
TransCrossCF: Transition-based Cross-Domain
Collaborative Filtering

Thanh-Nam Doan§

Center for Urban Informatics and Progress
University of Tennessee at Chattanooga

Chattanooga, TN 37403 USA
thanh-nam-doan@utc.edu

Shaghayegh Sahebi
Department of Computer Science

University at Albany, SUNY
Albany, NY 12222 USA

ssahebi@albany.edu

Abstract—The success of cross-domain recommender systems
in capturing user interests across multiple domains has recently
brought much attention to them. These recommender systems
aim to improve the quality of suggestions and defy the cold-
start problem by transferring information from one (or more)
source domain(s) to a target domain. However, most cross-domain
recommenders ignore the sequential information in user history.
They only rely on an aggregate or snapshot of user feedback
in the past. Most importantly, they do not explicitly model how
users transition from one domain to another domain as users
continue to interact with different item domains. In this paper,
we argue that between-domain transitions in user sequences are
useful in improving recommendation quality, dealing with the
cold-start problem, and revealing interesting aspects of how user
interests transform from one domain to another. We propose
TransCrossCF, transition-based cross-domain collaborative filter-
ing, that can capture both within and between domain transitions
of user feedback sequences while understanding the relationship
between different item types in different domains. Specifically,
we model each purchase of a user as a transition from his/her
previous item to the next one, under the effect of item domains
and user preferences. Our intensive experiments demonstrate
that TransCrossCF outperforms the state-of-the-art methods in
recommendation task on three real-world datasets, both in
the cold-start and hot-start scenarios. Moreover, according to
our context analysis evaluations, the between-domain relations
captured by TransCrossCF are interpretable and intuitive.

Index Terms—recommendation system, cross-domain recom-
mendation, collaborative filtering

I. INTRODUCTION

With the rapid growth of online services, users are over-
whelmed by the number of choices they can make (the “choice
overload” phenomenon [1]). As a solution to alleviate this
problem, recommender systems are increasingly used as an
essential tool in such services. Recently, the abundance of
user data collected from multiple systems and domains has
led to an increased interest in cross-domain recommender
systems. Originally, cross-domain recommender systems were
introduced as a solution to the cold-start problem [2]. These
recommender systems improve their suggestions by transfer-
ring information from one or more, typically dense, source
or auxiliary domains to a target domain [3]. Particularly,
recent researches have shown significant improvements by

§Most of the work was done when the first author was at University at
Albany, SUNY

cross-domain recommender algorithms that transfer informa-
tion from one item domain (e.g., books) to another item
domain (e.g., music) [4]–[10]. Most of the current research in
cross-domain recommenders focus on collaborative filtering
cross-domain approaches. Many of these algorithms jointly
model multiple domains by sharing common user’s latent
representations across them.

Similarly, sequential and time-based recommender systems
have shown success in capturing the importance of succession
in user interactions. Many of these recommenders are modeled
as matrix or tensor factorizations [11], [12], translation-based
models [13], or deep recurrent neural networks [14], [15].

As these cross-domain and sequential recommender systems
have grown independently, how to represent user sequences
in cross-domain recommendations has been less explored.
The few recent works in this area have largely relied on
modeling user sequences separately in each domain and using
factorization-based modeling to transfer information [7], [10].
In this paper, we argue that items that appear consecutively in a
user’s sequence are tightly related to each other. Furthermore,
there is an inherent relationship between items of different
domains, especially for the ones that appear right after another
in user sequences. Therefore, the sequence of user interactions
is important to be modeled in cross-domain recommenders.
Especially, user transition across domains can provide useful
information in capturing how user interests map from one
domain to another one. For example, a particular user is
more likely to purchase Halloween-themed party supplies after
purchasing a Halloween costume from the clothing domain.

In Figure 1, we illustrate another example of this domain
transition in user purchase sequence. This user starts with
reading the Goblet of Fire from Harry Potter book series.
Then, the user continues to read the next Harry Potter books
as they get published sequentially (within-domain sequence).
In addition to that, the user watches movie adaptations of these
books after reading them. Here is where the domain switches
or between-domain transitions happen. In this paper, we bridge
between cross-domain and sequential recommender systems
literature by modeling both within-domain and between-
domain transitions of user sequences. We demonstrate that
modeling such transitions helps in improving the predicted
recommendations, in both hot and cold-start settings.
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Fig. 1. Example of purchase sequence of a user.

We propose a new transition-based cross-domain recom-
mendation model, TransCrossCF, which considers the se-
quence of user interactions as well as item domains. Specifi-
cally, our model assumes Markov property for user interactions
with items. We model the user decision to select a new item
as a transition from the previous selected item’s latent space
to the new item’s latent space, under the operation of user
preferences and item domains. To capture the information
transfer across different domains, we model each domain with
its own latent space and represent the transition with latent
space mappings.

In summary, the contributions of our work is as follows
• We present TransCrossCF, our transition-based method,

to capture the sequence of user interactions across differ-
ent domains. Moreover, our model does not require the
item and user embedding vectors to share the same latent
feature space.

• Through our experiment, we demonstrate that our model
outperforms other state of the art baselines in different
experiments, both in hot and cold-start settings.

• Our in-depth analysis shows that TransCrossCF is able to
capture meaningful information transfer patterns across
different domains.

The structure of our paper is organized as follows. The
next section will briefly review the related literature. The
following two sections describe our proposed model and show
its performance through extensive experiments and analyses.
The last section concludes the paper and provides some future
directions to extend our research further.

II. RELATED WORK

In this section, we provide a brief overview of related works.
We divide these works into the literature on cross-domain
recommendations and sequential recommendation systems.

A. Cross-Domain Recommendations
Cross-domain recommendation is a branch of recommender

systems, with the purpose of learning user preferences from
data across multiple domains [16]. These recommender sys-
tems are increasingly gaining the researchers’ attention, es-
pecially as a solution for the cold-start problem [7], [10],
[17], [18]. There are two main types of cross-domain rec-
ommenders: collaborative filtering [4], [19], and content-
based methods [20]. In this work, we focus on collaborative

filtering cross domain recommendations. Similar to single-
domain collaborative filtering, research works on cross domain
recommendation usually use matrix factorization methods.

For example, Pan et al. [21] propose a cross domain
recommendation system based on matrix factorization by
using a coordinate system transfer method. Hu et al. [22]
capture the triadic relation between user-item-domain as a
tensor. Their algorithm to factorize the tensor can outperform
the state-of-the-art baselines in rating and ranking prediction.
Elkahky et al. [19] use a deep learning framework to improve
the performance of cross domain recommendation and also
provide a scalable method to handle large datasets.

Despite the fast-growing literature on cross-domain recom-
menders, most of the previous works do not take into account
users’ sequential purchases explicitly. In this paper, we bring
the sequential cross-domain modeling to the field of cross-
domain recommendation.

B. Sequential Recommendation Systems
Sequential recommendation systems have been researched

for a long time. These models mainly rely on two main
techniques: matrix factorization and recurrent neural network.
Koren [11] proposed one of the first matrix factorization
techniques to capture the sequence of users’ interactions.
Specifically, the author models the temporal dynamics of users
and item over time to capture the long-term trends under
factorization method. Other works [23], [24] achieve better
performance than the work of Koren [11] due to integration of
Markov condition. Eskandanian and Mobasher [25] proposed
Hidden-Markov Model to capture the change point within the
sequence of user activities which indicates the significant shift
of user preferences.

Recently, because of the growth in deep neural networks,
recurrent neural networks (RNN) have been used in rec-
ommendation systems [26], [27]. These works divide time
into periods and model the temporal dynamics of users and
items by recurrent neural network, then, calculate the rating
prediction of users on items within the period. Tang and
Wang [28] combine RNN with convolution neural networks
to model the sequential activities of users and their evaluation
shows that it yields a good performance.

From the success of transition-based models in knowledge
discovery, He et. al. [13] proposed TransRec which integrates
the idea of knowledge discovery in recommendation systems.
Specifically, it assumes that the purchase of a user to an item
is the transition to the latent feature of this item from the
previous purchase of the user under his/her latent preference.

These works mostly focus on single domain recommenda-
tions, losing important information that can happen across
domains. To address this, we propose a new cross-domain
recommendation systems based on transition-based method
that focuses on capturing sequential activities of users across
different item domains.

III. PROPOSED FRAMEWORK

In this section, we formulate our problem and describe our
proposed framework in detail. For the ease of reading, Table I

���

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on September 27,2021 at 20:38:26 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
TABLE OF NOTATIONS

Notation Meaning
U /u Set of users/a user

d A particular domain
Id/id Set of items/an item in domain d
Su
k k-th interaction item of user u

γid Latent feature vector of item i in domain d
tu Latent feature vector of user u

W→d Linear mapping from user space to item space of domain d
Wd1→d2 Linear mapping from item space of domain d1 to that of

domain d2
βi Latent bias of item i

dist(·, ·) Distance between two latent vectors
pu,i,j Probability that user u interacts with item i then item j

summarizes our notations used in this section. The parameter
learning process is also discussed at the end of the section.

Problem Formulation. We would like to recommend the
next interesting item to a user, given his/her past interaction
history in different item domains. We denote the set of users
as U and the set of items that belong to the domain d as Id.
The “next item” prediction task is defined as follows. For each
user u ∈ U , the sequence of their interactions with items is
represented as Su = (Su

1 , S
u
2 , ..., S

u
|Su|). Note that the k-th

interaction item of user u, i.e. Su
k , is a tuple of item index

and the domain which this item belongs to. Given all users’
sequential interactions, S = {Su1 , Su2 , ..., Su|U|}, we want
to predict the next interaction item of each user. Notation
I represents all items, i.e. I =

⋃
d Id, where d denotes the

domain index.
TransCrossCF. We develop TransCrossCF according to the
following main assumptions: i) items that appear right after
each other in a user’s sequence are tightly related to each
other; ii) this relationship is built according to the specific
user’s interests; iii) user interests can be translated into item
features; and iv) there is an inherent relationship between
items of different domains, especially for the ones that appear
consecutively in user sequences. TransCrossCF is designed to
capture the transitions between items in the same and different
domains in user sequences.

We model each item id of domain d with a latent feature
vector γid ∈ Φd where Φd is the lower-dimensional item
space for items of domain d. Similarly, we represent each
user u with a latent feature vector tu ∈ Ω where Ω is the
lower-dimensional user space. Note that, unlike traditional
collaborative filtering models, we allow the user and item
spaces to be different. This provides the flexibility for items
and users to not to have the exact same number and set of
latent features. Instead, we provide a mechanism to map these
two latent spaces, using a linear mapping W→d : Ω → Φd

(assumption “iii” above).
To model the similarity between two consecutive items i and

j in user u’s interaction sequence, according to assumption
“i”, we expect γj to be similar to γi in space Φ regarding
some distance metric such as L2. Inspired by [13], we model
this similarity to be affected by user u’s specific interests (as-

sumption “ii”). Particularly, we expect the transition between
γj and γi to be a function of tu. In case i and j are both from
the same domain d, using the mapping between user and item
latent spaces, we have: γj ≈ γi +W→dtu.

Accordingly, in case u only interacts with items of one
domain d, the probability that u transitions from previous item
i to the next item j is given by:

pu,i,j ∝ βj − dist(γi, γj |W→d, tu)

subject to γi ∈ Ψ ⊆ Φd, for all i
(1)

where Ψ is the subspace of Φd e.g. a unit ball. This constraint
has been used in previous works to solve “curse of dimension-
ality” [29]–[31]. The notation dist(γi, γj |W→d, tu) denotes
the distance between the two item embedding vectors γi and
γj under the transition of user preference tu and user-item
latent space mapping W→d. For example, if L2 is employed,
dist(γi, γj |W→d, tu) = ‖γi+W→dtu−γj‖2. Parameter βj is a
learned bias of item j, that can represent the item’s popularity
vector. The less the distance between i and j, the more likely
it is for u to transition to j from i.

The above transition model assumes that the all items in user
sequence belong to the same domain. To add a mechanism to
represent multi-domain user sequences, we propose to capture
the item transitions between different domains as a linear
mapping between latent spaces of those domains (assumption
“iv”). Suppose that in user u’s interaction sequence, item j
from domain dj happens right after item i in domain di. When
modeling the similarity between latent factor representations
of these two items (γi and γj), two scenarios are possible:

• If di = dj (the two consecutive items are from the
same domain), we approximate the item embedding of
j by the transition from i under the latent feature of
u i.e. γi + W→ditu ≈ γj . The distance between pre-
vious and current purchase of user under L2 distance is
dist(γi, γj |W→di , tu) = ‖γi +W→ditu − γj‖2

• If di (= dj (the two consecutive items are from different
domains), we use a linear mapping Wdi→dj : Φdi → Φdj

to capture the information transfer from domain di to
dj . Therefore, we have the approximation Wdi→dj (γi +
W→ditu) ≈ γj and the distance between two consecutive
purchase of u is dist(γi, γj |W→di , tu) = ‖Wdi→dj (γi +
W→ditu)− γj‖2

We, then, plug our new definition of distance
dist(γi, γj |W→di , tu) into the probability estimation in
Eq. 1 to calculate the probability that user u transitions from
item i to item j across various item domains.
Ranking Optimization. For each user and their sequential
interaction history, we want to rank items such that the
most likely ones happen earlier in our ranked list. Similar
to Bayesian Personalized Ranking [32] framework, we choose
sequential pairwise ranking to solve our optimization prob-
lem. Formally, we would like to maximize the following log
likelihood function:
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Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on September 27,2021 at 20:38:26 UTC from IEEE Xplore.  Restrictions apply. 



LLH = log
∏

u∈U

∏

j∈Su

∏

j′∈I\Su

P (j >u,i j
′|Θ)P (Θ)

=
∑

u∈U

∑

j∈Su

∑

j′∈I\Su

log σ(pu,i,j − pu,i,j′)− Ω(Θ)
(2)

where i is the item preceding j in interaction sequence
Su; Θ is a set of all parameters. Particularly, we have
Θ = {tu,βj ,βj′ , γi, γj , γj′ ,W→di ,Wdi→dj , ,Wdi→dj′ }; Ω is
L2 regularization; and σ(·) denotes the Sigmoid function.
Learning the Parameters. First, we randomly initialize item
and user embeddings as well as all parameters, setting the item
embeddings to be unit vectors. We apply stochastic gradient
ascent to maximize the objective function in Eq. 2. To do this,
we randomly shuffle the users in training dataset. For each
training data point, we randomly select the negative data point.
Then, we calculate its gradient with respect to all parameters
and update the parameters accordingly. In each iteration, we
project the item embedding vectors into unit vectors. The
whole process is repeated until convergence.

IV. EXPERIMENTS

We evaluate TransCrossCF using three different domain
pairs to answer the following four research questions:

• RQ1. How does TransCrossCF perform compared to
other state-of-the-art single-domain and cross-domain
recommender algorithms?

• RQ2. How does TransCrossCF perform in dealing with
the cold-start problem?

• RQ3. Are the cross-domain relationships discovered by
TransCrossCF meaningful?

• RQ4. How sensitive is TransCrossCF to different latent
space dimensionalities in item domains?

A. Experiment Setup
Datasets. We use purchase sequences of Amazon users in
three domains: Digital Music, Office Products, and Musical In-
struments [33]. The datasets span from May 1996 to July 2014.
We consider three cross-domain combinations of datasets:
Digital Music + Musical Instrument (DM MI), Digital Music
+ Office Products (DM OP), and Musical Instrument + Office
Product (MI OP). Although our experiments are on domain-
pairs, TransCrossCF can easily be applied to the combination
of any number of domains. For each cross domain dataset, we
select users whose purchase sequence is longer than five and
items that have more than five users purchasing them (5-core
processing). Table II describes the three datasets.

TABLE II
SUMMARY STATISTICS OF THE DATASET

Dataset #users #items #ratings sparsity
DM MI 16,285 30,471 142,929 0.02%
DM OP 22,778 38,719 202,419 0.023%
MI OP 19,155 33,232 147,268 0.0231%

Train/Test Separation. We sort the purchase activity of each
user by their timestamp. The purchase sequence of each user

is divided into three test, validation, and train parts. The last
purchase of each user is considered for test, second last item
accounts for validation, and the rest is used for training.
Performance Measures. We employ Area Under the ROC
Curve (AUC) and Mean reciprocal rank (MRR) to measure
the performance of our model and the baselines. Below are
the formula of these two metrics:

AUC =
1

|U |
∑

u∈U

1

|I \ Su|
∑

j′∈I\Su

I(Ru,Su
|Su|

< Ru,j′)

MRR =
1

|U |
∑

u∈U

1

Ru,Su
|Su|

(3)

where Su
|Su| is the latest purchased item of user u and Ru,i

indicates the predicted rank of item i for user u. Function I(·)
is an indicator function, which returns 1 if its input is true;
otherwise, it returns 0. Note that the larger the value of these
metrics, the better the model.

B. Baselines

For rating prediction and cold-start experiments, we com-
pare TransCrossCF with the following baselines:

• Most Popular Item (MP): The simple method to predict
items according to their popularity.

• Bayesian Personalized Ranking (BPR-MF) [32]: This
model factorizes the interaction matrix of users and items
based on ranking assumption, but it does not consider the
sequence of users.

• Factorized Markov Chain (FMC) [24]: This method fac-
torizes the item-to-item transition matrix of all users to
find the global transition probabilities of item sequences.

• Factorized Personalized Markov Chain (FPMC) [24]:
It combines factorization machines with Markov chain
property to find the personalized transition probabilities
of item sequences..

• Personalized Ranking Metric Embedding (PRME) [23]:
This model models the Markov behaviors of users using
sum of two Euclidean distances.

• Translation-based Recommendation (TransRec) [13]: The
method combines user preferences and sequences with a
sentence translation-based method. In this experiment, we
only consider their L2 distance measure since it yields
better results.

• Cross Domain Recommender (CDRec) [34]: The model
is built upon Coupled Matrix Factorization algorithm
to utilize both explicit and implicit similarities between
datasets.

• Session-based Recommendation (GRU4Rec) [35]: The
model was built upon neural networks. Specifically, it
modified the gated recurrent unit [36] to capture the se-
quential property of purchase activities. In this work, we
consider a purchase of each user as a session. The default
values of its parameters are used in the experiment.

• Transition-based Cross-Domain Collaborative Filtering
(TransCrossCF): Our method considers both sequence of
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TABLE III
NEXT ITEM PREDICTION PERFORMANCE RESULTS. THE BEST PERFORMANCE IS HIGHLIGHTED. NOTATION * INDICATES A SIGNIFICANT IMPROVEMENT.

THE VALUE OF MRR IS SHOWN IN PARENTHESIS.

AUC (MRR) MP BPRMF FMC FPMC PRME TransRec CDRec GRU4Rec TransCrossCF
DM MI 62.28% 65.81% 65.75% 66.15% 71.49% 73.89% 74.91% 73.1% 80.04%*

(2.78%) (4.09%) (4.22%) (4.55%) (4.77%) (5.76% ) (5.82%) (6.78%) (6.57%)
DM OP 64.94% 67.53% 67.76% 68.19% 72.55% 75.57% 74.95% 73.8% 81.75%*

(2.79%) (4.02%) (4.12%) (4.67%) (5.45%) (6.87%) (5.98%) (7.02%) (7.25%*)
MI OP 62.18% 65.1% 65.8% 66.32% 68.22% 70.41% 71.02% 79.03% 80.01%*

(2.77%) (4.02%) (4.97%) (4.89%) (7.12%) (9.76%) (9.88%) (10.8%) (11.22%*)

users’ activities and domains of items. In experiments,
we use L2 distance.

In the first three experiments, we use the same number of
latent features: 10. The learning rate for stochastic gradient
ascent is set to 0.0001.

C. Next Item Prediction Experiments

In this set of experiments, we would like to evaluate the
performance prediction of TransCrossCF compared to other
baselines (RQ1). We particularly chose these baselines to
cover various types of recommender algorithms: rank-based
algorithms (BPR-MF), sequential algorithms (FMC, FPMC,
PRME, TransRec), and cross-domain algorithms (CDRec).
Among them, TransRec [13] has the most similar sequential
model to our proposed model.

Table III shows the performance of TransCrossCF and all
baselines. From the table, there are several observations. First,
TransCrossCF outperforms all baselines in both metrics on
the three datasets. For instance, its improvement is 6.8% in
AUC and 12.8% in MRR compared the CDRec method on
DM MI dataset. This shows that modeling both cross-domain
and sequential information produces higher-quality recommen-
dations. Second, performance of CDRec and TransRec are
consistently better than the other baselines. It indicates that
considering cross domain information provides better recom-
mendations to users. Third, the slight outperforming of CDRec
over TransRec emphasizes the importance of modeling cross
domain information over the order of user interactions. Fourth,
GRU4Rec is deep-learning based method but its performance
is lower than the one of TransCrossCF because GRU4Rec does
not consider the latent features of users.

We further apply hypothesis testing to examine if the
improvement of our model is actually significant over the
baselines. Due to the large number of baselines, we only
compare TransCrossCF with GRU4Rec method. Specifically,
the null hypothesis is that the performances of TransCrossCF
and the chosen baseline, across all users, are not statistically
different and alternative hypothesis is that TransCrossCF is
significantly better than the baseline. Paired t-test [37] is used
to justify the above hypothesis. From the results in Table 3, we
show that TransCrossCF is significantly better than the chosen
baseline. The result is consistent in both metrics. Similar
results can be obtained when we apply the same hypothesis
testing for our method TransCrossCF and other baselines.

D. Cold-Start Experiments

In this section, we would like to evaluate if TransCrossCF
performs well, compared to the baselines, in the cold-start
setting (RQ2). To address this question, we analyze the
algorithms’ prediction performance for users whose purchase
sequences are less than a specific threshold (n). We use various
threshold values to explore the effect of user sequence length
on recommendation performance and use the same parameter
setting as rating prediction task.

Figure 2 shows the results of TransCrossCF and the base-
lines with different values of n. From the figure, we observe
that TransCrossCF generally outperforms baselines in the
three datasets under the two metrics. We also observe that
TransCrossCF’s performance is stable over different setting.
Considering the good performance of TransCrossCF in the
cold-start setting, we can conclude that TransCrossCF can
capture the transfer of information between the two domains
even when there is not much information on user sequences.
Another observation is that in DM MI dataset, the perfor-
mance gap between TransCrossCF and CDRec is much clearer
than the other two datasets. One potential reason for this is
the sparsity of the DM MI dataset, compared to the other
two (see Table II). In this case, modeling the order of user
actions enhances the prediction performance of cross domain
recommendation systems in cold start settings. Another poten-
tial explanation is the relative closeness of the two domains in
this dataset: Digital Music and Musical Instruments domains
both include items that are related to music. We choose CDRec
for comparison since it has the best performance among non-
deep-learning methods after our method. For GRU4Rec, when
we give more data i.e. increase the value of n, its performance
also increases.

E. Cross-Domain Relation Analysis

In this section, we analyze if TransCrossCF can discover
meaningful relations across domains, while modeling sequen-
tial transitions between them (RQ3). To do this, we focus
on the DM MI dataset. Similar finding could be found on
the other two datasets but due to space limitation, we do not
present in this section. For better interpretation of the results,
we use the item category information that is provided for each
item in Amazon dataset. Note that this information is not used
in training our model and is only used to evaluate this analysis.

In this analysis, we focus on the linear between-domain
mappings i.e. WDM→MI and WMI→DM to demonstrate the
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Fig. 2. Cold start performance for users whose purchase sequence length is less than n. The higher the value, the better the model is.

TABLE IV
TOPIC OF EACH ITEM LATENT FEATURE IN DM MI DATASET. IT IS

DERIVED FROM THE RESULT OF TRANSCROSSCF.

Topic Digital Music Musical Instrument
1 Latin Music Studio Equipment
2 Hardcore Rock Electronic devices
3 Alternative Rock Accessories for music making
4 Folk + Pop Instrument accessories
5 Southern Rock Unclear
6 Rap + Hiphop Sound device
7 Jazz Unclear
8 R&B Drum + Electronic Drum
9 Vocal Pop Unclear

10 Unclear Acoustic devices

relationships between latent factors of these two domains. To
interpret the latent factors of each domain, we analyze item
latent factors in the domains i.e. γi and item category infor-
mation from the dataset. Specifically, for each latent factor
f , we find its top-10 most representative items. These items
(i) are those with highest values γi[f ]. Due to ambiguity of
item names, determining latent factor topics from item names
is difficult. Therefore, we use the item category information
for further analysis. This way, each latent factor’s topic is
determined by the most common categories of top 10 items
in this latent factor. We use the topic “Unclear” for the cases
that most common categories cannot be distinguished among
the top 10 items and we found that there are four “Unclear”
topics in DM MI dataset.

Table IV shows the semantics of each latent factor in both
domains. The left side of Figure 3 visualizes the heat-map
of transfer matrix from Digital Music to Musical Instrument
i.e. WDM→MI . The transpose of transfer matrix from Musical
Instrument to Digital Music i.e. W ′

MI→DM is also displayed
on the right side of Figure 3. We use this transpose operation
to group both matrices under one figure. Darker colors indicate

higher values, and therefor more important transfer between
topics. From the figure, we first observe that the two matrices
are not symmetric. For example, transitioning from Digital
Music to Musical Instruments, there is a high weight from
Jazz to Acoustic Devices. But, in the reverse transition, from
Acoustic Devices, Vocal Pop has a higher weight than Jazz.
This shows that Acoustic Devices are highly relevant to both
Jazz and Vocal Pop. However, the transfer between them is
not always bi-directional. It indirectly infers that we need to
explicitly model the direction of transfer from one domain to
the other in cross-domain recommender systems, due to the
difference in the nature of domains.

Second, from the value of transfer matrices, we notice some
intuitive cases. For instance, in the transfer matrix from Digital
Music to Musical Instrument, we see that there is a strong
transfer from Alternative Rock to Electronic Devices which
is intuitive. Also, a strong transfer from Jazz to Acoustic
Devices is noticeable. For the transfer matrix from Musical
Instrument to Digital Music, the strong transfers from Drum
+ Electronic Drums to Hardcore Rock and from Accessories
for Music Making to Folk + Pop are easy to observe. On
the other hand, we can see that Latin music and Electronic
Devices or Alternative Rock and Acoustic Devices do not have
a significant relationship in either of the two transitions.

F. Parameter Sensitivity Study

In this section, we study the impact of item latent space’s
dimensionality in both domains (RQ4). Specifically, we keep
the number of user latent factors as 10 and measure the
performance of TransCrossCF with different number of items’
latent features in both domains. We only show the result on
DM MI dataset. Similar findings can be found in the other
two datasets.

Table V shows the performance of TransCrossCF in DM MI
dataset, with various number of item latent features, in AUC
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Fig. 3. Transfer matrix on DM MI dataset. Left: The transfer matrix from Digital Music to Musical Instrument. Right: The transpose of transfer matrix from
Musical Instrument to Digital Music. The darker the color, the higher the value is (i.e. the more correlated between the two corresponding topics).

TABLE V
THE PERFORMANCE OF TRANSCROSSCF IN DM MI DATASET WITH

DIFFERENT VALUES OF ITEM EMBEDDINGS IN EACH DOMAIN. THE BEST
PERFORMANCE IS HIGHLIGHTED. THE VALUE OF MRR IS SHOWN IN

PARENTHESIS.

AUC(MRR) Digital Music
Musical 5 10 15 20

Instrument
5 75.82% 78.72% 79.56% 79.91%

(5.02%) (6.15%) (6.74%) (6.85%)
10 77.25% 80.04% 80.86% 80.92%

(5.41%) (6.57%) (6.92%) (6.96%)
15 78.12% 80.04% 80.88% 81.06%

(5.57%) (6.62%) (6.98%) (7.02%)
20 78.35% 80.12% 80.97% 81.04%

(5.61%) (6.58%) (7.04%) (7.13%)

and MRR metrics. From the table, we observe that increas-
ing the number of latent feature improves the performance
of TransCrossCF. For instance, when the number of item
latent feature in Digital Music domain increases from 5 to
10, while keeping those for Musical Instrument as 5 AUC
improves from 75.82% to 78.72%. Our second observation is
that this performance improvement, that is achieved due to
increase in number of item latent features, slows down as the
difference in item latent dimensionalities in the two domains
grows. For example, consider 5 as the number of item latent
feature in Musical Instruments dataset. When we increase the
corresponding value in Digital Music from 5 to 10, the AUC

improvement is 3.82% but the improvement is only 0.44%
when we increase this number from 15 to 20.

V. CONCLUSIONS

In this paper, we bridged between cross-domain and se-
quential recommender systems by proposing TransCrossCF
a transition-based cross domain collaborative filtering model.
We built this model assuming that user transitions between
consecutive items, especially across different domains, reveal
important information about the relationship between the items
and the domains. We modeled this relationship under each
user’s specific interests. We designed and performed exper-
iments on three datasets to answer four research questions.
Through our experiments for next item prediction and cold-
start settings, we showed that TransCrossCF outperforms the
baselines with significant improvements. Moreover, our analy-
sis of the transfer matrices showed the intuitive interpretation
of TransCrossCF’s results. Finally, our parameter sensitivity
study explained some connections between item embedding
vectors across multiple domains.

There are several ways to extend TransCrossCF to enhance
further. Reviews of users for items can provide more insightful
information about user preference in addition to user interac-
tions. For instance, analyzing cross-domain sequence of user
reviews can potentially help in creating more accurate models.
Another future direction is leveraging the social connections
of users. As we know, user purchase decisions are under the
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influence of the choices of their friends. Therefore, incorpo-
rating users’ social connections can reveal more information
about user decisions [38].
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