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solution of fluid motion often occurring at multiple scales. In this contribution, we will
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cial dynamics. Based on a modified continuous Boltzmann equation (MCBE) for two-phase
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1. Introduction

Multiphase flows arise in a number of technological and scientific applications, including in chemical and petroleum
processing and power generation systems as well as microfluidic devices, and are common in nature. Such flows, whose
prototypical configuration involves a continuous fluid phase and a dispersed phase, such as bubbles or droplets, are charac-
terized by surface tension along interfaces and phase segregation effects [1]. Simulation of multiphase flows is challenging
due to the simultaneous capturing or tracking of interfacial motion and the computation of fluid motion, which is generally
nonlinear and can occur at multiple scales. There are various interface capturing approaches that are used in conjunction
with the direct discretization of the Navier-Stokes equations (NSE), which include the volume-of-fluid method [2], front
tracking method [3] and the level set method [4].

During the last two decades, the lattice Boltzmann (LB) methods based on kinetic formulations that represent the evo-
lution of particle distribution functions have emerged as a promising addition to the techniques available for computational
fluid dynamics [5-9]. Significant interest in such methods are largely due to the locality of their the stream-and-collide al-
gorithm and ease of implementation of boundary conditions based on kinetic approaches on Cartesian grids. For simulation
of multiphase flows, the LB methods have been further extended to incorporate various models and techniques to represent
interfacial dynamics and fluid motion. Among them, some of the early approaches represented the phase segregation and
the effect of surface tension via either a color model [10,11], a pseudopotential formulation [12] or a free-energy based
formulation [13] and their thermodynamic consistency were analyzed in [14-16]. A significantly improved LB method using
a kinetic theory based mean field model was presented in [17], which allowed accurate simulation of multiphase flows at
moderate density ratios. This approach used one LB scheme for the fluid motion and captured the interfacial motion via an
index function, whose evolution was represented by another LB scheme where the phase segregation was achieved using a
Carnahan-Starling nonideal equation of state. This was further improved for simulation of two-phase flows at high density
ratios by means of a stable discretization scheme [18]. The latter work motivated developments of consistent LB techniques
for interfacial capturing techniques based on phase field models.

Phase field models represent interfaces to be diffuse, which comprise thin transitional regions of nonzero thickness
across which various fluid properties vary continuously from one phase to the other [19-22]. Such diffuse interface methods
capture interfacial motion implicitly via the evolution of an order parameter, which serves as a phase field to distinguish be-
tween different fluid phases. The dynamics of the order parameter is often based on a thermodynamic free energy functional
formulation, of which the Cahn-Hilliard equation (CHE) [23] is a common choice. A LB scheme to represent the convective
CHE was presented in [24], which was shown to be applicable only for density-matched two-fluid systems in [25], who then
proposed a modification to handle multiphase flows at moderate density ratios. The latter work was further improved in
the investigations presented in [26,27] to represent incompressible multiphase flows based on modified CHE for capturing
of interfaces.

The challenges associated with the use of CHE, such as the need to calculate fourth order derivatives, motivated other
phase field type approaches. The Allen-Cahn equation (ACE) is another type of diffuse interface model used that was orig-
inally developed for material science applications [28]. More recently, the ACE was reformulated based on a counter term
approach [29] to eliminate curvature driven interfacial motion in order to make it applicable for two-phase flows [30], in
which the geometric information such as the interface normal and curvature are computed readily by expressing them in
terms of a hyperbolic tangent variation of the order parameter across the interface. Then, Ref. [31] further modified the ACE
to make it mass conservative, which was shown to be equivalent to a conservative level set approach [32]. Such a conserva-
tive ACE results in a simpler formulation with less numerical dispersion than the modified CHE, as the former requires the
computation of only lower, i.e., second, order derivatives of the phase field variable when compared to the latter as noted
above. Based on such conservative ACE, LB schemes for interface capturing were developed in [33,34].

The collision step plays an important role in the LB method especially for the solution of the fluid motion. The single re-
laxation time (SRT) model to represent the change in the distribution functions due to collision is a common approach [35].
However, it is known to be susceptible to numerical instability issues at relatively low values of the transport coefficients
or at higher Reynolds number. This can be overcome to a significant extent by considering the relaxation of various raw
moments to their equilibria using multiple relaxation times (MRT) to represent the effect of collisions [36]. A further im-
provement can be achieved by considering the relaxation in terms of central moments [37]. It naturally maintains the
Galilean invariance of all independent moments supported by a chosen lattice and the resulting method was termed as the
cascaded LB method. The method was interpreted by considering relaxation in terms of a generalized equilibrium in a rest
frame of reference [38]. A scheme based on central moments to incorporate local forces and its consistency to the Navier-
Stokes equations (NSE) via a Chapman-Enskog analysis was presented in [39]. Significant improvements in the numerical
stability of the cascaded LB method were shown in [40,41]. More recently, various refinements and extensions of the central
moments based LB formulation were considered (see e.g., [42-50]).

In this contribution, we present new unified cascaded LB methods for incompressible two-phase flows at high density
ratios. In our formulation, one cascaded LB scheme for the solution of the multiphase fluid motion and another cascaded
LB scheme for the representation of interface capturing will be developed. For the former case, the starting point is the
modified continuous Boltzmann equation (MCBE) for incompressible two-phase flows [17], where a transformation to the
distribution function is introduced to reduce the numerical stiffness associated with high density gradients and the resulting
hydrodynamic variables are given in terms of the pressure and velocity fields via their zeroth and first moments, respectively.
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Based on this MCBE, a new discrete cascaded LB method based on central moments and multiple relaxation times for two-
phase fluid flow will be constructed [51,52]. In this regard, we will formulate its collision step in terms of relaxation to
various central moment equilibria which will be expressed by matching the central moments of the modified continuous
Maxwell distribution and given in terms of the pressure field arising via the transformation mentioned above. The MCBE [17]
also contains source terms related to the pressure changes and those due to the interfacial (surface tension) force and a
body force, whose respective effects on the changes in various moments are different. In order to account for the differential
effects of the source term due to pressure and that due to the interfacial and body forces for handling the simulation of
two-phase flows, we will present a consistent source/force treatment scheme, which is an extension of and modification
to the central moment based approach that was given in a previous work for single phase flows [39]. Interfacial dynamics
will be captured using the conservative ACE phase field formulation that evolves interfaces via advection and under the
competing effects of a diffusion term and an interface sharpening term. In this regard, by extending the work of Ref. [33],
another MRT based modified cascaded LB scheme developed for the solution of the convection diffusion equation [45,48],
where the sharpening term due to the phase separation flux is introduced as a modification to the moment equilibria,
will be constructed to represent the evolution of the phase field variable. All fluid properties such as the density and
viscosities across the phase interfaces are then expressed as smooth affine functions of the phase field variable. Since
the resulting cascaded LB solvers are based on prescribing collision and sources via matching their continuous values in
a moving of reference based on local fluid velocity, it naturally maintains their Galilean invariance for the independent
moments supported by the chosen lattice. This can improve numerical stability for the simulation of two-phase flows at high
density ratios and at relatively low fluid viscosities, thereby widening the parametric ranges for simulations. In this work,
the cascaded central moment LB formulation for the coupled solution of the two-phase flow and interfacial motion will be
presented on two-dimensional, nine velocity (D2Q9) lattice sets. It will then be validated for a set of numerical benchmark
problems involving two-phase flows at high density ratios and including surface tension effects which are extended account
to for Marangoni stresses to demonstrate its accuracy and improvements in stability.

This paper is organized as follows. In Sec. 2, we will present the governing equations for the incompressible two-phase
flow and the phase field model based on the conservative ACE for the capturing of interfaces. Section 3 discusses the
discrete velocity Boltzmann equation for two-phase flows that represents the starting point for the construction of the
central moments based kinetic formulation for its solution procedure. Then, the cascaded LB method for the solution of
the two-phase flow in terms of the pressure and velocity fields is derived in Sec. 4. Subsequently, Sec. 5 presents another
cascaded LB method for interfacial dynamics based on the conservative ACE. Section 6 discusses the numerical validation
study of the new cascaded LB formulation for a variety of two-phase flow benchmark problems, with high contrasts in
fluid properties and effects of surface tension and its tangential gradients. In particular, the modeling and simulation of the
effects of Marangoni stresses are discussed in Sec. 6.7. A comparative study of the numerical stability of different collision
models in reaching low viscosities in a two-fluid system is presented in Sec. 7. Finally, the conclusions of this work are
summarized in Sec. 8.

2. Governing macroscopic equations: interface capturing and two-phase fluid motion

In order to capture interfacial dynamics, we consider a phase field method based on the conservative Allen-Cahn equation
(ACE). This was originally formulated for two-phase flows by removing the curvature-driven motion [30] via a counter term
approach [29] and then re-expressed in a conservative form [31]. Let ¢ be an order parameter or the phase field variable,
with ¢ = ¢4 representing the fluid in phase A and ¢ = ¢ denoting that in phase B. Then, the interface propagation given
in terms of the phase field variable based on the conservative ACE can be written as

d¢

§+V-(¢u)zv-[1v1¢(v¢—9n)], (1
where u is the fluid velocity, n is the unit normal vector, which can be computed via the order parameter ¢ as n = %,
and My is the mobility. In the above, the variable 6 can be expressed as

0 —4(¢ — Pa) (¢ — ¢B)

W (éa — ¢8)
where the parameter W is related to the width of the interface. The right hand side of Eq. (1) is obtained by removing the
curvature-driven interface motion u,n = —Mgykmn by canceling it out by adding a counteracting term based on computing

the curvature «,,, where Kk, =V -n with n = %, directly in terms of a kernel function given by the following hyperbolic
tangent profile of the order parameter

: (2)

1 1 (% 3
¢(§)—§(¢’A +¢B)+§(¢A—¢B) an (W)v (3)

which represents the equilibrium profile of the phase field variable, where ¢ is a spatial coordinate along the normal with
the origin at the interface. Thus, Eq. (1) effectively represents the relaxation of any arbitrary initial distribution of the order
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parameter to a hyperbolic tangent profile across the interface, which is then sustained during interfacial advection. Equiv-
alently, this equation can be interpreted as the interface propagating via advection (given by its LHS) under the competing
effects of a diffusion term and an interface sharpening term or a separation flux term (given by the first and second terms
on the RHS, respectively). In the above, W and M, are numerical parameters, with W representing the interface thickness,
while My controlling the relaxation rate of any initial ¢ to its equilibrium profile across the interfaces (Eq. (3)) as well as
the dissipation of any interface singularities via diffusion.

On the other hand, the two-phase fluid flow is represented by the following incompressible Navier-Stokes equations
(NSE):

V.u=0, (4)

p(i—?—i—V-(uu))=—Vp+V~[M(Vu+VuT)]+Fs+Fw, (5)
where p is the hydrodynamic pressure, p is the fluid density, w is its viscosity, Fs is the smoothed formulation of the
surface tension force and F.x is an external body force (e.g., gravity). Here, and in what follows, the superscript symbol
represents the transpose operator.

In the above, there are several ways to express the surface tension force Fs as a smoothed representation based on
the order parameter. One approach is based on a thermodynamic (Gibbs-Duhem) formulation in which the surface tension
force is calculated from the negative product of the gradient of the chemical potential fts and the phase field variable ¢ as
follows (see e.g., [20]):

Fs=—¢Vily, fly=4B@ —da)(p—dp) (P — (Pa+¢p)/2) —k V. (6)

Here, the parameters 8 and « are used to control the surface tension o and the interface thickness W via the following
relations

3
K=-oW, =—. 7
oW, B=— )
Alternatively, geometric approaches such as the continuous surface force formulation can be considered [53]. In particular,
a geometric approach for the surface tension force developed originally for level set methods and adapted for phase field
methods [54] can be written as

Fs=—k|V¢|> (V- -mn. (8)

Here, the parameter « is related to the surface tension o via K =y o W, where the coefficient y satisfies y W ffooo (do/dr)>de
=1, which arises from interpreting the surface tension in terms of interfacial energy per unit surface area by considering
the equilibrium phase field variable profile given in Eq. (3) and matching it with the sharp interface limit for a flat in-
terface [54]. In this work, this latter (geometric) approach is adopted for representing the surface tension force Fs for
performing two-phase flow simulations using cascaded LB formulations discussed in what follows. Finally, the jumps in
fluid properties such as the density and viscosity across the interface are smoothed as well and can be written as a con-
tinuous function of the phase field variable ¢ and then used in Eq. (5) in different ways. In this study, we employ a linear
interpolation for representing the interfacial variations of the fluid properties (see e.g., [21]). Thus,

¢ — ¢a ¢ —¢a

—PB). =M+ (A — UB), 9
¢A_¢B(,0A PB), M MB+¢A_¢B(/LA “B) (9)

where p4 and pp are the densities and ws and wp are the dynamic viscosities in the fluid phases denoted by ¢4 and ¢p,
respectively. In this work, we consider ¢p =0 and ¢4 = 1.

p=pp+

3. Modified continuous Boltzmann equation for two-phase flows and central moments of equilibria and sources

To solve the incompressible Navier-Stokes equations (NSE) for two-phase flows (Egs. (4) and (5)) in a kinetic formulation,
the starting point is the two-dimensional (2D) continuous Boltzmann equation given by [17]

T v I () v (10)
PCs

1
T
where f = f(x,t; &) is the density distribution function at a location x and at time t, corresponding to the particle velocity
& = (& &). Here, fM is the local Maxwell distribution function defined as

N2
M= Mo, uy= pzexp[—(E w } (11)

27 c? 2c2
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where c;s is the speed of sound, which is a constant and free parameter for athermal flows, and fluid velocity u = (uy, uy).
The effect of collisions is typically represented as a relaxation of f to its equilibrium, i.e., fM with a characteristic time scale
7. The continuous formulation of the interfacial tension force Fs, which is discussed in the previous section, along with any
local body force Fey are grouped as the total force F; = Fs + Fy. This total force along with the gradient contribution of
the net effect of the hydrodynamic pressure p relative to that from the ideal equation of state ,ocg, ie, v(p)=p— ,oc?
are accounted for via a source term in Eq. (10). In general, multiphase flows can be associated with relatively large jumps
in fluid properties across the interfaces. In particular, as the density gradients Vp or Vi become relatively large, Eq. (10)
becomes numerically stiff.
To alleviate such numerical stiffness, the following kinetic transformation to the distribution can be introduced [17]
fM
g=fE+ (= pe)(p.0), (12)

where g can be regarded as the pressure distribution function. Here, fM(p, 0) is the local Maxwellian with null macroscopic
fluid velocity, which follows from Eq. (11) as

2
Mp,0)= L exp [—5—] (13)

2mc? 2c?

Then, by applying the above transformation (Eq. (12)) to the continuous Boltzmann equation (Eq. (10)) and assuming two-
phase flows in the incompressible limit, i.e., |u| < 1, the following kinetic equation for the distribution function g can be
obtained [17]

Dg_

M
= .Ftw_i_
Dt 0

1

- (g—g)+¢—-w

M. fM(p,O)}

o o '
0(u)

(S—u)'Fp{ (14)

which is referred to as the modified continuous Boltzmann equation (MCBE) in this work. In Eq. (14), g1 is the transformed
local Maxwellian or the modified equilibrium distribution function, which reads as

fM
0o
and Fj is the net effect of the hydrodynamic pressure p relative to the contribution from the ideal equation of state
dependent on density, which is referred as the net gradient pressure force, and can be expressed as

Fp=-V(p—pc2)=-Vy. (16)

Mpw f"/’(p,O)}
P P ’
which is O (u) and small, the associated numerical stiffness issues on the evolution of the distribution function g is reduced

significantly. Hence, the MCBE serves as the starting point in the construction of a discrete kinetic scheme for the solution
of the incompressible two-phase flows with high phase density contrasts. The hydrodynamic pressure and velocity fields are
then obtained as the zeroth and first kinetic moments of the distribution function g, respectively. That is,

p= fw /oo gdgdey, pciu= ]o ]O gEdedty. (17)

—00 —00 —00 —00

gl=c2fM(p,u)+ (p — pc)—(p.0) (15)

In the MCBE (Eq. (14)), even though Fj can be large at high density ratios, since it is multiplied by {

3.1. Continuous central moments of equilibria and sources of MCBE

As a prelude to constructing a cascaded LB scheme from the discretization of the MCBE, which is discussed in the
next section, we will first need the continuous central moments of its equilibria and various sources. They are based on the
contributions from the corresponding continuous Maxwell distribution function evaluated with and without the macroscopic
fluid velocity in view of the kinetic transformation introduced above.

First, defining the continuous central moments of the local Maxwellian for a moving fluid, i.e., with the macroscopic fluid
velocity, of order (m +n) as

lclnl\fn: / / fM(p,u)(fx_ux)m(fy _uy)ndfxdfya (18)

—00 —00
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and then defining the continuous central moments of the local Maxwellian with the null macroscopic fluid velocity of order
(m+n) as

Mo _ / / M0, 0) (& — )™ &y — 11y dEdE. (19)

—00 —00

The definite integrals given in Egs. (18) and (19) can be evaluated exactly via standard quadrature rules. The D2Q9 lat-
tice used in the construction of the cascaded LB scheme based on a matching principle in the next section supports nine
independent moment components. In this regard, we will need the corresponding components of l'I n and l'Imn 9 as inter-
mediate results. Thus, calculating the components of the continuous central moments of the Maxwelhan l'[ » (Eq. (18)) at
various orders, which read as

i =p, =0, 1Mi=o0 1 =pcZ 0¥ =pc 1} =0,
¥ =o, 1¥=o0, 13 =pc (20)

M(O) (

and those of 1'[ Eq. (19)) may be written as

M0 M0 M0 ~ M0 ~ M0
e =p, M3 =—pux, A5¥ =—puy, ONY=pa+cd), Mg =pui+cd),
M0 M@0 M@0 ~ M0
1'111( )= puguy, M5O = —p? +c2)uy, 5% = —p@? + Ay, 157 = p +cH@? +cd).

Then, in order to discretize Eq. (14) in a cascaded LB formulation, we need the continuous central moments of the equilib-
rium pressure distribution function or the transformed Maxwellian g (Eq. (15)) of order (m + n). By defining it as

fleLe = / / €6 — )" €y — uy)"ddy, 1)
—00 —O0
it readily follows that Eq. (21), in view of Eq. (12), satisfies the following relation

MO
Myn® = 211

Evaluating its nine components, we get

M =p. MN3¢=—v(pu, M5E=—y(puy, M5 =pc2+y(pu,
Mgy ® =pc + v (o), TEE =y (o, T159% =~y (p)(c? + up)uy,
M98 =~y (o) +uduy, T3 =co+ v (o) Wi+ Wi +c2). (22)

Next, we need the continuous central moments of the source term due to the total (interfacial and local body) force
F¢ = (F¢x, Fty) of order (m 4+ n) appearing in the MCBE (Eq. (14)), which can be defined as

= / / St(;s_x - ux)m@y - uy)ndéxd“;‘_yv (23)
where
M
sfz(g—u).l-'t%. (24)

It can be shown that this continuous central moment satisfies the following identity that depends on the those of the
Maxwellian

. nM M

t th m+1,n + Fty m, n+]

By evaluating its components and dealiasing the resulting central moment components higher than the second order by
setting them to zero, as they do not influence the recovery of the hydrodynamics via the Chapman-Enskog expansion [39],
the results can be summarized as

it it 2 it 2 i~ it i
Foo=0. Tyo=c5Fu. Loy =csFry. Tp=0. Tp=0. T =0,
5 =0, If,=0 Ij=0. (25)



F Hajabdollahi, K.N. Premnath and S.W.,J. Welch Journal of Computational Physics 425 (2021) 109893

Finally, we define the continuous central moments of order (m + n) of the source term due to the net gradient pressure
force F, = (Fpx, Fpy) that arises in Eq. (14) as

PP, = / / SP (& — )" (& — )" dEcdE,. (26)

where

Mep,w fM(p,O)}
o J '

Based on its definition, this central moment %, can be demonstrated to satisfy the following identity

(1M M (©0) M 2 M(0)
fﬁm = Fpx (M _ M) + Fpy <Hm,n+1 _ nm,nJrl) .

Sp:(E—u)-Fp{ (27)

o o o o

By using this and deriving the expressions for the nine components, where, as before, we retain the results only up to
the second order moments that determine the two-phase fluid motion and set the higher order ones to zero, they can be
summarized as

o A P ~D P N ) 2 2\FP

Foo = (Fpxtx + Fpyuy),  Tig=—uxlgg,  Toy =—uylgg, T = 2¢5 Fpxtix + (U +¢5) g,

Iy = 2cFpyuy + (uf, + C?)FgO’ ) = ¢S (Fpxty + Fpyuy) + TRTI oS

A ~p o

ry,=o0, 1f,=0 15 =0 (28)
4. Cascaded LB method for solution of two-phase fluid motion

We will now present a cascaded central moment LB method based on the discretization of the MCBE discussed in the

previous section for the solution of incompressible two-phase flow. In this regard, we consider the D2Q9 lattice, whose
components of the particle velocities are represented by the following vectors using the standard Dirac’s bra-ket notation:

lex) =(0,1,0,—1,0,1,—1, -1, 1), (29a)

ley) =(0,0,1,0,—-1,1,1, -1, =)', (29b)
In addition, we need to define the following nine-dimensional vector

) =@1,1,1,1,1,1,1,1, D), (30)
whose inner product with a discrete distribution function g, (see below), where o« =0, 1,2, ---, 8 represents the particle

velocity direction, i.e., its zeroth moment, yields the pressure field. Using the above, the following set of orthogonal moment
basis vectors can be used to construct the cascaded LB formulation:

Koy =11), [Ki)=lex), [K2)=ley), |K3)=3le;+e})—4[1),

[Ka)=lez —e3). |Ks)=lexey). |Ke)=—3lezey)+2ley).

|K7) =—3lexe2) +2lex), |Kg)=9lezes) —6les +e3) +4[1). (31)

In the above, a symbol such as \e?(ey) = |exexey) represents a vector resulting from the elementwise vector multiplication of
the sequence of vectors |eyx), |ex) and |ey). By combining the above nine independent vectors, we then obtain the following
orthogonal moment basis matrix

K=[|Ko),|K1),|K2),|K3),|Ka),|Ks),|Ke),|K7),|Ks)]. (32)

Then, we perform the standard spatial and temporal discretization of the MCBE (Eq. (14)) along the characteristic direc-
tions of the particle velocities over a time step §; (typically §; =1 in lattice units), where we apply a trapezoidal rule for
the treatment of the source term to maintain a second order accuracy [17], which yields

~ 1
8o (X+eqdr, t +8) = gu(x, 1) + (K- h)y + 3 [Sa®,t) + S (X + €n 8¢, t +8)] 5. (33)
Here, (K- ﬁ)a is the cascaded collision operator, where h= |ﬁa) = (ﬁo,ﬁl,ﬁz, .. ,/ﬁg)T is a vector representing the changes

in all the nine moments supported by the lattice under collision which will be determined in what follows. S, is the total

7



F Hajabdollahi, K.N. Premnath and S.W.,J. Welch Journal of Computational Physics 425 (2021) 109893

source term representing the cumulative effect of the discrete version of the source due to the interfacial and local body
force S, (via Eq. (24)) and that due to the net gradient pressure force sP (via Eq. (27)):

Sa =Sk + Sk. (34)

In order to remove implicitness in Eq. (33), we apply a variable transformation g, = go — %saat, which then results in the
following effectively explicit cascaded LB scheme

To (X4 eqdp, t +80) = By (. 1) + (K- )y + 585, (35)

where §g5 is a modified cumulative source term under the variable transformation, which we prescribe to be the following:
s 1 1.
88, =K 1— EA KS. (36)

Here, S = (So, S1,S2,...,Sg) represents a vector of all the nine components of the discrete source term and A =
diag(wo, w1, wa, ..., ws) is a relaxation time matrix used in the development of the cascaded collision operator under
relaxation of different central moments later. Since the effects of the two sources Sf, and SP appearing in the cumulative
source term S, on the changes of various moments are different, we consider a modification to the earlier central moments
based strategy [39] in this regard. The expression given in Eq. (36) is motivated to remove any spurious effects due to the
source term in the second order non-equilibrium moments, which are related to the viscous stress tensor, in order to con-
sistently recover the incompressible NSE for two-phase flows. Similar approach has been considered in the MRT-LBE with
forcing term previously (see e.g., [55]), but the form of §g}, in Eq. (36) will be still determined by a central moments based
strategy in what follows. R

In order of derive the expressions for h and §g;, to complete the formulation of the cascaded LB scheme for two-phase
fluid motion, we first define the discrete central moments of the distribution function, its equilibrium and the source term
as

i &

n &

5’:: = ; SZ (eax — Ux)m(eoty - uy)ny (37)
ﬁmn EOt

where 7, = Nimn — %&mné‘t and the corresponding raw moments as

”'efgz Zu

A eq

Mmn | _ 8u m n

Opn =L | s, | (38)
Nmn 8a

Al
where 7, = Ay — 36708 Then, we need to determine the expressions for the discrete central moments of the equilibrium
distribution function and the source term. In this regard, we apply a matching principle [37,39], where they are respectively
set equal to their continuous values for all orders supported by the lattice. That is,

ﬁreﬂn = ﬁre#ﬁgv Omn = l:‘mn = lﬁfnn + f‘ﬁm’ (39)

where the continuous central moment components of the equilibrium ﬁf,f,;g is given in Eq. (22), while those for the source
terms f‘ﬁnn and "2, can be found in Egs. (25) and (28), respectively. This step effectively preserves the Galilean invariance
of all the moments independently supported by the lattice.

Based on Eq. (39), the first step in deriving the modified cumulative source term in the velocity space due to various
sources/forces 8g5, is to convert the central moments 6, to the corresponding raw moments &,,, at various orders via the
binomial transform. Performing this and setting all the cumulative source moments of second and higher order to zero as
they do not affect recovering the hydrodynamics of the two-phase fluids in the Chapman-Enskog analysis [39,45], we get

Al D Al 2 Al 2

000 = Lop = (Fpxtlx + Fpyly), 019 =CsFex,  Og1 = CsFry,

A 2 27D A 2 27D

00 = 2C5 (Fexy + Fpxlix) + 5T, Ogy = 2¢5 (Feyuy + Fpyuy) 4+ 5T,

~ 2 2 At ~ ~

01] :CS (thuy + Ftyux) +CS (pruy + prux), 021 = O, 612 :0, 022 == O.

Using this, we then evaluate the various source moments projected to the orthogonal basis vectors and with a scaling based
on the relaxation time for avoiding any spurious effects in the second order non-equilibrium moments as mentioned earlier,

ie., mj.’ = (1— Jo;) (Kj|Sq), which yields
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.o 1 A 1 . . R 1 R N

i = (1= s ) oty = (1= S ) (=303, + 260, ] 5 = (1= 507 ) [-361 + 267,

N 1 N N N N

g = (1 - 5508) (965, — 6(650 + 64,) — 8640 -

Finally, by exploiting the orthogonal property of K in §g5, = K~'m*, where m* = (I - %f\) KS, with m® = (rﬁf)/, ﬁﬁ r?lg, .

ﬁ1§)T, we get the modified cumulative source term due to various sources/forces in the cascaded LB scheme for two-phase
flow as

11 iy ag .
Sgiz%[4mf)+6m§—m§+9 + 6y — 21§ |

1 ~c ~c ~c ~ ~d
8g§=%[4m6+6m52—m§—9mj+6 %—ng],

1 ~ ~c ~c A~ ~
8g§=%[4m6—6m§ —m§+9mi—6m§—2m§],
3g5=l ams — 6ms, — s — 9 6 2

4 36 0 2 3 8 |-

1 ~ / ~ o ~ o ~ o
8g§=%[4 +6m3 + 6m3 + 2m3 + 9m3 — 3mg 3m§+m§],
525 = - [4riy — 61 + 6 + 215 — OiE, — 3rig, + 3 + 17
86 = 35 [ 4Mo — oMy + + 2m3 Mg + 3m; + g |,

1 / A Ao Ao
3g;=%[4m5—6m1—6m2+2 + S +3m5 +3 +m§],

1 A Ao
55 = %[4m0+6m1—6m2+2m3—9 + 30 —3m§+m§]. (40)

Next, the structure of the cascaded collision operator (K-ﬁ)a based on the discrete equilibrium central moments e,

given in Eq. (39) is determined as follows. For all non-conserved moments, i.e., for (m + n) > 2, we prescribe the relaxation
of the discrete central moments ﬁmn to their corresponding central moment equilibria Ag, at a relaxation time @, [37,39].
That is, >, (K- ﬁ)a(eax —u)M(eqy —uy)" = a)*(ﬁ,‘;fn — ﬁmn). For the transformed distribution function g, employed in the
cascaded LB scheme (Eq. (35)), during a time step &, its zeroth moment change needs to be 6], while its first order
moments are required to change by 6, and 6/, in order to consistently update the pressure field and the fluid momentum
via the interfacial and body forces. On the other hand, the respective moment changes due to the sources given earlier
are rﬁo/ =(1- ;a)o) Ghor ﬁ”t]/ = (1— Jw1) 67, and ﬁ12’ =(1- 2&)2) 64,- Hence, to meet the above physical constraints, we
effectively need to satisfy the following constraints: >, (K- h)a =% 2600 2K ~ﬁ)aeax = “51 61p and Y (K- h)aeay =
L2NG) 6{,- Based on these considerations for the lower order moment changes and the central moment relaxation for the

2
hlgher order moments under collision mentioned above, the expressions for the components of the moment change vector

= (ho, h1 hz, .. hs)T can be determined, which are summarized as follows:
~ wo P ~ i CF G 2F
ho=—r-20 hy==tE hp= 2
2 9 2 6 2 6
A 3 Al ~/
hs = 1 [ch + pCs (u + uy) (Mo + 7]02)] »
n 4 ~l 2
hy=—- [pCE(U§ —u3) = (y — noz)] ,
~ wS ~/
hs = 74 [PC Uxly — 7]11],
A W 2,2 2/ 2/ ey 2 51,2 2
he = 7 [w(P)(Cs + Uy + 751 — UyNpo — 2Ux1 1y + 3¢5 pU Uy — ”x”yp]

3 1 A
—uy <§h3 + §h4> — 2uyhs,
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N w7 ~ ~/ 2~/
hy =~ [w(p)(cs2 Uy + Tyy — 2Uy Ty — Unl]gy + 3CEpUATS — uxU§p]

3 14 A
—Uyx (Eh?, — §h4> — 2Llyh5,

hs = % [C?p + Y (0)(C +uB)(CE +u2) — Ty + 2(Uy Ty + UxiT12)
_(ufﬁ/zo + ui%z) - 4uxuyﬁ/11 + 4c§,0u,2(uf, - u,z(uf/p] —2h3 — %U§(3f13 + ha)
—%u§(3fl3 — hg) — 4uyuyhs — 2uyhe — 2uyhs. (41)
Finally, the post-collision distribution functions represented by fﬂ, where 8 =0,1,2,..., 8, can be obtained by expanding

(K~ﬁ)a in Eq. (35), which read as

Eo =80+ o — 4(hs — ip)| + 323,

=8 +[F10+fu —133+fz4+2(fz7—158)]+5g§,
5=+ [flo-i-flz —h3 _Fl4+2(fl6_f18)] +3g3,
§3=§3+[Bo—fz1 —ﬁ3+ﬁ4—2(ﬁ7+ﬁg)]+5g§,
T4=84+ [flo—flz —hs —ﬁ4—2(f16+f18)] +38g,.
§5=§5+[Flo+ﬁ1 +flz+2f13~l—fls—Fls—ﬁ7+ﬁg]—|—5g§,
§6=§6+[ﬁ0—f11 +f12+2f13—f15—fz6+l§7+fzg]+agg,
§7:§7+[B0—ﬁ1 —ﬁz+2ﬁ3+ﬁs+ﬁg+f17+ﬁg]+5g§,

Eg:?g‘i‘[flo-i-fl]—f12+2/:13—ﬁ5+ﬁ5—/:l7+ﬁs:|+5g§. (42)

This represents the collision step, and the streaming step then follows from rearranging Eq. (35) as g, (X, t + &;) =§a (x—
eydt,t), where « =0,1,2,---,8. Once the cascaded collision and streaming steps are performed, the two-phase flow fields,
i.e., the hydrodynamic pressure and the velocity can be obtained via the zeroth and first moments of the transformed
distribution function as

_ 1 _ 1
p=2ga+§Fp~u8t, pc?u:Zgaea—i—chFt(St. (43)
o o

Based on the Chapman-Enskog multiscale expansion (see e.g., [39]), it can be shown that the above cascaded LB scheme
represents the incompressible two-phase fluid motion, where the fluid’s shear viscosity w is related to the relaxation times
of the second order moments as

(1 1 .
mw=pv=pcs|——=18& Jj=45, (44)
wj 2

and the rest of the relaxation times, which can influence numerical stability, are set to unity in this work. It may be noted
that in the implementation of our cascaded LB formulation, all the spatial gradients of the phase field variable ¢ required
in the computation of the interfacial normal n = (nx,ny) and the surface tension force F; are obtained using a second order
isotropic finite difference scheme [56]. In addition, in view of Eq. (9), the spatial gradients of the density p are directly
expressed in terms of those of ¢. The solution procedure for the evolution of the phase field will be discussed next.

5. Cascaded LB method for solution of phase-field based interfacial dynamics

We will now construct another cascaded LB scheme for the solution of the conservative Allen-Cahn equation (ACE) given
in Eq. (1). Since the ACE is a convection-diffusion equation (CDE) with an additional interface sharpening flux term, our
solution approach is based on modifying the central moment cascaded approach that we developed recently for CDE in a
MRT formulation [45,48,50], where this additional term is included in the first order moment equilibria. This strategy is an
extension of the approach proposed in [33]. In this regard, we consider a D2Q9 lattice using the same orthogonal moment
basis vectors and the matrix given in Eqs. (31) and (32), respectively.

10
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Then, the collision and streaming steps of such a cascaded LB scheme for the evolution of the discrete distribution
function f, can be respectively represented as

fa@.t) = fa@®.t) + (K- B0, (452)
fa@.t+80) = fo (X — ea:, 0). (45b)

In order to design a cascaded collision operator to solve for the phase field variable ¢ described by a conservative Allen-
Cahn equation (ACE), we first define the following central moments and raw moments of the distribution function f, and
its equilibrium f27, respectively, as

<EZZI ) = Z ( }cgq )(e(xx - Ux)m(eoty - uy)n7 (46)

mn

(i) -2 (G )t 2

Then, we consider the continuous central moments of the equilibria

[o o0 ¢l
e = [ [ 196 - uome - uydide, (48)
—00 —00
by defining the equilibrium distribution function f° in analogy with the local Maxwell distribution function by replacing

the density with the phase field variable ¢: ¢ = f¢(¢,u, &) =

(E ") ] Here cq, is a free parameter, which

2c5,
will be related to the coefficient of diffusivity My later. Typlcally, we set Cs¢ = 3. The relaxation of the central moments to
the corresponding equilibria given above only models a diffusion process. In order to account for the counteracting phase
separation flux components —6ny and —6n, appearing in the conservative ACE (Eq. (1)), where n = (ny, ny) is the interface
normal, we modify the first order continuous central moments from being null to ﬁe "~ = My6ny and ﬁgﬂ"” = My6ny. Then,
by matching of the discrete and continuous central moments of the equ1llbr1a ie, Koh = Heq % for all the nine independent
moments supported by the lattice, we obtain the components of Xp, as

~eq ~eq ~req req _ 2 req req
Koo =@, Kjg=MgbOny, Ko =Mgbny, Kyg=Csp, Kpy= c5¢¢, k11 =0,

~eq O ~eq 0

Ky = Kip = kyy = Cs¢¢’

The cascaded collision operator can then be constructed by prescribing the relaxation of central moments of different orders
to their equilibria, i.e., Y, (K- 8)q (€ax — Ux)™ (€qy — Uy)" = a)f (R — Rmn), where only the zeroth moment being conserved

(Koo = /288 =¢), and a)f are the various relaxation times. The resulting changes in all the nine components of moments
under collision, i.e., § = (8o, 1, &2, - - - , 83) can be summarized as follows:
(2 [
w w
~ A 1 A ~ ) ~
g =0, g1=?[¢u><—’c{o]v gzz?[dmy—/((’)]],

o?
g3 = % [2c5¢,¢ (WF +1u3)p — (Rhg + R) + 2(uxkio + uyk(n)] + ux81 + uy g,

¢
&4= 44 [_(”5 - ”?/)‘75 — (R3g — Rop) + 2(uxkyg — uy/%(’n)] +3(Uxg1 —uy8),

p Cl)g) ol / A/ 3 A A
85 = T [—uxuy¢ — K11 + (Uxkg +uyK1o)] + i(ung +uyg1),
A wg 2 nl / / / 2,/ A
86 = e [—uxuyqb + Ky — Uykyg — 2UxK(q + 2UxlyKig + ux/cm] + 3uxuy gy
3, L3 .1, .
+ 5ux+1 gZ_EUyg3_§uyg4_2ng5»
¢
g, =21 —UUP P+ R — Ugkly — 2UyK! 1 + 2Uxlykhy + ulklo | + 3u +1
87 = 4 xUy K12 xKop yK11 xUyKoq yK10 oty &
. 3 ., 1 . A
+3uxlly 8o — - Uyg3 + - Ux8q — 2Uy g5,

2 2
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5 — a)g 4 o/ 2 ~/ ~/ 27 277 4 A/
88 = | Csp® — Kap  2(Uxkyy FUykyy) — (Uykog + UyKop) — AUxllyKyy

F2(uxttyR Yo + uzuyKYy) —uﬁuf@] + Quy + 3uyud) @1 + uy + 3ujuy) g,

3 9, 2.a 1 5 9. A A A
—(2+E(ux+uy))g3+E(ux—uy)g4—4uxuyg5—2uyg6—2uxg7,
¢

R N w

gs1=81+ ?1 [Mg6ny]|,

L oY

S2=8+ 5 [M¢9ny] R (49)

where the relaxation times of the first order moments a)f and a)g’ are related to the mobility parameter My in Eq. (1) via

My = c (%, — —> 8¢, j=1,2, and the rest of the relaxation times are set to unity. Finally, the post-collision distribution
J
function fa can be explicitly written after expanding (K - )y in Eq. (45a) as

?0=f0+[§0—4(§3—§s)],
=f1+[80+ & — 83+ 8a+2(8&7 — &)],
fz+[go+gz—g3—g4+2(ge—gs)],
=f3+[8 — &1 — &3+ 84— 287+ 89)].
f4—f4+[0 gz—ga—g4—2(g6+gs)]
=fs+[8o+81 +8& +283+85 — & — & + &),
fe—f6+[o &1+ 8 +283— 8 — &+ &7+ 8s].
f7—f7+[g0—g1 82 +283+ 85+ 8 + &7 + &3],
fs=f8+[go+g1—§2+2§3—§5+§6—§7+§8]- (50)

This is followed by performing the streaming step shown in Eq. (45b), which then updates the phase field variable ¢ via
taking the zeroth moment of f, as

¢$=> fa: (51)

We note here that recently Ref. [57] presented a 3D LB scheme for multiphase flows using cumulants in the collision
step. In the following, we will compare and contrast our approach to this recent work. First, while both the present work
and Ref. [57] are generally based on computing the velocity and pressure fields in multiphase flows as primary variables,
there are some differences in how they are obtained. In Ref. [57], the pressure field is obtained from a discretization
of a separate pressure evolution equation that is solely related to the divergence of the velocity field. Here, it may be
noted that the pressure evolution equation used omits the convective term u - Vp (as done in some other previous LB
models for multiphase flow on which Ref. [57] is based, by invoking a small Mach number approximation), while a recent
study [58] highlighted the importance of this term in accurately recovering the various aspects of the hydrodynamic fields,
especially the velocity divergence (e.g., see Fig. 2 in Ref. [58]), at high Reynolds numbers. As emphasized in Ref. [58],
since the pressure field is mainly influenced by its transport by the velocity of the fluid, this term should be retained
and not neglected; the pressure thus computed under the above approximation is then used to update the velocity field
in Ref. [57]; in addition, the velocity field update also involves other counteracting terms related to density gradients and
viscosity to correctly account for the viscous stress tensor. Such approximations and steps can also unnecessarily introduce
additional non-Galilean invariant errors. Since one of the main features of the cumulant or central moment LB algorithms is
to naturally avoid them, such a procedure for calculating the hydrodynamics does not seem to be fully compatible with the
design philosophy and scope of the underlying collision step. By contrast, in our formulation, the pressure field is directly
updated based on the zeroth moment of the distribution function itself, without invoking an additional approximation
to derive a pressure evolution equation from which to recover this variable. As such, the continuity equation emerging
from the MCBE (Eq. (14)) is based on the pressure field and it retains this convective term u - Vp, i.e., by taking the
zeroth moment of MCBE (Eq. (14)) and using the conserved moment constraints given in Eq. (17), it readily follows that
3—‘; +u-Vp+ CEV -u =0 and the pressure field computed by our LB scheme satisfies this equation in a consistent manner;
also, the viscous stress tensor is naturally represented as part of the collision step via relaxation and does not involve an
extra correction in terms of the body force to update the velocity field in the present formulation. While we have derived
our formulation based on matching principles using central moments in 2D, they can also be extended to using cumulants

12
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and in 3D. Second, in Ref. [57], the solution procedure for the interface tracking is carried out in a SRT formulation; by
contrast, in this work, we consider a unified formulation, where the interface tracking is also performed using a LB scheme
based on central moments. Third, in Ref. [57], the main emphasis and target application is in simulating violent multiphase
flows, and the stability in such cases is achieved by numerical treatments involving filtering procedures and the results seem
impressive; on the other hand, in this present work, our ultimate target application (see Sec. 6.7) is different and is related
to simulating surfactant-laden multiphase flows, which involves unique class of Marangoni flows arising from tangential
surface tension gradients due to nonuniform surfactant concentration. As discussed at the end of Sec. 6.7, there are certain
limitations with the existing LB approaches in this regard, and the present formulation provides a consistent approach
to handle such multiphase flows involving locally varying surface tension effects in an accurate and robust manner. Also,
in our work in Sec. 7, we will make a systematic and direct comparison between different collision models in terms of
numerical stability in achieving relatively low viscosities of fluids at different density ratios in the simulation of multiphase
flows.

6. Results and discussion

We will now present a validation study of our new cascaded LB approach developed for incompressible two-phase flows
for a variety of benchmark problems with surface tension effects. Since the LB formulation for the interface capturing based
on the conservative ACE has been analyzed in Ref. [33], we will limit the validation of our implementation in this regard for
one benchmark problem below (Sec. 6.1). Instead, most of our focus in what follows will be on investigating the cascaded
LB methods presented in the previous two sections for the coupled solution of the two-phase fluid motion with interfacial
dynamics, especially at high density ratios and under different interfacial flow configurations.

6.1. Evolution of a circular interface in imposed shear flow

We will first assess the ability of the cascaded LB scheme for the solution of the conservative ACE (see Sec. 5) to capture
the kinematical effects of the interfacial motion under deformation and rotational effects with good fidelity. In this regard,
we consider a circular interface subjected to an imposed shear flow given by the following velocity field in a periodic square
domain of size Lo [59]

ux(x, y) = —Uom cos [ (x/Lo — 1/2)]sin [ (y/Lo — 1/2)],
uy(x,y)=Upm sin[m (x/Lo — 1/2)]cos[m (y/Lo — 1/2)],

where Uy is the velocity scale. In our simulations, we take the radius of the circular interface to be R = Ly/5, whose center
is initially located at (x¢, yc) = (Lo/2,3Lp/10) in a square computational domain resolved with Ly = 200. Moreover, the
numerical parameters of the conservative ACE, i.e., the width W and the mobility My are set as follows: W =3 and latter
is obtained by considering a Peclet number Pe = UgW /Mgy = 60. To guide interface undergoing deformation and rotation
to return to its original position at T = 2Ty, where Ty = Lo/Uy, the velocity field given above is reversed at T = Ty. Fig. 1
presents snapshots of the interface, identified by the contours of (¢4 + ¢p)/2 at the instants T =0,0.5Ts, T¢, 1.5Tf, 2Ty. It
can be seen that the interface undergoes advection with complex shape changes under shear, and the cascaded LB method
faithfully recovers the original circular shape with good accuracy after completing a cycle.

6.2. Laplace-Young relation of a static drop

We will now make a quantitative verification of the ability of the coupled cascaded LB formulations in the computation
of the various forces and their balances in a static drop immersed in a fluid medium by considering high density ratios.
In this regard, according to the analytical predictions of the Laplace-Young's relation, for a 2D drop at rest, the pressure
difference between the drop and the ambient fluid (AP) is related to the surface tension o and its curvature 1/R, where
R is the radius, via AP = o /R, which we will use for comparison. In the simulations, we consider a drop of density pa
surrounded by an ambient fluid of density pp and placed in the center of a periodic square domain resolved by 200 x 200
grid nodes. We first performed simulations with a drop of radius R = 30 by considering a surface tension o =1 x 1073
at various density ratios of ps/pp = 10,100, 1000 till they reached equilibrium. Fig. 2 shows the surface contours of the
pressure differences between the drop and the ambient fluid. It is evident that the pressure distribution within the drop
is smooth and uniform and the jump across the interface is sharp and independent of the density ratio as expected. The
cascaded LB method is seen to be robust even at relatively high density contrasts. Then, Fig. 3 shows a comparison between
the computed pressure differences between the drop and the ambient fluid as a function of its curvature for three different
values of the surface tension & =1 x 10™%,1 x 1073, and 5 x 103 at a density ratio of 1000 against the predictions given
by the Laplace-Young relation. It verifies the expected linear dependence between AP and 1/R and the computed results
are found to be in good quantitative agreement with the analytical solution.
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Fig. 1. Snapshots of the interface under an imposed shear flow with an initially circular shape computed by the cascaded LB method.
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Fig. 2. Surface contours of the pressure distribution of a single static drop of radius R = 30 at different density ratios pa/pg with surface tension o =
1 x 1073 in a periodic square domain.

6.3. Rayleigh-Taylor instability

Next, we will investigate the cascaded LB methods for simulation of the classical Rayleigh-Taylor (R-T) instability. Such
a gravitational acceleration-driven instability arises when a heavier fluid of density pa is placed on top of a lighter fluid
of density pp in the presence of gravity, and the interface between the two fluids undergoes complex unsteady motion.
A mesh size of L x 4L, where L = 201, is employed, and periodic boundary conditions along the lateral vertical sides
and no-slip boundary conditions at the top and bottom boundaries are imposed. The initial perturbation at the interface
between the two fluids to initiate instability is described by a cosinusoidal function given by yo = 2L + 0.1Lcos(2wx/L),
where the origin of the coordinate system is fixed at the left bottom corner of the computational domain. The interfacial
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Fig. 3. Comparison of the computed pressure differences (symbols) obtained using the cascaded LB method against the analytical predictions using the
Laplace-Young relation for various values of the drop curvature 1/R with surface tension o =1 x 1074,1 x 10~3 and 5 x 10~3.

instability is characterized by the Reynolds number Re = p4+/gLL/u based on a velocity scale U, = /gL, and the Atwood
number At = (pa — pg)/(pa + pp). It may be noted that in this case, the penetration distance of the heavy fluid into the
light fluid is a function of the Atwood number At times the product of the gravitational acceleration and square of time
evolution. Thus, as its dynamics is governed by a scale based on density differences, the results of this specific problem
are generally reported in terms of the corresponding dimensionless group, which is the Atwood number. Here, w is the
dynamic viscosity and g is the acceleration due to gravity. The dimensionless timescale T is then defined based on U, and
LasT= L/(UC\/E). In addition, for interface capturing, we consider W =5, and the Peclet number Pe = U:L/My = 3000.

By fixing At = 0.5, we performed simulations for two cases of the Reynolds number, i.e., Re = 256 and 3000. Fig. 4
presents the evolution of the interface under flow instability at these two Reynolds numbers. In general, the spike formation
by the heavier fluid moving downward is accompanied by a bubble of the lighter fluid rising upwards. The interface between
the fluids undergoes complex shape changes leading to a roll-up of its tails under the dynamical effects of the two moving
fluids. Moreover, at higher Re, when the inertial effects predominate over the viscous effects, small scale flow structures
emerge. The snapshots of the simulated results of the R-T instability at various time instants are in overall agreement with
the prior numerical results at Re = 256 (e.g., [17,60]) and Re = 3000 (e.g., [21,61]). Moreover, Fig. 5 shows quantitative
comparisons of the computed values of the non-dimensional locations of the spike and bubble fronts scaled by L at both Re
against prior numerical reference data. It can be that the numerical results obtained using the cascaded LB formulations for
time evolution of the interface locations evaluated at the center (spike) and at the edges (bubble) are in good quantitative
agreement with the respective reference results at both Re = 256 and Re = 3000.

6.4. Falling drop under gravity

We will now consider another unsteady two-phase flow problem involving a drop falling under a gravitational field. In
such a case, during the descent of the drop, it undergoes significant shape changes due to deformation, which arises from a
complex interplay between the gravity force, surface tension force and the viscous force. A drop of diameter D = 30 with a
density pa is placed initially at a location of (75,300) in a rectangular domain that is divided into 151 x 451 lattice nodes
(with the origin of the coordinate system being located at the left bottom corner), and filled with a lighter ambient fluid of
density pg. Free-slip boundary conditions are imposed on the top and bottom boundaries and lateral vertical sides are taken
to be periodic. For this computational set up, the gravitational force is applied everywhere by setting Fexs = —(0 — pB)gj.
The drop dynamics is characterized by the following non-dimensional numbers: Eotvos number Eo = g(pa — pg)D?/o
representing the gravity force relative to the surface tension and the Ohnesorge number Oh = 4 /+/paDo representing the
viscous effects. Following Ref. [62], we fix pa/pp =5, Eo =43 and study the influence of Oh by considering Oh =0.3,0.7
and 1.0, with v4 = vg = v. These three values of Oh are obtained by setting v = 0.1,0.2333 and 0.3333, respectively. For
reporting results, the instantaneous time ¢ is non-dimensionalized as T =t/,/D/g.

Fig. 6 presents the snapshots of the evolution of the interface of the falling drop for the above three cases of Oh. In
general, it can be seen that as Oh increases, the viscous force increases relative to the surface tension force and hence the
drop deformation is reduced. Thus, at a large value of Oh = 1.0, the drop undergoes relative small deformation attaining a
steady state, while at Oh = 0.7, it is stretched more along the horizontal direction by the surface tension force after initially
taking an ellipsoidal shape. On the other hand, at a still lower Oh = 0.3, the drop becomes considerably slender along the
sides, while exhibiting bag-like shape due to shear under gravity in the presence of the prevailing surface tension force with
smaller viscous force effects at later stages. These computed drop shape variations at different times with Oh are consistent
with the findings reported in Ref. [62].
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Fig. 4. Snapshots of simulation of Rayleigh-Taylor instability at At =0.5 and (a) Re =256 and (b) Re = 3000.

6.5. Buoyancy-driven rising bubble

Next, we examine the ability of our cascaded LB formulations to simulate a well-defined two-phase flow problem in-
volving a moving dispersed phase in a continuous phase with high density contrasts than those considered in the previous
two cases. In this regard, we consider a bubble of diameter D and density pp rising in an ambient fluid of density pa, with
pa/pp being 1000, by buoyancy forces under various parametric conditions. This represents the buoyant motion of an air
bubble in water and is of practical interest. Our goal is to test the robustness of the cascaded LB approach to capture the
various shape changes the bubble undergoes due to the balance between the different competing forces as well as simulate
the time history of the bubble path with quantitative accuracy.

The computational configuration consists of a rectangular domain with a grid resolution of 161 x 481 in which a bubble
of diameter resolved with 64 grid nodes is initially centered at a location (40, 120) (with the coordinate system’s origin
being situated at the bottom left corner of the domain). Free slip boundary conditions are imposed on the two vertical sides
and the no-slip conditions are considered on the top and bottom boundaries. This set up corresponds to that discussed in
Refs. [63,64]. The bubble is set in motion by applying a body force given by Fexr = —(0 — pa)gj. The characteristic scales of
this two-phase flow problem are: the length scale L = D, the velocity scale Ug = /gD, which represents the gravitational
velocity, and the time scale T = L/U. Based on these and the various competing forces (i.e., buoyancy, viscous and surface
tension), the non-dimensional parameters of this two-phase flow problem are the Reynolds number Re = paUgD/pa and
the Eotvos number Eo = pAUéD/a, along with the ratios of the fluid properties pa/pp and w4/mp. The non-dimensional
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Fig. 5. Time evolution of the positions of the bubble front and the spike tip for Rayleigh-Taylor instability at At =0.5 and (a) Re =256 and (b) Re = 3000.
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Fig. 6. Evolution of a deforming drop falling under gravity for various values of the Ohnesorge number Oh of 0.3, 0.7 and 1.0 at a fixed Eotvos number
Eo =43 shown at time instants T =0, 2.04, 3.05,4.07,5.09, 6.11, 7.13, 8.14, and 9.16 (from top to bottom).

time for reporting time histories is represented by t* =t/T. Depending on the magnitudes of these dimensionless groups,
the bubble undergoes complex interfacial shape changes, attaining either spherical-cap, dimpled ellipsoidal-cap or skirted
configurations, among various possibilities [65].

By setting pa/ppp = 1000 and w4 /mp = 100 at a fixed Reynolds number Re = 35, we performed buoyancy-driven bubble
rise simulations at various values of the Eotvos numbers Eo = 10,50 and 125 (as in Refs. [64,60]) using the cascaded LB
methods. Fig. 7 presents the computed evolution of the interface of the rising bubble at these three values of Eo. When the
role of the surface tension force is relatively significant in comparison with the other forces, as when the Eotvos number is
low (Eo = 10), the bubble undergoes smaller deformation that is initiated at its rear end, which then results in a flattening
of that side as the bubble rises. For the intermediate case (Eo = 35), the driving buoyancy force predominates the surface
tension under the prevailing viscous force, resulting in a much larger deformation by stretching that leads to the formation
of tails that elongates at later times. At even higher Eo = 125, this process is more pronounced and the skirted shape
accompanied by the pair of tails is further elongated and straightened. These computed shape variations with different
Eo at various time are very similar with the results based on other methods [64,60]. Furthermore, in order to make a
quantitative comparison, we then compute the vertical coordinate of the center of mass of the rising bubble as it undergoes
shape changes using y. = be ydx/ be 1dx, where Q;, represents the region occupied by the bubble, for the case Re =35
and Eo = 125. Fig. 8 shows the non-dimensional center of mass as a function of the non-dimensional time computed using
the cascaded LB schemes against the reference numerical results from Ref. [60]. It is evident that our approach is in good
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Fig. 7. Evolution of the interface of a buoyancy-driven rising bubble at Re =35 and (a) Eo =10, (b) Eo =50, (c) Eo = 125.

quantitative agreement with the available numerical data for the temporal evolution of the bubble paths, thereby verifying
its accuracy and robustness for this high density ratio two-phase flow problem.

6.6. Impact of a drop on a thin liquid layer

As another case study, we consider an inertia-driven two-phase flow problem at a high density ratio, i.e., the impact
of a circular drop on a thin layer of fluid and the study of its subsequent outcomes. Such impact dynamics of drops
leads to a rich variety of outcomes depending on the characteristic parameters representing the ratios of various attendant

forces [66]. The computational set up considered for this example is described in Ref. [67]. Both the drop and the thin layer
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are considered to be of the same liquid of density o4 and the ambient fluid is of density pg. We consider a high density
ratio pa/pp = 1000 to represent the impact of a water drop surrounded by air. The computational domain is resolved with
501 x 1501 grid nodes, in which the liquid layer is discretized by 150 grid nodes, while the drop radius R is represented by
100 mesh nodes. The interface thickness W is set to be 5. We impose periodic conditions on the two vertical boundaries,
no-slip boundary condition on the bottom wall, and free-slip condition on the top boundary. The drop is set into downward
motion by setting it with an initial impact velocity U = 0.05. The dynamics and the impact outcomes of this problem is
determined by the following non-dimensional parameters: the Reynolds number Re = 2p4,UR/1u4 and the Weber number
We = 2p4U%R/o, which represents the ratio of the inertial force to the surface tension force, in addition to the ratios of
the fluid properties, and the timescale is given as 2R/U. In our cascaded LB simulations, with the density ratio given above,
we set (a/mp =10, the Weber number is fixed at We = 8000, and consider two different values of the Reynolds numbers:
Re =20 and Re = 100.

Fig. 9 presents the evolutions of interfaces at these two Reynolds numbers upon drop impact. At the lower Re = 20,
since the kinetic energy of the drop impact is relatively low, it merges with the liquid film, which is accompanied by the
interfacial wave moving outwards. This results in the deposition of the drop as the outcome. On the other hand, as the Re
is increased to 100, upon drop impact, the interface initially spreads outcomes, and then with the higher attendant kinetic
energy, it leads an ejecta sheet formation. This, in turn, spreads outwards by evolving into a splashing lamella that curls at
its edges due to the competing surface tension and viscous frictional effects, leading to the splashing as the final outcome.
These computed behaviors are consistent with other recent numerical results (e.g., [67]), which demonstrate the ability of
the cascaded LB schemes to handle inertia-driven two-phase flows at high density ratios.

6.7. Tangential surface tension gradient (Marangoni stress) effect on drop migration

Variable surface tension effects arise in certain unique class of two-phase flows such as those involving thermo-capillary
convection and surfactant-laden multiphase flows. For example, surfactants play an important role in numerous two-fluid
dispersed systems where they strongly modulate phenomena associated with droplets and bubbles by preferentially adsorb-
ing on the interfaces with nonuniform distribution, which then lower the local surface tension and can induce additional
fluid motion around interfaces via the tangential surface tension gradients or Marangoni stresses. Thus, the expression for
the surface tension force Fg given earlier in Eq. (8) needs to be modified to account for surfactant effects. In this regard,
we will adopt the geometric formulation presented in [68]. The smoothed surface tension formulation for surfactant-laden
interfacial flows with a local surfactant concentration ¥ can be written as

Fs=—R(WIV* (V-myn+ |VOPPVk(¥) , (52)

Capillary force Marangoni force

where V; is the surface gradient operator given by V; =V —n(n- V) or in index notation ds; = (§;; — njn;)d;, where
i,j € (x,y). The first term on the RHS of Eq. (52) represents the capillary force, where the lowering of the local surface
tension by the presence of surfactant is accounted for through the dependence of the surface tension parameter ¥ on v, i.e.,
K () (see below for details). The second term represents the effects of the tangential gradients of the surface tension, or the
Marangoni force, arising from the non-uniform concentration of the surfactant on the interface. The Cartesian components
of the surface tension force for surfactant-laden interfaces can then be expressed as

Fox = =RV -mone -+ [V [ (1 = nd)ae (1) — nnydy e (1) | (53a)

19



F Hajabdollahi, K.N. Premnath and S.W.,J. Welch Journal of Computational Physics 425 (2021) 109893

-_— 500
0 L Jl 0 =
0 500 1000 1500 0 200 1000 1500
500 500
P aa ! Ve \
() I\
o — 0
0 500 1000 1500 0 500 1000 1500
— 500
S, 7N
e SR
0 0
0 500 1000 1500 0 500 1000 1500
500 500
— T N
ol N~
5 ‘ ‘
0 500 1000 1500 0
0 500 1000 1500
500 500
5 N P 5
0 500 1000 1500 0 500 1000 1500
(a) (b)

Fig. 9. Evolution of the splashing of a drop on a thin film at We =8000 and pa/pg = 1000 for (a) Re = 20, (b) Re = 100.

Fsy = =R (IVHA(Y -mny + [V [ (1 =)ok (1) = nanydue (1) (53b)

where ny and ny are the components of the interfacial unit normal n = (nx,ny) = V¢/|V¢|. Such a geometric strategy
enhances flexibility as the effect of surfactant on the surface tension force is naturally tunable with an appropriate choice of
the interfacial equation of the state. In this work, the interface equation of state to represent the influence of the surfactant
on (lowering) the local surface tension is given by the following non-linear dependence based on the Langmuir isotherm,
i.e, o(Y)=o00[1+ BIn(1 — )], or, equivalently

k() =ko[1+BIn(1—y)], (54)

where g is the Gibbs elasticity number that parameterizes the sensitivity of the surface tension to the local surfactant
concentration, and op and kg correspond to those for the clean interfaces, i.e., without the presence of surfactant.

In general, the above formulation would require computing the evolution of the surfactant concentration . This can
be accomplished by means of a phase-field model for surfactant dynamics and an additional cascaded LB scheme for its
solution procedure [52]. However, here the focus will be on validating the implementation of the surface tension force,
i.e,, Egs. (53a) and (53b), and in particular the Marangoni force, in our formulation for an imposed surfactant concentration
profile for which an analytical solution for the motion of the dispersed phase is available for making a comparison. In
this regard, we consider the classical Young's problem of thermocapillary migration of a drop [69,70] and recast into the
equivalent surfactant concentration gradient driven problem. According to this problem, a neutrally-buoyant drop of fluid A
with diameter D solely under an imposed linear surfactant concentration profile ¢ (y) =a+ Gry (i.e., Gr being the constant
gradient of the surfactant concentration field and y is the vertical coordinate) will self-propel in the ambient fluid B and

its terminal migration velocity under the assumption of creeping flow has the following analytical solution:
orGrD
yp—__orerd
6up +9ua
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Fig. 10. Comparison of computed drop migration velocity under imposed constant surfactant concentration gradient in the simulation of Young’s problem
(solid lines) with the analytical solution for the terminal velocity (dashed lines) for surface tension sensitivities 098 = 0.0048, 0p8 = 0.0146 and oo =
0.0244.
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Fig. 11. Snapshots of the evolution of a migrating drop under imposed constant surfactant concentration gradient in the simulation of Young's problem for
surface tension sensitivities 098 = 0.0048, 0p8 = 0.0146 and oo = 0.0244.

where or is the sensitivity of the surface tension with the surfactant concentration, which, according to the linearized form
of the Langmuir’s isotherm for dilute surfactant concentration, can be expressed as or = do /9y = —0pB. s and up are
the respective dynamic viscosities.

We consider a drop with diameter D = 30 initially located near the bottom of a rectangular domain resolved with
51 x 201 grid nodes. Periodic boundary conditions along the two vertical sides and no-slip boundary conditions along the
two horizontal sides are imposed. By using a density ratio of unity, we consider the same dynamic viscosities in both the
fluids by setting the kinematic viscosities as v4 = vg = 0.05. Furthermore, we impose a linear variation of the surfactant
concentration along the vertical direction by setting its slope Gr = 9.95 x 10~>. Fig. 10 shows the computed the drop
migration velocities for three different surface tension sensitivities oy = 0.0048, o8 = 0.0146 and oy = 0.0244 and their
comparisons against the available analytical solution for the terminal velocity. It is evident that after the initial transients,
the computed migration velocities in the long time limit are in good agreement with the analytical terminal velocity. In
addition, some snapshots of the evolution of a migrating drop for all the above three cases are presented in Fig. 11. As it can
be seen, the drop self-propels under non-uniform surface tension (i.e., Marangoni force) arising due to an imposed constant
concentration gradient without any smearing effects to the shape of the drop. Thus, the above numerical simulation results
validate our implementation for handling variable surface tension effects. A more general case of the coupled evolution of
the surfactant concentration field, two-fluid motion and interface advection via unified cascaded LB formulations [52], and
its application for studying the physics of surfactant-laden two-fluid systems are subjects of future investigations.

It may be noted that existing approaches for solving surfactant-laden multiphase flows in LBM are generally based on
extensions of the pseudo-potential model (see e.g., [71-73]), and inherit the limitations of the underlying model. These
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Fig. 12. Evolution of the interface of an oscillating liquid cylinder starting from an initial elliptic shape configuration with semi-major axis a =25 and
semi-minor axis b = 15; surface tension parameter ¥ = 0.1, kinematic viscosity v4 = vg =0.01 and density ratio ps/pp = 100.

include challenges in independently tuning the magnitude of surface tension effects from phase segregation effects and the
models being stable at low or moderate density ratios. Moreover, they are not flexible in specifying the desired interface
equation of state among many possibilities, such as the Langmuir adsorption to parametrize the effect of surfactant con-
centration on the local surface tension, as they are emergent properties in such models. On the other hand, our present
approach can avoid such issues with its ability to independently tune interfacial equation of state for surfactant-laden flows
with consistent formulation for the Marangoni stresses and can work at high density ratios. Also, a recent LB study [73] in
its conclusion has emphasized the need to ascertain whether the previous models to represent surfactant-laden emulsions
can accurately simulate Marangoni flows. Here, we have shown that our approach can indeed accurately represent such
unique class of flows driven by tangential gradients in surface tension via demonstrating it for the motion of the motion
of a self-propelling drop under non-uniform surfactant distribution, which represents a prototypical example of interest to
many areas of applications (see e.g., [74,75]).

7. Comparative study of numerical stability of different collision models

Generally, it is known that the LB methods can be susceptible to numerical instabilities as the kinematic viscosity of the
fluid being simulated is significantly lowered, which is strongly influenced by the type of collision model used. We will now
assess the robustness of our cascaded LB formulation in achieving relatively low fluid kinematic viscosities, when compared
to a single relaxation time (SRT) formulation for a two-fluid case study involving capillary oscillations of a liquid cylinder
in another ambient lighter fluid. Prior studies have considered such a configuration in assessing the numerical stability of
the LB schemes for two-phase flows [55,76]. The SRT formulation for two-phase flows used for comparison is based on one
SRT LB solver obtained as a discretization of the MCBE for two-phase fluid motion and another SRT LB scheme for capturing
interfacial dynamics represented by the conservative ACE. We consider a periodic domain of resolution 200 x 200 in which
a liquid cylinder of density p4 is placed in another lighter ambient fluid of density pp, where v4 = vp for simplicity,
undergoes free oscillations. The oscillations are initiated from an initially elliptic configuration of the cylinder (semi-major
axis a = 25 and semi-minor axis b = 15) via the capillary effects on its interface. Fig. 12 shows a typical example of the
evolution of the interface of the liquid cylinder undergoing free oscillations. Now, employing each of the two collision
models, for the above initial geometric configuration of the liquid cylinder with surface tension parameter ¥ = 0.01, and for
four sets of values of the density ratios ps/pp = 500, 600,800 and 900, the kinematic viscosity of the fluids v4 = vg are
gradually reduced till the simulations becomes unstable. Fig. 13 reports the ratios of the minimum achievable viscosities
for SRT and cascaded LB formulations that allow stable simulations for the above values of density ratios. It is evident
that dramatic improvements in numerical stability, by over one or two orders of magnitude, is achieved by the cascaded
LB schemes when compared to the SRT LB schemes for this two-fluid case study. For example, even at high density ratio
of 900, the lowest viscosity achieved by the cascaded LB schemes is smaller by a factor of over 55, when compared to
that attained using the SRT LB schemes, and such factors are significantly higher at more moderate density ratios. These
numerical stability improvements associated with using the cascaded LB formulations for two-phase flow simulations are
consistent with the findings of previous studies on applications related to single-phase flows (e.g., [41,50,77]). In terms
of computational cost comparisons, the additional overhead with the use of the cascaded LB methods is about 20% when
compared to the corresponding SRT LB formulation for multiphase flows. Thus, the dramatic improvements in numerical
stability achieved outweighs the moderate additional computational effort needed. As a result, overall, the cascaded LB
formulations based on central moments are robust and efficient for simulating multiphase flows at relatively low viscosities.
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Fig. 13. Comparison of the ratios of the minimum achievable viscosities for single relaxation time (SRT) and cascaded LB formulations allowing numerically
stable simulations of an oscillating liquid cylinder with surface tension parameter £ = 0.01 at different density ratios.

8. Summary and conclusions

In this paper, we discussed new cascaded LB formulations based on central moments and multiple relaxation times for
computation of two-phase, incompressible flows at high density ratios. Using the modified continuous Boltzmann equation
(MCBE) for two-phase flows, which involves a kinetic transformation to handle numerical stiffness at high density gradients,
as a starting point, a cascaded LB scheme for the solution of the incompressible two-phase fluid motion directly in terms
of the pressure and velocity fields is constructed. This involves the representation of the collision step via the relaxation of
various central moments to their equilibria that are obtained by matching the corresponding continuous central moments
of the modified Maxwell distribution expressed in terms of the pressure field. In addition, a consistent forcing scheme to
handle the surface tension and body forces, as well as the net gradient pressure force, whose effects on the changes in
various moments are different, is constructed. In order to capture the interfacial dynamics, another cascaded LB method
that solves the phase field based conservative Allen-Cahn equation (ACE), which evolves interfaces by advection due to
fluid motion under competing effects of diffusion and sharpening terms, is developed. This is achieved by a modification
of first order central moments of the corresponding equilibrium distribution function via the addition of the interface
sharpening term. Simulations of a variety of benchmark problems, including the equilibrium of a static drop, Rayleigh-Taylor
instability, falling drop under gravity, buoyancy-driven rising bubble, drop impact on a thin liquid layer, validated the ability
of the cascaded LB schemes to reproduce complex two-phase interfacial flows at high density ratios with good accuracy. In
addition, we showed that our formulation can be extended to handle variable surface tension effects by its validation for
the simulation of the migration of neutrally buoyant drop under tangential surface tension gradients. Furthermore, dramatic
improvements in numerical stability in reaching relatively low viscosities in two-phase systems with the use of cascaded
LB approach when compared to a single relaxation time formulation is demonstrated. Thus, the cascaded LB methods for
coupled solution of the fluid motion and interfacial dynamics, based on the MCBE and conservative ACE, are accurate and
robust for two-phase flow simulations with high contrasts in fluid properties and with tunable surface tension effects. Future
work includes an extension of this formulation to three-dimensions for simulation of surfactant-laden multiphase flows.
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