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Abstract

Graphene quantum dots (GQDs) and nanoribbons (GNRs) are classes of nanographene molecules that exhibit highly tunable
photophysical properties. There have been great strides in recent years to advance our understanding of nanographene photo-
physics and develop their use in light-harvesting systems, such as artificial photosynthesis. Here, we review the latest studies
of GQDs and GNRs which have shed new light onto their photophysical underpinnings through computational and advanced
spectroscopic techniques. We discuss how the size, symmetry, and shape of nanographenes influence their molecular orbital
structures and, consequentially, their spectroscopic signatures. The scope of this review is to comprehensively lay out the
general photophysics of nanographenes starting with benzene and building up to larger polycyclic aromatic hydrocarbons,
GQDs, and GNRs. We also explore a collection of publications from recent years that build upon the current understanding
of nanographene photophysics and their potential application in light-driven processes from display, lasing, and sensing

technology to photocatalytic water splitting.
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Introduction

Since the first isolation of single-layer graphene in 2004,
there has been an explosion of studies reporting the out-
standing electronic, thermal, and mechanical properties
of this two-dimensional crystal (Allen et al. 2010). How-
ever, the optical properties of single-layer graphene have
remained elusive because it is a semimetal with a zero
bandgap (Bodenmann and MacDonald 2007). To widen the
bandgap, recent synthetic efforts have been directed toward
quantum confined two-dimensional nanographenes, such as
polycyclic aromatic hydrocarbons (PAH), graphene quan-
tum dots (GQDs) and graphene nanoribbons (GNRs). Since
their size is smaller than the essentially infinite exciton Bohr
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radius of bulk graphene (Li and Yan 2010), these nanogra-
phenes exhibit tunable excitonic properties suitable for many
optoelectronic applications. Optical properties of nanogra-
phenes can also be tuned using varied aromatic stability, as
predicted by Clar’s sextet rule (Clar 1983), or using molecu-
lar symmetry (Kastler et al. 2006; Dumslaff et al. 2016) to
generate a myriad of structures with electronic transitions
that span the UV, Vis, and near IR regions. These proper-
ties, combined with high mobility of free charge carriers
along the nanographene axes (Morozov et al. 2008; Hong
et al. 2009) have enabled the utilization of nanographenes
in many optoelectronic applications, such as light-emitting
diodes (Wang et al. 2017, 2020; Yuan et al. 2018, 2019a,
2020; Zhao et al. 2019; Cho et al. 2020; Pramanik et al.
2020), photovoltaic devices (Qin et al. 2015; Khan and Kim
2018; Gan et al. 2019) and photocatalytic systems (Yan et al.
2018, 2020; Tsai et al. 2020).

Given the recent growth of research articles reporting
optoelectronic properties of nanographenes, we provide
here a comprehensive review of fundamental nanographene
photophysics and photochemistry. We anticipate that this
work will complement other review articles focusing on
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the synthesis and electronic properties of nanographenes.
Specifically, photophysical nanographene studies described
here are enabled by rapidly growing developments in syn-
thetic methodologies for bottom-up synthesis of well-defined
carbon structures. Several recent reports describe these
advances and illustrate the richness of possible carbon and
heteroatom-containing structures that can be formed using
wet-chemistry reactions such as condensations, electrocy-
clic reactions, oxidative dehydrogenation, and many others
(Narita et al. 2015; Stepien et al. 2017; Wang et al. 2019;
Yano et al. 2020). Previous reviews of electronic properties
in nanographenes provide information on how molecular
size, shape, edge structure, and heteroatom insertion can
affect the electronic conductivity and energy gaps (i.e.
HOMO-LUMO gap) in these species (Rieger and Miillen
2010; Tang et al. 2013). While some of these properties
are not directly related to the photophysical studies reported
here, energy gap tuning is directly related to the ability to
control the frequencies at which light is absorbed. Addition-
ally, charge carrier mobilities are important in photocataly-
sis, where the photoinduced electron transfer to the cata-
lytic sites form charge carriers that need to quickly migrate
away from each other. Finally, previous reviews describing
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Fig. 1 a Structures of representative nanographenes reviewed here:
PAH (blue), GQDs (green), and GNRs (red). b Emission spectra of
four triangular GQDs of varying size (all samples were excited at 375
nm). Adapted from Ref (Yuan et al. 2018). ¢ Structures of nanotubu-
lar heterojunctions, Block-NT1Cu/NT2, formed via self-assembly of
hexabenzocoronene-based GQDs HBC 1 and HBC 2. Block-NT1Cu/
NT2 was shown to undergo efficient excitation energy transfer across
the supramolecular heterojunction using steady-state fluorescence
experiments. Adapted from Ref. (Zhang et al. 2011) d Femtosecond
transient absorption spectra for hexabenzocoronene (HBC) thin film
showing decay of the signal with time representing the recombination
of excitons. The sample was excited at 405 nm with pump intensity of
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applications of nanographenes in sensing, light-emitting
diodes, photodetectors, and photocatalysis provide insights
into how fundamentally interesting excited-state properties
of nanographenes can be applied in material science (Li
et al. 2015a). This review summarizes the fundamental pho-
tophysical and photochemical behavior of nanographenes
by building on the lessons learned from decades of research
involving small PAH, such as benzene and pyrene. The
excited-state behavior of PAH will be used as a platform for
understanding how larger nanographenes behave and how
their behavior affects their applications in material science.

Our review outlines the excited-state behavior of nanog-
raphenes, which are grouped into PAH, GQDs and GNRs
(Fig. la). This classification is arbitrary and used here
only to adhere to the terminology commonly used in the
literature. For the purpose of this review, we define PAH
as nanographenes with less than 13 fused rings. GQDs and
GNRs are defined as nanographenes with more than 13 fused
rings and differ from each other based on their shape (radiant
GQDs vs linear GNRs). For brevity, non-planar nanocarbon
materials, such as fullerenes, carbon nanotubes and other
curved nanographenes are not discussed in this review, since
the photophysics of these structures have been discussed by
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e CIE color coordinates of conventional deep-blue carbon dot’s
(C-DB-CD’s) and high-colour-purity deep-blue carbon dot’s (HCP-
DB-CD’s) emission spectra. Adapted from Ref: (Yuan et al. 2020).
f Schematic of deep-UV photodetector fabricated from a quartz
substrate with Au (anode) and Ag (cathode) electrodes connected
through light-absorbing, hydrothermally synthesized GQDs possess-
ing high responsivity and detectivity. Adapted from Ref. (Zhang et al.
2015) g Proposed mechanistic scheme for photocatalytic CO2 reduc-
tion by a nitrogen-doped graphene quantum dot under solar illumina-
tion. Adapted from Ref: (Tsai et al. 2020)
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others (Jorio et al. 2004; Dresselhaus et al. 2007; Carlson
and Krauss 2008; Miyauchi 2013; Segawa et al. 2016; Soavi
et al. 2016b; Dai et al. 2018; Majewski and Stgpien 2019).

We begin with the General Photophysics section, where
fundamentals of PAH excited states are described. Using
simple Hiickel theory, we provide a description of transitions
commonly observed in the electronic spectra of PAH and
the effects of symmetry and heteroatom substitution on the
transition energies and oscillator strengths. This section also
describes the effect of intermolecular n-interactions, which
are important modulators of nanographene photophysics,
particularly as the number of phenyl rings becomes large.
The second section, titled Energy Gap Tuning, describes
various methods by which electronic transitions in nanog-
raphenes are tuned by varying molecular size and shape (for
example, Fig. 1b), or by insertion of heteroatoms. The third
section, titled Energy and Electron Transfer, describes the
efficiency of coherent and incoherent energy transport in
nanographenes and their n-stacked assemblies (Fig. 1c,d).
Furthermore, this section describes photoinduced electron
transfer processes in nanographenes that contain transition
metal centers. The Applications section provides selected
examples of optoelectronic materials made of nanogra-
phenes, such as light-emitting diodes (LEDs, Fig. 1e), lasing
media, photodetectors (Fig. 1f) and photocatalysis (Fig. 1g).
Lastly, the Future Directions section provides the outlook
of this field and the challenges that the nanographene com-
munity faces moving forward.

General photophysics

This section outlines the fundamental optical properties of
nanographenes using simple PAH as representative exam-
ples. Since PAH are predominantly made of sp® carbon
atoms, their UV/Vis absorption signatures are often attrib-
uted to 7—z* electronic transitions. When heteroatoms with
lone pairs (such as N) are present in the aromatic framework,
additional n—z* transitions are also possible. However, these

transitions are usually not relevant for the photophysics of
nanographenes because they are higher in energy and lower
in intensity than the 7—z* transitions. The energies of 7—z*
transitions vary with the size and shape of the nanographene
molecule, as we will discuss in the next section. Here, we
explore how the intensities of z—z* transitions are affected
by the molecular structure. Predictions from group theory
rely on the selection rules that require a nonzero transition
dipole moment for allowed transitions which is achieved
only if the direct product:

T (we) X T'(f1) X T () 1)

contains the totally symmetric irreducible representation
of the point group of the molecule (Harris and Bertolucci
1989). The first term, F(q/e), is the irreducible represen-
tation for molecule in its ground state. Since most PAH
have all electrons paired up in the ground state, F(u/e) will
be the totally symmetric irreducible representation of the
point group of that PAH (for example, benzene belongs to
Dy, point group, so I'(y,.) for benzene is A,,). The second
term, F( ﬁe), is the irreducible representation for the dipole
moment operator. Since the dipole moment operator trans-
forms the x, y, and z coordinates of the system, I'(f1, ) of the
molecule can be found from the character table (in the case
of D, group, A,, and E,, are the irreducible representa-
tions for I'(J, )). The third term, F(l//e,), is the irreducible
representation for the PAH in its excited state. For a totally
symmetric ground state, F(l[/e/) must be the same as one of
the F( ﬁe) representations for the triple product (1) to contain
a totally symmetric representation. In the case of benzene,
F(we,) states can be predicted from the analysis of molecu-
lar orbitals (MOs) obtained using a simple Hiickel model
(Fig. 2a, b). Absorption of an ultraviolet photon by a single
molecule of benzene can promote it from the ground state
(Sy) to an electronically excited state (S,). The HOMO and
LUMO of benzene each consist of a pair of degenerate MOs
where electron correlation interactions result in three S S,
transitions which are observable as a-, -, and p-bands in the
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Fig.2 a Molecular orbital energy diagram of benzene with bonding/antibonding structures at the side. b molecular orbital energy splitting in
benzene. ¢ UV—vis absorption spectrum of benzene (Harris and Bertolucci 1989)
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UV/Vis absorption spectrum (Rieger and Miillen 2010). Del
Bene and Jaffé investigated the impact of symmetry-break-
ing in 1968, setting the stage for the role of symmetry and
non-bonding () orbitals in mono-sextet nanocarbons (Bene
and Jaffé 1968). Analysis of the lowest three excited states
of benzene indicates that one transition will be allowed (IAlg
'E,,) while two will be orbitally forbidden (IAlg — 1B,
and 'A, e 'B,,)- This analysis predicts the experimen-
tally observed absorption bands of benzene well (Fig. 2c¢).
In general, the orbitally allowed transitions exhibit extinc-
tion coefficients in the 10°-10° M~! cm™! range, while the
orbitally forbidden transitions are in the 10°~10° M~! cm™!
range (Turro et al. 2009). Here, we consider the relation-
ship between the symmetry of benzene and its photophysical
properties, namely, its energy gap (we discuss nanographene
energy gaps in more detail in the next section). The allowed
1Alg — 1E,, transition in benzene occurs at an energy of
6.9 eV (~ 180 nm) while the longer wavelength 'A, P 'B,,
and 'A, e IB,, transitions are symmetry forbidden. The
addition of a heteroatom nitrogen to the aromatic ring (pyri-
dine) breaks the Dg;, symmetry of benzene and increases the
intensity of the forbidden transitions. Furthermore, pyridine
and the diazines exhibit n—z* transitions in the 3.3-4.3 eV
range due to the interaction of the nitrogen lone pairs with
the 7* acceptor MO.

As the shape of the PAH changes, the intensity of the low-
est energy transition changes based on the triple product (1)
discussed above. For example, anthracene and pyrene (both
with D,, symmetry) exhibit different intensities of their
lowest energy electronic transitions due to different F(y/e/)
values for the first excited state (allowed for anthracene and
forbidden for pyrene, Fig. 3) (Turro et al. 2009). Differ-
ences in oscillator strengths of the lowest excited states also
affect the fluorescence lifetimes, as predicted by relation-
ships between the Einstein coefficients for absorption and
emission: electronic transition that are allowed have intense
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absorption bands, but small fluorescence lifetimes and vice
versa. This effect can be clearly observed in Fig. 3 showing
the absorption and emission spectra of anthracene (e ~ 10
M~lem™!; 7~ 10 ns) and pyrene (¢ ~ 10> M~lem™!; 7~ 1 ps).

Spin—orbit coupling in PAH is generally weak, which is
consistent with the small atomic numbers of their constitu-
ent carbon and hydrogen atoms. For this reason, intersystem
crossing from singlet to triplet excited states in PAH gener-
ally occurs with rates of 10°-108 s™! (Turro et al. 2009).
These values are comparable with the rate of fluorescence
in PAH, so the conversion to triplet states is often observed
from lowest-energy singlet excited states. Interestingly,
intersystem crossing can also be observed from higher
singlet excited states S,, S;, etc. as the nanographene size
increases (Mueller et al. 2010). This behavior is associated
with the so-called energy gap law derived from perturbation
theory, which states that the mixing of singlet and triplet
states due to spin—orbit coupling is inversely proportional
to the difference in their energies, AEgr = Eq—E+. For small
PAH, the AEg; values are usually large (up to 1 eV) which
results in slow rates for triplet formation. The AEgy value
is inversely proportional to the size of the nanographene
and the gap becomes as small as 0.175 eV for a GQD with
diameter of 2.5 nm, resulting in triplet T, state generation
even directly from higher singlet S, and S; states (Mueller
et al. 2010).

Intermolecular interactions between nanographene mol-
ecules can drastically change their photophysical behavior.
Specifically, it is well known that an increase in the nanog-
raphene surface area leads to z—x interactions between
them and lower solubility (Watson et al. 2001). The ori-
gin of these z—x interactions was initially ascribed to the
quadrupole moment associated with the n-electron density,
but recent theoretical studies point to the dispersion forces
as the leading factor for z—z interactions in large nanogra-
phenes (Grimme 2008; Martinez and Iverson 2012). Once
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Fig.3 Absorption (black) and emission (red) spectra of a anthracene (z=5.3+0.1 ns, @=0.36) and b pyrene (r=338 +9 ns, ®=0.32) (Berlman

1971; Nakajima 1973; Boens et al. 2007)
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aggregated, the PAH chromophores no longer behave as iso-
lated systems, but start developing new excitonic features.
This effect is exemplified in the UV/Vis absorption and
emission spectra of tetraazaterrylene (TAT) in dilute solu-
tion and thin crystalline film, where TAT forms m-stacked
nanopillar structures (Fig. 4a, b). While TAT in dilute solu-
tion exhibits narrow bands with clear vibronic progression,
the bands of the thin film are much broader, and the peaks
appear at different frequencies (Yamagata et al. 2014).

To better understand the excited state photophysics of
nanographene chromophores, we must consider the con-
cept of the exciton, a quasiparticle composed of an elec-
tron—hole pair. Excitons are defined as electronic excited
states that do not reside on a single chromophore, but are
expressed as a linear combination of individual chromo-
phore eigenstates. Since PAH-based z-aggregates exhibit
low dielectric constants, their excitons are of the Frenkel
type where photo-generated electron and hole reside on
the same molecule (no charge-transfer states) (Scholes and
Rumbles 2006; Cudazzo et al. 2015; Ilic et al. 2017; Tries

(on

et al. 2020). The shifts in the absorption and emission
spectra of m-aggregates can be predicted using perturba-
tion theory, where the “perturbative” interaction between
the chromophores is expressed as a combination of the
long-range Coulombic interactions (J,,,) and short-range
exchange interactions (Jop) (Hestand and Spano 2017).
Long-range coupling (/) is associated with the inter-
actions between transition dipole moments of individual
chromophores and has been successfully used to describe
the red- and blue-shifts in the electronic transition ener-
gies of J and H aggregates of many organic chromophores
(Fig. 4c). The short-range exchange coupling (Jr) is asso-
ciated with Dexter-type electron transfer between individ-
ual chromophores and can be modeled as a charge-transfer,
state-mediated process (Fig. 4d). The additive contribu-
tions of J.,, and J-p terms are needed to describe the
complicated spectral changes associated with n-stacked
PAH chromophores and this model has been shown to
successfully reproduce the experimental spectra of TAT
(Yamagata et al. 2014).
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Fig.4 a Crystal structure of 7,8,15,16-tetraazaterrylene (TAT) aggre-
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Energy gap tuning

When other structural parameters (edge-structure, sym-
metry, chemical functionalization, etc.) are held con-
stant, there exists an inversely proportional relationship
between the size of a nanographene and the magnitude of
its energy gap. For example, theoretical analysis of zig-
zag and armchair GQDs has shown that the energy gap
in GQDs falls off with 1/N, where N is the number of
hexagonal units along the edge of the GQD (Zhang et al.
2008). Similar behavior was observed for GNRs, where
the gap was found to fall off 1/w, where w is the width of
the nanoribbon (Fig. 5a, b) (Son et al. 2006). However, the
exact relationship between GNR width and energy gap is
a bit more complicated than this. Armchair-GNRs can be
grouped into different subfamilies with N,=3p, 3p+1,
and 3p+2, where N, is the number of dimer lines (d,)
across the width of the GNR and p is an integer (Fig. 5c¢).
The energy gaps of these families of GNRs follow the
trend 3p+2< <3p<3p+1 (Son et al. 2006). Regarding

zig-zag GNRs, the relationship between energy gap and
ribbon width appears to follow the simple inversely pro-
portional relationship just described (Fig. 5d).

Recent developments in the bottom-up synthesis of
nanographenes (Huang et al. 2018; Zhao et al. 2018; Singh
et al. 2020b) have enabled the synthesis and spectroscopic
investigation of well-defined molecules and the results of
these experiments generally confirm the theoretical pre-
dictions. It has been demonstrated that the energy gaps of
fully benzenoid PAH decrease from 3.9 eV in triphenylene
(a 4 fused-ring PAH) to 2.2 eV for a larger, 15-ring GQD
(Rieger and Miillen 2010). This relationship has been dem-
onstrated for a wide variety of PAH and GQDs that take
on many different morphologies. For example, triangular-
GQDs (T-GQDs) exhibit a progressive redshift in absorb-
ance and emission peaks with increasing size (Yuan et al.
2018). GQDs of other shapes, such as hexa-peri-hexaben-
zocoronene (HBC) derivatives, have the same inversely
proportional relationship between their sizes and optical
gaps (Zhang et al. 2015). Systematic energy gap engineer-
ing in GQDs via extension of the conjugated n-system (by
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Fig.5 a Energy gap as a function of GNR width where N, is the
number of dimer lines (d,) across the ribbon width and p is an inte-
ger. b Bandgap (A, and energy splitting (A!)) of zig-zag GNRs as
a function of ribbon width. ¢ Representative structure of an armchair
GNR where w, is the width and d, is the 1D unit cell distance. Char-
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acteristic armchair edge is highlighted in red. d Representative struc-
ture of a zig-zag GNR where w, is the width and d,, is the 1D unit cell
distance. Characteristic zig-zag edge is highlighted in red (Son et al.
2006)
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solvothermal condensation with aromatic ligands) has been
shown to stabilize the 7* acceptor MO energy resulting in
a narrowing of the energy gap by 0.52 eV (Yan et al. 2018).
Energy gap tuning in GNRs is accomplished using similar
strategies. Narita and coworkers demonstrated the length-
dependent quantum confinement effect in GNRs in a 2013
study which shows a red-shift absorption band as the nanog-
raphene increases in length from dimer to trimer to nanorib-
bon (Narita et al. 2014).

Nanographene edges play a significant role in the energy
gap as well (Yamijala et al. 2015; Ivanov et al. 2017;
Dumslaff et al. 2020). The size dependence presented in
Fig. 5 shows that the energy gap in GQDs falls off more
drastically with N if the edges are zig-zag. Similarly, zig-zag
GNRs exhibit smaller gaps than armchair GNRs of similar
size. This behavior can be readily described using the sim-
ple and chemically intuitive Clar’s sextet rule (Sola 2013),
which states that the stability of a given PAH is proportional
to the number of benzene-like n-sextet moieties that it con-
tains. For example, triphenylene is much more stable than
tetracene (Fig. 6a, b). Similarly, larger nanographenes with
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Fig.6 a Absorption spectrum of triphenylene with structure in inset.
b Absorption spectrum of tetracene (film deposited on a MgF, disk)
with structure in inset. ¢ Calculated absorption spectrum of an arm-
chair T-GQD, inset shows Clar’s sextet structure (top) and calculated

Absorbance

armchair edges have more n-sextets than those with zig-
zag edges (as exemplified for triangular GQDs in Fig. 6c,
d. Additionally, zig-zag PAH contain more nodes than
armchair PAH. The presence of these nodes destabilize the
HOMO level which narrows the energy gap (Yamijala et al.
2015). The increased stability of PAH is associated with
large energy gaps, explaining the trends observed in Fig. 5
and the UV/Vis absorption spectra in Fig. 6 (Yamijala et al.
2015).

Clar’s sextet rule can also be used to explain the depend-
ence of the energy gap on the shape of the nanographene
(Rieger and Miillen 2010). For example, triphenylene and
tetracene are both 4-ring (18 carbon atoms in total) PAH.
However, triphenylene contains three Clar’s sextets while
tetracene contains only one (see Fig. 6a, b), which results
in tetracene exhibiting lower energy absorption than triph-
enylene as well as higher reactivity. Nanographene symme-
try can also be used to tune the energy gaps. For example,
Miillen and co-workers investigated a series of HBC-deriv-
atives synthesized to have different symmetries (D, C,,,
Dy, and Ds;) (Kastler et al. 2006; Dumslaff et al. 2016).
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lated HOMO isosurface (bottom) (Talrose et al. (2020); Bryson et al.
2011; Yamijala et al. 2015)
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The authors found that higher symmetry GQDs (such as
Dg,) exhibit narrow UV/Vis bands with few transitions and
broader photoluminescence (PL) spectra compared to lower
symmetry PAH (such as C,,). Reduction in symmetry leads
to more allowed transitions and, consequently, broader and
less featured UV/Vis spectra and similar shape-dependent
behavior was observed in other nanographenes (Rieger and
Miillen 2010; Stepieni et al. 2017).

Edge functionalization is another strategy for tuning the
energy gaps of GQDs due to the charge transfer effects of
electron donating and withdrawing groups (Bao et al. 2011;
Wang et al. 2016; Hai et al. 2018; Yuan et al. 2018). Yun
Li et al. carried out a computational study on the electronic
and optical properties of GQDs edge-functionalized with
-NH,, -OH, -F, -CHO, -COCHj;, and —-COOH groups
(Li et al. 2015b). Density functional theory (DFT) calcu-
lations of C=0 functionalized GQDs predict the lowering
of HOMO and LUMO energy levels due to the n-electrons
in C=O0 that can extend the n-electron system in the GQD
moiety. Amino groups may also tune the optical properties
of GQDs, but their influence on the energy gap is much
weaker due to the cancellation of the frontier orbital hybridi-
zation effect by larger charge transfer effects. Yuan et al.
demonstrated the importance of amination by comparing
the optical properties of aminated and non-aminated GQDs
where the aminated analogs exhibited a larger emission full-
width at half-maximum (FWHM) of 62 nm, possessed a
bandgap of 2.96 eV, and quantum yield (QY) of 70% (Yuan
et al. 2020). The promising results of aminated GQDs is
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attributed to the reduced defects in the GQD structure which
significantly reduces non-radiative pathways. It should also
be noted that amination reduces the symmetry of GQDs
which manifests in the red shifted calculated absorption and
emission spectra (Wang et al. 2016). Furthermore, tailoring
electron-donating groups to the peripheries of GQDs results
in the creation of non-bonding (n) orbitals that lay higher
in energy than the # donor MO of the GQD, but lower in
energy than the z* acceptor MO, which has narrowed the
gap of coal-derived GQDs from 2.40 eV to 1.94 eV (Yan
et al. 2020). Conversely, electron withdrawing groups can
reduce the energy gap in GQDs as demonstrated by the 100
nm emission wavelength red shifting of chlorine atom (Cl)
functionalized GQDs (Zhao et al. 2018).

Energy gap tuning has also been demonstrated by intro-
ducing heteroatoms to the sp? carbon framework of GQDs
and GNRs, such as B, N and O atoms (Dou et al. 2012;
Cloke et al. 2015; Kawai et al. 2015, 2018; Tsai et al. 2020).
For example, the introduction of boron atoms into GQDs
results in significant energy lowering of the absorption and
emission bands (Fig. 7a, b) (Dou et al. 2012). The corre-
sponding DFT calculations show that the observed lower-
ing of electronic transition energies is associated with the
significant contribution of boron 2p orbitals to the frontier
orbitals of the GQD (Fig. 7c). Similarly, the optical gap of
GQDs have been controllably altered from 2.31 eV to lower
energies such as: 2.18 eV for N-doped, 2.12 eV for S-doped,
and 2.04 eV for N,S-doped GQDs (Yan et al. 2020). The
location of nitrogen heteroatoms in the GQD flake (pyridinic
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Fig.7 a Structure of a boron heteroatom-containing PAH (B-PAH). b Measured UV-vis absorption (black) and emission (red) spectra of

B-PAH c Calculated MO energies of B-PAH (Dou et al. 2012)
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edge, pyridinic center, pyrrolic, graphitic, or amine) also
plays a role in the energy gap where it has been reported that
amines tend to red-shift GQD emission whereas pyridinic
nitrogen atoms tend to blue-shift it (Calabro et al. 2019; Tsai
et al. 2020).

Energy and electron transfer

Electronic excitation energy transport in nanographenes
has been explored for two types of systems. One involves
intramolecular excitation transfer along the covalently linked
framework of a single nanographene (such as GNR) and
another involves intermolecular assembly of nanographenes
(such as z-stacked GQDs). These covalent and z-stacked
architectures are multi-chromophore systems: GNRs are
defined as covalently linked arrays of chromophores, where
each chromophore is spatially located on a single mono-
meric unit, while GQD assemblies are an array of GQD
chromophores held together by van der Waals interactions.
Electronic excitation transport between these chromophores
can be either coherent or incoherent, depending on the
degree of electronic coupling between the chromophores. If
the coupling is strong, excitonic states are formed, where the
coherent superposition of resonating excited states allows
for energy transfer within the exciton size (Olaya-Castro
and Scholes 2011). Probability amplitudes on the donor
and acceptor sites of such excitonic states describe coherent
energy transfer. Unfortunately, exciton coherence lengths are
generally small in organic chromophore assemblies at room
temperature, due to the random vibrations induced from the
environment that lead to exciton decoherence and reduced
role of coherent energy transport in excitonic materials. The

Experimental data

Theoretical calculations

energy transfer between weakly coupled chromophores is
described by an incoherent hopping (Forster type) mecha-
nism, in which the excitation is localized on one chromo-
phore unit and is transferred to another unit via the “induc-
tive resonance” mechanism that does not require the orbital
overlap between donor and acceptor sites. If the orbital
overlap between the chromophores exists, the energy trans-
port can also occur via Dexter-type mechanism, in which
the excitation is transferred by coupled electron and hole
transfers between the donor and acceptor chromophores.
Incoherent energy transfer processes are dominant in these
systems. Recent studies that report coherent and incoherent
energy transport in nanographenes are discussed below.
Only a handful of studies reporting exciton coherence
lengths (or exciton size; the number of chromophores over
which the exciton is delocalized) in nanographenes can be
found in the literature. In some cases the estimate of exci-
ton size can be obtained from steady-state emission spectra
(Spano and Yamagata 2011) by investigating the relative
intensities of the 0-0 and 0-1 vibronic bands of the emis-
sion spectra. The idea behind this treatment is that at T=0
K, the I°7% is directly proportional to exciton size, while
the intensity of the 0-1 vibronic progression is relatively
insensitive to exciton size. This effect can be observed in
the emission spectra of tetracene crystals shown in Fig. 8
(Lim et al. 2004). As the temperature increases, the 10001
ratio decreases, as the exciton size becomes smaller due to
thermally induced disorder and loss of degeneracy among
the chromophore eigenstates. The modeling of experimental
emission spectra provided a low-temperature exciton size
estimate of ~9 molecular units in tetracene crystals. In a
study by Moran and co-workers, exciton size in tetracene
and rubrene crystals was determined using low-temperature

T T T T T T T T T T T T

b

Fluorescence signal
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Fig.8 a Temperature-dependent emission spectra of tetracene inte-
grated over the first 200 ps (left) and simulated emission lineshapes
of tetracene at different temperatures with fixed exciton size of 9 tet-
racene molecules (right). Growth of 0-0 peak at lower temperatures

520 540 560 580 600 620 640 0.005

Radiative rate enhancement factor

0.010 0.015 0.020 0.025
1/Temperature (1/K)

indicates an increase in singlet exciton coherence length. b Radia-
tive rate enhancement as a function of temperature, measured by the
amplitude of the initial fluorescence signal (Lim et al. 2004)
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linear absorption spectroscopy and model calculations. The
calculations showed concentration of the oscillator strength
on the lowest energy transition which is a well-known sig-
nature of exciton delocalization. The exciton size was found
to be ~ 18 molecular units for tetracene and rubrene crystals
at 200 and 78 K, respectively (West et al. 2010). In a subse-
quent study, Moran and coworkers determined exciton size
of ~ 16 molecular units in perylene crystals at 78 K using low
temperature linear absorption spectroscopy and model calcu-
lations (West et al. 2011). While studies listed above inves-
tigate PAH crystals, recent studies have explored exciton
coherence lengths for nanographenes and their 3D assem-
blies. For example, a recent study investigated exciton size
in two topologically different pyrene-containing Zr-based
metal-organic frameworks (MOFs) (Yu et al. 2018). In this
work, exciton coherence lengths were evaluated computa-
tionally, using transition density matrices derived from time-
dependent DFT. The results indicate that the excitons are
delocalized over four pyrene chromophores in these systems
and that the delocalization depends on the interchromophore
separation in MOFs with different morphologies.

Our group recently explored 1D n-stacked assemblies of
GQDs using transient absorption spectroscopy and DFT cal-
culations (Fig. 9) (Singh et al. 2020b). Experimental deter-
mination of exciton size utilizes the fact that the ground-state
bleach in the transient absorption signal directly reports the
number and size of excitons formed by the pump beam. By
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measuring the bleach signal at early times after the excita-
tion pulse as a function of pump fluence, the exciton size
in two different GQD assemblies were evaluated to be 1-2
monomer units (Fig. 9a, b). Our result was consistent with
the exciton sizes calculated using the one-particle transi-
tion density formalism, where exciton size of 2 molecular
units were obtained. Our results indicate very small exciton
delocalization on one-dimensional aggregates. Even if the
exciton size is large at the Frank—Condon point, the decoher-
ence is generally fast and excitons generally “self-trap” on
picosecond timescales (Sung et al. 2015; Kaufmann et al.
2018), providing further evidence that the coherent energy
transport in these systems is not significant. While exciton
size of GNRs has been explored much less, studies compar-
ing the absorption spectra of oligomers with varying length
indicate that the excitons delocalize over no more than four
monomer units (Huang et al. 2018).

Incoherent energy transport (exciton diffusion length)
in chromophore assemblies can be measured using various
techniques such as exciton-exciton annihilation, quenching
techniques and Forster resonance energy transfer (FRET)
and each technique have their own advantages and disad-
vantages (Lin et al. 2014). Steady-state and time-resolved
surface quenching techniques require steady-state or time-
resolved PL measurements to determine exciton quenching
in bilayers of chromophore and quencher such as Cg, fuller-
ene. The exciton diffusion length is estimated from the PL
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Fig.9 Structures of alkylated a HBC and b CQD. Transient absorp-
tion spectra for ¢ HBC and d CQD thin films in poly(methyl meth-
acrylate) matrix. Samples were excited at A, =405 nm, and pump
intensity was at 500 nJ per pulse with parallel pump and probe beam
polarization. Circles represent AA,; (t=0) values obtained by prob-
ing at 367 and 467 nm [for HBC e and CQD f, respectively] as a
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function of the absorbed pump intensity, /,,.. Solid lines present the
fitting model. g—i Results from the DFT calculations on the exci-
ton size in oligomers of the HBC model: dependence of the g low-
est charge-transfer exciton energy, h size, and i charge-transfer
character on the oligomer size N (T=total, NN=nearest neighbor,
N+ 1=neighbor+ 1, and N+2=neighbor +2) (Singh et al. 2020b)
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measurements of the chromophore layer of different thick-
ness with and without quencher layer. Bulk quenching with
Monte Carlo simulations is another technique to determine
exciton diffusion parameters. Here, the chromophore with
increasing concentrations of the quencher is blended and
the PL lifetimes are added to the Monte Carlo simulation
which provides exciton diffusion parameters. The exciton
diffusion coefficients can also be determined by FRET from
the spectral overlap between absorption and emission spec-
tra of the chromophores. The exciton-exciton annihilation
technique operates on the principle that at high excitation
densities, two excitons can interact and annihilate with each
other within their lifetime. A loss in the rate of exciton decay
is observed as a function of excitation intensity and diffusiv-
ity of the excitons which can be modeled to extract exciton
diffusion parameters. The article by Nguyen and cowork-
ers (Lin et al. 2014) studies the exciton diffusion length in
organic semiconductors by six different experimental tech-
niques and a very good agreement was found. Also, semi-
crystalline materials gave higher exciton diffusion coeffi-
cients when measured using exciton-exciton annihilation.
One-dimensional n-assemblies of PAH, such as perylene
bisimide stacks, have been studied extensively and an exci-
ton diffusion length of up to 96 nm was observed using the
exciton-exciton annihilation method (Marciniak et al. 2011).
Our group has also explored exciton diffusion parameters
for two GQD assemblies using exciton-exciton annihilation
approach and diffusion length of 16 and 3 nm were found,
respectively (Fig. 9). Here we observed two types of exci-
tons: mobile and immobile, where the immobile excitons
were formed due to trapping of the mobile excitons, likely
caused by torsional motion of the molecules in the aggregate
structure (Singh et al. 2020b).

Excitons in nanographene materials exhibit exciton bind-
ing energies (E) that are much larger than the available
room temperature thermal energy (k,7'~26 meV), resulting
in low efficiency of spontaneous exciton dissociation into
free charge carriers. Theoretical studies have shown that E,’s
are closely related to the exciton size in GNRs, which are in
turn directly related to the GNR width w (Zhu and Su 2011).

2.4
2.0
1.6
1.2
0.8

E,(eV)

0.4

Figure 10 shows that the binding energies range from ~450
meV for wide GNRs to~2.5 eV for narrow GNRs. Interest-
ingly, the dependence of E, (and exciton size) on the GNR
width follows the same trend as the energy gap discussed
earlier. For the same GNR width, the 3p + 2 family exhibits
smaller E, values than the member of the 3p family. Simi-
lar computational studies have been performed for GQDs
where many-body effects (interactions between electron and
hole) in confined systems are taken into account to yield a
quasiparticle gap which is used in the calculation of E;. For
example, Wang et. al. produced a computational study on
GQDs of varying size and edge and report E, values larger
than 1 eV, which are expected and larger than E,’s in carbon
nanotubes and GNRs due to the higher degree of quantum
confinement in GQDs. The authors also report that, gener-
ally, GQDs exhibit a decrease in E, as the lateral size of the
GQD increases, with exceptions to this rule stemming from
symmetry effects as discussed earlier in this review (Li et al.
2015¢).

Experimental E, values in GNRs confirm computational
predictions discussed above. For example, E, has been
determined for 1.7 nm wide GNR 23 (Scheme 1) using
ultrafast THz spectroscopy (Tries et al. 2020). Using 40 fs
laser pulses, the excitons and/or charge carriers are gener-
ated along the GNRs. Then, a THz probe beam is used to
distinguish between excitons and free carriers, based on the
different response that these species exhibit in the frequency-
resolved conductivity. When a low-energy pump beam is
used (1.63 eV), only excitonic states are formed (Fig. 11).
However, when a higher energy pump beam is used (3.1 eV)
charge-carriers are formed. By varying the energy of the
pump-beam, the authors found that £, =700 meV, which is
similar to the theoretically calculated value of 550 meV. The
authors further investigated the dynamics of charge carriers
and excitons in GNRs and found that charge carriers recom-
bine quickly to form excitons (0.8 ps), while exciton life-
times are relatively long-lived (> 100 ps). Exciton binding
energy of a GNR (21 in Scheme 1) was determined compu-
tationally using the ab initio GW plus Bethe—Salpeter (GW-
BS) method. The binding energy is determined by taking the
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Fig. 10 a Exciton binding energy, E, as a function of GNR width, w. b Exciton binding energy as a function of exciton size, L (Zhu and Su

2011)
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Scheme 1 Energy gaps for an assortment of (1-16) GQDs and (17— Soavi et al. 2016a, b; Keerthi et al. 2016; Chen et al. 2017; Paternd
26) GNRs, reported in units of photon wavelength. Exciton binding et al. 2017; Deilmann and Rohlfing 2017; Zhu et al. 2018; Hu et al.
energy, Ey, is reported for selected structures (Yan et al. 2011; Jensen 2018; Huang et al. 2018; Ji et al. 2019; Xu et al. 2019; Han et al.
et al. 2013; Narita et al. 2014; Denk et al. 2014; Sun et al. 2015; 2020; Tries et al. 2020; Zou et al. 2020)
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Fig.11 a UV-vis absorption spectrum of GNR 23 with excitation
wavelengths highlighted in color. b Maximum of real conductivity
signal as a function of excitation photon energy. The signal sharply
rises when the exciton is dissociated into free charge carriers. ¢ Time

difference between the GW quasiparticle bandgap and the
GW-BS excitonic transition energy. The resulting giant bind-
ing energy was found to be ~ 1.5 eV, consistent with what is
expected for excitons in GNRs (Soavi et al. 2016a). Here, the
same approach was used to computationally determine the
exciton binding energy in another GNR (24 in Scheme 1).
The binding energies for the E,; and E,, excitations (low-
est energy, allowed excitonic transitions) were reported as
1.8 and 1.4 eV, respectively, and correspond to quasi-1D
excitons that are fully delocalized along the GNR width and
spatially distributed along the ribbon axis (Denk et al. 2014).
GNR 24 deposited on an Au(111) surface exhibits a decrease
in exciton binding energy from 1.8 to 0.160 +0.060 eV due
to substrate polarization effects and strong electronic cou-
pling between the GNR and gold substrate (Bronner et al.
2016).

Surprisingly, the experimentally obtained E, values for
GQDs are significantly lower (0.1-0.6 eV) (Yuan et al. 2018,
20205 Ji et al. 2019) than those predicted by theory (~ 1.2 to
1.9 eV) (Li et al. 2015b, c). For example, E, values for two
types of GQDs were obtained using temperature-dependent
PL lifetimes (at higher temperatures, thermal energy from
the environment causes excitons to dissociate into charge
carriers, resulting in shorter PL lifetimes) and the values in
the 100-150 meV range were obtained (Yuan et al. 2018,
2020). Somewhat larger values were obtained for indium-
doped tin oxide (ITO)-tethered GQDs, where E, was deter-
mined using spectroelectrochemical methods (Ji et al. 2019).
The reasons for the observed mismatch could be associated
with the experimental techniques used in these studies. Spe-
cifically, the PL lifetime method assumes that the lifetime
decrease is associated with the exciton dissociation into
charge carriers, which may not be the case. A more accurate
analysis would involve the direct detection of charge carriers
using THz spectroscopy.
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profile for the rise and decay of the real conductivity signal (free car-
rier response) and decay of the imaginary conductivity signal (exciton
response) (Tries et al. 2020)

Electron transfer from photoexcited GQDs to transition
metal-based semiconductors has been investigated previ-
ously by several groups (Manga et al. 2009; Elliott et al.
2016; Long et al. 2017; Shan et al. 2019; Han et al. 2020;
Yan et al. 2020; Singh et al. 2020a). Generally, two types of
hybrid structures have been explored, where one involves
GQDs attached to the surface of metal oxide nanoparticles
(SnO, or TiO,) and another is related to 0D/2D van der
Waals heterojunctions composed of zero-dimensional GQDs
and two-dimensional MoS, or graphene. In all studies, the
effect of GQD size on the dynamics of photoinduced elec-
tron transfer has been explored. All studies indicate that the
hot electron injection takes place from photoexcited GQDs.
For example, Fig. 12a shows the time-resolved second har-
monic generation (SHG) signal, which is proportional to
the number of charges that are photogenerated, measuring
the electron transfer from excited GQD to TiO,. The growth
of the signal occurs within the laser pulse (resolution of 60
fs), indicating that the charge injection into TiO, occurs at
the sub 15 fs timescale. This injection time is much faster
than the hot electron lifetimes in GQDs (up to 10 ps) (Wil-
liams et al. 2013). Specifically, the hot electron lifetimes
were found to increase as the GQD size is decreased and
this behavior is explained by the “phonon bottleneck” effect,
where the energy spacing in quantum-confined systems
becomes larger than the phonon frequencies, resulting in
the lower efficiency of relaxation of higher-energy excited
states. Computational studies illustrated in Fig. 12b—e have
explored the effect of GQD/TiO, bonding on the efficiency
of electron transfer (Long et al. 2017). The covalent bind-
ing through carboxylate linker was found to lead to weak
electronic coupling, while strong electronic coupling and
ultrafast charge injection are predicted for the through-space
n-electron adduct, pointing to the importance of van der
Waals interactions in mediating fast charge separation.
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Fig. 12 a Photo-induced charge transfer dynamics observed via time-
resolved SHG of GQD/TiO,(110) at 300 K and pump energies of
2.41 eV (top) and 2.00 eV (bottom). Charge densities of photoexcited

Similar effects of GQD size on hot electron cooling
rates was observed for GQD/MoS, hybrids (Fig. 13a)
(Shan et al. 2019). In addition to the hot electron cooling
dynamics, the rates of cold electron injection (z.,4) and
subsequent charge recombination (z,,.) were also found
to depend on the GQD size. For example, Fig. 13b, ¢ show
that both 7.4 and 7, increase with increased GQD size
in GQD/MoS, hybrids, which was assigned to the change
in the thermodynamic driving force for photoinduced elec-
tron transfer with the GQD size and was well modeled
using Marcus theory.

Electron and energy transfer kinetics were also inves-
tigated for hybrids involving GQDs and transition metal
complexes (Kim et al. 2006; Elliott et al. 2016; Umeyama
et al. 2019; Singh et al. 2020a). For example, our group
investigated the excited-state behavior of GQDs that con-
tain cobaloxime-based hydrogen evolution catalysts shown
in Fig. 14 (Singh et al. 2020a).We found that the excited
state, localized on the GQD moiety, is readily quenched
in the presence of cobaloximes. Our experimental results
indicate that the quenching mechanism involves either the
photoinduced electron transfer from photoexcited GQD
to the cobaloxime or Dexter-type energy transfer. No
charge-separated states were observed in transient absorp-
tion, indicating that the system quickly relaxes back to the
ground state.

b donor state of F-coronene/TiO,, ¢ acceptor state of F-coronene/
TiO,, d donor sate of VGQD/TiO,, and e acceptor state of VGQD/
TiO, (Williams et al. 2013; Long et al. 2017)

Applications

The highly tunable photophysical properties of nanogra-
phenes make them promising materials for light-emitting
diode (LED) applications. Furthermore, the low cost and
low toxicity of nanographenes, combined with their high
thermal and photo-stability makes them ideal LED phos-
phors. For indoor lighting applications, warm LEDs are
needed to minimize eye fatigue effects. Warm LEDs are
made using UV-LEDs coated with broad-emission red,
green and blue tricolor phosphors. Given that GQDs can
be photoexcited in the UV-region and they tend to exhibit
broad emission spectra, high PL QYs and tunable emis-
sion wavelengths, they have been successfully applied as
blue, green and red phosphors for warm LED applications
(Qu et al. 2016; Wang et al. 2017). For example, three
GQD phosphors that emit in blue (with PL QY =72%),
green (PL QY =71%) and red (PL QY =50%) were used
to fabricate warm LED with a luminous efficiency of 31.3
ImW~! at 20 mA current (Wang et al. 2017). In other LED
applications, such as displays, phosphors should exhibit
narrow emission bands. Until recently, GQDs had limited
performance in such devices, because of their broad emis-
sion characteristics. However, narrow emission profiles
were obtained by careful control over the GQD chemistry
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Fig. 14 a Structures of some cobaloxime-based hydrogen evolution catalysts. b Absorption and ¢ emission spectra of the structures on the left,
showing quenching on photoexcitation (Singh et al. 2020a)
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(Yuan et al. 2018, 2020). For example, the presence of
carboxylate groups on the edges of GQDs was found to
cause the emission broadening due to the changes in the
n-delocalization of the chromophores as the carboxylate
group rotates in and out of plane of the nanographene. This
paper reports first HBC based LED which shows electrolu-
minescence peak at 490 nm with a FWHM of 20 nm. Ami-
nation of GQD edges to remove the carboxylate groups
has produced deep-blue LEDs with 70% QY, among the
highest QY values of GQDs to date and comparable to
the highest performing Cd**/Pb**-based emitters (Yuan
et al. 2020). In another study, an exceptional narrowband
emission (FWHM =30 nm) was achieved using T-GQDs,
and highest QYs to date were reported (QYy,.=66%,
QYgreen=72%, QY =62%, and QY . =54%, Fig. 15)
(Yuan et al. 2020).

The impressive emissive properties of nanographenes
make them promising contenders for low-threshold lasers
with long operational times (Yuan et al. 2019b; Bonal et al.
2019; Zou et al. 2020) and optical sensors (Sun et al. 2013;
Ananthanarayanan et al. 2014; Shi et al. 2015; Song et al.
2016; Hai et al. 2018; Xu et al. 2018). For example, T-GQDs
in Au—Ag bimetallic porous nanowires have shown lasing
application with performances superior than perovskites

yellow

and traditional colloidal semiconductor QD based random
lasers. The prepared blue, green and red random lasers
showed a lasing threshold of 0.087, 0.052 and 0.048 mJ/
cm? along with corresponding FWHM:s of 0.9, 0.37 and 0.82
nm, respectively (Yuan et al. 2019b). Additionally, distribu-
tion feedback lasers based on zigzag-edged nanographenes
have been demonstrated to operate at a threshold as low as
11 w/cm? with a narrow FWHM of 0.13 nm (Bonal et al.
2019). On the biological sensing front, functionalized GQDs
allow binding with the target analyte through various kinds
of interactions, such as electrostatic attraction or z—z con-
jugation, results in the quenching of PL (Hai et al. 2018).
For example, chemically modified GQDs have been dem-
onstrated to sense biological Fe’ (Ananthanarayanan et al.
2014), Ni** (Xu et al. 2018), Cu>* (Sun et al. 2013), and H*
ions (Song et al. 2016). Challenges to be overcome in the
biological application of nanographenes are being studied
and include biocompatibility, selectivity, and cytotoxicity.
Nanographenes have been used as photoactive materi-
als in photovoltaics with limited success (Qin et al. 2015).
Due to high exciton binding energy of nanographene materi-
als, photovoltaic nanographene cells are made as bulk het-
erojunctions with appropriate electron donors or acceptors.
These blends ensure efficient charge separation at interfaces
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Fig. 15 a GQD-based LED device structure. b Energy level diagram
of LED device. Electroluminescence of LEDs based on ¢ blue, d
green, e yellow, and f red emitting triangular GQDs at different bias
voltages. Maximum luminance-current—voltage characteristic of g
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blue, h green, i yellow, j and red emitting triangular GQDs. k Cur-
rent efficiency versus current density and 1 stability plots of the GQD-
based LED devices (Yuan et al. 2018)
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and 3-4% power conversion efficiencies can be achieved.
Nanographenes have also been used as “photon manage-
ment” chromophores for photovoltaic devices (Khan and
Kim 2018). Namely, GQDs with large Stokes shifts and high
PL QYs were utilized to down-covert blue photons for use in
Cu(In,Ga)Se, solar cells. This conversion of blue photons to
lower energy photons minimizes the efficiency loss associ-
ated with the parasitic absorption of blue light by ZnO and
CdS windows and buffer layers in these devices. Further-
more, GQDs have been shown to uplift the Fermi level of
perovskite-based films and improving the charge separation
in them resulting in an increase of solar cell efficiency by
2.7% (Gan et al. 2019).

Nanographenes are also being developed for application
in photocatalysis, such as solar water splitting and carbon
dioxide reduction (Yan et al. 2018, 2020; Tsai et al. 2020).
For example, efficient photoelectrochemical water splitting
was achieved using 0D/2D van der Waals heterojunctions
composed of zero-dimensional GQDs and two-dimensional
graphene (Yan et al. 2020). The energy gap of GQDs was
tuned to be ~2 eV to ensure the most efficient harvesting of
the solar spectrum and sufficient energy to drive the water

splitting. The performance of these heterojunctions in photo-
electrochemical water splitting is shown in Fig. 16. The pres-
ence of several-fold current enhancement is observed under
illumination, indicating efficient photocatalysis. The GQD-
graphene hybrids in the aforementioned study exhibited a
fast Volmer-Heyrovsky mechanism for hydrogen evolution
and a fast two-step mechanism for oxygen evolution. The
performance of GQDs in photocatalytic water splitting can
be optimized via chemical tuning of the GQD. For exam-
ple, Yan and coworkers demonstrated a systematic approach
to engineering bandgaps in GQDs for photocatalytic water
splitting and CO, reduction in 2018 (Yan et al. 2018). Incor-
poration of a Z-scheme mechanism was achieved using GQD
materials modified via m-system extension to introduce
either p- and n-type semiconducting domains. Upon excita-
tion with visible light (420-800 nm), an electron is gener-
ated in the p-type domain (which reduces CO, to methanol)
and a hole forms in the n-type domain (which oxidizes water
to produce O,). The authors note that, while the photocata-
Iytic performance of their GQDs are not competitive with
other common photocatalysts in industry (H, yield of 130
pmol h™!, and methanol yield of 0.695 pmol h™! g, ™),
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Fig. 16 Electro- and photoelectrochemical water splitting results
of GQDs. a Hydrogen evolution and oxygen evolution linear scan
curves of heteroatom nitrogen/sulfur-containing GQDs/graphene
hybrid structures in 1.0 M KOH with Xe lamp illumination (black)
intermittent illumination (blue), and with no illumination (red). For
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reference, electrochemical performance of GQD/graphene (green) is
also shown. Cathodic b and anodic ¢ current densities of NS-GQD/
graphene in ethanol with 0.1 M KOH with intermittent illumination.
d HER and OER current densities with respect to time under Xe lamp
illumination (Lin et al. 2018) (Yan et al. 2020)
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optimization of the GQD for photocatalysis is a necessary
and important step towards synthesizing GQD-hybrid mate-
rials that exhibit competitive photocatalysis.

Future directions

Our short review summarizes a range of interesting pho-
tophysical properties of nanographenes and their applica-
tions in optoelectronic and photocatalytic applications. One
particular area that has shown great promise, but has not
been explored in great detail, is photocatalysis. With recent
developments in bottom-up wet chemistry synthetic meth-
ods, photocatalytic nanographene materials can be readily
made from GNRs or GQDs and molecular transition metal
catalysts for water splitting, carbon dioxide reduction, or
any other oxidation/reduction reaction. Tunable energy gaps
of nanographenes, along with efficient exciton and charge
carrier mobilities in these materials make them ideal plat-
forms for photocatalysis. Furthermore, nanographenes can
be solubilized using appropriate pendant groups, enabling
“wireless” photocatalysis in solution. Future studies inves-
tigating structural factors that control light harvesting, pho-
toinduced charge separation/recombination and subsequent
bond forming and breaking steps will enable a new genera-
tion of nanographene photocatalysts.
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