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ABSTRACT
Knowledge Tracing (KT), which aims to model student knowledge
level and predict their performance, is one of the most important
applications of user modeling. Modern KT approaches model and
maintain an up-to-date state of student knowledge over a set of
course concepts according to students’ historical performance in
attempting the problems. However, KT approaches were designed
to model knowledge by observing relatively small problem-solving
steps in Intelligent Tutoring Systems. While these approaches were
applied successfully to model student knowledge by observing stu-
dent solutions for simple problems, such as multiple-choice ques-
tions, they do not perform well for modeling complex problem
solving in students. Most importantly, current models assume that
all problem attempts are equally valuable in quantifying current
student knowledge. However, for complex problems that involve
many concepts at the same time, this assumption is de�cient. It
results in inaccurate knowledge states and unnecessary �uctua-
tions in estimated student knowledge, especially if students guess
the correct answer to a problem that they have not mastered all
of its concepts or slip in answering the problem that they have
already mastered all of its concepts. In this paper, we argue that
not all attempts are equivalently important in discovering students’
knowledge state, and some attempts can be summarized together
to better represent student performance. We propose a novel stu-
dent knowledge tracing approach, Granular RAnk based TEnsor
factorization (GRATE), that dynamically selects student attempts
that can be aggregated while predicting students’ performance in
problems and discovering the concepts presented in them. Our ex-
periments on three real-world datasets demonstrate the improved
performance of GRATE, compared to the state-of-the-art baselines,
in the task of student performance prediction. Our further analysis
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shows that attempt aggregation eliminates the unnecessary �uc-
tuations from students’ discovered knowledge states and helps in
discovering complex latent concepts in the problems.
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1 INTRODUCTION
Personalized online learning systems have recently drawn a lot
of attention because of the growing need to assist and improve
students’ learning. A fundamental part of the user modeling task
in these systems is estimating students’ knowledge states as they
work with learning materials [3]. This task, known as knowledge
tracing (KT), is necessary for predicting students’ performance
in future assessments, personalizing problems and exercises for
students, identifying at-risk students, and providing teachers with
a detailed view of overall student progress. In particular, KT models
use student attempt sequences, including student performance (e.g.,
success or failure) on past problems, to estimate student knowledge
at the end of a sequence and predict student performance on the
next attempts.

To quantify student knowledge, traditional KT models rely on
a prede�ned domain knowledge model that represents the associ-
ations between the problems and course concepts. Such models
individually trace student knowledge in each of these concepts,
neglecting the potential relationships between di�erent concepts.
As these models learn the same set of parameters for all students,
they are not personalized to the student speci�cations. For example,
Bayesian knowledge tracing (BKT) [3], which is one of the pioneer
KT models, represents student knowledge states in each concept
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using a two-state HMM, which imposes a Markovian assumption
on knowledge states from one attempt to the next.

In recent years, modern KT models have been developed to ad-
dress the above problems. For example, many variants of BKT have
been proposed to improve the model by considering the potential
to forget the learned concepts [7], accounting for the dependencies
between concepts [8], and personalizing the model parameters for
di�erent students [27]. In addition to the Bayesian models, latent
factor approaches have been successful in considering the concept
relationships [11, 20, 21, 29]. For example, Lan et al. [11] proposed a
sparse factor analysis framework for both student knowledge trac-
ing and domain knowledge estimation. Sahebi et al. [20] proposed
a tensor factorization method to explicitly model student learning
processes by assuming a strictly monotonic increasing learning
gain. Zhao etal. [29] leverage the multiview tensor factorization
method for modeling student knowledge using multiple learning re-
source types. Similarly, deep learning models, such as DKT [17] and
DKVMN [28], have recently been introduced into the KT domain.

However, the majority of KT models have assumed that each
attempt in a sequence considered by tracing is relatively simple
and involves the application of one or very few concepts, such as
small steps in solving either a complex problem or an elementary
problem. With this assumption, the observed student performance
can be directly associated with a few involved domain concepts,
and each correct or incorrect attempt by the student can provide
a relatively con�dent evaluation of student knowledge in those
concepts. As a result, when considering these kinds of problems,
current KT models assume that every attempt in student history is
equally important in quantifying student knowledge. This assump-
tion can be su�cient for domains in which each problem consists
of a few atomic concepts. However, it is de�cient for domains with
more complex problems, such as writing a program or solving an
assignment with multiple steps.

In complex problem solving, each problem can include multiple
concepts, such that knowing all of them to some extent is necessary
for correctly answering the problem. Because of this complexity,
student attempt observations will be noisier, as slipping in even
one of the required concepts can signi�cantly harm student perfor-
mance. Additionally, identifying the concepts that are responsible
for an imperfect performance will be more challenging in such com-
plex problems. Similarly, solving a complex problem correctly by
guessing a di�cult unknown concept or by trial and error on that
important concept will be wrongly attributed to a student’s high
knowledge of all of the involved concepts. As a result, such noisy
observations could easily cause traditional KT models to provide an
inaccurate estimation of overall levels of student knowledge. For ex-
ample, consider a student who has already mastered some concepts.
This student tries a problem on those concepts three times, getting
the problem right the �rst time (successful attempt), slipping in
one of the concepts the second time (failed attempt), and getting
it right again in the third time (successful attempt). In current KT
approaches, since the model tries to �t every student attempt, these
cases result in �uctuations in estimated student knowledge. Even in
models like BKT, which try to consider small guess and slip probabil-
ities by modeling each concept independently, or DKT+ [26], which
aims to smooth out student predicted performance (not knowledge)

using a constraint, having a binary knowledge state and �tting to
every attempt results in knowledge state inaccuracies.

In this paper, we argue that, due to the noise in solving complex
problems, some student attempt observations are more informa-
tive and important than others. For that, we address the student
knowledge tracing challenge for complex problems by summariz-
ing student attempts to better represent student performance. We
propose a personalized knowledge tracing model that automati-
cally detects “less important” student attempts and aggregates them
into other attempts to better represent student knowledge and pre-
dict their performance. Additionally, our proposed KT model is
personalized for students and automatically discovers the domain
knowledge model without requiring extra problem information,
such as text, topics, or tags. In particular, we model student se-
quences in a tensor and propose an adaptive Granular RAnk based
TEnsor factorization (GRATE) to address the noisiness and sparsity
issues so as to provide a plausible and precise knowledge modeling.
We impose a rank-based constraint on student knowledge across
attempts to help reduce the unnecessary �uctuations in student
knowledge and improve the interpretability of the model. GRATE
does not rely on a domain knowledge model, as it automatically
discovers latent concepts for the problems presented to students.
It is personalized by pro�ling students into student latent features
and learning a separate set of parameters for them in a collaborative
way.

Our contributions in this paper are: (a), we are the �rst to address
the noisy observation challenge for student knowledge tracing in
complex problem solving; (b), for this, we propose a novel tensor
factorization method that adaptively aggregates student attempts
while imposing a rank-based constraint to represent students’ grad-
ual learning; (c), our knowledge tracing model is personalized and
does not rely on additional domain knowledge information; (d), we
conduct extensive experiments to analyze and validate the e�ective-
ness of our proposed model, compared to several state-of-the-art
baselines, on three real-world datasets; and (e), we demonstrate
that our proposed method is capable of providing precise and plau-
sible student knowledge states while learning meaningful question-
concept associations.

2 GRANULAR RANK BASED TENSOR
FACTORIZATION (GRATE)

Our goal in this work is to handle the noise and �uctuations in
student knowledge tracing of complex problems without relying
on a domain knowledge model or a prede�ned mapping between
problems and concepts. We aim to do this with a personalized
KT approach that is interpretable without harming the model per-
formance; e.g., in the student performance prediction task. In the
following, we formulate this challenge as a tensor factorization
problem, present our proposed method to address the challenge,
explain our intuition behind choosing tensor factorization as the
basis of our model, and provide the algorithm for our method.

2.1 Problem Formulation and Assumptions
We consider an online learning system inwhichM students attempt
N problems in sequences of maximum length T over time. Students
can attempt the problems in any order and as many times as they
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like. Student performance during each attempt is recorded as a
score, grade value, or binary (success or failure) data. We represent
the students’ logged performance records in a 3-mode tensor X 2
[0, 1]M⇥T⇥N . Every entry xu,t,i 2 X represents the uth student’s
normalized grade on i

th problem at attempt index t . Our goal is
to factorize this tensor to be able to accurately estimate student
knowledge of the problems’ latent concepts and predict student
performance in their future problem attempts, according to their
history.
Model Assumptions. We build our model based on the follow-
ing assumptions: (a) Domain knowledge assumption: Each problem
covers a number of concepts that are presented in the course with
di�erent proportions; the set of all of the course concepts are shared
across problems; and the training data does not include the prob-
lems’ contents nor their concepts. (b) Student performance assump-
tion: Di�erent students have di�erent learning abilities and initial
knowledge and their performance in di�erent problems depends
on their knowledge state, especially in the concepts related to those
problems. (c) Student learning assumption: As students interact with
the problems, they learn the concepts that are presented in them,
meaning that their knowledge in these concepts increases gradually;
but students may also forget some concepts. (d) Attempt noisiness
assumption: Student data can be noisy; e.g., they may slip in one
concept out of all the problem concepts and receive a low score,
while they have already mastered all of these concepts. Similarly,
they may guess the correct answer to a problem without knowing
all the problem concepts. As a result, some attempts may not be an
accurate representation of student knowledge.

2.2 The Proposed Model
Tensor Factorization. Following the (a) domain knowledge and
(b) student performance assumptions above, we �rst model student
interaction tensor X as a factorization of three lower dimensional
representations: 1) an M ⇥K student latent feature matrix S , that
represents particular student features (such as abilities and per-
sonalities) that are constant over time; 2) a K ⇥ T ⇥ C temporal
dynamic knowledge tensorA, that shows the knowledge of students
with speci�c abilities in the course concepts as they attempt the
problems; and 3) a C ⇥N matrix Q serving as a mapping between
problems and course concepts. The upper tensor factorization in
Figure 1 represents this model. According to our factorization, the
resulting tensor from product K = SA represents student knowl-
edge in each concept at each attempt. In addition to the above
factors, we add a student-speci�c bias bu , problem-speci�c di�-
culty bi , and average score o�set µ. Consequently, we can estimate
students’ performance at attempt t as in the following, where �
represents a standard probit or logit link function:

x̂u,t,i = � (su · At · qi + bu + bi + µ) (1)

Note that using � makes the model interpretation �exible: both as
an estimation of a real-valued score between zero and one, and as
the probability value of the binary success or failure in solving a
problem (as in a classi�er). To learn the parameters S , A,Q , and the
biases, we can minimize the following objective function:

L0 =
’

u,t,i 2�obs

�
xu,t,i � x̂u,t,i

�2
+ �s ksu k22 + �a

T’
t=1

kAt k2F (2)

in which the set �obs consists of all non-missing values in X.
The last two terms are regularization constraints with important
weights �s and �a to ensure the generalizability of the learned
values.
Adaptive Granularity-Based Aggregation. The student attempt
tensor X is very sparse, since the students only interact with one
problem during each attempt. Additionally, because of problem
complexities, the observed attempts are noisy and unreliable (as-
sumption (d) or attempt noisiness assumption). As a result, it is
di�cult to extract accurate and interpretable underlying structures
from this tensor. Moreover, equally relying on all attempts, whether
they are noisy or not, results in imprecise knowledge states and
poor performance predictions.

To address this issue, we propose to automatically aggregate
attempt slices that are deemed to be not informative enough with
their neighbor attempts. This will summarize the informative and
non-informative attempts together, keeping only the important
information and leaving out the noisy ones. To do this, we �nd
a smaller aggregated tensor that summarizes our initial student
attempt tensor, along with the attempts, with a maximal recovery
of information or a minimal loss of information.

Inspired by [18], we aim to �nd an aggregated 3-mode tensor Y
of dimensionsM ⇥ T̃ ⇥N with T̃  T , such that Y can accurately
represent our initial tensor X, measured by a goodness of �t or
utility function F. To achieve this goal, we �nd an aggregation
matrixW that indicates which attempts should be integrated into
their neighboring attempts. In other words, we �ndW such that
aggregating the X tensor using it maximizes the utility function F:

max
W
F(X ⇥2W ) (3)

where ⇥2 denotes the aggregation operation on the tensor’s second
mode (attempt mode), andW (i, j) = 1 if slice i in tensor X is aggre-
gated into slice j in the resulting tensor, otherwiseW (i, j) = 0. For
the utility function F, we use missing value prediction accuracy. As
a result, we summarize the input tensor X using the aggregation
matrixW such that the new tensor Y provides us with the highest
student performance prediction accuracy. For instance, consider
the tensor X of dimension 5 ⇥ 6 ⇥ 5 with the optimal aggregate
shape of Y is 5 ⇥ 2 ⇥ 5. In this case,W is of size 2 ⇥ 6 such as:

W =


1 1 0 0 0 0
0 0 1 1 1 1

�
(4)

where the �rst two slices of X will be aggregated as the �rst slice
of Y, and the last four will form the second.

Since student knowledge states typically exhibit a Markovian
property [29], we follow a greedy aggregation of slices, similar to
the IceBreaker algorithm [18], to try to aggregate the subsequent
attempts. This way, the aggregation matrixW will have ones only
close to the diagonal and zeros in all other places. This kind of
aggregation also reduces the time complexity of solving Equation 3
from O(2T) to linear time complexity.

For the aggregation operation ⇥2, we �ll the unobserved values
in the previous (t � 1) attempt slice with the observed values in the
current (t ) attempt slice. Also, we replace the observed values in
the previous attempt with the values in the current attempt if they
are observed. This means that the aggregated attempt contains part
of the observations from both the previous and current attempts.
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Figure 1: Knowledge Modeling via Granular Rank-Based Tensor Factorization.

This is based on an intuitive assumption that the later attempts on
a question are more informative than the earlier ones. For instance,
if students slipped once on the same question, they are less likely
to slip again. Therefore, we use the current attempt values if they
are available; otherwise, we use the less informative observations
from the previous attempt. The mathematical representation of our
aggregation operation is summarized below 1.

�u, ˜t�1,i =

(
xu,t�1,i if xu,t�1,i is observed, but xu,t,i is not observed
xu,t,i if xu,t,i is observed

(5)
By having such an aggregation, we expect to rule out the noisy

attempts that are observed due to the complexity of problems being
solved. To learn the parameters of this aggregated model, we update
the loss in Equation 2 in two ways to achieve the loss function in
Equation 6. First, we use the new aggregated tensor Y instead of
the input tensor X2. Second, to reduce the noise even further, we
use the weighted least square error with con�dence �u, t̃,i as our
objective function. We set �u, t̃,i to be the number of student u’s
trials on question i by attempt t̃ , to represent the con�dence in
that attempt’s data. This means that the more the student attempts
a question, the more con�dence we have in our observation of
student performance in it.

L1 =
’

u, t̃,i 2�obs

�u, t̃,i ·
⇣
�u, t̃,i � �̂u, t̃,i

⌘2
+ �s ksu k22 + �a

T̃’
t̃=1

kÃt̃ k2F

(6)

Rank-BasedKnowledge Increase Constraint. Finally, while we
assume that student knowledge increases as a result of solving more
problems (student learning assumption (c)), the model so far does

1Please note that our aggregation operation is di�erent from in [18] in order to match
our KT application.
2Please note that the aggregation and parameter estimation are done simultaneously
in the algorithm, rather than by �rst learning a �xed Y and then by learning the
parameters (Section 2.3).

not follow such an assumption. To address this, we add a rank-
based constraint to the tensor factorization model, inspired by [4].
In particular, we would like to make sure that student knowledge
increases in the problem-related concepts after the student interacts
with a speci�c problem. That is st · At+1 � st · At or ku,t+1 �
ku,t . Please note that, unlike [4] where this assumption is imposed
on predicted performance values, our assumption is imposed on
student knowledge. This new constraint helps us to not only rely on
the sparse and noisy performance observations in the data, but also
to exploit the predicted (and unobserved) student performances.
This means that we can use the estimated student scores x̂u,t+1,i for
alleviating the noisiness and sparsity of the data tensor and prevent
over-�tting to it. Finally, to add this assumption, we minimize the
rank-based constraint in Equation 7. This constraint will lead to a
smooth and global knowledge increase in students, while allowing
for small decreases, in case the student forgets some concepts.

L2 = log
⇣
�

⇣
su · Ãt̃+1 � su · Ãt̃

⌘⌘
(7)

The Full Model. Eventually, we put together all parts of the model
to factorize the aggregated performance tensor with a rank-based
constraint and learn the model parameters, including the student
latent feature matrix, the knowledge tensor, and the problem con-
cepts. To this end, we optimize the objective function in Equation 8,
which is a weighted combination of previously de�ned loss func-
tions. This way, the adaptive granularity aggregation and the rank-
based knowledge increase constraint cooperate to both resolve the
sparsity problem and remove the noisy observations, which leads
to a more accurate model. Here, � 2 [0, 1] is the trade-o� parame-
ter for the knowledge increase constraint versus the performance
prediction �t. The outer summation can be replaced with implicit
feedback sampling for some j < t̃ � 1 instead of the summation
from j = 1 to j = t̃ � 1.
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minimize
su ,Ãt̃ ,qi ,bu ,bi

L = L1 + �
t̃�1’
j=1

’
u,i

log
⇣
�

⇣
su · Ãj � su · Ãj+1

⌘⌘

(8)

subject to

8>>><
>>>:

su,i � 0 8u 2 {1, · · · ,M},8i 2 {1, · · · ,K}
qc,i � 0 8c 2 {1, · · · ,C},8i 2 {1, · · · ,N}Õ
c qc,i = 1. 8i 2 {1, · · · ,N}

(9)

To ensure interpretable student modeling and proportional con-
cept coverage on each problem, we enforce the constraints in Equa-
tion 9. Speci�cally, the �rst constraint on S ensures that student
latent feature weights or student soft membership values in the
latent features are non-negative. The second and third constraints
on Q make sure that the concept contributions in each problem
are non-negative and sum to one. This way, we can interpret the
Q values as how much information on each concept is provided
in each problem and can directly compare the problems with each
other, according to their concepts. We use a projected stochastic
gradient descent on the �nal loss L to learn the parameters of the
model.
Our Intuition on Choice of the Model. We have six main rea-
sons for modeling the student knowledge tracing challenge as a
tensor factorization problem. First, unlike deep learningmodels, ten-
sor factorization models do not require an abundance of data. Our
model can work well with medium-sized datasets that have missing
and noisy information. Second, our tensor factorization design is
perfect for discovering the underlying domain knowledge or con-
cept structure. The problem latent factors discovered by our model
can be interpreted as the discovered concepts and the problems can
be explained as weighted combinations of the discovered concepts.
In other words, problems are soft members of the concepts, and
a concept’s importance to each problem can be presented as the
membership weight. This is unlike KT models, such as PFA [16],
that rely on a prede�ned domain knowledge model, or those like
BKT [3] and iBKT [27] that model each concept independently.
Third, our proposed factorization is designed for personalized KT
in students, following a collaborative-�ltering [10, 13] type of struc-
ture in recommender systems. Our model automatically attributes
students to student latent features, which can be interpreted as
student abilities and learning pace. Similar to problems, students
have soft memberships in these latent features and a separate set of
personalized knowledge increase parameters are learned for each
latent feature. This contrasts with many existing deep learning
based models[2, 6, 17, 28] that learn the same set of parameters for
all students. Fourth, our choice of tensor factorization allows us
to have a “global” trend on student knowledge increase. Adding a
constraint, similar to our rank-based constraint, is intrinsic to the
tensor factorization models [4, 23]. While the rank-based constraint
is applied locally, it will result in a global increasing trend in stu-
dent knowledge in the concepts that the student is interacting with.
This is similar to IRT [19] and FTDF [20] models and is di�erent
from models such as DKT [17] and DKVMN [28] that cannot easily
constraint student knowledge trends in a global way. Fifth, unlike
models such as BKT [3] that have a two-state (known vs. unknown)

knowledge state for students, our model can estimate how much a
student knows about each concept. Finally and most importantly,
by using the tensor structure, we can measure the importance of
each attempt in student sequences and easily aggregate the less
informative ones into previous attempts.

2.3 Algorithm and Implementation Details
The pseudo-code of our GRATE model is described in Algorithm 1 3.
In lines 1-2 of the algorithm, we predict students’ performance at at-
tempt 2. Lines 3-20 corresponds to the online training of the rest of
the attempts. For lines 2 and 19, we leverage the projected stochastic
gradient descent to alternately update parameters (su , Ãt̃ , qi ,bu ,
and bi ) to solve the minimization problem (8). Moreover, to ensure
su,i � 0 8u, i and qc,i � 0 8c, i , the updated su,i and qc,i are pro-
jected to the feasible set by clipping the values into [0, 1]. To ensureÕ
c qc,i = 1,8i 2 {1, · · · ,N}, we normalize the vector qi . We start

with a large learning rate for SGD and reduce it by receiving new
observation data. At line 12, we use the online training mechanism
in which we only train on new data points when new observation
data are added. The algorithm’s time complexity is linear with re-
spect to the number of observations. Since each student could only
work on a single question at each time index and the aggregation
does not increase the number of observations, the time complexity
is O(MT).

Algorithm 1: GRATE Knowledge Modeling.
Input: Observed students’ interaction records �obs , including training

students’ historical interaction records and targeting students’ �rst
interaction records;

1 �obs = {xu,1,i 2 �obs , 8u, i }
–{xu,2,i 2 �obs , 8u, i }

2 Solve the problem (8) with constraints (9) on �obs .
3 Ypre� = {xu,1,i 2 �obs , 8u, i }
4 Create a tensor Y with size M ⇥ 1 ⇥ N and �ll Ypre� into it.
5 for each time index 2  t < T do
6 Fill target students’ new records xu,t,i into �obs
7 Xt = {xu,t,i 2 �obs , 8u, i }
8 Ycurr = Ypre� t Xt ; . The t denotes aggregation operation.
9 if U til it�(Ycurr ) > U til it�(Ypre� ) then
10 Ypre� = Ycurr .
11 Fill Ycurr into last slice of Y .
12 else
13 Ypre� = Xt .
14 Add a new slice into Y , and �ll Xt into this new slice.
15 end
16 Xt+1 = {xu,t+1,i 2 �obs , 8u, i }
17 Add a new slice into Y , and �ll Xt+1 into this new slice.
18 �obs = {non-missing �u, t̃,i in Y }
19 Solve the problem (8) with constraint (9) on �obs .
20 end

3 EXPERIMENTS
We conducted experiments on three datasets to evaluate: 1) the
model’s performance in the student performance prediction task,
as compared to the baselines; 2) the e�ect of di�erent model parts
on its performance; 3) the aggregation e�ect on student knowledge
states; and 4) the discovered latent concepts.

3The source code is provided at: https://github.com/persai-lab/UMAP2021-GRATE
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3.1 Datasets
Three representative real-world datasets are used in our experi-
ments. Table 1 shows the descriptive statistics of these three datasets.
MORF 4 is a framework for accessing and experimenting with
MOOC data of over 77 unique courses[1]. We use the data from
one of these courses, “Big Data in Education”, as our experimen-
tal dataset. This course includes 10 complex assignments, each of
which contain a set of questions that are related to each other. As
only the students’ grades on the whole assignments are available,
we view each assignment as a complex “problem” in our model
that covers multiple learning concepts. These assignments are pub-
lished in sequential order, but students can have multiple attempts
on each assignment at any time. Students’ scores are normalized
into [0, 1]. CSIntro5 contains students’ outcomes from 10 di�er-
ent Computer Science introductory courses collected during two
semesters, using the Machine Teaching ITS [14]. For each problem,
the students write a Python program to solve the proposed problem.
The problems are complex, as solving each problem requires an un-
derstanding of multiple programming concepts, such as variables,
loops, and conditional statements. Student codes are tested against
several test cases. The grade given at each attempt is the percentage
of correct test cases. MasteryGrids6 is a dataset collected from
students’ interactions with the Mastery Grids interface [12] to learn
the Python programming language. It contains students’ binary
scores (success or failure) on the programming problems in the
system. Similar to CSIntro dataset, each problems requires students
to understand a variety of concepts. Figure 6 shows some examples
of the questions.

3.2 Experimental Setup and Baselines
We use a 5-fold nested student-strati�ed cross validation for our ex-
periments. We shu�ed and split the students randomly into �ve
groups and ran the experiments for �ve rounds. At each round,
we selected one of the �ve student groups as the test group and
the rest (four groups) as the training group. For test students,
we started by predicting their performance at second attempt,
given their �rst attempt. Then, we continued by predicting their
performance at the next attempts, one by one, using their pre-
vious attempts and the training students’ data. We reported the
average performance over �ve folds of testing data, as well as
its calculated 95% con�dence interval. In order to see how the
proposed model performed over time, we performed online train-
ing and testing, in which we predict the test data attempt by at-
tempt. For hyper-parameter tuning on our method and all base-
lines, we perform grid search over 25% of the training data that
is separated for validation. For GRATE, we grid searched over
K,C 2 {3, 5, · · · , 17, 19}, �s , �a 2 {0.001, 0.005, 0.01, 0.05, 0.1},
and � 2 {0.001, 0.01, 0.1, 0.2, 0.3}. The best hyper-parameters are
listed in Table 2.

To evaluate the proposed approach’s performance, we compare it
with six di�erent baseline models that cover a range of approaches
to the task of knowledge tracing, from hidden Markov models to
tensor factorization and deep learning. A more detailed comparison

4https://educational-technology-collective.github.io/morf/
5http://www.machineteaching.tech/en/
6http://adapt2.sis.pitt.edu/wiki/Mastery_Grids_Interface

of our model with these baselines can be found in the last part of
Section 2.2 (model intuition). Here is a short description of each of
the baseline methods.

• DKT: uses recurrent neural networks to model student learn-
ing on one concept at a time [17]. DKT does not have the stu-
dent knowledge modeling and domain knowledge modeling
components. The performance is typically not interpretable.

• DKVMN: is a variant of memory-augmented neural net-
works that tracks student states on multiple concepts [28].
Our model and DKVMN share some similarities: 1) DKVMN
also uses a dynamic matrix to model student’s knowledge
state; 2) a student’s performance on a speci�c question is
determined by the concept coverage of the question and the
student’s mastery level of each concept; and 3) the Markov
property of the knowledge state is modeled.

• iBKT7: is an extended hidden Markov model variant of the
standard Bayesian knowledge tracing, providing individu-
alization on student priors, learning rate, guess, and slip
parameters in students [15, 25, 27].

• PMF: is a classic probabilistic matrix factorization method
for estimating missing values in matrices [13]. To apply it
on sequential student data, we use the last attempt of each
question by each time index to build the matrix, mask test
students’ next questions for prediction, and estimate student
performance on masked questions using observed entries in
the matrix.

• FDTF8: is a knowledge tracing method based on tensor fac-
torization that enforces a constraint to guarantee a mono-
tonic increase in student knowledge as per attempt [20].

• BPTF9: is a Bayesian tensor factorization method for rec-
ommender systems [23]. Unlike our model, BPTF uses a
Gaussian distribution to smooth the knowledge transitions.

3.3 GRATE for Student Performance Prediction
In our �rst set of experiments, we evaluated the proposed model’s
performance in the task of student performance prediction, as com-
pared to the baselines. The experimental results are shown in Ta-
ble 3. Since in the MORF and CSIntro datasets, the scores are real
numbers, we use the root mean squared error (RMSE) between the
predicted and test scores for evaluation (a lower number is better).
In the MasteryGrids dataset, the student performance is recorded
as a binary success or failure. As a result, we used the classi�cation
mode of our proposed model and evaluated the results in terms of
area under the curve (AUC), in which the higher values represent
better performance.

As we can see, our proposed method signi�cantly outperforms
most of the baselines. The aggregation and ranked constraint not
only do not harm the results, but can improve them too. Based
on our results, iBKT lags behind other baselines and FTDF has
the second-best performance in MORF and CSIntro, while DKT is
better than FTDF in MasteryGrids. This could be because DKT was
designed for predicting the probability of success in datasets with
binary scores, while FTDF was originally designed for estimating

7iBKT code from https://github.com/CAHLR/pyBKT
8FTDF code from https://github.com/persai-lab/Tensor-Factorization-EDM
9BPTF code from https://www.cs.cmu.edu/~lxiong/bptf/bptf.html
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Table 1: Statistics of 3 Datasets.
Median Median Median Median

# Problem #Attempts #Users #Attempts
Dataset #Users #Attempts #Problems #Records Per User Per User Per Problem Per Problem
MORF 686 25 10 11700 8 17 643.5 1282
CSIntro 120 50 48 2231 6 16.5 17 37.5

MasteryGrids 382 70 30 10357 14 26 166.5 322

Table 2: Hyper-parameters of GRATE on three datasets.
Dataset M T N K C �s �a �

MORF 686 25 10 3 9 0.001 0.001 0.1
CSIntro 120 50 48 7 9 0 0.01 0.2

MasteryGrids 382 70 30 3 9 0 0 0.01

Table 3: Student performance prediction results in each of
the datasets. Average root mean square error (RMSE) and
area under curve (AUC) over �ve folds are used to evalu-
ate performance on datasets with numerical feedback and
binary feedback, respectively. ⇤ and ⇤⇤ denote signi�cance
levels of p-value< 0.1 and < 0.05 in GRATE’s improvement
over the baselines.

MORF CSIntro MasteryGrids
Method RMSE RMSE AUC
DKT 0.2170⇤ 0.4132⇤⇤ 0.6968

DKVMN 0.2608⇤⇤ 0.4202⇤⇤ 0.6881
iBKT 0.2470⇤⇤ 0.6215⇤⇤ 0.6048⇤⇤
PMF 0.2118 0.3982⇤ 0.5647⇤⇤
BPTF 0.2235⇤⇤ 0.3796 0.6942
FDTF 0.2088 0.3752 0.6877
GRATE 0.2033 0.3726 0.7035

the score values. Deep learning-based methods (DKT and DKVMN)
did not have the best performance among the baseline models.
For example, DKVMN performed poorly on the MORF dataset.
This could be because all the baseline approaches, especially the
deep learning and Markov model ones, were designed for simple
types of problems and are highly sensitive to student performance
�uctuations, which result in less accurate performance predictions.
This could also be because of the medium size of our datasets with
a fewer number of both problems and students. These results from
deep learning models are in agreement with the conclusions in
previous research that show that deep learning models are not
always the best choice for KT tasks in terms of data e�ciency,
interpretability, and prediction accuracy [5, 9, 22, 24].

3.4 Ablation Study
Next, we experimented to evaluate the e�ect of di�erent model
components on its performance. For that, we conducted an abla-
tion study, removing one component from the model each time:
GRATE-W/O-Agg for GRATE without the adaptive granularity ag-
gregation component and GRATE-W/O-Rank for GRATE without
the rank-based component. The results of comparing these two
models with GRATE on the task of performance prediction are
shown in Table 4. As indicated, the full model performed better
than both GRATE-W/O-Agg and GRATE-W/O-Rank in all datasets.

Figure 2: GRATE: Average knowledge transition over all stu-
dents on CSIntro dataset. The darker and bluer cells repre-
sent higher knowledge values and the light and yellower
ones represent lower knowledge values. (Best viewed in
color).

This shows that neither of these two components was dispensable
for student knowledge modeling and proved our adaptive granular-
ity aggregation and rank-based learning assumptions.

3.5 GRATE for Student Knowledge Modeling
As mentioned in Section 2, GRATE can represent student knowl-
edge over attempts via tensorK = SA. In the following, we visualize
student knowledge to study the interpretability of discovered knowl-
edge values in students. For easier visualization in two dimensions,
we show the average student knowledge values, in each of the
discovered latent concepts, over time. The results for the CSIntro
dataset are shown in Figure 2. The darker and bluer cells represent
higher knowledge values, and the light and yellower ones represent
lower knowledge values. The X-axis shows the attempt numbers.
As we can see, students start with a low average knowledge on all
concepts in their �rst attempt, and gradually gain knowledge as
they try the problems. This increase is not strict, as in some attempts
the students have a lower level of knowledge as compared to their
previous attempt. This is expected, as our rank-based knowledge
increase constraint allows for occasional forgetting. The learning
rates between di�erent concepts are di�erent from each other. Most
importantly, we can see that some attempts are aggregated together
and some are left as individual attempts. For example, attempts 4
and 5 are summarized together, and attempts 17, 18, and 19 are
joined together.

To evaluate the rank-based constraint e�ect on student knowl-
edge, we looked at the average student knowledge values calcu-
lated using the GRATE-W/O-Rank model shown in Figure 3. In this
model, the attempts are still aggregated. We can see that removing
the rank-based constraint results in higher �uctuations in student
knowledge values. For example, students start with higher knowl-
edge values in the �rst (0) attempt in Figure 3 only to lose it in the
next attempt. Contrasting this with Figure 2, we see the e�ect of the
knowledge increase constraint at the initial attempts. As another
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Table 4: Ablation study results. The average performance over �ve folds of data ± 95% con�dence intervals are reported.
MORF CSIntro MasteryGrids

Methods RMSE RMSE AUC
GRATE-W/O-Agg. 0.2100 ± 0.0140 0.3809 ± 0.0089 0.6849 ± 0.0219
GRATE-W/O-Rank 0.2251 ± 0.0109 0.3879 ± 0.0244 0.6837 ± 0.0297

GRATE 0.2033 ± 0.0081 0.3726 ± 0.0116 0.7035 ± 0.0240

Figure 3: GRATE-W/O-Rank: Students’ Average Knowledge
State on CSIntro Dataset.

Figure 4: GRATE-W/O-Agg.: Students’ Average Knowledge
State on CSIntro Dataset.

example, student knowledge values on Concept 2 at Attempt 29 is
much higher than their knowledge values at Attempts 28 and 30.
This value is much higher than the estimated knowledge values for
Concept 2 at Attempt 29 in Figure 2, when we have a rank-based
constraint.

To assess why some of the attempts are aggregated together in
GRATE and some are not, we look at the average student knowledge
values in the GRATE-W/O-Agg model in Figure 4. Here, although
the rank-based constraint exists in the model, we see more �uc-
tuations in the student knowledge values, as compared to the full
GRATE model. In particular, looking at the attempts that are aggre-
gated together in Figure 2, we see that high �uctuation attempts in
Figure 4 are aggregated together to create a smoother knowledge
increase in Figure 2. For example, looking at Concept 2 at Attempts
17, 18, and 19 in Figure 4, we can see that the knowledge value
drops from Attempt 17 (with value k = 0.30) to 18 (k = 0.15), just
to increase again in Attempt 19 (k = 0.20). Similarly, looking at
Concept 3 in the same attempts, we can see that the knowledge
value decreases from Attempt 17 (k = 0.15) to 18 (k = 0.13), but
then increases again in Attempt 19 (k = 0.22). However, in the full
GRATE results in Figure 2, these �uctuations are considered to be
insigni�cant, and Attempts 17, 18, and 19 are aggregated together.
Another interesting observation is that the initial attempts are more
aggregated together, as compared to the last attempts. This could be
because of the more con�dent knowledge estimations as more data
is gathered about student learning in the �nal attempts. Another
potential reason is the low variability of knowledge among di�erent
students at the larger attempts, since a lesser number of students
have longer sequences.
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Figure 5: Matrix Q discovered by GRATE for the Mastery
Grids dataset. Each column represents a problem. Each row
represents a latent concept. (Best viewed in color.)

Figure 6: Problems 4 (left), 18 (top right), and 24 (bottom
right) in MasteryGrids dataset.

3.6 GRATE for Domain Knowledge Modeling
As shown in GRATE’s model in Section 2.2, matrixQ can represent
latent concepts in di�erent problems. In this experiment, we look
at the Q-matrix discovered by GRATE in the Mastery Grids dataset
as a case study, to make sense of the discovered latent concepts.
We chose Mastery Grids for this experiment, since each problem
is assigned to a “topic” in this dataset. We have not used these
topics, or any form of content or annotated concepts, as an input
to our model. As a result, we use them as a standard to analyze the
discovered matrix Q .

Figure 5 shows the matrix Q discovered by GRATE for the Mas-
tery Grids dataset. The lower X-axis shows problem IDs, the upper
X-axis shows problem topics from the dataset, and the Y-axis shows
the discovered latent concepts. Each cell is colored according to the
latent concept weight in the problem. The dark blue cells have a
higher weight and the light yellow cells have a lower weight. As
the �gure shows, many problems with the same topic have a high
weight in similar latent concepts. For example, Problems 3 and 4
that have the “if statement" topic both have a high weight in latent
concept 3 and a low weight in latent concept 0. Or, Problems 16,
17, 18, and 19 that have the “list indexing" topic all have a high
weight in latent concept 3 and a low weight in latent concepts 1
and 2. However, we can also see problems with di�erent topics
that have similar weights in latent concepts and problems with
the same topic that have di�erent important latent concepts. For
example, Problems 4 (with the “if statement" topic) and 5 (with the
“comparison" topic) that both have a high weight in latent concepts
3 and 7.
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To better understand and analyze this phenomenon, we study
and annotate each latent concept manually. To this end, for each
latent concept q, we compare the problems in which q has a high
weight and come up with a list of detailed concepts that are pre-
sented in them. Then, we annotate the latent concept q with the
intersection of these concepts. These annotations are color-coded
and presented in the Y-axis of Figure 5, next to the latent concept
numbers. The problems that have a high weight of each annotated
latent concept are marked by circles with the same color as the con-
cept. For example, latent concept 7 has a high weight in Problems
{4, 5, 18, 19, 24} that are from di�erent topics. In these problems, be-
sides their major topic annotated in the dataset, two main concepts
repeatedly appear: “arithmetics" operations and “len()" function.
For instance, we show Problems 4, 18, and 24 in Figure 6. We can
see that in all of these three problems an arithmetic operation is
necessary: Problem 4 computes the remainder of a division, Prob-
lem 18 has the addition operation, and Problem 24 has addition and
subtraction operations. Meanwhile, both Problems 18 and 24 use
the “len()” function to compute the length of a list and a dictionary,
respectively. We can see similar patterns in other problems with la-
tent concept 7. For this, we annotated Concept 7 with “arithmetics"
and “len()". We followed the same process for all latent concepts,
as shown in Figure 6. This shows that our matrix Q can unveil
more detailed and complex structures in problems that go beyond
simple labeling of them based on their “topics”. The discovered
latent concepts not only represent conceptual similarities between
problems, but also relate to student skills and performance in a
detailed way.

4 CONCLUSIONS
In this paper, we propose a solution to the knowledge tracing chal-
lenge for complex problem-solving. We argue that not all student
attempts on complex problems are equally informative to estimate
student knowledge and propose a granular rank-based tensor fac-
torization (GRATE) model that adaptively aggregates consecutive
student attempts for a more accurate estimate of student knowl-
edge. With experimenting on three real-world datasets we sup-
ported our argument by showing that: (a) GRATE could perform
better than state-of-the-art baselines in predicting student perfor-
mance; (b) both aggregation and rank-based constraint are nec-
essary for GRATE’s superior performance; (c) GRATE improves
student knowledge modeling by discovering and smoothing highly
�uctuating and noisy attempts and implicitly detecting students’
slip and guess; and (d) the latent concepts discovered by GRATE
are meaningful and go beyond the labeled topics in the data. Al-
though GRATE’s discovered concepts are latent and not directly
human-readable, GRATE can guide teachers to determine which
problems a student should practice to gain the required knowledge
in these concepts. The limitations of our study include the plausible
but not analyzed assumptions, the medium size of our datasets, and
not having access to the detailed expert annotations for labeling
the latent concepts. Also, as the exactness of the discovered latent
concepts depends on the accuracy of our model in predicting stu-
dents’ performance, the interpretability of the discovered matrix Q
can vary.
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