJ

By applying the Poisson summation formula to the first term of (26), we get
FQ_om)€) =) e =3 6(6), ¢€R (27)

nez nez kez
For the second term in (26), in terms of distributions we have

FQooym)©) = e ™, ¢eR. (28)

JjeJ JjeJ

Define the function! Y ;(¢) := dies e~2mI¢/N By (27) and (28) in (26), we obtain

P(&) = X%s(8) Y 6k(€) = > R (k)6k(€)-

keZ kez

By substituting this expression in (25) we obtain

Fy(&) = f*P(g) (292)
= (f* XJ(k)5k> ©) (29b)
keZ

= k) (£26) (© (290)

kEZ
=> Xk f(E—k) VEeq. (29d)

keZ
This completes the proof. O

INote that the definition of this general function over R, also called the symbol of J, coincides with the Fourier
transform of the characteristic function x j over the cyclic group when the domain is restricted to Zy up to a constant.
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Note that the result of the lemma holds for any domain Q C R¢ with finite measure and any
A=A +J/N,JC Z}i\,, such that the Poisson summation holds for A;.

As an application of the previous lemma, we have the following result.

Theorem 4. Given a spectral pair (A, J) in Zy, let Q and A be Q :=[0,1]+ A and A=Z+ J/N.
Let f € L*(R) with f supported in Q. Let Fy be as in (23). Then

Fy(€) = (4 f(€), aecq.

Proof. For this, we need to show that all the terms in (29d) are zero except for k = 0. We do this
by considering different cases for the values of k.

I: If k = 0, we have x;(k)f(€ — k) = tJf(€).
II: If k£ # 0, the summation is known as aliasing term and we consider two cases as well:

(a) ke A— A kK #0. Then, k = a— a for some distinct a,a’ € A. By the symmetry
property of the spectral pairs in Zy (and more generally in ZdN), A is a spectral set for
the set J and we obtain x (k) = xj(a —a’) = 0.

(b) k € Z\{A — A}, k # 0. In this case, we claim that |2 N Q + k| = 0. If not, then there
must be a,a’ € A such that |[a +k,a +k+1)N[a’,a’ +1)| # 0. Since ¢ € Z and each
interval has length unit 1, then we must have k¥ = a’ — a, which is a contradiction. Thus
the sum over all &k ¢ A — A is equal to zero.

In summary, we obtain Fy(£) = #J f(€) for £ € Q, or,

F&) = () E(9). (30)
O

Notice that, by (29d), the Fourier transform of Fy is equal to a sum of translated copies of the
Fourier transform of f on k-shifts of Q multiplied with coefficients x (k). The theorem proves that
the Fourier transform of Fy over () is the exact Fourier transform of f up to some constant, and
the translations do not overlap. In the language of signal processing, this means that the aliasing
term is zero.

Remark 5. Given a spectral pair (A,J) in Zy, let Q and A be Q :=[0,1]+ A and A=Z+ J/N.
Let f € L?(R) with f supported in Q). Then for any f € PWq, the reconstruction formula holds:

FEO =D ™ ae (€@

AEA

Proof. By the previous theorem, we have

F&) = (@) E(6). (31)
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By the definition of Fy in (23), we obtain

E &) = /R (Z f(/\)(Sk(t)) e AL =" f(N)e PN ae. £ € Q.

AEA AEA

Substituting this in (30) we obtain

FEO =N Fe 2 qe g€ Q.

AEA
This completes the proof. O
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