Session: Best Paper Award and Data Streams

Relative Error Streaming Quantiles

PODS ’21, June 20-25, 2021, Virtual Event, China

Graham Cormode Zohar Karnin Edo Liberty
University of Warwick Amazon Pinecone
Coventry, UK USA San Mateo, CA, USA
G.Cormode@warwick.ac.uk zkarnin@gmail.com edo@edoliberty.com

Justin Thaler
Georgetown University
Washington, D.C., USA

justin.thaler@georgetown.edu

ABSTRACT

Approximating ranks, quantiles, and distributions over streaming
data is a central task in data analysis and monitoring. Given a stream
of n items from a data universe U equipped with a total order, the
task is to compute a sketch (data structure) of size poly(log(n), 1/¢).
Given the sketch and a query item y € U, one should be able
to approximate its rank in the stream, i.e., the number of stream
elements smaller than or equal to y.

Most works to date focused on additive en error approximation,
culminating in the KLL sketch that achieved optimal asymptotic
behavior. This paper investigates multiplicative (1 + ¢)-error ap-
proximations to the rank. Practical motivation for multiplicative
error stems from demands to understand the tails of distributions,
and hence for sketches to be more accurate near extreme values.

The most space-efficient algorithms due to prior work store ei-
ther O(log(e2n)/e?) or O(log3(en)/¢) universe items. This paper
presents a randomized algorithm storing O(log!->(en)/e) items,
which is within an O(q/log(en)) factor of optimal. The algorithm
does not require prior knowledge of the stream length and is fully
mergeable, rendering it suitable for parallel and distributed com-
puting environments.

ACM Reference Format:

Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel
Vesely. 2021. Relative Error Streaming Quantiles. In Proceedings of the 40th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(PODS °21), June 20-25, 2021, Virtual Event, China. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3452021.3458323

1 INTRODUCTION

Understanding the distribution of data is a fundamental task in data
monitoring and analysis. The problem of streaming quantile approx-
imation captures this task in the context of massive or distributed
datasets.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PODS 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8381-3/21/06...$15.00
https://doi.org/10.1145/3452021.3458323

96

Pavel Vesely
Computer Science Institute
Charles University
Prague, Czech Republic
vesely@iuuk.mff.cuni.cz

The problem is as follows. Let o = {x1, ..., x,} be a stream of
items, all drawn from a data universe U equipped with a total order.
For any y € U, let R(y; 0) = |{x; | x; < y}| be the rank of y in the
stream. When o is clear from context, we write R(y). The objective
is to process the stream while storing a small number of items, and
then use those to approximate R(y) for any y € U. A guarantee
for an approximation R(y) is additive if |f{(y) - R(y)| < en, and
multiplicative or relative if R(y) - Ry)| < eR(y).

A long line of work has focused on achieving additive error
guarantees [2, 3, 8, 9, 12, 14, 18, 19]. However, additive error is
not appropriate for many applications. Indeed, often the primary
purpose of computing quantiles is to understand the tails of the
data distribution. When R(y) < n, a multiplicative guarantee is
much more accurate and thus harder to obtain. As pointed out by
Cormode et al. [4], a solution to this problem would also yield high
accuracy when n — R(y) < n, by running the same algorithm with
the reversed total ordering (simply negating the comparator).

A quintessential application that demands relative error is moni-
toring network latencies. In practice, one often tracks response time
percentiles 50, 90, 99, and 99.9. This is because latencies are heavily
long-tailed. For example, Masson et al. [16] report that for web
response times, the 98.5th percentile can be as small as 2 seconds
while the 99.5th percentile can be as large as 20 seconds. These
unusually long response times affect network dynamics [4] and are
problematic for users. Furthermore, as argued by Tene in his talk
about measuring latency [22], one needs to look at extreme per-
centiles such as 99.995 to determine the latency such that only about
1% of users experience a larger latency during a web session with
several page loads. Hence, highly accurate rank approximations are
required for items y whose rank is very large (n — R(y) < n); this
is precisely the requirement captured by the multiplicative error
guarantee.

Achieving multiplicative guarantees is known to be strictly
harder than additive ones. There are comparison-based additive
error algorithms that store just ©(¢~1) items for constant failure
probability [12], which is optimal. In particular, to achieve additive
error, the number of items stored may be independent of the stream
length n. In contrast, any algorithm achieving multiplicative er-
ror must use Q (8_1 -log(en) - log(e|U])) bits of space, which holds

https://doi.org/10.1145/3452021.3458323
https://doi.org/10.1145/3452021.3458323

Session: Best Paper Award and Data Streams

even for offline, non-comparison-based algorithms (see [4, Theorem
2] and Appendix A).!

The best known algorithms achieving multiplicative error guar-
antees are as follows. Zhang et al. [24] give a randomized algorithm
storing O(¢~2 - log(e2n)) universe items. This is essentially a ¢!
factor away from the aforementioned lower bound. There is also an
algorithm of Cormode et al. [5] that stores O(e~! - log(en) - log |U|)
items. However, this algorithm builds a binary tree over the data
universe U a priori and is inapplicable when U is huge or even
unbounded, e.g., if U consists of all strings of arbitrary length.
Finally, Zhang and Wang [23] designed a deterministic algorithm
requiring O(¢ ™! -log®(en)) space. Very recent work of Cormode and
Vesely [6] proves an Q(e7! - logz(sn)) lower bound for the num-
ber of items stored by deterministic comparison-based algorithms,
which is within a log(en) factor of Zhang and Wang’s upper bound.

Despite both the practical and theoretical importance of multi-
plicative error (which is arguably an even more natural goal than
additive error), there has been no progress on upper bounds, i.e.,
no new algorithms, since 2007.

In this work, we give a randomized algorithm that maintains the
optimal linear dependence on 1/¢ achieved by Zhang and Wang,
with a significantly improved dependence on the stream length.
Namely, we design a comparison-based, one-pass streaming algo-
rithm that given ¢ > 0 and § > 0, computes a sketch consisting
of O (s’l -log!-3(en) - yflog (1/5)) universe items (for a sufficiently
small ¢; see Theorem 1), and from which an estimate R(y) of R(y)
can be derived for every y € U. For any fixed y € U, with probabil-
ity at least 1 — §, the returned estimate satisfies the multiplicative
error guarantee |ﬁ(y) —R(y)| < €R(y). Ours is the first algorithm to
be strictly more space efficient than any deterministic comparison-
based algorithm (owing to the Q(¢~! log?(en)) lower bound in [6])
and is within an O(\/log(sn)) factor of the known lower bound
for randomized algorithms achieving multiplicative error. (In this
manuscript, the O notation hides factors polynomial in log(1/5),
loglogn, and log(1/¢).)

We also show that the algorithm processes the input stream
efficiently. In particular, the amortized update time of the al-
gorithm is a logarithm of the space bound, which equals
O (log(e™?!) + log log(n) + log log(1/6)); see Section 4 for details.

Mergeability. The ability to merge sketches of different streams
to get an accurate sketch for the concatenation of the streams is
highly significant both in theory [1] and in practice [20]. Such
mergeable summaries enable trivial, automatic parallelization and
distribution of processing massive data sets, by arbitrarily splitting
the data up into pieces, summarizing each piece separately, and
then merging the results.

We show that our sketch is fully mergeable. This means that, if a
data set is split into pieces and each piece is summarized separately,
and the resulting summaries are combined via an arbitrary sequence

ntuitively, the reason additive-error sketches can achieve space independent of the
stream length is because they can take a subsample of the stream of size about ©(¢72)
and then sketch the subsample. For any fixed item, the additive error to its rank
introduced by sampling is at most en with high probability. When multiplicative error
is required, one cannot subsample the input: for low-ranked items, the multiplicative
error introduced by sampling will, with high probability, not be bounded by any
constant.

97

PODS ’21, June 20-25, 2021, Virtual Event, China

of merge operations, the algorithm maintains the same relative
error guarantees while using essentially the same space as if the
entire data set had been processed as a single stream (the details
are deferred to the full version?).

The following theorem is the main result of this paper. We stress
that our algorithm does not require any advance knowledge about
n, the total size of input, which indeed may not be available in many
applications.3

THEOREM 1. Let 0 < § < 0.5 and 0 < ¢ < 1 be parameters
satisfying ¢ < 4/+J2log,(n). There is a randomized, comparison-
based, one-pass streaming algorithm that, when processing a data
stream consisting of n items, produces a summary S satisfying the
following property. Given S, for anyy € U one can derive an estimate
ﬁ(y) of R(y) such that

Pr [ui(y) -R(y)| = eR(y)| <6,

where the probability is over the internal randomness of the streaming

algorithm. Ife < 4 - \/In %/logz(en), then the size of S is

1
le) E_l 'lOgl’S(En)' log(g) R

otherwise, storing S takes O (logz(en)) memory words. Moreover, the

summary produced is fully mergeable.

Note that the assumption ¢ < 4/+/2log,(n) is very weak as for
any n < 2! itholds that +/2log,(n) < 4, rendering the assumption
vacuous in practical scenarios. Similarly, the space bound that holds

in the case ¢ < 4 /In % /log,(en) certainly applies for values of ¢

and n encountered in practice (e.g., for n < 204 and § < 1/e, this
latter requirement is implied by ¢ < 1/2).

All-quantiles approximation. As a straightforward corollary of
Theorem 1, we obtain a space-efficient algorithm whose estimates
are simultaneously accurate for all y € U with high probability.
The proof is a standard use of the union bound combined with an
epsilon-net argument; we include the proof in Appendix B.

COROLLARY 1 (ALL-QUANTILES APPROXIMATION). The error
bound from Theorem 1 can be made to hold for ally € U simul-
taneously with probability 1 — § while storing

O|e™! - log'>(en) - log(

stream items if ¢ < O (1 [log %/log(en)) and O (Iogz(en)) items

otherwise.

log(en)
&b)

2The full version of our paper is available at https://arxiv.org/abs/2004.01668.

3 A proof-of-concept Python implementation of our algorithm is available at GitHub:
https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.
py. A production-quality implementation in the Apache DataSketches library is
available at https://datasketches.apache.org/.

https://arxiv.org/abs/2004.01668
https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.py
https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.py
https://datasketches.apache.org/

Session: Best Paper Award and Data Streams

Challenges and techniques. A starting point of the design of our
algorithm is the KLL sketch [12] that achieves optimal accuracy-
space trade-off for the additive error guarantee. The basic building
block of the algorithm is a buffer, called a compactor, that receives
an input stream of n items and outputs a stream of at most n/2
items, meant to “approximate” the input stream. The buffer simply
stores items and once it is full, we sort the buffer, output all items
stored at either odd or even indexes (with odd vs. even selected via
an unbiased coin flip), and clear the contents of the buffer—this is
called the compaction operation. Note that a randomly chosen half
of items in the buffer is simply discarded, whereas the other half of
items in the buffer is “output” by the compaction operation.

The overall KLL sketch is built as a sequence of at most log,(n)
such compactors, such that the output stream of a compactor is
treated as the input stream of the next compactor. We thus think
of the compactors as arranged into levels, with the first one at
level 0. Similar compactors were already used, e.g., in [1, 13-15],
and additional ideas are needed to get the optimal space bound for
additive error, of O(1/¢) items stored across all compactors [12].

The compactor building block is not directly applicable to our
setting for the following reasons. A first observation is that to
achieve the relative error guarantee, we need to always store the
1/€ smallest items. This is because the relative error guarantee
demands that estimated ranks for the 1/¢ lowest-ranked items in
the data stream are exact. If even a single one of these items is
deleted from the summary, then these estimates will not be exact.
Similarly, among the next 2/e smallest items, the summary must
store essentially every other item to achieve multiplicative error.
Among the next 4/¢ smallest items in the order, the sketch must
store roughly every fourth item, and so on.

The following simple modification of the compactor from the
KLL sketch indeed achieves the above. Each buffer of size B “pro-
tects” the B/2 smallest items stored inside, meaning that these items
are not involved in any compaction (i.e., the compaction operation
only removes the B/2 largest items from the buffer). Unfortunately,
it turns out that this simple approach requires space ©(e2-log(¢?n)),
which merely matches the space bound achieved in [24], and in
particular has a (quadratically) suboptimal dependence on 1/e.

The key technical contribution of our work is to enhance this
simple approach with a more sophisticated rule for selecting the
number of protected items in each compaction. One solution that
yields our upper bound is to choose this number in each compaction
at random from an appropriate exponential distribution. However,
to get a cleaner analysis and a better dependency on the failure
probability 8, we in fact derandomize this distribution.

While the resulting algorithm is relatively simple, analyzing the
error behavior brings new challenges that do not arise in the addi-
tive error setting. Roughly speaking, when analyzing the accuracy
of the estimate for R(y) for any fixed item y, all error can be “attrib-
uted” to compaction operations. In the additive error setting, one
may suppose that every compaction operation contributes to the
error and still obtain a tight error analysis [12]. Unfortunately, this
is not at all the case for relative error: as already indicated, to obtain
our accuracy bounds it is essential to show that the estimate for any
low-ranked item y is affected by very few compaction operations.

Thus, the first step of our analysis is to carefully bound the num-
ber of compactions on each level that affect the error for y, using

98

PODS ’21, June 20-25, 2021, Virtual Event, China

a charging argument that relies on the derandomized exponential
distribution to choose the number of protected items. To get a suit-
able bound on the variance of the error, we also need to show that
the rank of y in the input stream to each compactor falls by about
a factor of two at every level of the sketch. While this is intuitively
true (since each compaction operation outputs a randomly chosen
half of “unprotected” items stored in the compactor), it does not
hold deterministically and hence requires a careful treatment in the
analysis. Finally, we observe that the error in the estimate for y is a
zero-mean sub-Gaussian variable with variance bounded as above,
and thus applying a standard Chernoff tail bound yields our final
accuracy guarantees for the estimated rank of y.

There are substantial additional technical difficulties to analyze
the algorithm under an arbitrary sequence of merge operations,
especially with no foreknowledge of the total size of the input.
Most notably, when the input size is not known in advance, the
parameters of the sketch must change as more inputs are processed.
This makes obtaining a tight bound on the variance of the resulting
estimates highly involved. In particular, as a sketch processes more
and more inputs, it protects more and more items, which means that
items appearing early in the stream may not be protected by the
sketch, even though they would have been protected if they appeared
later in the stream. Addressing this issue is reasonably simple in the
streaming setting, because every time the sketch parameters need
to change, one can afford to allocate an entirely new sketch with the
updated parameters, without discarding the previous sketch(es); see
Section 5 for details. Unfortunately, this simple approach does not
work for a general sequence of merge operations, and we provide a
much more intricate analysis to give a fully mergeable summary.

A second challenge when designing and analyzing merge op-
erations arises from working with our derandomized exponential
distribution, since this requires each compactor to maintain a “state”
variable determining the current number of protected items, and
these variables need to be “merged” appropriately. It turns out that
the correct way to merge state variables is to take a bitwise OR of
their binary representations. With this technique for merging state
variables in hand, we extend the charging argument bounding the
number of compactions affecting the error in any given estimate
so as to handle an arbitrary sequence of merge operations.

Analysis with extremely small probability of failure. We close
by giving an alternative analysis of our algorithm that achieves
a space bound with an exponentially better (double logarithmic)
dependence on 1/§, compared to Theorem 1. However, this im-
proved dependence on 1/ comes at the expense of the exponent of
log(en) increasing from 1.5 to 2. Formally, we obtain the following
theorem, where we also show that it directly implies a determinis-
tic space bound of O(e~! - log3(en)), matching the state-of-the-art
result in [23]. For simplicity, we only prove the theorem in the
streaming setting, although we conjecture that an appropriately
modified proof of Theorem 1 would yield the same result even
when the sketch is built using merge operations. The formal proof
is deferred to the full version of our paper.?

THEOREM 2. For any parameters0 < § < 0.5 and0 < & < 1, there
is a randomized, comparison-based, one-pass streaming algorithm

that computes a sketch consisting of O (g_l -log?(en) - log log(l/é))

Session: Best Paper Award and Data Streams

universe items, and from which an estimate R(y) of R(y) can be derived
for everyy € U. For any fixed y € U, with probability at least
1— 4, the returned estimate satisfies the multiplicative error guarantee

IR(y) - Ry)| < eR().

We remark that this alternative analysis builds on an idea
from [12] to analyze the top few levels of compactors deterministi-
cally rather than obtaining probabilistic guarantees on the errors
introduced to estimates by these levels.

Organization of the paper. Since the proof of full mergeability
in Theorem 1 is quite involved, we proceed in several steps of
increasing complexity. We describe our sketch in the streaming
setting in Section 2, where we also give a detailed but informal
outline of the analysis. We then formally analyze the sketch in
the streaming setting in Sections 3 and 4, also assuming that a
polynomial upper bound on the stream length is known in advance.
The space usage of the algorithm grows polynomially with the
logarithm of this upper bound, so if this upper bound is at most
n for some constant ¢ > 1, then the space usage of the algorithm
remains as stated in Theorem 1, with only the hidden constant
factor changing. Then, in Section 5, we explain how to remove this
assumption in the streaming setting, yielding an algorithm that
works without any information about the final stream length.

The full description of the merge procedure and the analysis of
the accuracy under an arbitrary sequence of merge operations is
deferred to the full version of our paper? (for didactic purposes, we
outline a simplified merge operation in Section 2.3).

1.1 Detailed Comparison to Prior Work

Some prior works on streaming quantiles consider queries to be
ranksr € {1, ..., n}, and the algorithm must identify an item y € U
such that R(y) is close to r. In this work we focus on the dual prob-
lem, where we consider queries to be universe items y € U and the
algorithm must yield an accurate estimate for R(y). Unless specified
otherwise, algorithms described in this section directly solve both
formulations (this holds for our algorithm as well). Algorithms are
randomized unless stated otherwise. For simplicity, randomized
algorithms are assumed to have constant failure probability §. All
reported space costs refer to the number of universe items stored.*

Additive Error. Manku, Rajagopalan, and Lindsay [14, 15] built
on the work of Munro and Paterson [17] and gave a deterministic
solution that stores at most O(e~! - log?(en)) items, assuming prior
knowledge of n. Greenwald and Khanna [10] created an intricate
deterministic streaming algorithm that stores O(e~! - log(en)) items.
This is the best known deterministic algorithm for this problem,
with a matching lower bound for comparison-based streaming al-
gorithms [6]. Agarwal, Cormode, Huang, Phillips, Wei, and Yi [1]
provided a mergeable sketch of size O(¢™! - log!->(1/¢)). This paper
contains many ideas and observations that were used in later work.
Felber and Ostrovsky [8] managed to reduce the space complexity to
O(e7! -log(1/¢)) items by combining sampling with the Greenwald-
Khanna sketches in non-trivial ways. Finally, Karnin, Lang, and

4Apart from storing universe items, the algorithms may store, for example, bounds on
ranks of stored items or some counters, but the number of such variables is proportional
to the number of items stored or even smaller. Thus, the space bounds are in memory
words, which can store any item or an integer with O(log(n + |U)) bits.

99

PODS ’21, June 20-25, 2021, Virtual Event, China

Liberty [12] resolved the problem by providing an O(1/¢)-space
solution, which is optimal. For general (non-constant) failure prob-
abilities &, the space upper bound becomes O(¢~! - loglog(1/6)),
and they also prove a matching lower bound for comparison-based
randomized algorithms, assuming § is exponentially small in 7.

Multiplicative Error. A large number of works sought to pro-
vide more accurate quantile estimates for low or high ranks. Only
a handful offer solutions to the relative error quantiles problem
(also sometimes called the biased quantiles problem) considered
in this work. Gupta and Zane [11] gave an algorithm for relative
error quantiles that stores O(e> - logz(en)) items, and use this
to approximately count the number of inversions in a list; their
algorithm requires prior knowledge of the stream length n. As pre-
viously mentioned, Zhang et al. [24] presented an algorithm storing
O(e72 - log(%n)) universe items. Cormode et al. [5] designed a de-
terministic sketch storing O(¢™! - log(en) - log |U|) items, which
requires prior knowledge of the data universe U. Their algorithm
is inspired by the work of Shrivastava et al. [21] in the additive
error setting and it is also mergeable (see [1, Section 3]). Zhang
and Wang [23] gave a deterministic merge-and-prune algorithm
storing O(¢ ™! - log®(en)) items, which can handle arbitrary merges
with an upper bound on n, and streaming updates for unknown n.
However, it does not tackle the most general case of merging with-
out a prior bound on n. Cormode and Vesely [6] recently showed a
space lower bound of Q(¢™! - log®(en)) items for any deterministic
comparison-based algorithm.

Other related works that do not fully solve the relative er-
ror quantiles problem are as follows. Manku, Rajagopalan, and
Lindsay [15] designed an algorithm that, for a specified number
$ € [0, 1], stores O(¢™! - log(1/8)) items and can return an item y
with R(y)/n € [(1 — €)¢, (1 + €)¢] (their algorithm requires prior
knowledge of n). Cormode et al. [4] gave a deterministic algorithm
that is meant to achieve error properties “in between” additive and
relative error guarantees. That is, their algorithm aims to provide
multiplicative guarantees only up to some minimum rank k; for
items of rank below k, their solution only provides additive guar-
antees. Their algorithm does not solve the relative error quantiles
problem: [24] observed that for adversarial item ordering, the algo-
rithm of [4] requires linear space to achieve relative error for all
ranks. Dunning and Ertl [7] describe a heuristic algorithm called
t-digest that is intended to achieve relative error, but they provide
no formal accuracy analysis.

Most recently, Masson, Rim, and Lee [16] introduced a new
notion of error for quantile sketches (they also refer to their notion
as “relative error”, but it is quite distinct from the notion considered
in this work). They require that for a query percentile ¢ € [0, 1],
if y denotes the item in the data stream satisfying R(y) = ¢n, then
the algorithm should return an item § € U such that |y — g| <
¢ - |y|. This definition only makes sense for data universes with a
notion of magnitude and distance (e.g., numerical data), and the
definition is not invariant to natural data transformations, such
as incrementing every data item y by a large constant. It is also
trivially achieved by maintaining a (mergeable) histogram with
buckets ((1 + €)i, (1 + €)'*1]. In contrast, the standard notion of
relative error considered in this work does not refer to the data

Session: Best Paper Award and Data Streams

items themselves, only to their ranks, and is arguably of more
general applicability.

2 DESCRIPTION OF THE ALGORITHM
2.1 The Relative-Compactor Object

The crux of our algorithm is a building block that we call the relative-
compactor. Roughly speaking, this object processes a stream of n
items and outputs a stream of at most n/2 items (each “up-weighted”
by a factor of 2), meant to “approximate” the input stream. It does
so by maintaining a buffer of limited capacity.

Our complete sketch, described in Section 2.2 below, is composed
of a sequence of relative-compactors, where the input of the h+1'th
relative-compactor is the output of the h’th. With at most log,(en)
such relative-compactors, n being the length of the input stream,
the output of the last relative-compactor is of size O(1/¢), and hence
can be stored in memory.

Compaction Operation. The basic subroutine used by our relative-
compactor is a compaction operation. The input to a compaction
operation is a list X of 2m items x; < x3 < ... < X2, and the
output is a sequence Z of m items. This output is chosen to be
one of the following two sequences, uniformly at random: Either
Z = {x2i-1}2, or Z = {x2;}",. That is, the output sequence Z
equals either the even or odd indexed items in the sorted order,
with both outcomes equally probable.

Consider an item y € U and recall that R(y; X) = [{x € X|x <
y}| is the number of items x € X satisfying x < y. The following is
a trivial observation regarding the error of the rank estimate of y
with respect to the input X of a compaction operation when using
Z. We view the output Z of a compaction operation (with all items
up-weighted by a factor of 2) as an approximation to the input
X; for any y, its weighted rank in Z should be close to its rank in
X. Observation 3 below states that this approximation incurs zero
error on items that have an even rank in X. Moreover, for items y
that have an odd rank in X, the error for y € U introduced by the
compaction operation is +1 or —1 with equal probability.

OBSERVATION 3. A universe itemy € U is said to be even (odd)
w.r.t a compaction operation if R(y; X) is even (odd), where X is the
input sequence to the operation. If y is even w.r.t the compaction, then
R(y; X) — 2R(y; Z) = 0. Otherwise R(y; X) — 2R(y; Z) is a variable
taking a value from {—1, 1} uniformly at random.

The observation that items of even rank (and in particular items
of rank zero) suffer no error from a compaction operation plays an
especially important role in the error analysis of our full sketch.

Full Description of the Relative-Compactor Object. The complete
description of the relative-compactor object is given in Algorithm 1.
The high-level idea is as follows. The relative-compactor maintains
a buffer of size B = 2 - k - [log,(n/k)] where k is an even integer
parameter controlling the error and n is the upper bound on the
stream length. (For now, we assume that such an upper bound is
available; we remove this assumption in Section 5.) The incoming
items are stored in the buffer until it is full. At this point, we perform
a compaction operation, as described above.

The input to the compaction operation is not all items in the
buffer, but rather the largest L items in the buffer for a parameter L <

100

PODS ’21, June 20-25, 2021, Virtual Event, China

Full buffer

LT

B — L smallest items in the buffer L largest items sorted

U S
HERNEBUREIER

Output every other item

Delete top L items
[

gl T[]
A

Insert new item z; in the next open slot

Figure 1: Illustration of the execution of a relative-
compactor when inserting a new item x; into a buffer that
is full at time ¢. See Lines 5-14 of Algorithm 1.

B/2 such that L is even. These L largest items are then removed from
the buffer, and the output of the compaction operation is sent to the
output stream of the buffer. This intuitively lets low-ranked items
stay in the buffer longer than high-ranked ones. Indeed, by design
the lowest-ranked half of items in the buffer are never removed. We
show later that this facilitates the multiplicative error guarantee.

The crucial part in the design of Algorithm 1 is to select the
parameter L in a right way, as L controls the number of items
compacted each time the buffer is full. If we were to set L = B/2 for
all compaction operations, then analyzing the worst-case behavior
reveals that we need k ~ 1/¢2, resulting in a sketch with a quadratic
dependency on 1/¢. To achieve the linear dependency on 1/¢, we
choose the parameter L via a derandomized exponential distribution
subject to the constraint that L < B/2.

In more detail, one can think of Algorithm 1 as choosing L as
follows. During each compaction operation, the second half of the
buffer (with B/2 largest items) is split into [log,(n/k)] sections,
each of size k and numbered from the right so that the first section
contains the k largest items, the second one next k largest items,
and so on; see Figure 2. The idea is that the first section is involved
in every compaction (i.e., we always have L > k), the second section
in every other compaction (i.e., L > 2k every other time), the third
section in every fourth compaction, and so on. This can be described
concisely as follows: Let C be the number of compactions performed
so far. During the next (i.e., the C + 1-st) compaction of the relative-
compactor, we set Lc = (z(C) + 1) - k, where z(C) is the number of
trailing ones in the binary representation of C. We call the variable
C the state of this “compaction schedule” (i.e., a particular way of
choosing L). See Lines 6-7 of Algorithm 1, where we also define
Sc = B—L¢ + 1 as the first index in the compacted part of the
buffer.

Observe that Lc < B/2 always holds in Algorithm 1. Indeed,
there are at most n/k compaction operations (as each discards at
least k items), so the binary representation of C never has more

5 A prior version of this manuscript used an actual exponential distribution; see https:
//arxiv.org/abs/2004.01668v1. The algorithm presented here uses randomness only to
select which items to place in the output stream, not how many items to compact. This
leads to a cleaner analysis and isolates the one component of the algorithm for which
randomness is essential.

https://arxiv.org/abs/2004.01668v1
https://arxiv.org/abs/2004.01668v1

Session: Best Paper Award and Data Streams

PODS ’21, June 20-25, 2021, Virtual Event, China

7 le [5 [afs]2[1]

B/2 slots (never compacted)

[logy(n/k)] = 7 sections with k slots each

Figure 2: Illustration of a relative-compactor and its sections, together with the indexes of the sections.

Algorithm 1 Relative-Compactor

Input: Parameters k € 2N and n € N*, and a stream of items
X1, X2, . .. of length at most n

: Set B=2-k - [log,(n/k)]

. Initialize an empty buffer 8B of size B, indexed from 1

SetC=0

fort=1...do
if B is full then > Compaction operation

Compute z(C) = the number of trailing ones in the

binary representation of C

7: SetLc =(z(C)+1)-kandSc =B-Lc +1

8: Pivot B s.t. the largest L¢ items occupy B[Sc : B]

9 > B[Sc : B] are the last L¢ slots of B

10: Sort B[Sc : B] in non-descending order

11: Output either even or odd indexed items in the range
B[Sc : B] with equal probability

12: Mark slots B[Sc¢ : B] in the buffer as clear

13: Increase C by 1

> State of the compaction schedule

A o A

14: Store x; to the next available slot in the buffer 8.

than [log,(n/k)] bits, not even after the last compaction. Thus, z(C),
the number of trailing ones in the binary representation of C, is
always less than [log,(n/k)] and hence, Lc < [log,(n/k)] - k =
B/2.1t also follows that there is at most one compaction operation
that compacts all [log,(n/k)] sections at once. Our deterministic
compaction schedule has the following crucial property:

FAcT 4. Between any two compaction operations that involve ex-
actly j sections (i.e., both have L = j-k), there is at least one compaction
operation that involves more than j sections.

ProoF. Let C < C’ denote the states of the compaction schedule
in two steps ¢ < t’ with a compaction operation involving exactly j
sections. Then we can express the binary representations of C and
C’ as (x,0,1/71) and (x’, 0, /1), respectively, where 1/=! denotes
the all-1s vector of length j — 1, and x and x’ are respectively
the binary representations of two numbers y and z with y < z.
Consider the binary vector (x, 1/). This is the binary representation
of a number C € (C, C’") with strictly more trailing ones than the
binary representations of C and C’. The claim follows as there must
be a step f € (') when the state equals C and a compaction
operation is performed. O

2.2 The Full Sketch

Following prior work [1, 12, 14], the full sketch uses a sequence
of relative-compactors. At the very start of the stream, it consists
of a single relative-compactor (at level 0) and opens a new one
(at level 1) once items are fed to the output stream of the first
relative-compactor (i.e., after the first compaction operation, which
occurs on the first stream update during which the buffer is full).

101

In general, when the newest relative-compactor is at level h, the
first time the buffer at level h performs a compaction operation
(feeding items into its output stream for the first time), we open
a new relative-compactor at level h + 1 and feed it these items.
Algorithm 2 describes the logic of this sketch. To answer rank
queries, we use the items in the buffers of the relative-compactors
as a weighted coreset. That is, the union of these items is a weighted
set C of items, where the weight of items in relative-compactor at
level h is 2" (h starts from 0), and the approximate rank of y is the
sum of weights of items in C smaller than or equal to y.

The construction of layered exponentially-weighted compactors
and the subsequent rank estimation is virtually identical to that
explained in prior works [1, 12, 14]. Our essential departure from
prior work is in the definition of the compaction operation, not in
how compactors are plumbed together to form a complete sketch.

Algorithm 2 Relative-Error Quantiles sketch

Input: Parameters k € 2N" and n € N*, and a stream of items
X1, X2, . .. of length at most n
Output: A sketch answering rank queries
1: Let RelCompactors be a list of relative-compactors
2: Set H = 0, initialize relative-compactor at RelCompactors[0],
with parameters k and n

3 fort=1...do
4 INSERT(x¢, 0)
5. function INSERT(x,h)
6: if H < h then
7: SetH=nh
8: Initialize relative-compactor at RelCompactors[h], with
parameters k and n
9: Insert item x into RelCompactors[h]
10: for z in output stream of RelCompactors[h] do
11: INSERT(z, h + 1)
12: function ESTIMATE-RANK(y)
13: Set R(y) = 0
14: for h =0to H do
15: for each item y’ < y stored in RelCompactors[h] do
16: Increment ﬁ(y) by 2h
return R(y)

2.3 Merge Operation

We describe a merge operation that takes as input two sketches S’
and S”” which have processed two separate streams ¢’ and ¢’/, and
that outputs a sketch S that summarizes the concatenated stream
o = ¢’ o ¢” (the order of ¢’ and ¢’ does not matter here). For
simplicity, we assume w.l.o.g. that sketch S’ has at least as many
levels as sketch S”/. Then, the resulting sketch S inherits parameters
k and n from sketch S’. We further assume that both $” and S”

Session: Best Paper Award and Data Streams

have the same value of k and that n is still an upper bound on the
combined input size. In the full version of our paper?, we show
how to remove the latter assumption about the knowledge of n
and provide a tight analysis of the sketch created by an arbitrary
sequence of merge operations without any advance knowledge
about the total input size, thus proving Theorem 1.

The basic idea of the merge operation is straightforward: At
each level, concatenate the buffers and if that causes the capacity of
the compactor to be exceeded, perform the compaction operation,
as in Algorithm 1. However, there is crucial subtlety: We need to
combine the states C of the compaction schedule at each level in a
manner that ensures that relative-error guarantees are satisfied for
the merged sketch. Consider alevel h and let C” and C”’ be the states
of the compaction schedule at level h in S” and S”/, respectively.
The new state C at level h will be the bitwise OR of C’ and C”'.
The purpose of using bitwise OR is to make an extension of our
charging scheme from Section 3 work in the general setting with
merge operations. Note that while in the streaming setting, the
state corresponds to the number of compaction operations already
performed, after a merge operation this may not hold anymore. Still,
if the state is zero, this indicates that the buffer has not yet been
subject to any compactions. Algorithm 3 provides a pseudocode of
the merge operation, where we use S.H for the index of the highest
level of sketch S and similarly, S.k and S.n for the parameters k and
n of S, respectively.

Algorithm 3 Merge operation

Input: Sketches S’ and S” to be merged such that S’.H > S .H
Output: A sketch answering rank queries for the combined inputs
of $” and §”
1: forh=0,...,S”.Hdo > Merge S’ into S’
2 S’ RelCompactors[h].C = S’ RelCompactors[h].C OR
S’ RelCompactors[h].C
3 Insert all items
S’ RelCompactors[h]
4: forh=0,...,5.Hdo
5 if buffer S’ RelCompactors[h] exceeds its capacity then
6: Perform compaction operation as in lines 6-13 of Algo-
rithm 1 and insert output items into S”.RelCompactors[h + 1]

in §” RelCompactors[h] into

7: return S’

2.4 Informal Outline of the Analysis

To analyze the error of the full sketch, we focus on the error in
the estimated rank of an arbitrary item y € U. For clarity in
this informal overview, we consider the failure probability é to
be constant, and we assume that =1 > +/log,(en), or equivalently,
n<el.oge” (this assumption is loosened in the formal analysis in
Sections 3 and 4). Recall that in our algorithm, all buffers have size

B = O(klog(n/k)); we ultimately will set k = © (s_l/ﬂlog(en)), in
which case B=0 (s_lyllog(gn)).

Let R(y) be the rank of item y in the input stream, and Err(y) =
R(y) — R(y) the error of the estimated rank for y. Our analysis of
Err(y) relies on just two properties.

102

PODS ’21, June 20-25, 2021, Virtual Event, China

(1) The level-h compactor only does at most R(y)/(k - 2h) com-
pactions that affect the error of y (up to a constant factor).
Roughly speaking, this holds by the following reasoning.
First, recall from Observation 3 that y needs to be odd w.r.t
any compaction affecting the error of y, which implies that
at least one item x < y must be removed during that com-
paction. We show that as we move up one level at a time, y’s
rank with respect to the input stream fed to that level falls
by about half (this is formally established in Lemma 9). This
is the source of the 2" factor in the denominator. Second, we
show that each compaction operation that affects y can be
“attributed” to k items smaller than or equal to y inserted into
the buffer, which relies on using our particular compaction
schedule (see Lemma 5). This is the source of the k factor in
the denominator.

Let Hy be the smallest positive integer such that 2Hy >
R(y)/B (the approximate inequality > hides a universal con-
stant). Then no compactions occurring at levels above Hy,
affect y, because y’s rank relative to the input stream of any
such buffer is less than B/2 and no relative-compactor ever
compacts the lowest-ranked B/2 items that it stores.

Again, this holds because as we move up one level at a time,
y’s rank w.r.t each level falls by about half (see Lemma 9).

—
N
~

Together, this means that the variance of the estimate for y is at
most (up to constant factors):

< R@) & R(Y)
I o2k _ =7 gk, (1)

where in the LHS, R(y)/ (k2") bounds the number of level-h com-
paction operations affecting the error (this exploits Property 1
above), and 22 is the variance contributed by each such com-
paction, due to Observation 3 and because items processed by
relative-compactor at level h each represent 2h items in the original
stream.

The RHS of Equation (1) is dominated by the term for h = Hy,
and the term for that value of A is at most (up to constant factors)

(kW) R®)

_R@?* _ R(y)?*-log(en)
k B ’

H,
oHy = ~
k-B B2

R(y)
& @

The first inequality in Equation (2) exploits Property 2 above, while
the last equality exploits the fact that B = O(k - log(en)).> We
obtain the desired accuracy guarantees so long as this variance
is at most £2 R(y)?, as this will imply that the standard deviation
is at most ¢ R(y). This hoped-for variance bound holds so long as

B 2 71 - \flog,(en), or equivalently k 2 e~!/+/log,(en).

%In the derivations within Equation (2), there is a couple of important subtleties. The
first is that when we replace 2% with ©(R(y)/B), that substitution is only valid if
R(y)/B = Q(1). However, we can assume w.lLo.g. that R(y) > B/2, as otherwise the
algorithm will make no error on y by virtue of storing the lowest-ranked B/2 items
deterministically. The second subtlety is that the algorithm is only well-defined if
k > 2, so when we replace k with ©(B/log(en)), that is a valid substitution only if

B > Q(log(en)), which holds by the assumption that £~} > /log,(en).

Session: Best Paper Award and Data Streams

2.5 Roadmap for the Formal Analysis in the
Streaming Setting

Section 3 establishes the necessary properties of a single relative-
compactor (Algorithm 1), namely that, roughly speaking, each com-
paction operation that affects a designated item y can be charged
to k items smaller than or equal to y added to the buffer. Section 4
then analyzes the full sketch (Algorithm 2), completing the proof of
our result in the streaming setting when a polynomial upper bound
on n is known in advance. Finally, we remove the assumption of
having such an upper bound on n in Section 5.

3 ANALYSIS OF THE RELATIVE-COMPACTOR
IN THE STREAMING SETTING

To analyze our algorithm, we keep track of the error associated with
an arbitrary fixed item y. Throughout this section, we restrict our
attention to any single relative-compactor at level h (Algorithm 1)
maintained by our sketching algorithm (Algorithm 2), and we use
“time t” to refer to the #’th insertion operation to this particular
relative-compactor.

We analyze the error introduced by the relative-compactor for
an item y. Specifically, at time ¢, let X! = {x1, ..., x;} be the input
stream to the relative-compactor, Z ¢ be the output stream, and B t
be the items in the buffer after inserting item x;. The error for the
relative-compactor at time ¢ with respect to item y is defined as

®)

Conceptually, Errfl(y) tracks the difference between y’s rank in

Err) (y) = R(y: X*) - 2R(y: Z*) - R(y: B).

the input stream X? at time ¢ versus its rank as estimated by the
combination of the output stream and the remaining items in the
buffer at time ¢ (output items are upweighted by a factor of 2 while
items remaining in the buffer are not). The overall error of the
relative-compactor is Erry (y), where n is the length of its input
stream. To bound Err} (y), we keep track of the error associated
with y over time, and define the increment or decrement of it as

A} (y) = Err} (y) — Err} ' (y),

where Err?l(y) =0.

Clearly, if the algorithm performs no compaction operation in
a time step ¢, then A;l(y) = 0. (Recall that a compaction is an exe-
cution of lines 6-13 of Algorithm 1.) Let us consider what happens
in a step ¢ in which a compaction operation occurs. Recall from
Observation 3 that if y is even with respect to the compaction, then
y suffers no error, meaning that A;l(y) = 0. Otherwise, AZ(y) is
uniform in {-1, 1}.

Our aim is to bound the number of steps ¢ with A;l(y) # 0, equal
to X7, |A2(y)|, and use this in turn to help us bound Errz (y). We
call a step t with A;l(y) # 0 important. Likewise, call an item x with
x <y important. Let Ry (y) be the rank of y in the input stream to
level h; so there are Ry (y) important items inserted to the buffer at
level h (in the notation above, we have Ry, (y) = R(y; X™)). Recall
that k denotes the parameter in Algorithm 1 controlling the size
of the buffer of each relative-compactor and that B denotes the
buffer’s capacity.

Our main analytic result regarding relative-compactors is that
there are at most Ry, (y)/k important steps. Its proof explains the

103

PODS ’21, June 20-25, 2021, Virtual Event, China

intuition behind our compaction schedule, i.e., why we set L as
described in Algorithm 1.

LEmMMA 5. Consider the relative-compactor at level h, fed an input
stream of length at most n. For any fixed item y € U with rank Ry (y)
in the input stream to level h, there are at most Ry (y)/k important
steps. In particular,

Ru(y)

N ¢ Rp(y)
; ALl < =2

k

and |ErrZ(y)| <

Proor. We focus on steps t in which the algorithm performs a
level-h compaction operation (possibly not important), and call a
step t a j-step for j > 1if the compaction operation in step ¢ (if any)
involves exactly j sections (i.e., Lc = j - k in line 7 of Algorithm 1).
Recall from Section 2.1 that sections are numbered from the right,
so that the first section contains the k largest items in the buffer, the
second section contains the next k largest items, and so on. Note
that we think of the buffer as being sorted all the time.

For any j > 1, let s; be the number of important j-steps. Further,
let Ry, ;(y) be the number of important items that are either removed
from the j-th section during a compaction, or remain in the j-th
section at the end of execution, i.e., after the relative-compactor
has processed its entire input stream. We also define Ry, ;(y) for
Jj = [log,(n/k)] + 1. In this case, we define the j-th section to be the
last k slots in the first half of the buffer (which contains B/2 smallest
items); this special section is never involved in any compaction.

Observe that 3’ ;> s; is the number of important steps and that
2j>1Rp j(y) < Rp(y). We will show

sj-k <Rp jy1(y). 4)

Intuitively, our aim is to “charge” each important j-step to k impor-
tant items that are either removed from section j + 1, or remain
in section j + 1 at the end of execution, so that each such item is
charged at most once.

Equation 4 implies the lemma as the number of important steps
is

n [log,(n/k)] Mog,(n/k)1 (

fony ' nj+1U) Rp(y)
E A" (y)| = E sj <) T < T
t=1 j=1 j=1

To show the lower bound on Ry, ;11(y) in (4), consider an im-
portant j-step t. Since the algorithm compacts exactly j sections
and A;l(y) # 0, there is at least one important item in section j by
Observation 3. As section j + 1 contains smaller-ranked (or equal-
ranked) items than section j, section j + 1 contains important items
only. We have two cases for charging the important j-step ¢:

Case A: There is a compaction operation after step ¢ that involves at
least j+ 1 buffer sections, i.e., a j’-step for j* > j+1.Let ¢’ be the first
such step. Note that just before the compaction in step t’, the (j+1)-
st section contains important items only as it contains important
items only immediately after step t. We charge the important step ¢
to the k important items that are in the (j + 1)-st section just before
step t’. Thus, all of these charged items are removed from level h
in step t’.

Case B: Otherwise, there is no compaction operation after step ¢
that involves at least j + 1 buffer sections. Then, we charge step ¢

Session: Best Paper Award and Data Streams

to the k important items that are in the (j + 1)-st section at the end
of execution.

It remains to observe that each important item x accounted for in
Ry, j+1(y) is charged at most once. (Note that different compactions
may be charged to the items which are consumed during the same
later compaction, but our charging will ensure that these are as-
signed to different sections. For example, consider a sequence of
three important compactions that compacts 2 sections, then 1 sec-
tion, then 3. The first compaction will be charged to section 3 of the
last compaction, and the second compaction is charged to section 2
of the last compaction.)

Formally, suppose that x is removed from section j + 1 during
some compaction operation in a step t’. Item x may only be charged
by some number of important j-steps before step ¢’ (satisfying the
condition of Case A). To show there is at most one such important
step, we use the crucial property of our compaction schedule (Fact 4)
that between every two compaction operations involving exactly
Jj sections, there is at least one compaction that involves more
than j sections. Since any important j-step is charged to the first
subsequent compaction that involves more than j sections, item x
is charged at most once.

Otherwise, x remains in section j + 1 of the level-h buffer at the
end of processing. The proof in this case is similar to the previous
case. Item x may only be charged by some number of important
Jj-steps (that fall into Case B) such that there are no subsequent
compaction operations involving at least j+ 1 buffer sections. There
is at most one such important step by Fact 4. This shows (4), which
implies the lemma as noted above. O

4 ANALYSIS OF THE FULL SKETCH IN THE
STREAMING SETTING

We denote by Erry(y) the error for item y at the end of the stream
when comparing the input stream to the compactor of level h and
its output stream and buffer. That is, letting B}, be the items in
the buffer of the level-h relative-compactor after Algorithm 2 has
processed the input stream,

Errp(y) = Rp(y) — 2Rp41(y) — R(y; By). ©)

For the analysis, we first set the value of parameter k of Algo-
rithm 2. Namely, given (an upper bound on) the stream length n, the
desired accuracy 0 < ¢ < 1 and desired upper bound 0 < § < 0.5

on failure probability, we let
4 In %
e log,(en) | -

In the rest of this section, we suppose that parameters ¢ and § satisfy
& > 1/exp(en/64) (note that this a very weak assumption as for § <
1/exp(en/64) the accuracy guarantees hold nearly deterministically
and furthermore, in the full version of our paper?, we provide an
analysis not requiring such an assumption). We start by showing a
lower bound on k - B.

k=2

O

CrLaM 6. If parameter k is set according to Equation (6) and B is
set as in Algorithm 1 (line 1), then the following inequality holds:
1 1

k~BZZ6-€—2-ln3. ()

104

PODS ’21, June 20-25, 2021, Virtual Event, China

Proor. We first need to relate log,(n/k) (used to define B, see
Line 1 of Algorithm 1) and log,(en) (that appears in the definition
of k, see Equation (6)). Using the assumption § > 1/exp(en/64), we

have k < 8¢71-4/In(1/5) < 871 - \/en/64 = ¢! - \fen, which gives

us
n £n log (sn)
lOgZ (E) > lOgZ (\/E) = 22 .

Using this and the definition of k, we bound k - B as follows:

1 Inj log,(en) 1 1
k.B:Z.kz-’rl f-‘zz.zé._._‘s.z_: 6.~ In=.
%82 % 2 logy(en) 2 25

O

We now provide bounds on the rank of y on each level, starting
with a simple one that will be useful for bounding the maximum
level h with Ry (y) > 0.

OBSERVATION 7. Rp,1(y) < max{0,Ry(y) — B/2} forany h > 0.

Proor. Since the lowest-ranked B/2 items in the input stream to
the level-h relative-compactor are stored in the buffer 8j and never
given to the output stream of the relative-compactor, it follows
immediately that Ry 1(y) < max{0,Ry(y) — B/2}.]

Next, we prove that Ry, (y) roughly halves with every level. This
is easy to see in expectation and we show that it is true with high
probability up to a certain crucial level H(y). Here, we define H(y)
to be the minimal for which 227" R(y) < B/2.For h = H(y) — 1
(assuming H(y) > 0), we particularly have 23-H) R(y) = B/2, or
equivalently

(®)
Below, in Lemma 9, we show that no important item (i.e., one
smaller than or equal to y) can ever reach level H(y). Recall that a
zero-mean random variable X with variance ¢ is sub-Gaussian if
Elexp(sX)] < exp(—% -s%.¢2) for any s € R; note that a (weighted)
sum of independent zero-mean sub-Gaussian variables is a zero-
mean sub-Gaussian random variable as well. We will use the stan-
dard (Chernoff) tail bound for sub-Gaussian variables:”

oH(Y) < 24.M
< B

Fact 8. Let X be a zero-mean sub-Gaussian variable with variance
at most o2. Then foranya > 0, it holds that

a? a?
Pr[X >a] <exp|-— and Pr[X < -a]<exp|-—5]| .
202 202
LEMMA 9. Assuming H(y) > 0, with probability at least 1 — § it
holds that Ry (y) < 2~ "*1R(y) for any h < H(y).

Proor. We prove by induction on 0 < h < H(y) that, con-
ditioned on Ry(y) < 2 ¢*1R(y) for any £ < h, with probability
at least 1 — & - 2""H(®) it holds that Ry(y) < 2~h+1 R(y). Taking
the union bound over all 0 < h < H(y) implies the claim. As
Ro(y) = R(y), the base case follows immediately.

Next, consider h > 0 and condition on Ry(y) < 2~¢*1 R(y) for
any { < h. Observe that any compaction operation at any level £
that involves a important items inserts %a such items to the input
stream at level £ + 1 in expectation, no matter whether a is odd
See, for example, Lemma 1.3 of https://ocw.mit.edu/courses/mathematics/

18-5997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_
CourseNotes.pdf.

https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_CourseNotes.pdf
https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_CourseNotes.pdf
https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_CourseNotes.pdf

Session: Best Paper Award and Data Streams

or even. Indeed, if a is odd, then the number of important items
promoted is %(a + X), where X is a zero-mean random variable
uniform on {-1, 1}. For an even a, the number of important items
that are promoted is %a with probability 1.

Thus, random variable R¢(y) for any level £ > 0 is generated
by the following random process: To get R¢(y), start with Ry_1(y)
important items and remove those stored in the level-(€—1) relative-
compactor By_; at the end of execution; there are R(y; By_1) < B
important items in B,_;. Then, as described above, each compaction
operation at level £ —1 involving a > 0 important items promotes to
level ¢ either %a important items if g is even, or %(a + X) important
items if a is odd. In total, Ry_1(y) — R(y; B¢_1) important items are
involved in compaction operations at level £ — 1. Summarizing, we
have
>+ (Rea(y) ~ Ry Bry) + Binomial(my 1)

Re(y) = ©)

where Binomial(n) represents the sum of n zero-mean i.i.d. random
variables uniform on {—1, 1} and m¢_; is the number of important
compaction operations at level £ — 1 (which are those involving an
odd number of important items).

To simplify (9), consider the following sequence of random vari-
ables Yy, . . ., Y: Start with Yy = R(y) and for 0 < £ < hlet

Yp = % - (Yy_1 + Binomial(mg_;)) . (10)

Note that E[Y,] = 27¢ R(y). Since variables Y, differ from Re(y)
only by not subtracting R(y; B¢_1) at every level £ > 0, variable Yy,
stochastically dominates variable Ry (y), so in particular,

Pr[Rp,(y) > 27" R(y)] < Prly, > 27" R@y)], (1)

which implies that it is sufficient to bound Pr[Y; > 2+l R(y)].
Unrolling the definition of Yy in (10), we obtain
h—-1
Y, = 27h. R(y) + Z 2~h+t Binomial(myg) .
=0

(12)

Observe that Yy, equals a fixed amount (2=h -R(y)) plus a zero-mean
sub-Gaussian variable
h-1
Zy = Z 2 h+t. Binomial(my),
=0

(13)

since Binomial(n) is a sum of n independent zero-mean sub-
Gaussian variables (with variance 1).

To bound the variance of Zj,, first note that for any ¢ < h, we have
me < Re(y)/k < 2~ ¢+1 R(y)/k by Lemma 5 and by conditioning on
Re(y) < 20+l R(y). As Var[Binomial(n)] = n, the variance of Zj, is

2—[+1 R
Var[Z),] < Z g—2h+2¢ my < Z g—2h+2l | - (y)

h— 12—2h+£’+1 R(y) o—h+1. R(y)
k k

=0

Note that Pr[Y}, > 27"*1R(y)] = Pr[Z}, > 27" R(y)]. To bound
the latter probability, we apply the tail bound for sub-Gaussian

105

PODS ’21, June 20-25, 2021, Virtual Event, China

variables (Fact 8) to get

—2h 2
Pr[Z, > 27" R(y)] < exp _ 2 RW”)

(@R/

exp(27h—2 ‘R(y) - k)

:exp(2—h+H(y) 6. 94— H(y) R(y) - k)
-

exp (—2~HHH@-6 . g k)

IA

exp

h+H(y)—6 o6 . 1
-2 -2 62 ln(S)

IA

exp (—2_h+H(y) -In 3)

— 52H(y)7h <5 2—H(y)+h

where the second inequality uses 2*"H#¥) R(y) > B (by the defi-
nition of H(y), cf. Equation (8)), the third inequality follows from
Claim 6, the fourth inequality uses ¢ < 1, and the last inequality

uses § < 0.5. As explained above, this concludes the proof. O

In what follows, we condition on the bound on Ry, (y) in Lemma 9
for any h < H(y).

Lemma 10. Conditioned on the bound on Ryy(y)-1(y) in Lemma 9,
it holds that Ryy,)(y) = 0.

PRrROOF. According to Lemma 9 and the definition of H(y) as the
minimal h for which 22~ R(y) < B/2,

_ 1
Ruy)-1(y) < 2 HWR(@y) < §B~

Invoking Observation 7, we get Ry(y)(y) < max{0,Ryy)-1(y) -
B/2} = 0. O

We are now ready to bound the overall error of the sketch for
item y, i.e, Err(y) = ﬁ(y) — R(y) where lf{(y) is the estimated rank
of y. It is easy to see that

H
Err(y) =) 2" Emy(y).
h=0

where H is the highest level with a relative-compactor (that never
produces any output). To bound this error we refine the guarantee
of Lemma 5. Notice that for any particular relative-compactor, the
bound 7, |A;l(y)| referred to in Lemma 5 applied to a level A is
a potentially crude upper bound on Erry(y) = X7_; A;l(y): Each
non-zero term A}tl(y) is positive or negative with equal probability,
so the terms are likely to involve a large amount of cancellation. To
take advantage of this, we bound the variance of Err(y).

LEMMA 11. Conditioned on the bound on Ry(y) in Lemma 9 for
any h < H(y), Err(y) is a zero-mean sub-Gaussian random variable
with Var[Err(y)] < 2° - R(y)?/(k - B).

Proor. Consider the relative-compactor at any level h. By
Lemma 5, Erry(y) is a sum of at most Ry, (y)/k random variables,
i.id. uniform in {-1, 1}. In particular, Erry(y) is a zero-mean sub-
Gaussian random variable with Var[Erry(y)] < Ry(y)/k. Thus,
Err(y) is a sum of independent zero-mean sub-Gaussian random

Session: Best Paper Award and Data Streams

variables, and as such is itself a zero-mean sub-Gaussian random
variable.

It remains to bound the variance of Err(y), for which we first
bound Var[Erry(y)] for each h. If Ry (y) = 0, then Observation 3
implies that Erry,(y) = 0, and hence that Var[Erry(y)] = 0. Thus,
using Lemma 10, we have Var[Erry(y)] = 0 for any h > H(y). For
h < H(y), we use Var[Erry(y)] < Ry(y)/k to obtain:

H(y)-1 H(y)-1

Var[Err(y)] = Z 2%h Var[Erry (y)] < Z 2%h . RhT(y)
h=0 h=0
H(y)-1 2
win RO _omgye RY) _ s R@S
< };} 2 o <2 <2

where the second inequality is due to Lemma 9 and the last inequal-
ity follows from (8). O

To show that the space bound in maintained, we also need to
bound the number of relative-compactors.

OBSERVATION 12. The number of relative-compactors ever created
by the full algorithm (Algorithm 2) is at most [log,(n/B)] + 1.

Proor. Each item on level h has weight 2" so there are at most
n/2" items inserted to the buffer at that level. Applying this ob-
servation to h = [log,(n/B)], we get that on this level, there are
fewer than B items inserted to the buffer, which is consequently
not compacted, so the highest level has index at most [log,(n/B)].
The claim follows (recall that the lowest level has index 0). O

We are now ready to prove the main result of this section, namely,
the accuracy guarantees in the streaming setting when the stream
length is essentially known in advance.

THEOREM 13. Assume that (a polynomial upper bound on) the
stream length n is known in advance. For any parameters0 < § < 0.5
and0 < ¢ < 1 satisfying§ > 1/exp(en/64), letk be set as in (6). Then,
for any fixed item y, Algorithm 2 with parameters k and n computes
an estimate Ii(y) of R(y) with error Err(y) = ﬁ(y) — R(y) such that

Pr[|Err(y)| = eR(y)] < 36. Ife < 4-+/In(1/5)/log,(en), then the
memory used by the algorithm is O (e’l -log!(en) - \/log(l/é));

otherwise, the algorithm uses O (log2 (en)) memory words.

Proor. Note that k is an even positive integer as required by
Algorithm 2. By Lemma 9, with probability at least 1 — §, we have
Rp,(y) < 27h*1R(y) for any h < H(y) and we condition on this
event happening.

We again apply the standard (Chernoff) tail bound for sub-
Gaussian variables (Fact 8) together with Lemma 11 (for which
we need the bound on Ry, (y) for any h < H(y)) and obtain

& -R(y)®
2-25 - R(y)?/(k- B))
82'26'6‘_2-11’1%)

Pr[|Err(y)| > eR(y)] < 2exp (—

SZexp(— 2

106

PODS ’21, June 20-25, 2021, Virtual Event, China

where we use Claim 6 in the second inequality. This concludes the
calculation of the failure probability.

Regarding the memory usage, there are at most [log,(n/B)]+1 <
log,(en) relative-compactors by Observation 12, and each requires
B =2k [logy(n/k)] memory words. Thus, the memory needed
to run the algorithm is at most

log,(en) - 2 -k - [1og2 %]

4 In %
< IOgZ(Sn) 2 2-2- ; . lng(En) -0 (log(gn)) s (14)

where we use that [log,(n/k)] < O (log(en)), which follows from

k > e71/flog,(en). In the case ¢ < 4 - /In(1/5)/log,(en), we have
a = 4¢1. VIn(1/8)/log,(en) > 1, so [a] < 2a and it follows
that (14) is bounded by O (e_l . logl's(en) . w/log(l/é‘)). Otherwise,

a < 1, thus (14) becomes at most O (logz(sn)). O

Update time. We now analyze the amortized update time of Al-
gorithm 2 and show that it can be made O(log B) = O(log(k) +
loglog(en)), i.e., the algorithm processes n streaming updates in
total time O(n-log B). To see this, first observe that the time complex-
ity is dominated, up to a constant factor, by running Algorithm 1
for the relative-compactor at level 0. Indeed, the running time can
be decomposed into the operations done by Algorithm 2 itself, plus
the running time of Algorithm 1 for each level of the sketch, and
the former is bounded by the latter. Moreover, at level h there are
at most n/2" items added to the buffer, implying that the running
time of Algorithm 1 decreases exponentially with the level. At level
0, the update time is O(1), except for performing compaction opera-
tions (line 6-13 of Algorithm 1). To make those faster, we maintain
the buffer sorted after each insertion, which can be achieved by
using an appropriate data structure in time O(log B) per update.
Then the time to execute each compaction operation is linear in
the number of items removed from the buffer, making it amortized
constant. Hence, the amortized update time with such adjustments
is O(log B).

5 HANDLING UNKNOWN STREAM LENGTHS

The algorithm of Section 2.2 and analysis in Sections 3-4 proved
Theorem 13 in the streaming setting assuming that (an upper bound
on) n is known, where n is the true stream length. The space usage
of the algorithm grows polynomially with the logarithm of this
upper bound, so if this upper bound is at most n¢ for some constant
¢ > 1, then the space usage of the algorithm will remain as stated
in Theorem 13, with only the hidden constant factor changing.

In the case that such a polynomial upper bound on n is not
known, we modify the algorithm slightly, and start with an initial
estimate Ny of n, such as Ng = O(¢™!). As soon as the stream length
hits the current estimate Nj, the algorithm “closes out” the current
data structure and continues to store it in “read only” mode, while
initializing a new summary based on the estimated stream length of
Niy1 = Nl.z.8 This process occurs at most log, log,(¢n) many times,

81n a practical implementation, we suggest not to close out the current summary, but
rather recompute the parameters k and B of every relative-compactor in the summary,
according to the new estimate N4, and continue with using the summary. The

Session: Best Paper Award and Data Streams

before the guess is at least the true stream length n. At the end of
the stream, the rank of any item y is estimated by summing the
estimates returned by each of the at most log, log,(¢n) summaries
stored by the algorithm.

To prove Theorem 13 for unknown stream lengths, we need
to bound the space usage of the algorithm, and the probability of
having a too large error for a fixed item y. We start with some
notation. Let ¢ be the biggest index i of estimate N; used by the
algorithm; note that £ < log, log,(en). Let o; denote the substream
processed by the summary with the i’th guess for the stream length
fori =0,...¢. Let 0’ oo’’ denote the concatenation of two streams
o’ and ¢”’. Then the complete stream processed by the algorithm
iso =0p 001000y Let k; and B; be the values of parameters
k and B computed for estimate N;.

Space bound. We claim that the sizes of summaries for the sub-

streams oy, 01, . . ., 0p sum up to O (5‘1 -log'(en) - \/log(l/é)),
as required. Here, we assume for simplicity that ¢ <

4 - 4/In(1/6)/log,(en); the other case can be handled simi-

larly. By Theorem 13, the size of the summary for o; is

0 (5_1 ~10g1'5(eNi) . \/log(l/é)). In the special case { = 0, the
size of the summary for oy satisfies the bound provided that
Ny = O(¢71). For £ > 1, since Ny_; < nand Ny = Ng_l, it holds
that Ny < n? and thus, the size of the summary for o, satisfies
the claimed bound. As Nj;1 = Nl.z, the logl‘s(sN,-) factor in the
size bound from Theorem 13 increases by a factor of 2'-> when we
increase i. It follows that the total space usage is dominated, up to
a constant factor, by the size of the summary for oy. O

Failure probability. We need to show that |Err(y)| = Ry) -
R(y)| < eR(y) with probability at least 1 — § for any fixed item y.
Note that R(y) = R(y; o) = Zf:o R(y; 0}).

We apply the analysis in Section 4 to all of the summaries at
once. Observe that for the tail bound in the proof of Theorem 13,
we need to show that Err(y) is a zero-mean sub-Gaussian random
variable with a suitably bounded variance. Let Err’(y) be the er-
ror introduced by the summary for ¢;. By Lemma 11, Erri(y) is
a zero-mean sub-Gaussian random variable with Var[Err!(y)] <
2% -R(y; 01)%/ (ki - B;). As Err(y) = 3; Err! (y) and as the summaries
are created with independent randomness, variable Err(y) is also
zero-mean sub-Gaussian and its variance is bounded by

izs,R(yzai)Z _ &R’
% kB, 2-In(1/9)

14
Var[Err(y)] = Z Var[Err!(y)] <
i=0

where the last inequality uses that Zf:o R(y; 01)% < R(y)?, which
follows from R(y) = Zf:o R(y; 0;), and that k;-B; = Q(¢72-In(1/6)),
which holds by Claim 6. Applying the tail bound for sub-Gaussian
variables similarly as in the proof of Theorem 13 concludes the
proof of Theorem 13 for unknown stream lengths. O

analysis in full version of our paper (which applies in the more general mergeability
setting) shows that the same accuracy guarantees as in Theorem 13 hold for this
variant of the algorithm. Here, we choose to have one summary for each estimate of n
because it is amenable to a much simpler analysis (it is not clear how to extend this
simpler analysis from the streaming setting to the general mergeability setting).

107

PODS ’21, June 20-25, 2021, Virtual Event, China

6 DISCUSSION AND OPEN PROBLEMS

For constant failure probability &, we have shown an O(¢7! -
log!->(en)) space upper bound for relative error quantile approxi-
mation over data streams. Our algorithm is provably more space-
efficient than any deterministic comparison-based algorithm, and

is withina O (\/log(sn)) factor of the known lower bound for ran-

domized algorithms (even non-streaming algorithms, see Appendix
A). Moreover, the sketch output by our algorithm is fully mergeable,
with the same accuracy-space trade-off as in the streaming setting,
rendering it suitable for a parallel or distributed environment. The
main remaining question is to close this O(x/log(en))-factor gap.

Acknowledgments. The research is performed in close collab-
oration with DataSketches https://datasketches.apache.org/, the
Apache open source project for streaming data analytics. Work
done while P. Vesely was at University of Warwick. G. Cormode
and P. Vesely were supported by European Research Council grant
ERC-2014-CoG 647557. J. Thaler was supported by NSF SPX award
CCF-1918989, and NSF CAREER award CCF-1845125.

REFERENCES

[1] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff M Phillips, Zhewei
Wei, and Ke Yi. Mergeable summaries. ACM Transactions on Database Systems
(TODS), 38(4):26, 2013.

Rakesh Agrawal and Arun Swami. A one-pass space-efficient algorithm for
finding quantiles. In Proc. 7th Intl. Conf. Management of Data (COMAD-95), Pune,
India, 1995.

Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles
over sliding windows. In Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, PODS ’04, pages 286-296. ACM,
2004.

Graham Cormode, Flip Korn, , S. Muthukrishnan, and Divesh Srivastava. Effective
computation of biased quantiles over data streams. In Proceedings of the 21st
International Conference on Data Engineering, ICDE 05, pages 20-31, Washington,
DC, USA, 2005. IEEE Computer Society.

Graham Cormode, Flip Korn, S Muthukrishnan, and Divesh Srivastava. Space-and
time-efficient deterministic algorithms for biased quantiles over data streams. In
Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS 06, pages 263-272. ACM, 2006.

Graham Cormode and Pavel Vesely. A tight lower bound for comparison-based
quantile summaries. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS’20, page 81-93, New York,
NY, USA, 2020. ACM.

Ted Dunning and Otmar Ertl. Computing extremely accurate quantiles using
t-digests. CoRR, abs/1902.04023, 2019.

David Felber and Rafail Ostrovsky. A randomized online quantile summary in
O(1/epsilon * log(1/epsilon)) words. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015), vol-
ume 40 of Leibniz International Proceedings in Informatics (LIPIcs), pages 775-785,
Dagstuhl, Germany, 2015. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Sumit Ganguly. A nearly optimal and deterministic summary structure for update
data streams. arXiv preprint ¢s/0701020, 2007.

Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of
quantile summaries. In ACM SIGMOD Record, volume 30, pages 58-66. ACM,
2001.

Anupam Gupta and Francis X. Zane. Counting inversions in lists. In Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03,
pages 253-254, Philadelphia, PA, USA, 2003. Society for Industrial and Applied
Mathematics.

Zohar Karnin, Kevin Lang, and Edo Liberty. Optimal quantile approximation in
streams. In Proceedings of the 57th Annual Symposium on Foundations of Computer
Science (FOCS ’16), pages 71-78. IEEE, 2016.

Ge Luo, Lu Wang, Ke Yi, and Graham Cormode. Quantiles over data streams:
Experimental comparisons, new analyses, and further improvements. The VLDB
Journal, 25(4):449-472, August 2016.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Approximate
medians and other quantiles in one pass and with limited memory. In ACM
SIGMOD Record, volume 27, pages 426-435. ACM, 1998.

[2

3

—_
&

=
=2

—_
o

(13]

(14

https://datasketches.apache.org/

Session: Best Paper Award and Data Streams

[15] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Random
sampling techniques for space efficient online computation of order statistics of
large datasets. In ACM SIGMOD Record, volume 28, pages 251-262. ACM, 1999.
Charles Masson, Jee E. Rim, and Homin K. Lee. DDSketch: A fast and fully-
mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12):2195—
2205, 2019.

[17] JIan Munro and Michael S Paterson. Selection and sorting with limited storage.
Theoretical computer science, 12(3):315-323, 1980.

Ira Pohl. A minimum storage algorithm for computing the median. IBM T] Watson
Research Center, 1969.

Viswanath Poosala, Venkatesh Ganti, and Yannis E. Ioannidis. Approximate
query answering using histograms. IEEE Data Eng. Bull., 22(4):5-14, 1999.

Lee Rhodes, Kevin Lang, Alexander Saydakov, Edo Liberty, and Justin Thaler.
DataSketches: A library of stochastic streaming algorithms. Open source software:
https://datasketches.apache.org/, 2013.

Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash
Suri. Medians and beyond: new aggregation techniques for sensor networks.
In Proceedings of the 2nd international conference on Embedded networked sensor
systems, pages 239-249. ACM, 2004.

Gil Tene. How NOT to measure latency. https://www.youtube.com/watch?v=
1J8ydIuPFeU, 2015.

Qi Zhang and Wei Wang. An efficient algorithm for approximate biased quantile
computation in data streams. In Proceedings of the 16th ACM conference on
Conference on information and knowledge management, pages 1023-1026, 2007.

Ying Zhang, Xuemin Lin, Jian Xu, Flip Korn, and Wei Wang. Space-efficient rela-
tive error order sketch over data streams. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE’06), pages 51-51. IEEE, 2006.

[16]

(18]

[19]

[22

[23]

[24]

A A LOWER BOUND FOR NON-COMPARISON
BASED ALGORITHMS

Cormode and Vesely [6, Theorem 6.5] proved an Q(e™! - log?(en))
lower bound on the number of items stored by any deterministic
comparison-based streaming algorithm for the relative-error quan-
tiles problem. Below, we provide a lower bound which also applies
to offline, non-comparison-based randomized algorithms, but at
the (necessary) cost of losing a log(en) factor in the resulting space
bound. This result appears not to have been explicitly stated in
the literature, though it follows from an argument similar to [4,
Theorem 2]. We provide details in this appendix for completeness.

THEOREM 14. For any randomized algorithm that processes a data
stream of items from universe U of size |U| > Q(¢~' - log(en)) and
outputs a sketch that solves the all-quantiles approximation problem
for multiplicative error ¢ with probability at least 2/3 requires the
sketch to have size Q (¢! - log(en) - log(e|U|)) bits of space.

Proor. We show that any multiplicative-error sketch for
all-quantiles approximation can be used to losslessly encode
an arbitrary subset S of the data universe U of size |S| >
Q (e7! log(en)). This requires log, (||'151||) =0 (10g((|'7/{|/|5|)‘5|)) =
© (|S| log (¢]U])) bits of space. The theorem follows.

Let £ = 1/(8¢) and k = log,(en); for simplicity, we assume
that both ¢ and k are integers. Let S be a subset of U of size
s := { - k. We will construct a stream o of length less than £ - 2k <n
such that a sketch solving the all-quantiles approximation problem
for o enables reconstruction of S. To this end, let {y1,...,ys} de-
note the elements of S in increasing order. Consider the stream o
where items y1, . .., y, each appear once, items yg41, . . ., Yz¢ ap-
pear twice, and in general items ;¢ 1, - - -, Y(i+1)¢ appear 2 times,
fori=0,...,k — 1. Let us refer to all universe items in the interval
[Yic+1 Yi+1)e] as “Phase i” items.

The construction of o means that the multiplicative error ¢ in
the estimated rank of any Phase i item is at most 2:*1/8 < 271,
This means that for any phase i > 0 and integer j € [1, {], one can

108

PODS ’21, June 20-25, 2021, Virtual Event, China

identify item y;¢,; by finding the smallest universe item whose
estimated rank is strictly greater than (2! — 1) - £ + 2% - j — 271,
Here, (2! — 1) - £ is the number of stream updates corresponding to
items in Phases 0, ..., i — 1, while 2/~ is an upper bound on the
error of the estimated rank of any Phase i item. Hence, from any
sketch solving the all-quantiles approximation problem for ¢ one
can obtain the subset S, which concludes the lower bound. O

Theorem 14 is tight up to constant factors, as an optimal sum-
mary consisting of O(¢ ! - log(en)) items can be constructed offline.
For £ = ¢71, this summary stores all items of rank 1, ..., 2¢ ap-
pearing in the stream and assigns them weight one, stores every
other item of rank between 2¢ + 1 and 4¢ and assigns them weight
2, stores every fourth item of rank between 4¢ + 1 and 8¢ and
assigns them weight 4, and so forth. This yields a weighted core-
set S for the relative-error quantiles approximation, consisting of

|S| = © (¢ - log(en)) many items. Such a set S can be represented
\(élll) =0 (¢! - log(en) - log(¢|U|)) many bits.

B PROOF OF COROLLARY 1

COROLLARY 1 (ALL-QUANTILES APPROXIMATION). The error
bound from Theorem 1 can be made to hold for ally € U simul-
taneously with probability 1 — § while storing

with log, (l

1
O|e™! - logh>(en) - log(og(sn))
3]
stream items if e < O (1 /log %/log(sn)) and O (Iogz(fn)) items

otherwise.

Proor. Let S* be the offline optimal summary of the stream with
multiplicative error ¢/3, i.e., a subset of items in the stream such
that for any item x, there is y € $* with | R(y) —R(x)| < (¢/3) - R(x).
Here, y is simply the closest item to x in the total order that is an
element of S*. Observe that $* has O(¢™! - log(en)) items; see the
remark below Theorem 14 in Appendix A for a construction of S*.

Thus, if our sketch with parameter ¢ = ¢/3 is able to compute
for any y € S* a rank estimate R(y) such that [R(y) — R(y)| <
(¢/3) - R(y), then we can approximate R(x) by R(y) using y € S*
with |R(y) — R(x)| < (¢/3) - R(x) and the multiplicative guarantee
for x follows from

IR(y) —R(x)| < |

>

) = R®)| + |R(y) = R(x)|

S%-R(y)+§-R(x)
<(5-a+H+3) R
<e-Rx).

It remains to ensure that our algorithm provides a good-enough
rank estimate for any y € S*. We apply Theorem 1 with error
parameter ¢’ = ¢/3 and with failure probability set to 6’ = §/|S*| =
© (8 - ¢/log(en)). By the union bound, with probability at least 1 —
d, the resulting sketch satisfies the (1 + ¢/3)-multiplicative error
guarantee for any item in S*. In this event, the previous paragraph
implies that the (1 + ¢)-multiplicative guarantee holds for all x €
U. The space bound follows from Theorem 1 with ¢’ and §” as
above. O

https://datasketches.apache.org/
https://www.youtube.com/watch?v=lJ8ydIuPFeU
https://www.youtube.com/watch?v=lJ8ydIuPFeU

	Abstract
	1 Introduction
	1.1 Detailed Comparison to Prior Work

	2 Description of the Algorithm
	2.1 The Relative-Compactor Object
	2.2 The Full Sketch
	2.3 Merge Operation
	2.4 Informal Outline of the Analysis
	2.5 Roadmap for the Formal Analysis in the Streaming Setting

	3 Analysis of the Relative-Compactor in the Streaming Setting
	4 Analysis of the Full Sketch in the Streaming Setting
	5 Handling Unknown Stream Lengths
	6 Discussion and Open Problems
	References
	A A Lower Bound for Non-Comparison Based Algorithms
	B Proof of Corollary 1

