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ABSTRACT

This brief announcement presents an algorithm for (1 + €) ap-
proximate single-source shortest paths for directed graphs with
non-negative real edge weights in the CONGEST model that runs
in (~)((nl/2 +D + n2/5+0(1)D2/5) log W/€?) rounds, where W is the
ratio between the largest and smallest non-zero edge weights.
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1 INTRODUCTION

This paper presents an improved algorithm for approximate single-
source shortest paths (SSSP) in the CONGEST model. The approxi-
mate single-source shortest paths problem is as follows. Given a
directed graph G = (V, E, w) with non-negative real edge weights, a
source node s € V, and approximation parameter €, compute (1+¢)
approximations of the distances from s to all nodes in the graph.
In particular, for every node v € V, the problem is to compute a
distance estimate d(s, 0) satisfying d(s,v) < d(s,0) < (1+€)d(s,0),
where d(s,v) is the true shortest-path distance from s to v.

The CONGEST model [11] is a distributed model consisting of
an undirected communication network corresponding to an n-node
undirected graph N = (V, L). Each node has a unique O(log n)-bit
ID. Each link (u, v) € L indicates a bidirectional communication link
between nodes u and v. Nodes communicate in synchronous rounds.
In each round, every node may send and receive a B = ©(log n)-bit
message to and from each of its neighbors. The node may send
different messages to each neighbor. The complexity of an algorithm
in this model is measured by the number of rounds; the cost of local
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computation is ignored. Typical bounds depend on n and D, where
D is the unweighted diameter of the undirected network N.

For graph problems in the CONGEST model, the network N is the
same as the graph G except that in G the edges are directed, and in N
the edges are undirected. For approximate SSSP in CONGEST, each
node v must learn its distance estimate d (s, v), but these distances
need not be communicated back to s. To start, each node knows
its set of incoming and outgoing edges and their weights, as well
as whether it is the source node. Since every node can learn n in
O(D) rounds, we assume all nodes already know n.

Our algorithm follows the framework from Forster and Nanongkai
[8] for distributed shortest paths. One of the steps in their frame-
work involves computing shortest paths to a carefully selected
subset of the vertices by simulating a parallel algorithm for SSSP
in CONGEST. We achieve our improved bound by replacing the
algorithm used in this step, instead adapting the parallel algorithm
of Cao et al. (CFR) [2, 3] to the CONGEST model.

1.1 Related Work

Peleg and Rubinovich [12] showed that Q(+/n + D) is required
for SSSP in the CONGEST model, where Q hides polylogarithmic
factors. The Bellman Ford algorithm for SSSP [5] can be used in
the CONGEST model, and runs in O(n) rounds. This result was the
fastest known algorithm for a long time until Elkin [6] provided a
randomized algorithm that runs in O(nd/ 6 rounds for D = O(+/n)
and O(D'/3n?/3) rounds for larger D.

For undirected graphs, the approximate version of the problem
has been well studied. The state-of-the-art is a deterministic algo-
rithm from Becker et al. [1] which computes (1 + €)-approximate
shortest paths in O(y/n + D) rounds.

For directed graphs in the CONGEST model, recent progress has
been made on the exact version of the problem. Ghaffari and Li [9]
presented two randomized algorithms for graphs with polynomi-
ally bounded integer edge weights that run in O(DY4n3/%) rounds
and O(n3/4°) 4 min{n3/4DY/6 n®/7} + D) rounds. At the same
time, Forster and Nonongkai (FN) [8] provided two randomized
algorithms for graphs with polynomially bounded integer edge
weights that run in O(VnD) rounds and O(n/2DY/* + n3/% + D)
rounds. Chechik and Mukhtar [4] showed a randomized algorithm
that achieves O(ynD'/*1og?(W) + D) rounds. For approximate
shortest paths, FN [8] show a randomized algorithm that runs in
O((n'/2D1/4 + D) log W/e€) rounds.

1.2 Our results and technique

Our main result in this brief announcement is captured by the
following theorem.
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THEOREM 1. In the CONGEST model, there exists a randomized
algorithm that solves (1+€)-approximate single-source shortest-paths
problem for directed n-node graph G with non-negative real weights,
in O((\n + D + D?/5p2/5+0(1)) log W/€?) rounds, with high prob-
ability, where D is the undirected diameter of G and W is the ratio
between heaviest and non-zero lightest edge weight.

Across much of the range of network diameters, our algorithm’s
round complexity beats previous algorithms by a polynomial factor
(albeit a very small one). Note that we only solve the approximate
version of the problem, whereas some of the prior art solves that
exact version. For polynomial bounded W, when the diameter is
6(n1/ 4), our algorithm only takes O(+/n) rounds, which matches
the lower bound. When the diameter of the network D is O(+/n), the
best previous result was O (n® / 8) rounds [8], whereas our algorithm
completes in é(n3/5+°(1)) rounds.

2 PRELIMINARIES

For a graph G = (V,E,w), V is the set of vertices, E is the set of
edges, and w : E — Ris a weight function. We consider graphs with
non-negative real weighted edges and we assume the lightest non-
zero edge weight is 1 and the heaviest edge weight is W. Otherwise,
we can normalize all edge weights. The number of nodes is n = |V|.
For a subset V’ C V, we denote the induced graph on V’ as G[V’].

For a pair of nodes u, v € V, the shortest path distance in G from
u to v is denoted dg (u, v). The h-hop shortest path distance from
u to v in G is the shortest path from u to v that contains at most h

edges and is denoted d((;h) (u,v). We omit the subscripts in dg (u, v)

and déh) (u,v) when G is clear from the context.

Distance d related node sets. For a directed graph G = (V,E)
and vertices u,0 € V, denote R;(G, v) = {uldg(v,u) < d} and
R, (G,v) = {uldg(u,v) < d} to be the set of nodes which can be
reached by v within distance d, and can reach v within d-distance,
respectively.

The following lemma is a standard result for distributed compu-
tation in the CONGEST model.

LEMMA 2. [11] Suppose each v € V holds k, > 0 messages of
O(log n) bits each, for a total of K = 3, cy ko. Then all nodes in the
network can receive these K messages within O(K + D) rounds.

3 ALGORITHM

Next we present an overview of the algorithm, which extends the
FN [8] framework. The algorithm is parameterized by «, to be set
later. Steps 1, 3 and 5 are the same as FN [8], and step 2 is simi-
lar. In step 2, FN computes distance estimates from each skeleton
node to each node in the original graph. Our step 2 does the same
computation and additionally computes the distance from each
node in the original graph to each skeleton node. The additional
distances estimates are used in the computation of step 4. The main
difference in the algorithm is step 4. Both algorithms solve SSSP
on the skeleton graph, however we use a different algorithm to
compute SSSP. The algorithm for computing step 4 is discussed in
the next section.
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(1) Select each node v € V to be in the set of skeleton nodes S
with probability O(a/n). Add the source s to S. If S| > Q(a),
abort the algorithm.

(2) Let g = O(n/a). For a pair of nodes u, v, define a (1 + O(¢))-
approximate g-hop distance estimate d(u,v) to be an es-
timate of d(Gg) (u,v) such that d(Gg) (w,0) < d(uov) < (1+
O(e))dég)(u,v). For each u € S,0 € V, both u and v learn
J(u, 0).

(3) Construct the skeleton graph Gs = (S, Es, ws), where Es =
SxS, and wg(u,0) = ci(u v). For nodes u,v € S, both u and v
know wg(u, ).

(4) Solve approximate SSSP on the skeleton graph Gg with s
as the source, i.e. for each v € S, compute d’(s,v), where
dgg(s,0) < d’(s,0) < (1+0(e))dgg (s, 0).

(5) For each v € V, compute cf(s, v) = minyes(d’ (s, u) +c§(u, 0)).

In steps 2 and 3 of the algorithm, we require that both nodes
u and v know the distance estimate d (u,v). FN does not have this
requirement. Also, the distance estimates computed in step 2 should
be consistent, meaning that the distance estimate J(u, v) that u
knows should be equal to the distance estimate d (u, v) that v knows.
The correctness of the algorithm follows from FN [8].

THEOREM 3. For any directed input graph G = (V, E, w) with fixed
source node s, the algorithm above consisting of Steps 1-5 computes,
for every nodev € V, a distance estimate cf(s, v) such that dg(s,v) <
d(s,0) < (1+0(e))dg(s,0).

3.1 Step4

Steps 1, 3 and 5 are the same as FN [8]. In Step 2, FN computes
distance estimates from each skeleton node to each node in the
original graph. Our step 2 does the same computation and addition-
ally computes the distance from each node in the original graph to
each skeleton node. The additional distances estimates are used in
the computation of step 4.

The main difference in our algorithm is step 4. Both algorithms
solve SSSP on the skeleton graph, however we use a different tech-
nique from FN. We adapt an algorithm from CFR [2] for parallel
approximate shortest paths to solve approximate SSSP on the skele-
ton graph. Their algorithm constructs a (f = nl/2+0() &) hopset,
and then solves parallel approximate shortest paths on the graph
with the hopset edges added. For a directed graph G = (V,E), a
(B, €)-hopset is a set of weighted edges E’ such that, for each pair
of nodes u,v € V, there exists a path p from u to v that contains
at most f edges and dg(u,v) < dg'(p) < (1 + €)dg(u,v), where
G’ = (V,E U E’). For step 4, we construct a (f, €)-hopset using the
CFR algorithm, then run BFS on the skeleton graph with the hopset
edges added to the graph to solve approximate SSSP. Next we will
describe computing shortest paths on the limited-depth skeleton
graph. Then we will give an overview of the CFR algorithm, and
discuss how to make it work in the CONGEST model. In the full
version of the paper, we give more details of the CFR algorithm in
the CONGEST model.

One of the difficulties in computing SSSP on the skeleton graph
is that an edge (u,0) € Gs may not be an edge in the original
graph and thus not have a direct communication link. We will
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require that each node in the skeleton graph knows its incoming
and outgoing edges. Once we have a limited depth skeleton graph,
we can simulate BFS as follows.

LEmMMA 4. Given a graph G = (V,E) with diameter D, and a
skeleton graph Gt over a subset of nodes T C V with integer weights,
for a source node s € T, there is an algorithm such that each node
v € T, including s itself, learns the distance dg;) (s,v) in O(Dh +
|RZ(GT, s)|) rounds and O(|R;(GT, s)|) congestion on each edge.

Proor. We simulate BFS on the skeleton graph. The algorithm
is divided into levels, and at each level i, the goal is for nodes
at distance i to learn their distance from s. To start, each node
v € T\{s} sets d(s,v) = co, and s sets d(s,s) = 0. Atlevel i € [0, h],
if a node v learns its distance d(s, v) = i, it will broadcast d(s,v) =
i to the whole graph. By Lemma 2, each level takes O(D + K;)
time where K; = |R} (Gr,5)\R}_;(Gr,5)|. Thus, each node v can
learn its distance in O(Dh + |R;(GT, s)|) rounds. After h levels, all
nodes whose distance have been updated broadcast their distances
and s learns the distance updates. This broadcast can be done in
O(D + |RZ(GT, s)|) rounds. The total amount of information sent is
O(|RZ(GT, s)|), and thus the algorithm takes O(Dh + |RZ(GT, s)|)

rounds and O(|RZ(GT, s)|) congestion on each edge. O

Overview of CFR Algorithms. [2, 3]. The algorithms from CFR are
based on two prior algorithms for parallel reachability by Fineman
[7] and Jambulapati et al. (JLS) [10]. Their first algorithm is for
constructing a (f = n'/2+°(1), ¢)-hopset with O(n) edges in O(m)
work [2]. They also give a parallel algorithm constructing the hopset
and use it to solve parallel approximate shortest paths on the graph
with the hopset edges added. In a follow-up paper, they extend this
result to construct a (f = O(nt/2+o(M)/p, €)-hopset of size é(an)
in O(mpznp4) work and é(n1/2+°(1)/p) span, where p € [1,+/n] is
a tradeoff parameter [3]. Next we give an overview of their hopset
algorithm [2]. The work span tradeoff algorithm [3] works similarly.

The CFR algorithm for constructing hopset runs as follows. The
algorithm is parameterized by a distance guess D, and shortcuts all
paths of this distance. It then repeats for all guesses of the distance.
At each level of recursion the algorithm chooses some nodes to be
pivots and some to be shortcutters, where the pivots are a subset
of the shortcutters. Each shortcutter x computes the set R;(G, x)
and adds edges from x to each node v € R:;(G, x) with weight
equal to the distance from x to v to the hopset. Symmetrically, each
shortcutter x computes the set R ; (G, x) and adds edges from each
nodev € R;(G, x) to x with weight equal to the distance from v to
x to the hopset. Next each pivot w adds the label wy,. to each node
in R;(G, w), the label wpes. to each node in R;(G, w), and an X
label to any node in R; (G,w) N R (G, w). The graph is partitioned
in to subgraphs such that two nodes are in the same subgraph if
and only if they have the exact same set of labels, and any subgraph
that contains an X label is removed from the graph. Each subgraph
is recursed on with a decreased search distance. Finally the entire
algorithm is repeated for each possible guess of the distance.

Adapting CFR to the CONGEST model. The CFR algorithm fol-
lows a similar structure to the one of the JLS algorithm [10] for
parallel single-source reachability. JLS extends their algorithm to
the CONGEST model. We use their techniques to adapt CFR to the
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CONGEST model. Next we will give an overview of the CONGEST
JLS algorithm, and then discuss CFR in the CONGEST model.

The JLS algorithm for reachability in the CONGEST model builds
a skeleton graph and then essentially simulates their parallel algo-
rithm, which adds extra edges to the graph in order to reduce the
diameter. The simulate their parallel algorithm by each node broad-
casting the information from its computation, such as when the
node is reached in BFS searches, the subproblem labels and IDs, the
new shortcut edges, and when it becomes a shortcutter. There are
two important parameters for the CONGEST JLS algorithm. First,
each BFS takes O(Dh+3 ¢ |RZ(G, s)|) rounds on the skeleton graph,
so the depth h of the BFS must be limited. Second, the total number
of new edges added to the graph is > |RZ(G, s)|. They balance

these parameters and get O(Da'/?*°(M)Y and O(a), which are the
costs of BFS and broadcasting all the new edges, respectively. After
simulating their parallel algorithm on the skeleton graph, they sim-
ulate BFS on the skeleton graph and locally compute reachability
for each node. Their algorithm runs in D2/3p1/3+0(1) rounds.

We use the same simulation technique as JLS to adapt CFR to
the CONGEST model. The total cost of step 4 is O~(ae_p22 logW +
Del/2+o()

pe
time are deferred to the full version of the paper. For D = o(n'/%),
the CFR [2] algorithm can be used to achieve the desired bound.
For D = w(n!/*), we use the CFR algorithm that has a work span
tradeoff [3]. Section 3.2 gives the specific parameter settings.

log W). The details of the algorithm and the running

3.2 Cost of the Algorithm

Steps 1-3 and 5 can be performed the same as FN [8]. The complexity
of the algorithm is as follows. Step 1 takes O(a + D) rounds to
broadcast S to all nodes. In step 2, computing the distance estimates
can be done in O(a + nlog W/(ae) + D) rounds. FN only computes
forwards distance estimates, but the backwards distance estimates
can be computed symmetrically. Step 3 computes the skeleton graph
and broadcasts it to the graph, which can be done in O(a + D)
rounds. In the full version of the paper we show that step 4 can be
Dal/2+o(1)

pe
is a parameter which is in range [O(1), al/zro()], Finally step 5 is
computed internally for each node.

The total number of rounds for the algorithm is O(D+ 2= logW+
ap®logW + Da'/?°W log W

€? pe

Case 1.If D = 0(n1/4), set p = ©(1) and a = O(+/n). The whole
algorithm takes O(y/nlog W /e?) rounds.

Case 2.If D = w(n2/3), setp = al/2+0(1) and o = é(nl/3). The
whole algorithm takes O(D log W/€?) rounds.

Case 3. Otherwise, set p = é(rﬂ%f’(l)) and a = é(”sg;;l) ).
The whole algorithm takes O(D?/5p2/5+0 () log W/e?) rounds.

Combining all three cases together, the algorithm solves approx-
imate SSSP in O(y/n + D + D?/5p2/5+0(1)) Jog W /€?) rounds. This
shows the running time of Theorem 1.

~ 2
implemented in O(O(ei2 logW + log W) rounds, where p

), which reduces to as follows:
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