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Abstract—Consider a finite set of multiple sources, described
by a random variable with m components. Only k ≤ m source
components are sampled and jointly compressed in order to
reconstruct all the m components under an excess distortion
criterion. Sampling can be that of a fixed subset A with |A| = k
or randomized over all subsets of size k. In the case of random
sampling, the sampler may or may not be aware of the m source
components. The compression code consists of an encoder whose
input is the realization of the sampler and the sampled source
components; the decoder input is solely the encoder output. The
combined sampling mechanism and rate distortion code are
universal in that they must be devised without exact knowledge of
the prevailing source probability distribution. In a Bayesian setting,
considering coordinated single-shot sampling and compression,
our contributions involve achievability results for the cases of fixed-
set, source-independent and source-dependent random sampling.

Index Terms—universal sampling rate distortion, independent
random sampler, dependent random sampler

I. INTRODUCTION

Consider a set M of m ≥ 2 finite-valued sources described
by a random variable (rv) with m components and with
a probability mass function (pmf) known only to belong
to a given finite family of pmfs. A subset of k ≤ m
sources is sampled spatially and compressed jointly, with
the objective of reconstructing all the m sources from the
compressed representation within a specified level of distortion.
Universality requires that a combined sampling procedure
and lossy compression code be specified without knowledge
of the underlying pmf. How should a randomized sampler
optimally sample the sources to form an efficient single-shot
rate distortion code with the best compression rate for a
given distortion level? What are the tradeoffs among sampling
mechanisms, estimating the prevailing pmf of the source, code
size and distortion level?

The study of coordinated sampling and compression has
a long and wide history. Recent relevant contributions in
information theoretic settings include lossless source coding of
analog sources [20]; compressed sensing subject to error criteria
[15]; sub-Nyquist temporal sampling and lossy compression
[7]; and rate distortion study for multiple sources with time-
shared sampling [12]. In another line of work, the rate
distortion function has been characterized when multiple signals
from a Gaussian random field are sampled and quantized
[14]; centralized and distributed coding schemes for acoustic
sensing are studied in [8]; and a Gaussian random field on
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[0, 1] is reconstructed under a mean-squared error criterion
from compressed versions of finitely-many sampled sequences
[6]. All these works assume a knowledge of the underlying
probability distribution of the signals.

Universal sampling rate distortion theory, where a complete
knowledge of the underlying probability distribution is lacking,
has been investigated in the framework of classical Bayesian
and nonBayesian methods [13]; individual sequence approach
[19], [22]; and lossy compression of noisy or remote signals
[4], [11], [18]. All these works study asymptotic performance
in the limit of increasing code blocklenghts. A single-shot
universal rate distortion analysis under an expected log-loss
distortion criterion can be found in [16].

Our work constitutes a single-shot approach to the concept
of universal sampling rate distortion [3] which built on [2].
An ingredient in [2], [3] was the rate distortion function for
a remote source-receiver model with known probability distri-
butions [1], [5], [21]. Single-shot and finite code blocklength
investigations of the remote source-receiver setting with known
distributions [10], that are built upon [17] and [9], are pertinent
to our work on universal sampling rate distortion and provide
useful technical tools.

This work differs materially from the approaches above
and, in particular, is distinct from the results in [3]. Our
technical contributions are as follows. We develop single-shot
achievability results (rather than asymptotic rate distortion
tradeoffs) for the sampling schemes of [2] under the excess
(distortion) probability criterion (rather than expected distor-
tion). As in [3], here we consider universality that involves
a lack of specific knowledge of source pmf within a finite
family of pmfs. However, whereas the asymptotic analysis in
[3] enabled rate-free conveyance of consistent pmf estimates
by the encoder to the decoder, the single-shot analysis exacts a
penalty on coding rate. Unlike in [3], converse results present a
difficult challenge, owing to the underlying pmf estimation, and
are currently under investigation. An important motivation for
our present work is an understanding of single-shot universal
sampling rate distortion for random field models.

Our models are described in Section II. The main achiev-
ability results, with proof sketches, are presented in Section III.
Section IV puts our results in the context of prior work.
Section V deals with the proof of Lemma 1 which serves
as a key technical tool.

II. PRELIMINARIES

Let M = {1, . . . ,m}, m ≥ 2. Let XM = (X1, . . . , Xm)
be a XM = ×mi=1Xi-valued rv where each Xi is a finite set.
We shall use the following notation. For A ⊆M, A 6= ∅, we
denote the rv XA = (Xi, i ∈ A) with values in ×i∈AXi. For
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1 ≤ k ≤ m, let Ak = {A : A ⊆ M, |A| = k} be the set of
all k-sized subsets of M. Let YM = ×mi=1Yi, where Yi is a
finite reproduction alphabet of Xi. All logs and exps are with
respect to the base 2.

Let Θ be a finite set (of parameters) and θ a Θ-valued rv with
pmf Pθ of assumed full support. We consider a discrete source
XM with pmf known only to the extent of belonging to a
finite family of pmfs P = {PXM | θ=τ , τ ∈ Θ} of assumed full
support. Two settings are of interest: the pmf Pθ is assumed to
be known in a Bayesian formulation, whereas in a nonBayesian
formulation, θ is an unknown constant in Θ.

Definition 1. In a Bayesian setting, a k-independent random
sampler (k-IRS) collects a random sample XS from XM where
S is an Ak-valued rv that is independent of XM and θ, and
has pmf PS . The output of a k-IRS is (S,XS). The special case
of a k-IRS with PS = point mass on a fixed A ∈ Ak is called
a k-fixed set sampler (k-FS). A k-dependent random sampler
(k-DRS) is similar except that S can depend on XM and is
conditionally independent of θ given XM with (conditional)
pmf PS |XM , and has output (S,XS). In a nonBayesian setting,
S is independent of XM for a k-IRS but can depend on XM
for a k-DRS.

Our objective is to reconstruct XM from a compressed
representation of the k-IRS or k-DRS output (S,XS) under a
suitable distortion criterion. We shall restrict ourselves to the
Bayesian setting throughout the rest of the paper.

Definition 2. A code with k-IRS (resp. k-DRS) for the source
rv XM with alphabet XM and reproduction alphabet YM
is a triple (PS , f, φ) (resp. (PS |XM , f, φ)) where PS (resp.
PS |XM ) is a k-IRS (resp. k-DRS) as in Definition 1, and (f, φ)
are a pair of mappings where the encoder f maps the k-IRS
(resp. k-DRS) output (S,XS) into a finite set J = {1, . . . , J}
and the decoder φ maps J into YM.

We are given a finite-valued distortion measure d : XM ×
YM → R+ ∪ {0} with

min
yM∈YM

d(xM, yM) = 0

for every xM ∈ XM, and

max
(xM,yM)

d(xM, yM) = D

for some D > 0. Then, a code (PS , f, φ) will be required to
satisfy the (excess) distortion probability criterion (ε,∆)

P (d(XM, φ(f(XS))) > ∆) ≤ ε 0 ≤ ∆ ≤ D, 0 < ε < 1
(1)

where

P =

{
PθPXM | θPS for a k-IRS
PθPXM | θPS |XM for a k-DRS.

(2)

We shall not consider here the case where the decoder is
provided additional side information regarding the sampled set
S.

Definition 3. A number R = log J is an achievable k-sample
coding rate1 under distortion (ε,∆) if for every δ > 0, there
exists a code (f, φ) with k-IRS of rate ≤ R+ δ and satisfying
the distortion criterion (ε,∆) in (1). The infimum of such
achievable rates is denoted by R(ε,∆). We shall refer to
R(ε,∆) as the single-shot sampling rate distortion function
(SSRDf) suppressing the dependence on k. A similar definition
holds for the DRS. Note that R(ε,∆) depends on θ through
P in (1), (2).

Definition 4. Given a pmf PXY Z on a finite (product) set
X × Y × Z , the information density of X,Y conditioned on
Z is

ιX∧Y |Z(x ∧ y |Z = z) = log
PY |X,Z(y |x, z)

PY |Z(y | z)
,

for x ∈ X , y ∈ Y , z ∈ Z , under the assumption that

PY |Z(y | z) > 0 y ∈ Y, z ∈ Z.

III. MAIN RESULTS AND SKETCHES OF PROOFS

For a k-FS with A ∈ Ak, we note that an encoder with
access to XA cannot distinguish among pmfs in P (indexed
by τ ) that have the same PXA | θ=τ . Clearly, any estimate
θ̂(XA) of θ will suffer from a significant estimation error. In
the same vein, an encoder with access to the output of a k-
IRS or k-DRS cannot distinguish among pmfs in P that have
identical k-marginal pmfs {PXAi | θ=τ , i = 1, . . . , |Ak|}, with
consequent significant errors in estimating θ. We do not delve
below into such estimation ambiguities and assume instead
that the pmfs in P are varied enough to enable meaningful
estimation. Our achievability proofs rely on such estimation.

Our main Theorems 2, 3 and 4 constitute achievability results
for the k-FS, k-IRS and k-DRS, respectively. We first present
a key technical lemma that underlies the proofs of the main
theorems. This is a conditional version of Corollary 2 in [10].

Lemma 1. Fix γ > 0 and A ∈ Ak. For each τ ∈ Θ, pmf

PXMYM | θ=τ = PXM | θ=τPYM |XA ,

and positive integer lτ , there exists a code (fτ , φτ ) of rate
log lτ that satisfies

P (d(XM, φτ (fτ (XA))) > ∆ | θ = τ)

≤ P (d(XM, YM) > ∆ | θ = τ) + e− exp(γ)

+ P
(
ιXA∧YM | θ(XA ∧ YM | θ) > log lτ − γ | θ = τ

)
.

The rate- and pmf-related notions below are needed to state
our main theorems.

Definition 5. For each sampling mechanism, viz. k-FS, k-IRS
and k-DRS, Table I denotes the following. For a given 0 < ε <
1, E(·) (ε) specifies the set of all τ -dependent thresholds with
expected value not exceeding ε. For each ε ∈ E(·) (ε), D(·)(ε)
denotes the set of all rvs YM consistent with the form of the
joint pmf shown and satisfying the given distortion condition.

1While R = log J is, in fact, a log code size, we shall conform to the
traditional terminology of coding rate.
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TABLE I
DISTORTION THRESHOLDS AND JOINT DISTRIBUTIONS

k-FS
EFS(ε) = {ε = (ετ , τ ∈ Θ) :

∑
τ Pθ(τ)ετ < ε}

DFS(ε) =
{
YM : PθXMYM = PθPXM | θPYM |XA ,

P (d(XM, YM) > ∆ | θ = τ) < ετ/2, τ ∈ Θ} , ε ∈ EFS (ε)

k-IRS
E IRS (ε) =

{
ε = (εsτ : τ ∈ Θ, s ∈ Ak) :

∑
s,τ Pθ(τ)PS(s)εsτ < ε

}
DIRS(ε) =

{
YM : PθSXMXSYM = PθPSPXM | θPYM |SXS ,

P (d(XM, YM) > ∆ | θ = τ) < εsτ/2, τ ∈ Θ, A ∈ Ak} , ε ∈ E IRS (ε)

k-DRS
EDRS (ε) = {ε = (ετ , τ ∈ Θ) :

∑
τ Pθ(τ)ετ < ε}

DDRS(ε) =
{
YM : PθSXMXSYM = PθPSPXM | θPYM |SXS ,

P (d(XM, YM) > ∆ | θ = τ) < ετ/2, τ ∈ Θ} , ε ∈ EDRS (ε)

Theorem 2 (Achievability for k-FS). Let A ∈ A. Fix γ > 0,
0 < ε < 1. For ε = (ετ : τ ∈ Θ) ∈ EFS (ε), let YM be an rv
in DFS(ε). Let LFS(A, τ,∆, ετ , γ) be the smallest integer lτ
such that

P (ιXA∧YM | θ(XA ∧ YM | θ) > log lτ − γ | θ = τ) <
ετ
2

Let θ̂ = θ̂(XA) be any Bayesian estimate of θ on the basis of
XA. Then

R(∆) ≤ min
ε∈EFS(ε)

min
YM∈DFS(ε)

max
τ∈Θ

logLFS(A, τ,∆, ετ , γ)

+O (log |Θ|) , 0 ≤ ∆ ≤ D

under the distortion criterion (ε+ P (θ̂ 6= θ) + e− exp(γ),∆).

Sketch of proof. For any ε ∈ EFS(ε), fix an rv YM ∈ DFS(ε)
such that

PθXMYM = PθPXM | θPYM |XA .

For each τ ∈ Θ, pick lτ ≥ 1 conditionally i.i.d. codewords
{YM,τ,i : 1 ≤ i ≤ lτ} with pmf PYM | θ=τ , where

PXMYM,τ,1...YM,τ,lτ | θ=τ = PXM | θ=τ

lτ∏
i=1

PYM,τ,i | θ=τ

= PXM | θ=τ
[
PYM| θ=τ

]lτ
.

For fixed realizations {yM,τ,i : 1 ≤ i ≤ lτ} of the rvs
{YM,τ,i : 1 ≤ i ≤ lτ}, the code is specified as follows. Based
on xA ∈ XA, the encoder forms an estimate τ̂ = τ̂(xA) of θ
and maps xA to a pair (i∗, τ̂) according to

fτ̂ (xA) = (j∗, τ̂) where i∗ = arg min
1≤i≤lτ̂

π(τ̂ , xA, yM,τ̂ ,i).

The corresponding decoder output is φτ̂ (fτ̂ (xA)) = yM,τ̂ ,i∗ .
The set J (see Definition 2) is given by

J = {(τ, iτ ) : 1 ≤ iτ ≤ lτ , τ ∈ Θ} .

Then the expected distortion probability is

P
(
d(XM,Φθ̂(Fθ̂(XA))) > ∆

)
= E

[
1
(
d(XM,Φθ̂(Fθ̂(XA))) > ∆

)
1

(
θ̂ = θ

)]
+ E

[
1
(
d(XM,Φθ̂(Fθ̂(XA))) > ∆

)
1

(
θ̂ 6= θ

)]
≤ P (d(XM,Φθ(Fθ(XA))) > ∆) + P

(
θ̂ 6= θ

)
=
∑
τ∈Θ

Pθ(τ)P (d(XM,Φθ(Fθ(XA))) > ∆ | θ = τ)

+ P
(
θ̂ 6= θ

)
.

To prove the claim on the rate in the theorem, we apply Lemma
1 to each term in the summand above. In particular, for a fixed
choice of ε = (ετ , τ ∈ Θ) ∈ EFS(ε) and rv YM ∈ DFS(ε), the
max over τ ∈ Θ and O (log |Θ|) reflect a union of codes over
τ ∈ Θ. The outer minima indicate optimizations of the error
thresholds and pmf of YM.

Theorem 3 (Achievability for k-IRS). Fix γ > 0, 0 < ε < 1.
Let S IRS be the set of rvs S such that

PθSXM = PθPXM | θPS .

For ε = (εsτ : τ ∈ Θ, s ∈ Ak) ∈ E IRS (ε), let YM be an rv
in DIRS(ε). Let LIRS(s, τ,∆, εsτ , γ) be the smallest integer lτ
such that

P (ιXs∧YM | θ(Xs ∧ YM | θ) > log lτ − γ | θ = τ) <
εsτ
2

Let θ̂ = θ̂(S,XS) be any Bayesian estimate of θ on the basis
of (S,XS). Then

R(∆) ≤
min
S∈S IRS

min
ε∈E IRS(ε)

min
YM∈DIRS(ε)

max
τ∈Θ

logLIRS(s, τ,∆, εsτ , γ)

+O (log |Θ|) , 0 ≤ ∆ ≤ D

under the distortion criterion (ε+ P (θ̂ 6= θ) + e− exp(γ),∆).

Sketch of proof. The proof idea of Theorem 2 is modified,
using the independence of S from (θ,XM) as follows:

P
(
d(XM,Φθ̂(Fθ̂(S,XS))) > ∆

)
=
∑
s,τ

PS(s)Pθ(τ)P
(
d(XM,Φθ̂(Fθ̂(s,Xs))) > ∆ | θ = τ

)
.

Applying Theorem 1 to the summand above, note the additional
latitude in the choice of ε = (εsτ , s ∈ Ak, τ ∈ Θ) ∈ E IRS(ε),
rv YM ∈ DIRS(ε), and PS . The maximum over τ ∈ Θ and the
O (log(|Θ|)) term arise as in Theorem 2.

Theorem 4 (Achievability for k-DRS). Fix γ > 0, ε > 0. Let
SDRS be the set of rvs S such that

PθSXM = PθPXM | θPS |XM .

For ε = (ετ : τ ∈ Θ) ∈ EDRS (ε), let YM be an rv in DDRS(ε).
Let LDRS(τ,∆, ετ , γ) be the smallest integer lτ such that

P (ιS,XS∧YM | θ(S,XS ∧ YM | θ) > log lτ − γ | θ = τ) <
ετ
2
.
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Let θ̂ = θ̂(S,XS) be any Bayesian estimate of θ on the basis
of (S,XS). Then

R(∆) ≤
min
S∈SDRS

min
ε∈EDRS(ε)

min
YM∈DDRS(ε)

max
τ∈Θ

logLDRS(τ,∆, ετ , γ)

+O (log |Θ|) , 0 ≤ ∆ ≤ D

under the distortion criterion (ε+ P (θ̂ 6= θ) + eexp (−γ),∆).

Sketch of proof. The proof is along the lines of that of
Theorem 2 and the outer minimization over SDRS is akin
to that in Theorem 3.

Remark: In the nonBayesian case, the results of Theorems 2, 3
and 4 are modified by changing the outer minima appropriately.
Now we cannot average over error thresholds in the absence
of an underlying Pθ; instead, maxima must be taken over all
pmfs in the family P .

IV. DISCUSSION

In the case |M| = 1, our results particularize to yield a
simple single-shot universal rate distortion result (without any
sampling) that appears to be new. For arbitrary M, the case
|Θ| = 1 and fixed-set sampling corresponds to [10], and gives
single-shot versions of the achievability results in [2] for other
sampling mechanisms, too.

Our present notion of universality is with respect to a finite
number of sources. Involving infinitely many sources is a
formidable technical challenge, and a complete answer is not
available even in the asymptotic case. We also mention that in
a setting that does not involve sampling, and under a log-loss
distortion measure, a single shot rate redundancy analysis has
been studied in [16].

It is an artifact of single-shot analysis, especially involving
operations of sampling and compression, that multiple max/min
creep into expressions for achievable rates. In case of a finite-
length or asymptotic (in n) analysis (which can be obtained,
for instance, by extending our results using techniques in [10]),
such optima often resolve themselves through interchanges and
actual evaluations of formulae exploiting convexity/concavity
of average information quantities.

V. PROOF OF LEMMA 1

The proof of Lemma 1 hinges on the following Lemmas 5
and 6. Lemma 5 generalizes Theorem 3 in [10].

Lemma 5. Fix A ∈ Ak. For each τ ∈ Θ, pmf PXMYM | θ=τ =
PXM | θ=τPYM |XA , and positive integer lτ , there exists a
(deterministic) code (fτ , φτ ) of rate log lτ that satisfies

P (d(XM, φτ (fτ (XA))) > ∆ | θ = τ)

≤
∫ 1

0

E

[
lτ∏
i=1

P (π(τ,XA, YM,τ,i) > t |XA, θ) | θ = τ

]
dt

where

π(τ, xA, yM) = P (d(XM, yM) > ∆ |XA = xA, θ = τ)

and

PXMYM,τ,1...YM,τ,lτ | θ=τ = PXM | θ=τ

lτ∏
i=1

PYM,τ,i | θ=τ

= PXM | θ=τ
[
PYM| θ=τ

]lτ
.

Proof. For each τ ∈ Θ, pick lτ ≥ 1 conditionally i.i.d.
codewords {YM,τ,i : 1 ≤ i ≤ lτ} with pmf PYM | θ=τ where

PXMYM,τ,1...YM,τ,lτ | θ=τ = PXM | θ=τ

lτ∏
i=1

PYM,τ,i | θ=τ

= PXM | θ=τ
[
PYM| θ=τ

]lτ
.

For fixed realizations {yM,τ,i : 1 ≤ i ≤ lτ} of the rvs
{YM,τ,i : 1 ≤ i ≤ lτ}, the code is specified as follows. The
encoder maps xA to i∗ according to

fτ (xA) = i∗ where i∗ = arg min
1≤i≤lτ

π(τ, xA, yM,τ,i).

The corresponding decoder output is

φτ (fτ (xA)) = yM,τ,i∗ .

For each τ ∈ θ and the random code corresponding to the rvs
{YM,τ,i : 1 ≤ i ≤ lτ}, we get

P (d(XM,Φθ(Fθ(XA))) > ∆ | θ = τ)

= E [P (d(XM,Φθ(Fθ(XA))) > ∆ |Fθ,Φθ, XA, θ) | θ = τ ]

where the inner conditional probability can be written as

P (d(XM, φτ (fτ (xA))) > ∆ |Fτ = fτ ,Φτ = fτ ,

XA = xA, θ = τ) .

Since for a fixed τ ∈ θ, fτ (φτ (·)) is determined by xA, we
get

E [P (d(XM,Φθ(Fθ(XA))) > ∆ |XA, θ) | θ = τ ]

= E [π(θ,XA,Φθ(Fθ(XA))) | θ = τ ]

using

π(τ, xA, yM) = P (d(XM, yM) > ∆ |XA = xA, θ = τ) .

Standard manipulations then yield

E [P (d(XM,Φθ(Fθ(XA))) > ∆ |XA, θ) | θ = τ ]

=

∫ 1

0

E

[
lθ∏
i=1

P (π(θ,XA, YM,θ,i) > t |XA, θ) | θ = τ

]
dt

from which the existence of a code (fτ , φτ ) follows as claimed.

Lemma 6 below is obtained straightforwardly as a conditional
version of Lemma 5 in [17].

Lemma 6. Given γ > 0, a positive integer M and

S =
{

(x, y) ∈ X × Y ; ιX∧Y |Z(x ∧ y |Z = z) ≤ logM − γ
}
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for rvs X , Y and Z with joint pmf PXY Z and any event F ,
we have

P

(
M⋂
m=1

{(X,Ym) /∈ F} |X = x, Z = z

)
≤ P ((X,Y ) /∈ F |X = x, Z = z) + e− exp(γ)

+ P ((X,Y ) /∈ S |X = x, Z = z)

where

PY1Y2...YMXY |Z=z = PXY |Z=z ×
M∏
m=1

PYm |Z=z

= PXY |Z=z ×
[
PY |Z=z

]M
.

Finally, we use Lemmas 5 and 6 to prove Lemma 1.

Proof of Lemma 1. By Lemma 5, a code (fτ , φτ ) of rate log lτ
exists that satisfies

P (d(XM, φτ (fτ (XA))) > ∆ | θ = τ)

≤
∫ 1

0

E

[
lτ∏
i=1

P (π(τ,XA, YM,τ,i) > t |XA, θ) | θ = τ

]
with π and the rvs {YM,τ,i : 1 ≤ i ≤ lτ} defined as in the
statement of Lemma 5. Applying Lemma 6 with

F = {(xA, yM) ∈ XA × YM : π(τ, xA, yM) ≤ t}

to the product of the inner conditional probabilities above, and
simplifying, we get the required claim.
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[17] S. Verdú, “Non-asymptotic achievability bounds in multiuser information
theory,” in 2012 50th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2012, pp. 1–8.

[18] T. Weissman, “Universally attainable error exponents for rate-distortion
coding of noisy sources,” IEEE Trans. Inform. Theory, vol. 50, no. 6,
pp. 1229–1246, 2004.

[19] T. Weissman and N. Merhav, “Universal prediction of individual binary
sequences in the presence of noise,” IEEE Trans. Inform. Theory, vol. 47,
no. 6, pp. 2151–2173, 2001.
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