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Simulation of multiphase flows, which are ubiquitous in nature and engineering appli-
cations, require coupled capturing or tracking of the interfaces in conjunction with the 
solution of fluid motion often occurring at multiple scales. In this contribution, we will 
present unified cascaded LB methods based on central moments for the solution of the 
incompressible two-phase flows at high density ratios and for capturing of the interfa-
cial dynamics. Based on a modified continuous Boltzmann equation (MCBE) for two-phase 
flows, where a kinetic transformation to the distribution function involving the pressure 
field is introduced to reduce the associated numerical stiffness at high density gradients, 
a central moment cascaded LB formulation using multiple relaxation times for computing 
the fluid motion will be constructed. In this LB scheme, the collision step is prescribed by 
the relaxation of various central moments to their equilibria that are reformulated in terms 
of the pressure field obtained via matching to the continuous equilibria based on the trans-
formed Maxwell distribution. Furthermore, the differential treatments for the effects of the 
source term representing the change due to the pressure field and of the source term due 
to the interfacial tension force and body forces appearing in the MCBE on different mo-
ments are consistently accounted for in this cascaded LB solver that computes the pressure 
and velocity fields. In addition, another cascaded LB scheme will be developed to solve 
for the interfacial dynamics represented by a phase field model based on the conservative 
Allen-Cahn equation that evolves interfaces by advection and under the competing effects 
due to a diffusion term and a phase segregation flux term. The latter is introduced into 
the cascaded LB scheme via a modification to the moment equilibria. Based on numerical 
simulations of a variety of two-phase flow benchmark problems at high density ratios and 
involving the effects of surface tension and its tangential gradients (Marangoni stresses), 
we will validate our unified cascaded LB approach and also demonstrate improvements in 
numerical stability.
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1. Introduction

Multiphase flows arise in a number of technological and scientific applications, including in chemical and petroleum 
processing and power generation systems as well as microfluidic devices, and are common in nature. Such flows, whose 
prototypical configuration involves a continuous fluid phase and a dispersed phase, such as bubbles or droplets, are charac-
terized by surface tension along interfaces and phase segregation effects [1]. Simulation of multiphase flows is challenging 
due to the simultaneous capturing or tracking of interfacial motion and the computation of fluid motion, which is generally 
nonlinear and can occur at multiple scales. There are various interface capturing approaches that are used in conjunction 
with the direct discretization of the Navier-Stokes equations (NSE), which include the volume-of-fluid method [2], front 
tracking method [3] and the level set method [4].

During the last two decades, the lattice Boltzmann (LB) methods based on kinetic formulations that represent the evo-
lution of particle distribution functions have emerged as a promising addition to the techniques available for computational 
fluid dynamics [5–9]. Significant interest in such methods are largely due to the locality of their the stream-and-collide al-
gorithm and ease of implementation of boundary conditions based on kinetic approaches on Cartesian grids. For simulation 
of multiphase flows, the LB methods have been further extended to incorporate various models and techniques to represent 
interfacial dynamics and fluid motion. Among them, some of the early approaches represented the phase segregation and 
the effect of surface tension via either a color model [10,11], a pseudopotential formulation [12] or a free-energy based 
formulation [13] and their thermodynamic consistency were analyzed in [14–16]. A significantly improved LB method using 
a kinetic theory based mean field model was presented in [17], which allowed accurate simulation of multiphase flows at 
moderate density ratios. This approach used one LB scheme for the fluid motion and captured the interfacial motion via an 
index function, whose evolution was represented by another LB scheme where the phase segregation was achieved using a 
Carnahan-Starling nonideal equation of state. This was further improved for simulation of two-phase flows at high density 
ratios by means of a stable discretization scheme [18]. The latter work motivated developments of consistent LB techniques 
for interfacial capturing techniques based on phase field models.

Phase field models represent interfaces to be diffuse, which comprise thin transitional regions of nonzero thickness 
across which various fluid properties vary continuously from one phase to the other [19–22]. Such diffuse interface methods 
capture interfacial motion implicitly via the evolution of an order parameter, which serves as a phase field to distinguish be-
tween different fluid phases. The dynamics of the order parameter is often based on a thermodynamic free energy functional 
formulation, of which the Cahn-Hilliard equation (CHE) [23] is a common choice. A LB scheme to represent the convective 
CHE was presented in [24], which was shown to be applicable only for density-matched two-fluid systems in [25], who then 
proposed a modification to handle multiphase flows at moderate density ratios. The latter work was further improved in 
the investigations presented in [26,27] to represent incompressible multiphase flows based on modified CHE for capturing 
of interfaces.

The challenges associated with the use of CHE, such as the need to calculate fourth order derivatives, motivated other 
phase field type approaches. The Allen-Cahn equation (ACE) is another type of diffuse interface model used that was orig-
inally developed for material science applications [28]. More recently, the ACE was reformulated based on a counter term 
approach [29] to eliminate curvature driven interfacial motion in order to make it applicable for two-phase flows [30], in 
which the geometric information such as the interface normal and curvature are computed readily by expressing them in 
terms of a hyperbolic tangent variation of the order parameter across the interface. Then, Ref. [31] further modified the ACE 
to make it mass conservative, which was shown to be equivalent to a conservative level set approach [32]. Such a conserva-
tive ACE results in a simpler formulation with less numerical dispersion than the modified CHE, as the former requires the 
computation of only lower, i.e., second, order derivatives of the phase field variable when compared to the latter as noted 
above. Based on such conservative ACE, LB schemes for interface capturing were developed in [33,34].

The collision step plays an important role in the LB method especially for the solution of the fluid motion. The single re-
laxation time (SRT) model to represent the change in the distribution functions due to collision is a common approach [35]. 
However, it is known to be susceptible to numerical instability issues at relatively low values of the transport coefficients 
or at higher Reynolds number. This can be overcome to a significant extent by considering the relaxation of various raw 
moments to their equilibria using multiple relaxation times (MRT) to represent the effect of collisions [36]. A further im-
provement can be achieved by considering the relaxation in terms of central moments [37]. It naturally maintains the 
Galilean invariance of all independent moments supported by a chosen lattice and the resulting method was termed as the 
cascaded LB method. The method was interpreted by considering relaxation in terms of a generalized equilibrium in a rest 
frame of reference [38]. A scheme based on central moments to incorporate local forces and its consistency to the Navier-
Stokes equations (NSE) via a Chapman-Enskog analysis was presented in [39]. Significant improvements in the numerical 
stability of the cascaded LB method were shown in [40,41]. More recently, various refinements and extensions of the central 
moments based LB formulation were considered (see e.g., [42–50]).

In this contribution, we present new unified cascaded LB methods for incompressible two-phase flows at high density 
ratios. In our formulation, one cascaded LB scheme for the solution of the multiphase fluid motion and another cascaded 
LB scheme for the representation of interface capturing will be developed. For the former case, the starting point is the 
modified continuous Boltzmann equation (MCBE) for incompressible two-phase flows [17], where a transformation to the 
distribution function is introduced to reduce the numerical stiffness associated with high density gradients and the resulting 
hydrodynamic variables are given in terms of the pressure and velocity fields via their zeroth and first moments, respectively. 
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Based on this MCBE, a new discrete cascaded LB method based on central moments and multiple relaxation times for two-
phase fluid flow will be constructed [51,52]. In this regard, we will formulate its collision step in terms of relaxation to 
various central moment equilibria which will be expressed by matching the central moments of the modified continuous 
Maxwell distribution and given in terms of the pressure field arising via the transformation mentioned above. The MCBE [17]
also contains source terms related to the pressure changes and those due to the interfacial (surface tension) force and a 
body force, whose respective effects on the changes in various moments are different. In order to account for the differential 
effects of the source term due to pressure and that due to the interfacial and body forces for handling the simulation of 
two-phase flows, we will present a consistent source/force treatment scheme, which is an extension of and modification 
to the central moment based approach that was given in a previous work for single phase flows [39]. Interfacial dynamics 
will be captured using the conservative ACE phase field formulation that evolves interfaces via advection and under the 
competing effects of a diffusion term and an interface sharpening term. In this regard, by extending the work of Ref. [33], 
another MRT based modified cascaded LB scheme developed for the solution of the convection diffusion equation [45,48], 
where the sharpening term due to the phase separation flux is introduced as a modification to the moment equilibria, 
will be constructed to represent the evolution of the phase field variable. All fluid properties such as the density and 
viscosities across the phase interfaces are then expressed as smooth affine functions of the phase field variable. Since 
the resulting cascaded LB solvers are based on prescribing collision and sources via matching their continuous values in 
a moving of reference based on local fluid velocity, it naturally maintains their Galilean invariance for the independent 
moments supported by the chosen lattice. This can improve numerical stability for the simulation of two-phase flows at high 
density ratios and at relatively low fluid viscosities, thereby widening the parametric ranges for simulations. In this work, 
the cascaded central moment LB formulation for the coupled solution of the two-phase flow and interfacial motion will be 
presented on two-dimensional, nine velocity (D2Q9) lattice sets. It will then be validated for a set of numerical benchmark 
problems involving two-phase flows at high density ratios and including surface tension effects which are extended account 
to for Marangoni stresses to demonstrate its accuracy and improvements in stability.

This paper is organized as follows. In Sec. 2, we will present the governing equations for the incompressible two-phase 
flow and the phase field model based on the conservative ACE for the capturing of interfaces. Section 3 discusses the 
discrete velocity Boltzmann equation for two-phase flows that represents the starting point for the construction of the 
central moments based kinetic formulation for its solution procedure. Then, the cascaded LB method for the solution of 
the two-phase flow in terms of the pressure and velocity fields is derived in Sec. 4. Subsequently, Sec. 5 presents another 
cascaded LB method for interfacial dynamics based on the conservative ACE. Section 6 discusses the numerical validation 
study of the new cascaded LB formulation for a variety of two-phase flow benchmark problems, with high contrasts in 
fluid properties and effects of surface tension and its tangential gradients. In particular, the modeling and simulation of the 
effects of Marangoni stresses are discussed in Sec. 6.7. A comparative study of the numerical stability of different collision 
models in reaching low viscosities in a two-fluid system is presented in Sec. 7. Finally, the conclusions of this work are 
summarized in Sec. 8.

2. Governing macroscopic equations: interface capturing and two-phase fluid motion

In order to capture interfacial dynamics, we consider a phase field method based on the conservative Allen-Cahn equation 
(ACE). This was originally formulated for two-phase flows by removing the curvature-driven motion [30] via a counter term 
approach [29] and then re-expressed in a conservative form [31]. Let φ be an order parameter or the phase field variable, 
with φ = φA representing the fluid in phase A and φ = φB denoting that in phase B . Then, the interface propagation given 
in terms of the phase field variable based on the conservative ACE can be written as

∂φ

∂t
+ ∇ · (φu) = ∇ · [Mφ(∇φ − θn)

]
, (1)

where u is the fluid velocity, n is the unit normal vector, which can be computed via the order parameter φ as n = ∇φ
|∇φ| , 

and Mφ is the mobility. In the above, the variable θ can be expressed as

θ = −4(φ − φA)(φ − φB)

W (φA − φB)
, (2)

where the parameter W is related to the width of the interface. The right hand side of Eq. (1) is obtained by removing the 
curvature-driven interface motion uκn = −Mφκmn by canceling it out by adding a counteracting term based on computing 
the curvature κm , where κm = ∇ · n with n = ∇φ

|∇φ| , directly in terms of a kernel function given by the following hyperbolic 
tangent profile of the order parameter

φ(ζ ) = 1

2
(φA + φB) + 1

2
(φA − φB) tanh

(
2ζ

W

)
, (3)

which represents the equilibrium profile of the phase field variable, where ζ is a spatial coordinate along the normal with 
the origin at the interface. Thus, Eq. (1) effectively represents the relaxation of any arbitrary initial distribution of the order 
3
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parameter to a hyperbolic tangent profile across the interface, which is then sustained during interfacial advection. Equiv-
alently, this equation can be interpreted as the interface propagating via advection (given by its LHS) under the competing 
effects of a diffusion term and an interface sharpening term or a separation flux term (given by the first and second terms 
on the RHS, respectively). In the above, W and Mφ are numerical parameters, with W representing the interface thickness, 
while Mφ controlling the relaxation rate of any initial φ to its equilibrium profile across the interfaces (Eq. (3)) as well as 
the dissipation of any interface singularities via diffusion.

On the other hand, the two-phase fluid flow is represented by the following incompressible Navier-Stokes equations 
(NSE):

∇ · u = 0, (4)

ρ

(
∂u

∂t
+ ∇ · (uu)

)
= −∇p + ∇ ·

[
μ(∇u + ∇u†)

]
+ F s + F ext, (5)

where p is the hydrodynamic pressure, ρ is the fluid density, μ is its viscosity, F s is the smoothed formulation of the 
surface tension force and F ext is an external body force (e.g., gravity). Here, and in what follows, the superscript symbol †
represents the transpose operator.

In the above, there are several ways to express the surface tension force F s as a smoothed representation based on 
the order parameter. One approach is based on a thermodynamic (Gibbs-Duhem) formulation in which the surface tension 
force is calculated from the negative product of the gradient of the chemical potential μ̃φ and the phase field variable φ as 
follows (see e.g., [20]):

F s = −φ∇μ̃φ, μ̃φ = 4β(φ − φA)(φ − φB) (φ − (φA + φB) /2) − κ∇2φ. (6)

Here, the parameters β and κ are used to control the surface tension σ and the interface thickness W via the following 
relations

κ = 3

2
σ W , β = 12σ

W
. (7)

Alternatively, geometric approaches such as the continuous surface force formulation can be considered [53]. In particular, 
a geometric approach for the surface tension force developed originally for level set methods and adapted for phase field 
methods [54] can be written as

F s = −κ̃ |∇φ|2 (∇ · n)n. (8)

Here, the parameter κ̃ is related to the surface tension σ via κ̃=γ σ W , where the coefficient γ satisfies γ W
∫∞
−∞(dφ/dζ )2dζ

= 1, which arises from interpreting the surface tension in terms of interfacial energy per unit surface area by considering 
the equilibrium phase field variable profile given in Eq. (3) and matching it with the sharp interface limit for a flat in-
terface [54]. In this work, this latter (geometric) approach is adopted for representing the surface tension force F s for 
performing two-phase flow simulations using cascaded LB formulations discussed in what follows. Finally, the jumps in 
fluid properties such as the density and viscosity across the interface are smoothed as well and can be written as a con-
tinuous function of the phase field variable φ and then used in Eq. (5) in different ways. In this study, we employ a linear 
interpolation for representing the interfacial variations of the fluid properties (see e.g., [21]). Thus,

ρ = ρB + φ − φA

φA − φB
(ρA − ρB), μ = μB + φ − φA

φA − φB
(μA − μB), (9)

where ρA and ρB are the densities and μA and μB are the dynamic viscosities in the fluid phases denoted by φA and φB , 
respectively. In this work, we consider φB = 0 and φA = 1.

3. Modified continuous Boltzmann equation for two-phase flows and central moments of equilibria and sources

To solve the incompressible Navier-Stokes equations (NSE) for two-phase flows (Eqs. (4) and (5)) in a kinetic formulation, 
the starting point is the two-dimensional (2D) continuous Boltzmann equation given by [17]

D f

Dt
≡ ∂ f

∂t
+ ξ · ∇ f = − 1

τ

(
f − f M

)
+ (ξ − u)

ρc2
s

· (F t − ∇ψ) f M , (10)

where f = f (x, t; ξ) is the density distribution function at a location x and at time t , corresponding to the particle velocity 
ξ = (ξx, ξy). Here, f M is the local Maxwell distribution function defined as

f M ≡ f M(ρ, u) = ρ
2

exp

[
− (ξ − u)2

2

]
, (11)
2πcs 2cs

4
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where cs is the speed of sound, which is a constant and free parameter for athermal flows, and fluid velocity u = (ux, u y). 
The effect of collisions is typically represented as a relaxation of f to its equilibrium, i.e., f M with a characteristic time scale 
τ . The continuous formulation of the interfacial tension force F s , which is discussed in the previous section, along with any 
local body force F ext are grouped as the total force F t = F s + F ext . This total force along with the gradient contribution of 
the net effect of the hydrodynamic pressure p relative to that from the ideal equation of state ρc2

s , i.e., ψ(ρ) = p − ρc2
s

are accounted for via a source term in Eq. (10). In general, multiphase flows can be associated with relatively large jumps 
in fluid properties across the interfaces. In particular, as the density gradients ∇ρ or ∇ψ become relatively large, Eq. (10)
becomes numerically stiff.

To alleviate such numerical stiffness, the following kinetic transformation to the distribution can be introduced [17]

g = f c2
s + (p − ρc2

s )
f M

ρ
(ρ,0), (12)

where g can be regarded as the pressure distribution function. Here, f M(ρ, 0) is the local Maxwellian with null macroscopic 
fluid velocity, which follows from Eq. (11) as

f M(ρ,0) = ρ

2πc2
s

exp

[
− ξ2

2c2
s

]
. (13)

Then, by applying the above transformation (Eq. (12)) to the continuous Boltzmann equation (Eq. (10)) and assuming two-
phase flows in the incompressible limit, i.e., |u| � 1, the following kinetic equation for the distribution function g can be 
obtained [17]

Dg

Dt
= − 1

τ

(
g − geq)+ (ξ − u) · F t

f M(ρ, u)

ρ
+

(ξ − u) · F p

{
f M(ρ, u)

ρ
− f M(ρ,0)

ρ

}
︸ ︷︷ ︸

O (u)

, (14)

which is referred to as the modified continuous Boltzmann equation (MCBE) in this work. In Eq. (14), geq is the transformed 
local Maxwellian or the modified equilibrium distribution function, which reads as

geq = c2
s f M(ρ, u) + (p − ρc2

s )
f M

ρ
(ρ,0) (15)

and F p is the net effect of the hydrodynamic pressure p relative to the contribution from the ideal equation of state 
dependent on density, which is referred as the net gradient pressure force, and can be expressed as

F p = −∇(p − ρc2
s ) ≡ −∇ψ. (16)

In the MCBE (Eq. (14)), even though F p can be large at high density ratios, since it is multiplied by 
{

f M (ρ,u)
ρ − f M (ρ,0)

ρ

}
, 

which is O (u) and small, the associated numerical stiffness issues on the evolution of the distribution function g is reduced 
significantly. Hence, the MCBE serves as the starting point in the construction of a discrete kinetic scheme for the solution 
of the incompressible two-phase flows with high phase density contrasts. The hydrodynamic pressure and velocity fields are 
then obtained as the zeroth and first kinetic moments of the distribution function g , respectively. That is,

p =
∞∫

−∞

∞∫
−∞

gdξxdξy, ρc2
s u =

∞∫
−∞

∞∫
−∞

gξdξxdξy . (17)

3.1. Continuous central moments of equilibria and sources of MCBE

As a prelude to constructing a cascaded LB scheme from the discretization of the MCBE, which is discussed in the 
next section, we will first need the continuous central moments of its equilibria and various sources. They are based on the 
contributions from the corresponding continuous Maxwell distribution function evaluated with and without the macroscopic 
fluid velocity in view of the kinetic transformation introduced above.

First, defining the continuous central moments of the local Maxwellian for a moving fluid, i.e., with the macroscopic fluid 
velocity, of order (m + n) as

�̂M
mn =

∞∫ ∞∫
f M(ρ, u)(ξx − ux)

m(ξy − u y)
ndξxdξy, (18)
−∞ −∞

5
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and then defining the continuous central moments of the local Maxwellian with the null macroscopic fluid velocity of order 
(m + n) as

�̂
M(0)
mn =

∞∫
−∞

∞∫
−∞

f M(ρ,0)(ξx − ux)
m(ξy − u y)

ndξxdξy . (19)

The definite integrals given in Eqs. (18) and (19) can be evaluated exactly via standard quadrature rules. The D2Q9 lat-
tice used in the construction of the cascaded LB scheme based on a matching principle in the next section supports nine 
independent moment components. In this regard, we will need the corresponding components of �̂M

mn and �̂M(0)
mn as inter-

mediate results. Thus, calculating the components of the continuous central moments of the Maxwellian �̂M
mn (Eq. (18)) at 

various orders, which read as

�̂M
00 = ρ, �̂M

10 = 0, �̂M
01 = 0, �̂M

20 = ρc2
s , �̂M

02 = ρc2
s , �̂M

11 = 0,

�̂M
21 = 0, �̂M

12 = 0, �̂M
22 = ρc4

s , (20)

and those of �̂M(0)
mn (Eq. (19)) may be written as

�̂
M(0)
00 = ρ, �̂

M(0)
10 = −ρux, �̂

M(0)
01 = −ρu y, �̂

M(0)
20 = ρ(u2

x + c2
s ), �̂

M(0)
02 = ρ(u2

y + c2
s ),

�̂
M(0)
11 = ρuxu y, �̂

M(0)
21 = −ρ(u2

x + c2
s )u y, �̂

M(0)
12 = −ρ(u2

y + c2
s )ux, �̂

M(0)
22 = ρ(u2

x + c2
s )(u2

y + c2
s ).

Then, in order to discretize Eq. (14) in a cascaded LB formulation, we need the continuous central moments of the equilib-
rium pressure distribution function or the transformed Maxwellian geq (Eq. (15)) of order (m + n). By defining it as

�̂
eq,g
mn =

∞∫
−∞

∞∫
−∞

geq(ξx − ux)
m(ξy − u y)

ndξxdξy, (21)

it readily follows that Eq. (21), in view of Eq. (12), satisfies the following relation

�̂
eq,g
mn = c2

s �̂
M
mn + ψ(ρ)

�̂
M(0)
mn

ρ
.

Evaluating its nine components, we get

�̂
eq,g
00 = p, �̂

eq,g
10 = −ψ(ρ)ux, �̂

eq,g
01 = −ψ(ρ)u y, �̂

eq,g
20 = pc2

s + ψ(ρ)u2
x ,

�̂
eq,g
02 = pc2

s + ψ(ρ)u2
y, �̂

eq,g
11 = ψ(ρ)uxu y, �̂

eq,g
21 = −ψ(ρ)(c2

s + u2
x)u y,

�̂
eq,g
12 = −ψ(ρ)(c2

s + u2
y)ux, �̂

eq,g
22 = c6

s ρ + ψ(ρ)(u2
x + c2

s )(u2
y + c2

s ). (22)

Next, we need the continuous central moments of the source term due to the total (interfacial and local body) force 
F t = (Ftx, Fty) of order (m + n) appearing in the MCBE (Eq. (14)), which can be defined as

�̂t
mn =

∞∫
−∞

∞∫
−∞

St(ξx − ux)
m(ξy − u y)

ndξxdξy, (23)

where

St = (ξ − u) · F t
f M(ρ, u)

ρ
. (24)

It can be shown that this continuous central moment satisfies the following identity that depends on the those of the 
Maxwellian

�̂t
mn = Ftx

�̂M
m+1,n

ρ
+ Fty

�̂M
m,n+1

ρ
.

By evaluating its components and dealiasing the resulting central moment components higher than the second order by 
setting them to zero, as they do not influence the recovery of the hydrodynamics via the Chapman-Enskog expansion [39], 
the results can be summarized as

�̂t
00 = 0, �̂t

10 = c2
s Ftx, �̂t

01 = c2
s Fty, �̂t

20 = 0, �̂t
02 = 0, �̂t

11 = 0,

�̂t = 0, �̂t = 0, �̂t = 0. (25)
21 12 22

6
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Finally, we define the continuous central moments of order (m + n) of the source term due to the net gradient pressure 
force F p = (F px, F py) that arises in Eq. (14) as

�̂
p
mn =

∞∫
−∞

∞∫
−∞

S p(ξx − ux)
m(ξy − u y)

ndξxdξy, (26)

where

S p = (ξ − u) · F p

{
f M(ρ, u)

ρ
− f M(ρ,0)

ρ

}
. (27)

Based on its definition, this central moment �̂p
mn can be demonstrated to satisfy the following identity

�̂
p
mn = F px

(
�̂M

m+1,n

ρ
− �̂

M(0)
m+1,n

ρ

)
+ F py

(
�̂M

m,n+1

ρ
− �̂

M(0)
m,n+1

ρ

)
.

By using this and deriving the expressions for the nine components, where, as before, we retain the results only up to 
the second order moments that determine the two-phase fluid motion and set the higher order ones to zero, they can be 
summarized as

�̂
p
00 = (F pxux + F pyu y), �̂

p
10 = −ux�̂

p
00, �̂

p
01 = −u y�̂

p
00, �̂

p
20 = 2c2

s F pxux + (u2
x + c2

s )�̂
p
00,

�̂
p
02 = 2c2

s F pyu y + (u2
y + c2

s )�̂
p
00, �̂

p
11 = c2

s (F pxu y + F pyux) + uxu y�̂
p
00,

�̂
p
21 = 0, �̂

p
12 = 0, �̂

p
22 = 0. (28)

4. Cascaded LB method for solution of two-phase fluid motion

We will now present a cascaded central moment LB method based on the discretization of the MCBE discussed in the 
previous section for the solution of incompressible two-phase flow. In this regard, we consider the D2Q9 lattice, whose 
components of the particle velocities are represented by the following vectors using the standard Dirac’s bra-ket notation:

|ex〉 = (0,1,0,−1,0,1,−1,−1,1)† , (29a)

|e y〉 = (0,0,1,0,−1,1,1,−1,−1)† . (29b)

In addition, we need to define the following nine-dimensional vector

|1〉 = (1,1,1,1,1,1,1,1,1)† , (30)

whose inner product with a discrete distribution function gα (see below), where α = 0, 1, 2, · · · , 8 represents the particle 
velocity direction, i.e., its zeroth moment, yields the pressure field. Using the above, the following set of orthogonal moment 
basis vectors can be used to construct the cascaded LB formulation:

|K0〉 = |1〉 , |K1〉 = |ex〉 , |K2〉 = |e y〉 , |K3〉 = 3 |e2
x + e2

y〉 − 4 |1〉 ,

|K4〉 = |e2
x − e2

y〉 , |K5〉 = |exe y〉 , |K6〉 = −3 |e2
x e y〉 + 2 |e y〉 ,

|K7〉 = −3 |exe2
y〉 + 2 |ex〉 , |K8〉 = 9 |e2

x e2
y〉 − 6 |e2

x + e2
y〉 + 4 |1〉 . (31)

In the above, a symbol such as |e2
x e y〉 = |exexe y〉 represents a vector resulting from the elementwise vector multiplication of 

the sequence of vectors |ex〉, |ex〉 and |e y〉. By combining the above nine independent vectors, we then obtain the following 
orthogonal moment basis matrix

K = [|K0〉 , |K1〉 , |K2〉 , |K3〉 , |K4〉 , |K5〉 , |K6〉 , |K7〉 , |K8〉] . (32)

Then, we perform the standard spatial and temporal discretization of the MCBE (Eq. (14)) along the characteristic direc-
tions of the particle velocities over a time step δt (typically δt = 1 in lattice units), where we apply a trapezoidal rule for 
the treatment of the source term to maintain a second order accuracy [17], which yields

gα(x + eαδt, t + δt) = gα(x, t) + (K · ĥ)α + 1

2
[Sα(x, t) + Sα(x + eαδt, t + δt)] δt . (33)

Here, (K · ĥ)α is the cascaded collision operator, where ĥ = |̂hα〉 = (̂h0, ̂h1, ̂h2, . . . , ̂h8)
† is a vector representing the changes 

in all the nine moments supported by the lattice under collision which will be determined in what follows. Sα is the total 
7
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source term representing the cumulative effect of the discrete version of the source due to the interfacial and local body 
force St

α (via Eq. (24)) and that due to the net gradient pressure force S p
α (via Eq. (27)):

Sα = St
α + S p

α. (34)

In order to remove implicitness in Eq. (33), we apply a variable transformation gα = gα − 1
2 Sαδt , which then results in the 

following effectively explicit cascaded LB scheme

gα(x + eαδt, t + δt) = gα(x, t) + (K · ĥ)α + δgs
α, (35)

where δgs
α is a modified cumulative source term under the variable transformation, which we prescribe to be the following:

δgs
α = K−1

(
I − 1

2
�̂

)
KS. (36)

Here, S = (S0, S1, S2, . . . , S8)
† represents a vector of all the nine components of the discrete source term and �̂ =

diag(ω0, ω1, ω2, . . . , ω8) is a relaxation time matrix used in the development of the cascaded collision operator under 
relaxation of different central moments later. Since the effects of the two sources St

α and S p
α appearing in the cumulative 

source term Sα on the changes of various moments are different, we consider a modification to the earlier central moments 
based strategy [39] in this regard. The expression given in Eq. (36) is motivated to remove any spurious effects due to the 
source term in the second order non-equilibrium moments, which are related to the viscous stress tensor, in order to con-
sistently recover the incompressible NSE for two-phase flows. Similar approach has been considered in the MRT-LBE with 
forcing term previously (see e.g., [55]), but the form of δgs

α in Eq. (36) will be still determined by a central moments based 
strategy in what follows.

In order of derive the expressions for ĥ and δgs
α to complete the formulation of the cascaded LB scheme for two-phase 

fluid motion, we first define the discrete central moments of the distribution function, its equilibrium and the source term 
as ⎛⎜⎜⎝

η̂mn

η̂
eq
mn

σ̂mn

η̂mn

⎞⎟⎟⎠=
∑
α

⎛⎜⎜⎝
gα

geq
α

Sα

gα

⎞⎟⎟⎠(eαx − ux)
m(eαy − u y)

n, (37)

where η̂mn = η̂mn − 1
2 σ̂mnδt and the corresponding raw moments as⎛⎜⎜⎝

η̂′
mn

η̂
eq′
mn

σ̂ ′
mn

η̂
′
mn

⎞⎟⎟⎠=
∑
α

⎛⎜⎜⎝
gα

geq
α

Sα

gα

⎞⎟⎟⎠em
αxen

αy, (38)

where η̂
′
mn = η̂′

mn − 1
2 σ̂ ′

mnδt . Then, we need to determine the expressions for the discrete central moments of the equilibrium 
distribution function and the source term. In this regard, we apply a matching principle [37,39], where they are respectively 
set equal to their continuous values for all orders supported by the lattice. That is,

η̂
eq
mn = �̂

eq,g
mn , σ̂mn = �̂mn ≡ �̂t

mn + �̂
p
mn, (39)

where the continuous central moment components of the equilibrium �̂eq,g
mn is given in Eq. (22), while those for the source 

terms �̂t
mn and �̂p

mn can be found in Eqs. (25) and (28), respectively. This step effectively preserves the Galilean invariance 
of all the moments independently supported by the lattice.

Based on Eq. (39), the first step in deriving the modified cumulative source term in the velocity space due to various 
sources/forces δgs

α is to convert the central moments σ̂mn to the corresponding raw moments σ̂ ′
mn at various orders via the 

binomial transform. Performing this and setting all the cumulative source moments of second and higher order to zero as 
they do not affect recovering the hydrodynamics of the two-phase fluids in the Chapman-Enskog analysis [39,45], we get

σ̂ ′
00 = �̂

p
00 ≡ (F pxux + F pyu y), σ̂ ′

10 = c2
s Ftx, σ̂ ′

01 = c2
s Fty,

σ̂ ′
20 = 2c2

s (Ftxux + F pxux) + c2
s �̂

p
00, σ̂ ′

02 = 2c2
s (Ftyu y + F pyu y) + c2

s �̂
p
00,

σ̂ ′
11 = c2

s (Ftxu y + Ftyux) + c2
s (F pxu y + F pyux), σ̂ ′

21 = 0, σ̂ ′
12 = 0, σ̂ ′

22 = 0.

Using this, we then evaluate the various source moments projected to the orthogonal basis vectors and with a scaling based 
on the relaxation time for avoiding any spurious effects in the second order non-equilibrium moments as mentioned earlier, 
i.e., m̂s′ = (1 − 1 ω j

) 〈K j |Sα〉, which yields
j 2

8
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m̂s′
0 =

(
1 − 1

2
ω0

)
σ̂ ′

00, m̂s′
1 =

(
1 − 1

2
ω1

)
σ̂ ′

10, m̂s′
2 =

(
1 − 1

2
ω2

)
σ̂ ′

01,

m̂s′
3 =

(
1 − 1

2
ω3

)[
3(σ̂ ′

20 + σ̂ ′
02) − 4σ̂ ′

00

]
, m̂s′

4 =
(

1 − 1

2
ω4

)[
σ̂ ′

20 − σ̂ ′
02

]
,

m̂s′
5 =

(
1 − 1

2
ω5

)
σ̂ ′

11, m̂s′
6 =

(
1 − 1

2
ω6

)[−3σ̂ ′
21 + 2σ̂ ′

01

]
, m̂s′

7 =
(

1 − 1

2
ω7

)[−3σ̂ ′
12 + 2σ̂ ′

10

]
,

m̂s′
8 =

(
1 − 1

2
ω8

)[
9σ̂ ′

22 − 6(σ̂ ′
20 + σ̂ ′

02) − 8σ̂ ′
00

]
.

Finally, by exploiting the orthogonal property of K in δgs
α = K−1m̂s′ , where m̂s′ =

(
I − 1

2 �̂
)

KS, with m̂s′ = (m̂s′
0 , m̂s′

1 , m̂s′
2 , · · · ,

m̂s′
8 )†, we get the modified cumulative source term due to various sources/forces in the cascaded LB scheme for two-phase 

flow as

δgs
0 = 1

9

[
m̂s′

0 − m̂s′
3 + m̂s′

8

]
,

δgs
1 = 1

36

[
4m̂s′

0 + 6m̂s′
1 − m̂s′

3 + 9m̂s′
4 + 6m̂s′

7 − 2m̂s′
8

]
,

δgs
2 = 1

36

[
4m̂s′

0 + 6m̂s′
2 − m̂s′

3 − 9m̂s′
4 + 6m̂s′

6 − 2m̂s′
8

]
,

δgs
3 = 1

36

[
4m̂s′

0 − 6m̂s′
1 − m̂s′

3 + 9m̂s′
4 − 6m̂s′

7 − 2m̂s′
8

]
,

δgs
4 = 1

36

[
4m̂s′

0 − 6m̂s′
2 − m̂s′

3 − 9m̂s′
4 − 6m̂s′

6 − 2m̂s′
8

]
,

δgs
5 = 1

36

[
4m̂s′

0 + 6m̂s′
1 + 6m̂s′

2 + 2m̂s′
3 + 9m̂s′

5 − 3m̂s′
6 − 3m̂s′

7 + m̂s′
8

]
,

δgs
6 = 1

36

[
4m̂s′

0 − 6m̂s′
1 + 6m̂s′

2 + 2m̂s′
3 − 9m̂s′

5 − 3m̂s′
6 + 3m̂s′

7 + m̂s′
8

]
,

δgs
7 = 1

36

[
4m̂s′

0 − 6m̂s′
1 − 6m̂s′

2 + 2m̂s′
3 + 9m̂s′

5 + 3m̂s′
6 + 3m̂s′

7 + m̂s′
8

]
,

δgs
8 = 1

36

[
4m̂s′

0 + 6m̂s′
1 − 6m̂s′

2 + 2m̂s′
3 − 9m̂s′

5 + 3m̂s′
6 − 3m̂s′

7 + m̂s′
8

]
. (40)

Next, the structure of the cascaded collision operator (K · ĥ)α based on the discrete equilibrium central moments η̂eq
mn

given in Eq. (39) is determined as follows. For all non-conserved moments, i.e., for (m + n) ≥ 2, we prescribe the relaxation 
of the discrete central moments η̂mn to their corresponding central moment equilibria η̂eq

mn at a relaxation time ω∗ [37,39]. 
That is, 

∑
α(K · ĥ)α(eαx − ux)

m(eαy − u y)
n = ω∗(η̂eq

mn − η̂mn). For the transformed distribution function gα employed in the 
cascaded LB scheme (Eq. (35)), during a time step δt , its zeroth moment change needs to be σ̂ ′

00, while its first order 
moments are required to change by σ̂ ′

10 and σ̂ ′
01 in order to consistently update the pressure field and the fluid momentum 

via the interfacial and body forces. On the other hand, the respective moment changes due to the sources given earlier 
are m̂s′

0 = (1 − 1
2 ω0

)
σ̂ ′

00, m̂s′
1 = (1 − 1

2 ω1
)
σ̂ ′

10, and m̂s′
2 = (1 − 1

2 ω2
)
σ̂ ′

01. Hence, to meet the above physical constraints, we 
effectively need to satisfy the following constraints: 

∑
α(K · ĥ)α = ω0

2 σ̂ ′
00, 
∑

α(K · ĥ)αeαx = ω1
2 σ̂ ′

10 and 
∑

α(K · ĥ)αeαy =
ω2
2 σ̂ ′

01. Based on these considerations for the lower order moment changes and the central moment relaxation for the 
higher order moments under collision mentioned above, the expressions for the components of the moment change vector 
ĥ = (̂h0, ̂h1, ̂h2, . . . , ̂h8)

† can be determined, which are summarized as follows:

ĥ0 = ω0

2

�̂
p
00

9
, ĥ1 = ω1

2

c2
s Ftx

6
, ĥ2 = ω2

2

c2
s Fty

6
,

ĥ3 = ω3

12

[
2pc2

s + ρc2
s (u2

x + u2
y) − (η̂

′
20 + η̂

′
02)
]
,

ĥ4 = ω4

4

[
ρc2

s (u2
x − u2

y) − (η̂
′
20 − η̂

′
02)
]
,

ĥ5 = ω5

4

[
ρc2

s uxu y − η̂
′
11

]
,

ĥ6 = ω6

4

[
ψ(ρ)(c2

s + u2
x)u y + η̂

′
21 − u yη̂

′
20 − 2uxη̂

′
11 + 3c2

s ρu2
x u y − u2

x u y p
]

−u y

(
3

h3 + 1
ĥ4

)
− 2uxĥ5,
2 2

9
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ĥ7 = ω7

4

[
ψ(ρ)(c2

s + u2
y)ux + η̂

′
12 − 2u yη̂

′
11 − uxη̂

′
02 + 3c2

s ρuxu2
y − uxu2

y p
]

−ux

(
3

2
h3 − 1

2
ĥ4

)
− 2u yĥ5,

ĥ8 = ω8

4

[
c6

s ρ + ψ(ρ)(c2
s + u2

x)(c2
s + u2

y) − η̂
′
22 + 2(u yη̂

′
21 + uxη̂

′
12)

−(u2
y η̂

′
20 + u2

x η̂
′
02) − 4uxu yη̂

′
11 + 4c2

s ρu2
x u2

y − u2
x u2

y p
]
− 2ĥ3 − 1

2
u2

y(3ĥ3 + ĥ4)

−1

2
u2

x(3ĥ3 − ĥ4) − 4uxu yĥ5 − 2u yĥ6 − 2uxĥ7. (41)

Finally, the post-collision distribution functions represented by ̃gβ , where β = 0, 1, 2, . . . , 8, can be obtained by expanding 
(K · ĥ)α in Eq. (35), which read as

g̃0 = g0 +
[

ĥ0 − 4(ĥ3 − ĥ8)
]
+ δgs

0,

g̃1 = g1 +
[

ĥ0 + ĥ1 − ĥ3 + ĥ4 + 2(ĥ7 − ĥ8)
]
+ δgs

1,

g̃2 = g2 +
[

ĥ0 + ĥ2 − ĥ3 − ĥ4 + 2(ĥ6 − ĥ8)
]
+ δgs

2,

g̃3 = g3 +
[

ĥ0 − ĥ1 − ĥ3 + ĥ4 − 2(ĥ7 + ĥ8)
]
+ δgs

3,

g̃4 = g4 +
[

ĥ0 − ĥ2 − ĥ3 − ĥ4 − 2(ĥ6 + ĥ8)
]
+ δgs

4,

g̃5 = g5 +
[

ĥ0 + ĥ1 + ĥ2 + 2ĥ3 + ĥ5 − ĥ6 − ĥ7 + ĥ8

]
+ δgs

5,

g̃6 = g6 +
[

ĥ0 − ĥ1 + ĥ2 + 2ĥ3 − ĥ5 − ĥ6 + ĥ7 + ĥ8

]
+ δgs

6,

g̃7 = g7 +
[

ĥ0 − ĥ1 − ĥ2 + 2ĥ3 + ĥ5 + ĥ6 + ĥ7 + ĥ8

]
+ δgs

7,

g̃8 = g8 +
[

ĥ0 + ĥ1 − ĥ2 + 2ĥ3 − ĥ5 + ĥ6 − ĥ7 + ĥ8

]
+ δgs

8. (42)

This represents the collision step, and the streaming step then follows from rearranging Eq. (35) as gα(x, t + δt) = g̃α(x −
eαδt , t), where α = 0, 1, 2, · · · , 8. Once the cascaded collision and streaming steps are performed, the two-phase flow fields, 
i.e., the hydrodynamic pressure and the velocity can be obtained via the zeroth and first moments of the transformed 
distribution function as

p =
∑
α

gα + 1

2
F p · uδt, ρc2

s u =
∑
α

gαeα + 1

2
c2

s F tδt . (43)

Based on the Chapman-Enskog multiscale expansion (see e.g., [39]), it can be shown that the above cascaded LB scheme 
represents the incompressible two-phase fluid motion, where the fluid’s shear viscosity μ is related to the relaxation times 
of the second order moments as

μ = ρν = ρc2
s

(
1

ω j
− 1

2

)
δt, j = 4,5, (44)

and the rest of the relaxation times, which can influence numerical stability, are set to unity in this work. It may be noted 
that in the implementation of our cascaded LB formulation, all the spatial gradients of the phase field variable φ required 
in the computation of the interfacial normal n = (nx, ny) and the surface tension force F s are obtained using a second order 
isotropic finite difference scheme [56]. In addition, in view of Eq. (9), the spatial gradients of the density ρ are directly 
expressed in terms of those of φ. The solution procedure for the evolution of the phase field will be discussed next.

5. Cascaded LB method for solution of phase-field based interfacial dynamics

We will now construct another cascaded LB scheme for the solution of the conservative Allen-Cahn equation (ACE) given 
in Eq. (1). Since the ACE is a convection-diffusion equation (CDE) with an additional interface sharpening flux term, our 
solution approach is based on modifying the central moment cascaded approach that we developed recently for CDE in a 
MRT formulation [45,48,50], where this additional term is included in the first order moment equilibria. This strategy is an 
extension of the approach proposed in [33]. In this regard, we consider a D2Q9 lattice using the same orthogonal moment 
basis vectors and the matrix given in Eqs. (31) and (32), respectively.
10
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Then, the collision and streaming steps of such a cascaded LB scheme for the evolution of the discrete distribution 
function fα can be respectively represented as

f̃α(x, t) = fα(x, t) + (K · ĝ)α, (45a)

fα(x, t + δt) = f̃α(x − eαδt, t). (45b)

In order to design a cascaded collision operator to solve for the phase field variable φ described by a conservative Allen-
Cahn equation (ACE), we first define the following central moments and raw moments of the distribution function fα and 
its equilibrium f eq

α , respectively, as(
κ̂mn

κ̂
eq
mn

)
=
∑
α

(
fα
f eq
α

)
(eαx − ux)

m(eαy − u y)
n, (46)

(
κ̂ ′

mn

κ̂
eq′
mn

)
=
∑
α

(
fα
f eq
α

)
em
αxen

αy . (47)

Then, we consider the continuous central moments of the equilibria

�̂
eq,φ
mn =

∞∫
−∞

∞∫
−∞

f eq(ξx − ux)
m(ξy − u y)

ndξxdξy (48)

by defining the equilibrium distribution function f eq in analogy with the local Maxwell distribution function by replacing 

the density with the phase field variable φ: f eq ≡ f eq(φ, u, ξ) = φ

2πc2
sφ

exp

[
− (ξ−u)2

2c2
sφ

]
. Here csφ is a free parameter, which 

will be related to the coefficient of diffusivity Mφ later. Typically, we set c2
sφ = 1

3 . The relaxation of the central moments to 
the corresponding equilibria given above only models a diffusion process. In order to account for the counteracting phase 
separation flux components −θnx and −θny appearing in the conservative ACE (Eq. (1)), where n = (nx, ny) is the interface 
normal, we modify the first order continuous central moments from being null to �̂eq,φ

10 = Mφθnx and �̂eq,φ
01 = Mφθny . Then, 

by matching of the discrete and continuous central moments of the equilibria, i.e., κ̂eq
mn = �̂

eq,φ
mn for all the nine independent 

moments supported by the lattice, we obtain the components of κ̂eq
mn as

κ̂
eq
00 = φ, κ̂

eq
10 = Mφθnx, κ̂

eq
01 = Mφθny, κ̂

eq
20 = c2

sφφ, κ̂
eq
02 = c2

sφφ, κ̂
eq
11 = 0,

κ̂
eq
21 = 0, κ̂

eq
12 = 0, κ̂

eq
22 = c4

sφφ.

The cascaded collision operator can then be constructed by prescribing the relaxation of central moments of different orders 
to their equilibria, i.e., 

∑
α(K · ĝ)α(eαx − ux)

m(eαy − u y)
n = ω

φ∗ (κ̂
eq
mn − κ̂mn), where only the zeroth moment being conserved 

(κ̂00 = κ̂
eq
00 = φ), and ωφ∗ are the various relaxation times. The resulting changes in all the nine components of moments 

under collision, i.e., ĝ = (ĝ0, ̂g1, ̂g2, · · · , ̂g8) can be summarized as follows:

ĝ0 = 0, ĝ1 = ω
φ
1

6

[
φux − κ̂ ′

10

]
, ĝ2 = ω

φ
2

6

[
φu y − κ̂ ′

01

]
,

ĝ3 = ω
φ
3

12

[
2c2

sφφ − (u2
x + u2

y)φ − (κ̂ ′
20 + κ̂ ′

02) + 2(uxκ
′
10 + u y κ̂

′
01)
]
+ ux ĝ1 + u y ĝ2,

ĝ4 = ω
φ
4

4

[
−(u2

x − u2
y)φ − (κ̂ ′

20 − κ̂ ′
02) + 2(uxκ

′
10 − u y κ̂

′
01)
]
+ 3(ux ĝ1 − u y ĝ2),

ĝ5 = ω
φ
5

4

[−uxu yφ − κ̂ ′
11 + (uxκ

′
01 + u y κ̂

′
10)
]+ 3

2
(ux ĝ2 + u y ĝ1),

ĝ6 = ω
φ
6

4

[
−u2

x u yφ + κ̂ ′
21 − u yκ

′
20 − 2uxκ

′
11 + 2uxu yκ

′
10 + u2

xκ
′
01

]
+ 3uxu y ĝ1

+
(

3

2
u2

x + 1

)
ĝ2 − 3

2
u y ĝ3 − 1

2
u y ĝ4 − 2ux ĝ5,

ĝ7 = ω
φ
7

4

[
−uxu2

yφ + κ̂ ′
12 − uxκ

′
02 − 2u yκ

′
11 + 2uxu yκ

′
01 + u2

yκ
′
10

]
+
(

3

2
u2

y + 1

)
ĝ1

+3uxu y ĝ2 − 3
u y ĝ3 + 1

ux ĝ4 − 2u y ĝ5,

2 2
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ĝ8 = ω
φ
8

4

[
c4

sφφ − κ̂ ′
22 + 2(uxκ̂

′
12 + u y κ̂

′
21) − (u2

y κ̂
′
20 + u2

x κ̂
′
02) − 4uxu y κ̂

′
11

+2(uxu2
y κ̂

′
10 + u2

x u y κ̂
′
01) −u2

x u2
yφ
]
+ (2ux + 3uxu2

y)ĝ1 + (2u y + 3u2
x u y)ĝ2

−(2 + 3

2
(u2

x + u2
y))ĝ3 + 1

2
(u2

x − u2
y)ĝ4 − 4uxu y ĝ5 − 2u y ĝ6 − 2ux ĝ7,

ĝ1 = ĝ1 + ω
φ
1

6

[
Mφθnx

]
,

ĝ2 = ĝ2 + ω
φ
2

6

[
Mφθny

]
, (49)

where the relaxation times of the first order moments ωφ
1 and ωφ

2 are related to the mobility parameter Mφ in Eq. (1) via 

Mφ = c2
sφ

(
1

ω
φ

j

− 1
2

)
δt , j = 1, 2, and the rest of the relaxation times are set to unity. Finally, the post-collision distribution 

function f̃α can be explicitly written after expanding (K · ĝ)α in Eq. (45a) as

f̃0 = f0 + [ĝ0 − 4(ĝ3 − ĝ8)
]
,

f̃1 = f1 + [ĝ0 + ĝ1 − ĝ3 + ĝ4 + 2(ĝ7 − ĝ8)
]
,

f̃2 = f2 + [ĝ0 + ĝ2 − ĝ3 − ĝ4 + 2(ĝ6 − ĝ8)
]
,

f̃3 = f3 + [ĝ0 − ĝ1 − ĝ3 + ĝ4 − 2(ĝ7 + ĝ8)
]
,

f̃4 = f4 + [ĝ0 − ĝ2 − ĝ3 − ĝ4 − 2(ĝ6 + ĝ8)
]
,

f̃5 = f5 + [ĝ0 + ĝ1 + ĝ2 + 2ĝ3 + ĝ5 − ĝ6 − ĝ7 + ĝ8
]
,

f̃6 = f6 + [ĝ0 − ĝ1 + ĝ2 + 2ĝ3 − ĝ5 − ĝ6 + ĝ7 + ĝ8
]
,

f̃7 = f7 + [ĝ0 − ĝ1 − ĝ2 + 2ĝ3 + ĝ5 + ĝ6 + ĝ7 + ĝ8
]
,

f̃8 = f8 + [ĝ0 + ĝ1 − ĝ2 + 2ĝ3 − ĝ5 + ĝ6 − ĝ7 + ĝ8
]
. (50)

This is followed by performing the streaming step shown in Eq. (45b), which then updates the phase field variable φ via 
taking the zeroth moment of fα as

φ =
∑
α

fα. (51)

We note here that recently Ref. [57] presented a 3D LB scheme for multiphase flows using cumulants in the collision 
step. In the following, we will compare and contrast our approach to this recent work. First, while both the present work 
and Ref. [57] are generally based on computing the velocity and pressure fields in multiphase flows as primary variables, 
there are some differences in how they are obtained. In Ref. [57], the pressure field is obtained from a discretization 
of a separate pressure evolution equation that is solely related to the divergence of the velocity field. Here, it may be 
noted that the pressure evolution equation used omits the convective term u · ∇p (as done in some other previous LB 
models for multiphase flow on which Ref. [57] is based, by invoking a small Mach number approximation), while a recent 
study [58] highlighted the importance of this term in accurately recovering the various aspects of the hydrodynamic fields, 
especially the velocity divergence (e.g., see Fig. 2 in Ref. [58]), at high Reynolds numbers. As emphasized in Ref. [58], 
since the pressure field is mainly influenced by its transport by the velocity of the fluid, this term should be retained 
and not neglected; the pressure thus computed under the above approximation is then used to update the velocity field 
in Ref. [57]; in addition, the velocity field update also involves other counteracting terms related to density gradients and 
viscosity to correctly account for the viscous stress tensor. Such approximations and steps can also unnecessarily introduce 
additional non-Galilean invariant errors. Since one of the main features of the cumulant or central moment LB algorithms is 
to naturally avoid them, such a procedure for calculating the hydrodynamics does not seem to be fully compatible with the 
design philosophy and scope of the underlying collision step. By contrast, in our formulation, the pressure field is directly 
updated based on the zeroth moment of the distribution function itself, without invoking an additional approximation 
to derive a pressure evolution equation from which to recover this variable. As such, the continuity equation emerging 
from the MCBE (Eq. (14)) is based on the pressure field and it retains this convective term u · ∇p, i.e., by taking the 
zeroth moment of MCBE (Eq. (14)) and using the conserved moment constraints given in Eq. (17), it readily follows that 
∂ p
∂t + u · ∇p + c2

s ∇ · u = 0 and the pressure field computed by our LB scheme satisfies this equation in a consistent manner; 
also, the viscous stress tensor is naturally represented as part of the collision step via relaxation and does not involve an 
extra correction in terms of the body force to update the velocity field in the present formulation. While we have derived 
our formulation based on matching principles using central moments in 2D, they can also be extended to using cumulants 
12
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and in 3D. Second, in Ref. [57], the solution procedure for the interface tracking is carried out in a SRT formulation; by 
contrast, in this work, we consider a unified formulation, where the interface tracking is also performed using a LB scheme 
based on central moments. Third, in Ref. [57], the main emphasis and target application is in simulating violent multiphase 
flows, and the stability in such cases is achieved by numerical treatments involving filtering procedures and the results seem 
impressive; on the other hand, in this present work, our ultimate target application (see Sec. 6.7) is different and is related 
to simulating surfactant-laden multiphase flows, which involves unique class of Marangoni flows arising from tangential 
surface tension gradients due to nonuniform surfactant concentration. As discussed at the end of Sec. 6.7, there are certain 
limitations with the existing LB approaches in this regard, and the present formulation provides a consistent approach 
to handle such multiphase flows involving locally varying surface tension effects in an accurate and robust manner. Also, 
in our work in Sec. 7, we will make a systematic and direct comparison between different collision models in terms of 
numerical stability in achieving relatively low viscosities of fluids at different density ratios in the simulation of multiphase 
flows.

6. Results and discussion

We will now present a validation study of our new cascaded LB approach developed for incompressible two-phase flows 
for a variety of benchmark problems with surface tension effects. Since the LB formulation for the interface capturing based 
on the conservative ACE has been analyzed in Ref. [33], we will limit the validation of our implementation in this regard for 
one benchmark problem below (Sec. 6.1). Instead, most of our focus in what follows will be on investigating the cascaded 
LB methods presented in the previous two sections for the coupled solution of the two-phase fluid motion with interfacial 
dynamics, especially at high density ratios and under different interfacial flow configurations.

6.1. Evolution of a circular interface in imposed shear flow

We will first assess the ability of the cascaded LB scheme for the solution of the conservative ACE (see Sec. 5) to capture 
the kinematical effects of the interfacial motion under deformation and rotational effects with good fidelity. In this regard, 
we consider a circular interface subjected to an imposed shear flow given by the following velocity field in a periodic square 
domain of size L0 [59]

ux(x, y) = −U0π cos [π(x/L0 − 1/2)] sin [π(y/L0 − 1/2)],

u y(x, y) = U0π sin [π(x/L0 − 1/2)] cos [π(y/L0 − 1/2)],

where U0 is the velocity scale. In our simulations, we take the radius of the circular interface to be R = L0/5, whose center 
is initially located at (xc, yc) = (L0/2, 3L0/10) in a square computational domain resolved with L0 = 200. Moreover, the 
numerical parameters of the conservative ACE, i.e., the width W and the mobility Mφ are set as follows: W = 3 and latter 
is obtained by considering a Peclet number Pe = U0W /Mφ = 60. To guide interface undergoing deformation and rotation 
to return to its original position at T = 2T f , where T f = L0/U0, the velocity field given above is reversed at T = T f . Fig. 1
presents snapshots of the interface, identified by the contours of (φA +φB)/2 at the instants T = 0, 0.5T f , T f , 1.5T f , 2T f . It 
can be seen that the interface undergoes advection with complex shape changes under shear, and the cascaded LB method 
faithfully recovers the original circular shape with good accuracy after completing a cycle.

6.2. Laplace-Young relation of a static drop

We will now make a quantitative verification of the ability of the coupled cascaded LB formulations in the computation 
of the various forces and their balances in a static drop immersed in a fluid medium by considering high density ratios. 
In this regard, according to the analytical predictions of the Laplace-Young’s relation, for a 2D drop at rest, the pressure 
difference between the drop and the ambient fluid (�P ) is related to the surface tension σ and its curvature 1/R , where 
R is the radius, via �P = σ/R , which we will use for comparison. In the simulations, we consider a drop of density ρA

surrounded by an ambient fluid of density ρB and placed in the center of a periodic square domain resolved by 200 × 200
grid nodes. We first performed simulations with a drop of radius R = 30 by considering a surface tension σ = 1 × 10−3

at various density ratios of ρA/ρB = 10, 100, 1000 till they reached equilibrium. Fig. 2 shows the surface contours of the 
pressure differences between the drop and the ambient fluid. It is evident that the pressure distribution within the drop 
is smooth and uniform and the jump across the interface is sharp and independent of the density ratio as expected. The 
cascaded LB method is seen to be robust even at relatively high density contrasts. Then, Fig. 3 shows a comparison between 
the computed pressure differences between the drop and the ambient fluid as a function of its curvature for three different 
values of the surface tension σ = 1 × 10−4, 1 × 10−3, and 5 × 10−3 at a density ratio of 1000 against the predictions given 
by the Laplace-Young relation. It verifies the expected linear dependence between �P and 1/R and the computed results 
are found to be in good quantitative agreement with the analytical solution.
13
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Fig. 1. Snapshots of the interface under an imposed shear flow with an initially circular shape computed by the cascaded LB method.

Fig. 2. Surface contours of the pressure distribution of a single static drop of radius R = 30 at different density ratios ρA/ρB with surface tension σ =
1 × 10−3 in a periodic square domain.

6.3. Rayleigh-Taylor instability

Next, we will investigate the cascaded LB methods for simulation of the classical Rayleigh-Taylor (R-T) instability. Such 
a gravitational acceleration-driven instability arises when a heavier fluid of density ρA is placed on top of a lighter fluid 
of density ρB in the presence of gravity, and the interface between the two fluids undergoes complex unsteady motion. 
A mesh size of L × 4L, where L = 201, is employed, and periodic boundary conditions along the lateral vertical sides 
and no-slip boundary conditions at the top and bottom boundaries are imposed. The initial perturbation at the interface 
between the two fluids to initiate instability is described by a cosinusoidal function given by y0 = 2L + 0.1L cos(2πx/L), 
where the origin of the coordinate system is fixed at the left bottom corner of the computational domain. The interfacial 
14
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Fig. 3. Comparison of the computed pressure differences (symbols) obtained using the cascaded LB method against the analytical predictions using the 
Laplace-Young relation for various values of the drop curvature 1/R with surface tension σ = 1 × 10−4, 1 × 10−3 and 5 × 10−3.

instability is characterized by the Reynolds number Re = ρA
√

gLL/μ based on a velocity scale Uc = √
gL, and the Atwood 

number At = (ρA − ρB)/(ρA + ρB). It may be noted that in this case, the penetration distance of the heavy fluid into the 
light fluid is a function of the Atwood number At times the product of the gravitational acceleration and square of time 
evolution. Thus, as its dynamics is governed by a scale based on density differences, the results of this specific problem 
are generally reported in terms of the corresponding dimensionless group, which is the Atwood number. Here, μ is the 
dynamic viscosity and g is the acceleration due to gravity. The dimensionless timescale T is then defined based on Uc and 
L as T = L/(Uc

√
At). In addition, for interface capturing, we consider W = 5, and the Peclet number Pe = Uc L/Mφ = 3000.

By fixing At = 0.5, we performed simulations for two cases of the Reynolds number, i.e., Re = 256 and 3000. Fig. 4
presents the evolution of the interface under flow instability at these two Reynolds numbers. In general, the spike formation 
by the heavier fluid moving downward is accompanied by a bubble of the lighter fluid rising upwards. The interface between 
the fluids undergoes complex shape changes leading to a roll-up of its tails under the dynamical effects of the two moving 
fluids. Moreover, at higher Re, when the inertial effects predominate over the viscous effects, small scale flow structures 
emerge. The snapshots of the simulated results of the R-T instability at various time instants are in overall agreement with 
the prior numerical results at Re = 256 (e.g., [17,60]) and Re = 3000 (e.g., [21,61]). Moreover, Fig. 5 shows quantitative 
comparisons of the computed values of the non-dimensional locations of the spike and bubble fronts scaled by L at both Re
against prior numerical reference data. It can be that the numerical results obtained using the cascaded LB formulations for 
time evolution of the interface locations evaluated at the center (spike) and at the edges (bubble) are in good quantitative 
agreement with the respective reference results at both Re = 256 and Re = 3000.

6.4. Falling drop under gravity

We will now consider another unsteady two-phase flow problem involving a drop falling under a gravitational field. In 
such a case, during the descent of the drop, it undergoes significant shape changes due to deformation, which arises from a 
complex interplay between the gravity force, surface tension force and the viscous force. A drop of diameter D = 30 with a 
density ρA is placed initially at a location of (75, 300) in a rectangular domain that is divided into 151 × 451 lattice nodes 
(with the origin of the coordinate system being located at the left bottom corner), and filled with a lighter ambient fluid of 
density ρB . Free-slip boundary conditions are imposed on the top and bottom boundaries and lateral vertical sides are taken 
to be periodic. For this computational set up, the gravitational force is applied everywhere by setting F ext = −(ρ − ρB)g j. 
The drop dynamics is characterized by the following non-dimensional numbers: Eotvos number Eo = g(ρA − ρB)D2/σ
representing the gravity force relative to the surface tension and the Ohnesorge number Oh = μA/

√
ρA Dσ representing the 

viscous effects. Following Ref. [62], we fix ρA/ρB = 5, Eo = 43 and study the influence of Oh by considering Oh = 0.3, 0.7
and 1.0, with νA = νB = ν . These three values of Oh are obtained by setting ν = 0.1, 0.2333 and 0.3333, respectively. For 
reporting results, the instantaneous time t is non-dimensionalized as T = t/

√
D/g .

Fig. 6 presents the snapshots of the evolution of the interface of the falling drop for the above three cases of Oh. In 
general, it can be seen that as Oh increases, the viscous force increases relative to the surface tension force and hence the 
drop deformation is reduced. Thus, at a large value of Oh = 1.0, the drop undergoes relative small deformation attaining a 
steady state, while at Oh = 0.7, it is stretched more along the horizontal direction by the surface tension force after initially 
taking an ellipsoidal shape. On the other hand, at a still lower Oh = 0.3, the drop becomes considerably slender along the 
sides, while exhibiting bag-like shape due to shear under gravity in the presence of the prevailing surface tension force with 
smaller viscous force effects at later stages. These computed drop shape variations at different times with Oh are consistent 
with the findings reported in Ref. [62].
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Fig. 4. Snapshots of simulation of Rayleigh-Taylor instability at At = 0.5 and (a) Re = 256 and (b) Re = 3000.

6.5. Buoyancy-driven rising bubble

Next, we examine the ability of our cascaded LB formulations to simulate a well-defined two-phase flow problem in-
volving a moving dispersed phase in a continuous phase with high density contrasts than those considered in the previous 
two cases. In this regard, we consider a bubble of diameter D and density ρB rising in an ambient fluid of density ρA , with 
ρA/ρB being 1000, by buoyancy forces under various parametric conditions. This represents the buoyant motion of an air 
bubble in water and is of practical interest. Our goal is to test the robustness of the cascaded LB approach to capture the 
various shape changes the bubble undergoes due to the balance between the different competing forces as well as simulate 
the time history of the bubble path with quantitative accuracy.

The computational configuration consists of a rectangular domain with a grid resolution of 161 × 481 in which a bubble 
of diameter resolved with 64 grid nodes is initially centered at a location (40, 120) (with the coordinate system’s origin 
being situated at the bottom left corner of the domain). Free slip boundary conditions are imposed on the two vertical sides 
and the no-slip conditions are considered on the top and bottom boundaries. This set up corresponds to that discussed in 
Refs. [63,64]. The bubble is set in motion by applying a body force given by F ext = −(ρ −ρA)g j. The characteristic scales of 
this two-phase flow problem are: the length scale L = D , the velocity scale U g = √

g D , which represents the gravitational 
velocity, and the time scale T = L/U g . Based on these and the various competing forces (i.e., buoyancy, viscous and surface 
tension), the non-dimensional parameters of this two-phase flow problem are the Reynolds number Re = ρA U g D/μA and 
the Eotvos number Eo = ρA U 2

g D/σ , along with the ratios of the fluid properties ρA/ρB and μA/μB . The non-dimensional 
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Fig. 5. Time evolution of the positions of the bubble front and the spike tip for Rayleigh-Taylor instability at At = 0.5 and (a) Re = 256 and (b) Re = 3000.

Fig. 6. Evolution of a deforming drop falling under gravity for various values of the Ohnesorge number Oh of 0.3, 0.7 and 1.0 at a fixed Eotvos number 
Eo = 43 shown at time instants T = 0, 2.04, 3.05, 4.07, 5.09, 6.11, 7.13, 8.14, and 9.16 (from top to bottom).

time for reporting time histories is represented by t∗ = t/T . Depending on the magnitudes of these dimensionless groups, 
the bubble undergoes complex interfacial shape changes, attaining either spherical-cap, dimpled ellipsoidal-cap or skirted 
configurations, among various possibilities [65].

By setting ρA/ρB = 1000 and μA/μB = 100 at a fixed Reynolds number Re = 35, we performed buoyancy-driven bubble 
rise simulations at various values of the Eotvos numbers Eo = 10, 50 and 125 (as in Refs. [64,60]) using the cascaded LB 
methods. Fig. 7 presents the computed evolution of the interface of the rising bubble at these three values of Eo. When the 
role of the surface tension force is relatively significant in comparison with the other forces, as when the Eotvos number is 
low (Eo = 10), the bubble undergoes smaller deformation that is initiated at its rear end, which then results in a flattening 
of that side as the bubble rises. For the intermediate case (Eo = 35), the driving buoyancy force predominates the surface 
tension under the prevailing viscous force, resulting in a much larger deformation by stretching that leads to the formation 
of tails that elongates at later times. At even higher Eo = 125, this process is more pronounced and the skirted shape 
accompanied by the pair of tails is further elongated and straightened. These computed shape variations with different 
Eo at various time are very similar with the results based on other methods [64,60]. Furthermore, in order to make a 
quantitative comparison, we then compute the vertical coordinate of the center of mass of the rising bubble as it undergoes 
shape changes using yc = ∫

�b
ydx/ 

∫
�b

1dx, where �b represents the region occupied by the bubble, for the case Re = 35
and Eo = 125. Fig. 8 shows the non-dimensional center of mass as a function of the non-dimensional time computed using 
the cascaded LB schemes against the reference numerical results from Ref. [60]. It is evident that our approach is in good 
17
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Fig. 7. Evolution of the interface of a buoyancy-driven rising bubble at Re = 35 and (a) Eo = 10, (b) Eo = 50, (c) Eo = 125.

quantitative agreement with the available numerical data for the temporal evolution of the bubble paths, thereby verifying 
its accuracy and robustness for this high density ratio two-phase flow problem.

6.6. Impact of a drop on a thin liquid layer

As another case study, we consider an inertia-driven two-phase flow problem at a high density ratio, i.e., the impact 
of a circular drop on a thin layer of fluid and the study of its subsequent outcomes. Such impact dynamics of drops 
leads to a rich variety of outcomes depending on the characteristic parameters representing the ratios of various attendant 
forces [66]. The computational set up considered for this example is described in Ref. [67]. Both the drop and the thin layer 
18
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Fig. 8. Time history of the non-dimensional center of mass of a buoyancy-driven rising bubble at Re = 35 and Eo = 125.

are considered to be of the same liquid of density ρA and the ambient fluid is of density ρB . We consider a high density 
ratio ρA/ρB = 1000 to represent the impact of a water drop surrounded by air. The computational domain is resolved with 
501 × 1501 grid nodes, in which the liquid layer is discretized by 150 grid nodes, while the drop radius R is represented by 
100 mesh nodes. The interface thickness W is set to be 5. We impose periodic conditions on the two vertical boundaries, 
no-slip boundary condition on the bottom wall, and free-slip condition on the top boundary. The drop is set into downward 
motion by setting it with an initial impact velocity U = 0.05. The dynamics and the impact outcomes of this problem is 
determined by the following non-dimensional parameters: the Reynolds number Re = 2ρA U R/μA and the Weber number 
We = 2ρA U 2 R/σ , which represents the ratio of the inertial force to the surface tension force, in addition to the ratios of 
the fluid properties, and the timescale is given as 2R/U . In our cascaded LB simulations, with the density ratio given above, 
we set μA/μB = 10, the Weber number is fixed at We = 8000, and consider two different values of the Reynolds numbers: 
Re = 20 and Re = 100.

Fig. 9 presents the evolutions of interfaces at these two Reynolds numbers upon drop impact. At the lower Re = 20, 
since the kinetic energy of the drop impact is relatively low, it merges with the liquid film, which is accompanied by the 
interfacial wave moving outwards. This results in the deposition of the drop as the outcome. On the other hand, as the Re
is increased to 100, upon drop impact, the interface initially spreads outcomes, and then with the higher attendant kinetic 
energy, it leads an ejecta sheet formation. This, in turn, spreads outwards by evolving into a splashing lamella that curls at 
its edges due to the competing surface tension and viscous frictional effects, leading to the splashing as the final outcome. 
These computed behaviors are consistent with other recent numerical results (e.g., [67]), which demonstrate the ability of 
the cascaded LB schemes to handle inertia-driven two-phase flows at high density ratios.

6.7. Tangential surface tension gradient (Marangoni stress) effect on drop migration

Variable surface tension effects arise in certain unique class of two-phase flows such as those involving thermo-capillary 
convection and surfactant-laden multiphase flows. For example, surfactants play an important role in numerous two-fluid 
dispersed systems where they strongly modulate phenomena associated with droplets and bubbles by preferentially adsorb-
ing on the interfaces with nonuniform distribution, which then lower the local surface tension and can induce additional 
fluid motion around interfaces via the tangential surface tension gradients or Marangoni stresses. Thus, the expression for 
the surface tension force F s given earlier in Eq. (8) needs to be modified to account for surfactant effects. In this regard, 
we will adopt the geometric formulation presented in [68]. The smoothed surface tension formulation for surfactant-laden 
interfacial flows with a local surfactant concentration ψ can be written as

F s = −κ̃(ψ)|∇φ|2 (∇ · n)n︸ ︷︷ ︸
Capillary force

+ |∇φ|2∇sκ̃(ψ)︸ ︷︷ ︸
Marangoni force

, (52)

where ∇s is the surface gradient operator given by ∇s ≡ ∇ − n(n · ∇) or in index notation ∂si = (δi j − nin j)∂ j , where 
i, j ∈ (x, y). The first term on the RHS of Eq. (52) represents the capillary force, where the lowering of the local surface 
tension by the presence of surfactant is accounted for through the dependence of the surface tension parameter κ̃ on ψ , i.e., 
κ̃(ψ) (see below for details). The second term represents the effects of the tangential gradients of the surface tension, or the 
Marangoni force, arising from the non-uniform concentration of the surfactant on the interface. The Cartesian components 
of the surface tension force for surfactant-laden interfaces can then be expressed as

Fsx = −κ̃(ψ)|∇φ|2(∇ · n)nx + |∇φ|2
[
(1 − n2

x)∂xκ̃(ψ) − nxny∂yκ̃(ψ)
]
, (53a)
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Fig. 9. Evolution of the splashing of a drop on a thin film at We = 8000 and ρA/ρB = 1000 for (a) Re = 20, (b) Re = 100.

Fsy = −κ̃(ψ)|∇φ|2(∇ · n)ny + |∇φ|2
[
(1 − n2

y)∂y κ̃(ψ) − nxny∂xκ̃(ψ)
]
, (53b)

where nx and ny are the components of the interfacial unit normal n = (nx, ny) = ∇φ/|∇φ|. Such a geometric strategy 
enhances flexibility as the effect of surfactant on the surface tension force is naturally tunable with an appropriate choice of 
the interfacial equation of the state. In this work, the interface equation of state to represent the influence of the surfactant 
on (lowering) the local surface tension is given by the following non-linear dependence based on the Langmuir isotherm, 
i.e., σ(ψ) = σ0 [1 + β ln(1 − ψ)], or, equivalently

κ̃(ψ) = κ̃0 [1 + β ln(1 − ψ)] , (54)

where β is the Gibbs elasticity number that parameterizes the sensitivity of the surface tension to the local surfactant 
concentration, and σ0 and κ̃0 correspond to those for the clean interfaces, i.e., without the presence of surfactant.

In general, the above formulation would require computing the evolution of the surfactant concentration ψ . This can 
be accomplished by means of a phase-field model for surfactant dynamics and an additional cascaded LB scheme for its 
solution procedure [52]. However, here the focus will be on validating the implementation of the surface tension force, 
i.e., Eqs. (53a) and (53b), and in particular the Marangoni force, in our formulation for an imposed surfactant concentration 
profile for which an analytical solution for the motion of the dispersed phase is available for making a comparison. In 
this regard, we consider the classical Young’s problem of thermocapillary migration of a drop [69,70] and recast into the 
equivalent surfactant concentration gradient driven problem. According to this problem, a neutrally-buoyant drop of fluid A
with diameter D solely under an imposed linear surfactant concentration profile ψ(y) = a + G� y (i.e., G� being the constant 
gradient of the surfactant concentration field and y is the vertical coordinate) will self-propel in the ambient fluid B and 
its terminal migration velocity under the assumption of creeping flow has the following analytical solution:

V� = − σ�G�D
,

6μB + 9μA
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Fig. 10. Comparison of computed drop migration velocity under imposed constant surfactant concentration gradient in the simulation of Young’s problem 
(solid lines) with the analytical solution for the terminal velocity (dashed lines) for surface tension sensitivities σ0β = 0.0048, σ0β = 0.0146 and σ0β =
0.0244.

Fig. 11. Snapshots of the evolution of a migrating drop under imposed constant surfactant concentration gradient in the simulation of Young’s problem for 
surface tension sensitivities σ0β = 0.0048, σ0β = 0.0146 and σ0β = 0.0244.

where σ� is the sensitivity of the surface tension with the surfactant concentration, which, according to the linearized form 
of the Langmuir’s isotherm for dilute surfactant concentration, can be expressed as σ� ≡ ∂σ/∂ψ = −σ0β . μA and μB are 
the respective dynamic viscosities.

We consider a drop with diameter D = 30 initially located near the bottom of a rectangular domain resolved with 
51 × 201 grid nodes. Periodic boundary conditions along the two vertical sides and no-slip boundary conditions along the 
two horizontal sides are imposed. By using a density ratio of unity, we consider the same dynamic viscosities in both the 
fluids by setting the kinematic viscosities as νA = νB = 0.05. Furthermore, we impose a linear variation of the surfactant 
concentration along the vertical direction by setting its slope G� = 9.95 × 10−5. Fig. 10 shows the computed the drop 
migration velocities for three different surface tension sensitivities σ0β = 0.0048, σ0β = 0.0146 and σ0β = 0.0244 and their 
comparisons against the available analytical solution for the terminal velocity. It is evident that after the initial transients, 
the computed migration velocities in the long time limit are in good agreement with the analytical terminal velocity. In 
addition, some snapshots of the evolution of a migrating drop for all the above three cases are presented in Fig. 11. As it can 
be seen, the drop self-propels under non-uniform surface tension (i.e., Marangoni force) arising due to an imposed constant 
concentration gradient without any smearing effects to the shape of the drop. Thus, the above numerical simulation results 
validate our implementation for handling variable surface tension effects. A more general case of the coupled evolution of 
the surfactant concentration field, two-fluid motion and interface advection via unified cascaded LB formulations [52], and 
its application for studying the physics of surfactant-laden two-fluid systems are subjects of future investigations.

It may be noted that existing approaches for solving surfactant-laden multiphase flows in LBM are generally based on 
extensions of the pseudo-potential model (see e.g., [71–73]), and inherit the limitations of the underlying model. These 
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Fig. 12. Evolution of the interface of an oscillating liquid cylinder starting from an initial elliptic shape configuration with semi-major axis a = 25 and 
semi-minor axis b = 15; surface tension parameter κ̃ = 0.1, kinematic viscosity νA = νB = 0.01 and density ratio ρA/ρB = 100.

include challenges in independently tuning the magnitude of surface tension effects from phase segregation effects and the 
models being stable at low or moderate density ratios. Moreover, they are not flexible in specifying the desired interface 
equation of state among many possibilities, such as the Langmuir adsorption to parametrize the effect of surfactant con-
centration on the local surface tension, as they are emergent properties in such models. On the other hand, our present 
approach can avoid such issues with its ability to independently tune interfacial equation of state for surfactant-laden flows 
with consistent formulation for the Marangoni stresses and can work at high density ratios. Also, a recent LB study [73] in 
its conclusion has emphasized the need to ascertain whether the previous models to represent surfactant-laden emulsions 
can accurately simulate Marangoni flows. Here, we have shown that our approach can indeed accurately represent such 
unique class of flows driven by tangential gradients in surface tension via demonstrating it for the motion of the motion 
of a self-propelling drop under non-uniform surfactant distribution, which represents a prototypical example of interest to 
many areas of applications (see e.g., [74,75]).

7. Comparative study of numerical stability of different collision models

Generally, it is known that the LB methods can be susceptible to numerical instabilities as the kinematic viscosity of the 
fluid being simulated is significantly lowered, which is strongly influenced by the type of collision model used. We will now 
assess the robustness of our cascaded LB formulation in achieving relatively low fluid kinematic viscosities, when compared 
to a single relaxation time (SRT) formulation for a two-fluid case study involving capillary oscillations of a liquid cylinder 
in another ambient lighter fluid. Prior studies have considered such a configuration in assessing the numerical stability of 
the LB schemes for two-phase flows [55,76]. The SRT formulation for two-phase flows used for comparison is based on one 
SRT LB solver obtained as a discretization of the MCBE for two-phase fluid motion and another SRT LB scheme for capturing 
interfacial dynamics represented by the conservative ACE. We consider a periodic domain of resolution 200 × 200 in which 
a liquid cylinder of density ρA is placed in another lighter ambient fluid of density ρB , where νA = νB for simplicity, 
undergoes free oscillations. The oscillations are initiated from an initially elliptic configuration of the cylinder (semi-major 
axis a = 25 and semi-minor axis b = 15) via the capillary effects on its interface. Fig. 12 shows a typical example of the 
evolution of the interface of the liquid cylinder undergoing free oscillations. Now, employing each of the two collision 
models, for the above initial geometric configuration of the liquid cylinder with surface tension parameter κ̃ = 0.01, and for 
four sets of values of the density ratios ρA/ρB = 500, 600, 800 and 900, the kinematic viscosity of the fluids νA = νB are 
gradually reduced till the simulations becomes unstable. Fig. 13 reports the ratios of the minimum achievable viscosities 
for SRT and cascaded LB formulations that allow stable simulations for the above values of density ratios. It is evident 
that dramatic improvements in numerical stability, by over one or two orders of magnitude, is achieved by the cascaded 
LB schemes when compared to the SRT LB schemes for this two-fluid case study. For example, even at high density ratio 
of 900, the lowest viscosity achieved by the cascaded LB schemes is smaller by a factor of over 55, when compared to 
that attained using the SRT LB schemes, and such factors are significantly higher at more moderate density ratios. These 
numerical stability improvements associated with using the cascaded LB formulations for two-phase flow simulations are 
consistent with the findings of previous studies on applications related to single-phase flows (e.g., [41,50,77]). In terms 
of computational cost comparisons, the additional overhead with the use of the cascaded LB methods is about 20% when 
compared to the corresponding SRT LB formulation for multiphase flows. Thus, the dramatic improvements in numerical 
stability achieved outweighs the moderate additional computational effort needed. As a result, overall, the cascaded LB 
formulations based on central moments are robust and efficient for simulating multiphase flows at relatively low viscosities.
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Fig. 13. Comparison of the ratios of the minimum achievable viscosities for single relaxation time (SRT) and cascaded LB formulations allowing numerically 
stable simulations of an oscillating liquid cylinder with surface tension parameter κ̃ = 0.01 at different density ratios.

8. Summary and conclusions

In this paper, we discussed new cascaded LB formulations based on central moments and multiple relaxation times for 
computation of two-phase, incompressible flows at high density ratios. Using the modified continuous Boltzmann equation 
(MCBE) for two-phase flows, which involves a kinetic transformation to handle numerical stiffness at high density gradients, 
as a starting point, a cascaded LB scheme for the solution of the incompressible two-phase fluid motion directly in terms 
of the pressure and velocity fields is constructed. This involves the representation of the collision step via the relaxation of 
various central moments to their equilibria that are obtained by matching the corresponding continuous central moments 
of the modified Maxwell distribution expressed in terms of the pressure field. In addition, a consistent forcing scheme to 
handle the surface tension and body forces, as well as the net gradient pressure force, whose effects on the changes in 
various moments are different, is constructed. In order to capture the interfacial dynamics, another cascaded LB method 
that solves the phase field based conservative Allen-Cahn equation (ACE), which evolves interfaces by advection due to 
fluid motion under competing effects of diffusion and sharpening terms, is developed. This is achieved by a modification 
of first order central moments of the corresponding equilibrium distribution function via the addition of the interface 
sharpening term. Simulations of a variety of benchmark problems, including the equilibrium of a static drop, Rayleigh-Taylor 
instability, falling drop under gravity, buoyancy-driven rising bubble, drop impact on a thin liquid layer, validated the ability 
of the cascaded LB schemes to reproduce complex two-phase interfacial flows at high density ratios with good accuracy. In 
addition, we showed that our formulation can be extended to handle variable surface tension effects by its validation for 
the simulation of the migration of neutrally buoyant drop under tangential surface tension gradients. Furthermore, dramatic 
improvements in numerical stability in reaching relatively low viscosities in two-phase systems with the use of cascaded 
LB approach when compared to a single relaxation time formulation is demonstrated. Thus, the cascaded LB methods for 
coupled solution of the fluid motion and interfacial dynamics, based on the MCBE and conservative ACE, are accurate and 
robust for two-phase flow simulations with high contrasts in fluid properties and with tunable surface tension effects. Future 
work includes an extension of this formulation to three-dimensions for simulation of surfactant-laden multiphase flows.
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