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ABSTRACT

Simulating inhomogeneous flows with different characteristic scales in different coordinate directions using the collide-and-stream based
lattice Boltzmann methods (LBMs) can be accomplished efficiently using rectangular lattice grids. We develop and investigate a new
rectangular central moment LBM based on a non-orthogonal moment basis and involving multiple relaxation times. The equilibria to which
the central moments relax under collision in this approach are obtained from matching with those corresponding to the continuous Maxwell
distribution. A Chapman-Enskog analysis is performed to derive the correction terms to the second order moment equilibria involving the
grid aspect ratio and velocity gradients that restore the isotropy of the viscous stress tensor and eliminate the non-Galilean invariant cubic
velocity terms in the resulting hydrodynamical equations. A special case of this rectangular formulation involving the raw moments is also
constructed. The resulting schemes represent a considerable simplification, especially for the transformation matrices and isotropy correc-
tions, and improvement over the existing lattice Boltzmann schemes based on raw moments on rectangular lattice grids that use orthogonal
moment basis. Numerical validation study of both the proposed rectangular LBMs for a variety of benchmark flows is performed, which
shows good accuracy at various grid aspect ratios. The ability of our proposed schemes to simulate flows at relatively low grid aspect ratios
and higher Reynolds numbers than considered in prior approaches is demonstrated. Furthermore, simulations reveal the superior stability
characteristics of the rectangular central moment LBM over that based on raw moments in handling shear flows at lower viscosities and/or
higher characteristic velocities. In addition, computational advantages of using our rectangular LB formulation in lieu of that based on the
square lattice are shown.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0049231

I. INTRODUCTION

The lattice Boltzmann (LB) method' ™ has been receiving
remarkable interest as a promising computational fluid dynamics
(CFD) technique. It is a kinetic method that evolves the distribution
functions due to the effects of collisions, which are often represented
by the relaxation model under certain symmetry, isotropy, and conser-
vation constraints (e.g., Refs. 5-8) and due to their streaming along
the particle characteristic directions. The features and applications of
this mesoscopic computational technique have been discussed in vari-
ous reviews”” '* and monographs.” " For simulating inhomoge-
neous fluid motion, such as those involving boundary layer flows with
different scales for variations in different coordinate directions, or
flows in domains where the spatial extent of one of the directions is
considerably shorter than the others, i.e., characterized by geometric

anisotropy such as in sheet like porous media, it is highly desirable to
use nonuniform grids for enabling efficient simulations. However, the
symmetry constraints and the coupling of the particle velocity and
coordinate space discretizations restrict the use of uniform grids, e.g.,
square lattice in two-dimensions (2D). To address this issue, broadly,
the following two types of modifications to the LBM have been consid-
ered based on (a) the decoupling of the discretizations of the velocity
space and the spatial coordinate space and (b) the rectangular lattice
grid to naturally accommodate the inhomogeneity in flows. In the first
category, the resulting LBM does not maintain the lock-step advection
during the streaming step and either involves interpolations (e.g., Ref.
16) or the use of traditional discretizations such as finite volume or
finite element schemes, which leads to a more complicated approach
with attendant additional overhead (e.g., Refs. 17-20) The second
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category maintains the perfect-shift advection during the streaming
step that incurs relatively low numerical dissipation, an important
numerical advantage, and is the focus of this work. However, to
recover the inherent isotropy of the viscous stress tensor in LB simula-
tions using such rectangular lattices require making certain modifica-
tions to the algorithm. Thus, the prior LB schemes on rectangular
lattice grids, which was inspired from an early study,”’ can be further
classified according to the following modifications made: (i) designing
the collision step with sufficient degrees of freedom and parametriza-
tion of the relaxation rates to maintain isotropy,22 ** (ii) extend the
lattice with additional particle velocities” (iii) the use of extended
moment equilibria to correct for isotropy,”**” and (iv) use of coordi-
nate and velocity transformations and counteracting source terms.”*
Categorizing from a different consideration, such rectangular lattice-
based LB algorithms use either the single relaxation time (SRT) colli-
sion model’*>?** or the multiple relaxation time (MRT) collision
operator,zz’“‘z’— involving the relaxation of the distribution functions
or the raw moments, respectively.

Recognizing that the earlier SRT scheme on a rhombic lattice
does not have the additional degrees of freedom,”" Ref. 25 proposed
another rectangular SRT-LBM using additional particle velocities
whose equilibria, involving their weights and scaling factors, obtained
via solving a quadrature problem, and validated for the Taylor-Green
vortex flow using moderate grid aspect ratios (defined in Sec. II). Note
that using additional particle velocities adds to the computational
overhead and may complicate the implementation of the boundary
conditions. A different rectangular SRT-LB scheme with extended
equilibrium distribution functions was proposed in Ref. 26, which was,
however, found to be stable only if the grid aspect ratio is above 0.3.
Recently, Ref. 28 adopted a different approach by introducing artificial
source terms obtained via a coordinate/velocity transformation, which
was found to be severely limited to using the grid aspect ratio is larger
than 0.5. Moreover, none of the above rectangular LB formulations are
flexible enough to adjust the shear and bulk viscosities independently.

On the other hand, Ref. 22 presented the first MRT-LB formula-
tion on a two-dimensional nine velocities (D2Q9) rectangular lattice
grid by introducing coupling between various relaxation parameters
and the grid aspect ratio via a linear stability analysis. However, as
shown later in Ref. 24, this scheme is not able to completely recover
the isotropy of the macroscopic fluid flow equations. A different rect-
angular MRT-LB approach which maintains the transformation
matrix independent of the grid aspect ratio”” was found to exhibit sim-
ilar spurious behavior. More recently, via an inverse design analysis
based on the Chapman-Enskog expansion,”” Ref. 24 introduced a
rectangular MRT-LB method with an additional adjustable parameter
that determines the relative orientation in the energy-normal stress
subspace, which can be adjusted to completely eliminate the anisot-
ropy. However, the resulting scheme appears to be quite complicated
in specifying such an additional parameter as a function of the speed
of sound and the grid aspect ratio, and with stable results achieved
only for the grid aspect ratio above 0.2. Later, inspired by the lattice
kinetic scheme,” Ref. 26 presented a consistent MRT-LBM on a rect-
angular grid in which the equilibrium moments are extended to
include the stress components, which are designed in such a way as to
restore the isotropy of the recovered hydrodynamical equations.
However, the guidance for setting up the associated free parameters to
recover the physically correct transport coefficients seems involved.

ARTICLE scitation.org/journal/phf

While this scheme showed good agreement with benchmark results,
results on its numerical stability at relatively low viscosities or large
Reynolds numbers at different grid aspect ratios were not reported.
Moreover, all the existing MRT-LB schemes on rectangular lattice
grids involve raw moments, where the moment basis are orthogonal-
ized via a Gram-Schmidt orthogonalization; however, it has recently
been demonstrated that the orthogonalization can couple the evolu-
tion of the higher order moments to those of the lower moments
thereby impacting their numerical stability characteristics.”' In the
context of the rectangular lattice grid, the use of such an orthogonal
moment basis also results in unwieldy expressions for the transforma-
tion matrices dependent on the lattice grid ratio, which compromises
their implementation. Moreover, the existing rectangular LB schemes
do not eliminate the cubic velocity errors arising from aliasing effects
on the D2Q9 lattice.

A significant improvement over the standard MRT-LB methods
based on raw moments is to consider performing relaxation of central
moments to their equilibria under collision.” Here, the central
moments are obtained from the distribution functions based on the
peculiar velocity and naturally preserve the Galilean invariance of all
the moments independently supported by the lattice. The central
moment equilibria are generally constructed via a matching principle
based on the continuous Maxwell distribution function. As a result,
when compared to the standard SRT-LB and MRT-LB schemes,
whose equilibria generally involve fluid velocity terms truncated up to
the second order, the central moment LB methods involve higher
order fluid velocity terms, which support their enhanced stability char-
acteristics. As discussed in Ref. 33, the method can be constructed
using different moment basis, including those based on non-
orthogonal moments. Recently, the central moment LB method has
been further extended, improved, and applied to variety of flowing sys-
tems (see, e.g., Refs. 31 and 34-49). Moreover, the numerical investiga-
tions in Refs. 31, 37, 43, and 49 demonstrated the superior stability
characteristics of the central moment LB schemes. It should, however,
be mentioned here that the central moment LBM has so far been
developed only for square lattice grids in 2D and cubic lattice grids in
3D.

From the above, we can now summarize the main drawbacks of
the existing LB schemes on rectangular lattice grids as follows. They
are generally constructed using orthogonal moment basis, their raw
moment equilibria contain terms only up to the second order in fluid
velocity with several free parameters requiring cumbersome guidance
involved for their specifications and with no corrections for the cubic
velocity error terms due to aliasing effects, with attendant complicated
expressions for the correction terms to eliminate; the grid anisotropy
and for the transformation matrices dependent on the grid aspect
ratios. These features render such schemes with relatively narrow sta-
bility range and compromising their accuracy, computational effi-
ciency, and implementation. All these limitations will be addressed in
this work by constructing and investigating a new rectangular central
moment LBM.””" A non-orthogonal moment basis will be used in
this regard. Moreover, we will also present a special case of this
approach involving rectangular non-orthogonal raw moment MRT-
LBM, which represents a simplification and improvement over other
existing MRT-LB schemes on rectangular lattice grids. The rectangular
non-orthogonal raw moment and central moment LB versions devel-
oped in this paper will be referred to as the RNR-LBM and RC-LBM,
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respectively. Consistency of our new rectangular LB formulation with
the Navier-Stokes (NS) equations will be demonstrated via a
Chapman-Enskog analysis and through which the correction terms to
the second order moments involving the grid aspect ratio and velocity
gradients that fully restore the isotropy of the hydrodynamical behav-
ior will be identified. The use of a non-orthogonal moment basis leads
to a considerable simplification of such correction terms and associ-
ated transformation matrices, with a more efficient implementation
along with robust numerical features as it avoids the spurious coupling
of moments due to orthogonalization. The moment equilibria are con-
structed by matching with those obtained from the continuous
Maxwellian and thereby involving higher order fluid velocity terms
and without many free parameters. Moreover, unlike other previous
rectangular LB schemes, our approach also eliminates the non-
Galilean invariant (GI) cubic velocity errors arising due to aliasing
effects in the D2Q9 lattice. Numerical validation study of both the pro-
posed rectangular LB schemes for a variety of benchmark flow prob-
lems will be performed to demonstrate their accuracy. Moreover, the
superior numerical stability of the rectangular central moment LB for-
mulation, ie., RC-LBM, will be shown for handling a wide range of
grid aspect ratios and at low viscosities or higher Reynolds numbers,
and its computational effectiveness over that based on the square lat-
tice will also be demonstrated. While the method is developed and
studied here in 2D, it allows extension to three-dimensions.

This paper is organized as follows: In Sec. II, we present a
Chapman-Enskog analysis of the non-orthogonal moment LB formu-
lation on a rectangular D2Q9 lattice grid, identify the correction terms
that restore the isotropy, and eliminate the non-GI cubic velocity
terms and show consistency to the NS equations. Then, in Secs. III
and IV, a rectangular raw moment LB (RNR-LB) and central moment
LB (RC-LB) schemes using the correction terms derived in Sec. IT will
be developed. A numerical validation study of both RNR-LBM and
RC-LBM for a variety of benchmark fluid flow problems is performed
in Sec. V. A comparative study involving numerical stability at differ-
ent grid aspect ratios demonstrating the improvements with using the
RC-LBM will be presented in Sec. V1. Finally, the main conclusions of
this investigation are summarized in Sec. VIL.

1. CHAPMAN-ENSKOG ANALYSIS USING
NON-ORTHOGONAL MOMENT BASIS ON A
RECTANGULAR LATTICE: ISOTROPY CORRECTIONS,
HYDRODYNAMICAL EQUATIONS, AND LOCAL
EXPRESSIONS FOR THE STRAIN RATE TENSOR

A. Basis vectors, transformation matrix, moment
equilibria and definition of corrections

The two dimensional nine velocity lattice (D2Q9) representing
the rectangular lattice grid considered in this study is shown in Fig. 1.
The rectangular lattice grid is parameterized by the grid aspect ratio, a
defined as the ratio between the space steps in the y and x coordinate
directions, Ay and Ax, respectively, ie, a = Ay/Ax. The particle
velocities e;, where i = x, y, can be written as follows:

(07 0)7 i=0,
e, =< (cos(i—1)n/2, asin (i — 1)n/2)c, i=1-—4, (1)
(cos (2i — 9) /4, asin (2i — 9)n/4)c, i=5-9

scitation.org/journal/phf

2a

FIG. 1. Two dimensional-nine velocities rectangular lattice grid.

where ¢ is the lattice speed in the x coordinate direction given by
¢ = Ax/At with At being the time step. The Cartesian components of
the particle velocities can then be listed in terms of the grid aspect ratio
aas

led=[0 1 0 -1 0 1 -1 -1 1], (a)
|ey>:[0 0 a 0 —a a a —a —a]T. (2b)

Here and in what follows, we use the “ket” operator |-) notation to
indicate a column vector of any variable defined for the lattice velocity
set, while T refers to the transpose operation. The combination of the
monomials of the form |e;”e}',’>, where m and n are integers, then
defines the following set of natural or non-orthogonal basis vectors for
the D2Q9 lattice:™*””

T= [0 lesle) €2 + &) le2 = &), levey). leley ). lened). e3ed) .

3)

where |1) is given by
m=[1t 1111111 1]" (4)

In Eq. (3), the diagonal components of the basis vectors of the second
order moments |e2) and |e§> are equivalently rearranged to isolate its
trace or the isotropic part, which will be related to the bulk viscosity,
from the other components, which are related to the shear viscosity so
that both of these transport coefficients can be adjusted independently.

We note here that in the existing moment based LB formulations
on rectangular lattice grids, an orthogonal moment basis is used to
define the collision operator. As pointed out in Ref. 31, the orthogonal-
ization introduces coupling of the higher order moments with the
lower order moments under collision that can reduce the numerical
stability range. Moreover, it can lead to cumbersome expressions for
the transformation matrices and attendant isotropy corrections for the
rectangular lattice. Hence, in this work, we employ the simpler non-
orthogonal vector basis that plays a crucial rule in enhancing the
numerical features of our approach. It may be noted that such a basis
was recently employed to develop a compact LB formulation for a
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local vorticity computation scheme.” Thus, the transformation matrix
T that maps the distribution functions from the velocity space to the
moment space is established from Eq. (3) for the rectangular lattice,
which reads as

1 1 1 1 1 1 1 1 1
o1 0o -1 0 1 -1 -1 1
0 0 a 0 —a a a —a —a
01 a 1 & h h h
T=1|0 1 —a*> 1 —a*> h, h h h|, 5
00 O 0 0 a —a a —a
00 O 0 0 a a —a —a
00 0 0 0 a —-a -a &
0 0 0 0 0 & a a a* |

where h; = 1+ a?, and h, = 1 — a%. Subsequently, the distribu-
tion functions in the velocity space f, the equilibrium distribution
functions £*9, and the sources due to any applied body force S can
be projected onto the moment space through the transformation
matrix T as

m=Tf m9=Tf9 ®=TS, (6)

where £ = (fy,fi,for o fi)', £9= (LA DT, and
S = (80,5182, -y Sg)T. The use of a rectangular lattice introduces
anisotropy in the viscous stress tensor given in terms of the grid aspect
ratio a, which is related to the second order moment non-equilibrium
moments and needs to be corrected for via appropriate counteracting
correction terms. Since by definition, the second order non-
equilibrium raw moments are identical to those of the central
moments, for the purpose of performing a Chapman-Enskog (C-E)
analysis and deriving the appropriate correction terms, it suffices to
consider the simpler raw moment based lattice Boltzmann equation
(LBE), i.e., MRT-LBE, which can be expressed as

f(x + eAt, t + At) — f(x, 1)

—T'A(m—m)] + % [S(x,t) + S(x + eAt, t + At)]At.

(7)

Here, the first term on the right hand side (RHS) of this equation [Eq.
(7)] represents the changes under collision as a result of the various
raw moments relaxing to their corresponding equilibria at rates
given in terms of the relaxation matrix A = diag (wg, w;, m,, w3,
..... ,wg), where w; (j = 0, 1, ...8) are the relaxation parameters, with
the changes mapped back into the velocity space via the T™" operator.
On the other hand, the second term on the RHS of Eq. (7) represents
the effect of the body force via the source term, which is discretized
using the trapezoidal rule. By applying the standard variable transfor-
mation f =f — 1SA¢, the implicitness in this term can be removed.
After dropping the “overbar” symbol to simplify notation, then Eq. (7)
simplifies to”

f(x +eAt,t +At) — f(x,t) =T {[\ (m“ —m) + (I - é) (I)At}
(®)

ARTICLE scitation.org/journal/phf

The raw moments of the distribution functions f;, their equilibria £;7,
and the source terms S; used in the above can be defined as

eq
Nymyn = Zfezx 1y7 ”x"‘ n— Zf :‘; xny7 Oxmyn = Zselx 1}/7
&)

where (m + n) refers to the order of the moment. Based on these and
Eq. (6), the 9-dimensional vectors of the raw moments of the distribu-
tion functions m, their equilibria m*, and the source terms ® used in
Eq. (8) can be enumerated as

m = (m07m17m27--~,ms)T

= (M0s M My M-y My My My Mgy My ) (102)

e eq\ T
My, m17m27-- ms)
q

T
(17 nx ’ ny nxx+yy7 nxx yy? nx)ﬂ nxxy’ rlxyy’ rlxxyy) ’ (IOb)

+
d) = ((D(),(Dl,q)z, ...,(I)g)
= (00, 0x, Oy, Oxxtyy; Oxx—yys Oxys Oxxy; Oxyy, O'xxyy)T- (10c)

Then, with the aim of removing the anisotropy in the emergent
hydrodynamical equations arising from use of the rectangular lattice
and to eliminate the non-Galilean invariant cubic velocity terms due
to the aliasing effects on the D2Q9 lattice, we now extend the compo-
nents of the equilibrium moments m“" defined for the square lattice,
by including two types of correction terms perturbed by the time step
At (which will also serve as a small parameter in the C-E expansion
later) as follows:

m® = m*" + At m®* + Arm®C, (11)

where m®* represents the equilibrium moment correction needed to
eliminate the deviation from isotropy caused by the use of the rectan-
gular lattice and m*C represents the additional correction required
for removing the non-GI terms. Accordingly, we define the compo-
nents of each of them as follows:

eqr __ eq,r eqr eqr eq,r\ T
m* = (mg!", m"" my L mg)

t
eq,;r eq,r .eq.r €4 eq,r eq,r .eq,r eq,r eq,r
(]10 9 '/Ix 9 1’]}, ) rlxeryyv Wxx —yy° ’7xy bl WW b nyy b Wxxyy) 9

(12a)

m*®* = (0,0,0, m*, m®* me*,0,0,0)", (12b)
T

m* (o 0,0, mSC mitC, ?‘G,o,o,o) . (12¢)

Notice that in the above that non-zero correction terms suffice only
for the second order moments (with indices 3-5), which are related to
the viscous stress tensor. In Egs. (11) and (12), the components of the
raw moment equilibria for the square lattice m*?" follow via the bino-
mial transformation of the corresponding central moment equilibria
obtained via matching the respective continuous central moments of
the Maxwell distribution function, which read as™
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eq,r eq,r

My =My =P,
W = 87 = pu,
mt" =it = puy,
i =, =200 4 02 4 1),
my"" =ty = p(ul — ”)2;)7 (13)
ms =" = puhy,
mg' = Mty = ¢ puy + puzisy,
my" =gy = & puy + pus,
mg"" =k, = pct +3p2 (12 + uﬁ) + puiuﬁ,

where p is the density and u = (uy, u,) is the velocity of the fluid, and
¢, is the speed of sound, which is a free parameter and will be related
to the transport coefficients via a C-E analysis later. It may be noted
that unlike the prior rectangular MRT-LB schemes that use equilib-
rium moments with fluid velocity terms only up to the second order,
the above moment equilibria [Eq. (13)] involve the use of higher order
velocity terms arising naturally via the use of the matching principle
noted above, which preserves the GI of the moments independently
supported by the lattice aside from those subjected to the aliasing
effects. In addition to avoiding the orthogonalization in defining the
moment basis, consideration of such more refined equilibria is
expected to yield a more robust rectangular LB formulation. The com-
ponents of the source moments that would yield consistency with the
NS equations are given by~

Oy =09 =0,
O, =0, =F,,
®, =0,=F,
D3 = 0yppyy = 2(Fetts + Fyuy),
Oy = 0y, = 2(Fruy — Fyuy), (14)

Os = gy = Fyuy + Fyuy,
O = 01y = F),ufc + 2F uyuy,
D; = 0,y = qu}zl + 2F, uyity,

Dg = Oy = 2(quxu§ + Fyuyu?),

where F = (F, F,) is the local body force applied to the fluid.

B. Chapman-Enskog analysis: Derivation of isotropy
corrections and recovery of NS equations

In order to derive the explicit expressions for the two types of cor-
rections m** and m*¢ appearing in Eq. (11), we shall now perform
the Chapman-Enskog multi-scale expansion,” which would then allow
us to recover the NS equations from the corresponding rectangular LB
scheme [Eq. (8)]. In this regard, the approach used in Refs. 35 and 42
will be adopted. First, we expand the moment m about its equilibria
m(® by including the non-equilibrium effects as a perturbation and also
the time derivative O, via a multiscale time expansion as

m=m? +em® +&m® + ...,
) (15)
a, :8,0—0—6(9,1 +€ (9t2 +7
where € is a small perturbation bookkeeping parameter set equal to the
time increment € = At. Substituting these expansions into rectangular

scitation.org/journal/phf

MRT-LBE with non-orthogonal moment basis [Eq. (8)] and succes-
sively equating terms of the same order of € on each side of this equa-
tion, we get

0(¢°) : m® = me", (16a)
O(e") : D,m® = —Am + A (m* + m) + ®, (16b)
A
0(62) . 3“ m(O) + Dt(] (I - 5) m(l)
A eq,s eq.G A a(2)
+Dt05(mq’+mq’):fAm , (16¢)

where Dy, is the streaming operator involving the fastest timescale
to and defined by Dfo =040 + E;0;, and E; is given by
E; = (T (¢ )T "). Notice that the modifications to the moment equi-
libria, i.e., the corrections m®* and m*“¢ appear in the equation at
first order in e. Rewriting Eqs. (16b) and (16¢) in the long form, they
can be, respectively, expressed as

d,m® + 9,E,m® + Oyéymw) =® - Am") + A(m** + m“°),
(17)

A (. A
O,Im(o) + atn (I _ E) m(l) + axEx (I _ 5) m(l)
. A A
+ 8yEy (I — E) m(l) -+ 8t(, E (rneﬁbS + meq,G)

+ax % (meq.s + mein)) + ay % (meq,s + meqﬁ) _ _[\m(Z).
(18)

As shown in Eq. (16a), the zeroth moment m(®) is just the equi-
librium moment for the square lattice m“?" defined in Eq. (13). Thus,
using m®) via Eq. (13) into the O(e) Eq. (17), its leading components,
ie., up to the second order moments, which are relevant to recovering
the hydrodynamical equations are enumerated as

O, p + Oxpuix + O, puy, = 0, (19a)
O ptix + Oy (pc2 + pul) + 0, (pusuy) = Fy, (19b)
Oy ptty + Ox(pusury) + 8y(pcsz + p”j) =F, (19¢)
0 (2pc§ + p(uﬁ + uj)) +0{(¢2 + 1)pute + puiil}
+ O {(c + a)puy + puzuy}
= —oyml) + 03 (M + miC) + 2(Fouy + Fuy),  (19d)
By (pui — puy) + {(1 = &) pux — puuiy)}
+ o {(c] — @) puy + puiuy}
= —wy mg) + g (M + mSC) + 2(Fouy — Fuy,),  (19e)
Oy (pusiy) + Oc{puy + prluy} + 0, {c pus + puxu;}
= —wsm) + ws (M + mC) + Fu, + Fyuy. (196

Observe that Eqgs. (19a)-(19¢), which correspond to the evolution of
the conservative moments (i.e., density and the two momentum com-
ponents), are independent of lattice geometry. On the other hand, the
influence of the deviation from isotropy due to the presence of the
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grid aspect ratio a appears as expected in the equations for the evolu-
tion of the second order moments [see the underlined terms in Egs.
(19d)-(191)]. Similarly, we list the leading three relevant components
of the O(¢?) Eq. (18), which are required to complete the evolution of
the density and momentum components at the next slower timescale
t to derive the NS equations, as follows:

0up =0 (20a)
(0] 1 w,
On (ptix) + Ox {5 <1773)mg1>+5<1774) ‘(11)]
R
+%( eqs+ ELZG):| +ay|:(’;5( eqs+ qu):| —o, (20]))
8tl(puy) + Oy {(1__) gn]
(-3
2 2 2
|: (mS eas | qu):|—|—(9[ (m gqs+m§qvc)
*%(mqumqu)] =0. (200)

To proceed further in deriving the correction terms, we need to
first obtain the expresswns for the non-equilibrium moments
m; ), mi ), and mg ). which are needed in Egs. (20b) and (20¢) to
establish the consistency with the NS equations after eliminating the
anisotropy and non-GI terms. Such second order non-equilibrium
moment components follow from Egs. (19d)-(19f) after substituting
for the temporal derivatives of the momentum in terms of the spatial
derivative terms [via Eqs. (19b) and (19¢)] and subsequently simplify-
ing them (see Ref. 45 for details). Then, we get the following results:

P2y

+(=3¢ + 1)ux Ocp + (=3¢ + a*)u, 9, p
=3p (12 et 12 Dy ) |+ (5" 4 miS"C), @1

:__{1_

(—3cs + 1uy Oep —

— 4+ 1)p Osux + (=2 +a*)p dyu,

)pOcuy + (2 — a*)pdyu,
(=3¢t +a’)u, 9, p
=3p (12 gt — 12 Dy ) |+ (" 4 0), 22)

1
m(sl) = o c2p (Oyux + Osuty) + (ms

Semi). (23)
Note that these last three equations contain the error terms related to
the anisotropy terms (dependent on the grid aspect ratio) and the
non-GI cubic velocity terms as well as the correction terms whose
forms are yet to be determined. The next step is to combine the con-
served moments equations related to temporal variations using the
scale t, [Eqs. (19a)-(19¢)] with e times the corresponding equations
involving the timescale #; [Egs. (20a)-(20¢)]. Then, taking into account
that 0; = Oy + €01, we arrive at the following hydrodynamical equa-
tions for the evolution of the density and the components of the
momentum fields:

scitation.org/journal/phf

D puy + Ox(puuy) + 9y (pc2 + puj) =0, (24a)
Or(pux) + Oy (cfp + pui) + 8y(puxuy)
P L D P O B e A B ()
=F, EGXL(I 2)m3 +2(1 2>m4
w W3 eqs W4 eqs
[ (1- )l - [+ 2]
w eq,s w e . e
_63y|:75m54:|_68x|:f 3qG_‘_TAt 4qc}
- eay{ . G}, (24b)
2 2
Oi(puy) + Ox(puxtty) + 0y (csp + puy)
S
2
1 w3\ @ 1 W4\ (1)
—€8y|:5(1—7)m3 2(1-7)7}’14
—68 |: eqs] o 6(9 |: eqs 44 miq,::|
— €0y { mg" 6) } — €0, { msr ¢ 624 miq‘G} . (24¢)

In the above three equations [Egs. (24a)-(24c)], we then substitute for
the non-equilibrium moments mgw, mgl), and m(sl) given in Egs.
(21)-(23), respectively. Then, we isolate the error terms and the coun-
teracting correction terms from the desired fluid flow equations repre-
sented by the NS equations. This leads to the constraint that
(correction term); + (1 — ;/2)(error term); = 0, where j =3, 4, and
5and (error term); are the terms that deviate from the target NS equa-

tions (see Ref. 45 for details). For example, the aliasing effects on the
standard D2Q9 lattice for the third order longitudinal moments, i.e.,
Z o€ =, fxeqi» where i € {x, y}, lead to the cubic velocity errors

()mEq

- (20, ux + uza Ju,) in the non-equilibrium moment 13
(21) and —

on ( 28 xUx —
mﬁ Vin Eq. (22). These are then eliminated by the counteracting cor-

. : ilan eq,G
rection terms in the second order extended moment equilibria m3"

u;dyuy) in the non-equilibrium moment

and mS?, respectively, determined by the above constraint. Following
this strategy, we can then determine the expressions for the isotropy
¢ for j=3,4,

correction terms mJ and the GI correction terms m

and 5, which read

my = (L—l){( 3¢ + 1)pdyuy + (=3¢ + a*)pdyuy
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+(=3¢ + 1)ucdip + (=3¢ + a*)u,dyp}, (25)
my = ( ) =3¢ + 1)psuy + (3¢ — a®)pdyu,
W4
+( 3c + Dudip + (3c —a Juy yp} (26)
o 11
mit” = —3p (w_3 - E) (ui@xux + uiayuy), (27)
G 11
mAC¢ = _3p (wf; - 5) (uiaxux - uﬁ@,w), (28)
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me” =0, mgq’G =0. (29)

The use of Egs. (25)-(29), which are among the key results of this
work expressing the required corrections terms, in Egs. (24a)-(24c)
then implies that the rectangular MRT-LBE is consistent with the fluid
dynamics with isotropic viscous stress tensor represented by the NS
equations given by

Dp+V-j=0, (30)
atjx +V. (j“x) = —0Oxp + 8,([11(28,(',( -V ]) + C(V 1)]
+ 8, [(Dy + Byj)] + Feo 1)

8th’ +V- (Jux) = _ayP + 0Ok [V(axjy + 8)' x)]
+ 0, [v(20jy = V-j) + (V)] +F, (32

where p=pc is the pressure, j= (ji,jy) = (pux, puy) is the
momentum, v is the shear kinematic viscosity, and ( is the bulk kine-
matic viscosity, respectively, which are written as a function of the
relaxation parameters of the second order moments, i.e., wj; where
j=3,4,and5as

v=_<c (L—E)At:csz (L—E)At7 (33)
Wy 2 Ws 2
(=2 (i - 1) At. (34)
w3 2

The relaxation parameters for the higher order moments w; where
j=26,7, and 8 influence numerical stability (see, e.g., Ref. 37) and are
set to unity in this work. It may be noted that the correction terms
given in Egs. (25) and (26) for the diagonal components of the second
order moment equilibria are dependent on the grid aspect ratio a and

G, [Wxx+},}, — m;”” — B30xp — B48yp] — B, [nxx_yy — m — C30,p — C43yp}

scitation.org/journal/phf

the speed of sound c,, both of which are free parameters of our formu-
lation, with the latter adjusted based on the choice of the former to
maintain numerical stability. Equation (29) implies that no additional
corrections are necessary for the off diagonal second order moment
equilibria for the rectangular LB formulation. Moreover, the transport
coefficients given in Egs. (33) and (34) are not parameterized by the
grid aspect ratio and maintain the simple expressions applicable for
the square lattice. It may be noted that, as a special case, when we set
a=1 and the speed of sound ¢, = 1/+/3, the previous results for the
square lattice are recovered (see, e.g., Ref. 45) and the isotropy correc-
tions [Egs. (25) and (26)] vanish.

C. Local expressions for the strain rate tensor in terms
for rectangular lattice

The diagonal parts of the strain rate tensor, i.e., O,u, and J,u,
appear in the equilibria correction terms [Egs. (25)-(28)]. These along
with the off diagonal component (0,u, 4+ Oxu,) can be obtained
locally in terms of the following second-order non-equilibrium
moments:

mgl) = m3 — mgq’r = Maxtyy — m;qf7 (35a)

mil) = my — m = Mooy — mi’ (35b)

mgl) =ms —mg = Ny — ms™", (35¢)

where the %" (j=3, 4, and 5) are given in Eq. (13). By substituting

Egs. (25)-(29) in Eqgs. (21)-(23) and using Egs. (35a)-(35¢), rearrang-
ing and solving for Oy, O,u, and (0 u, + Ocu,) and simplifying the
resulting expressions, we then get the following local expressions for
the strain rate tensor applicable for a rectangular lattice:

Oyl = , 36
8 [C,B, — C1B)] (362)
P C1 |:’7xx+,vy - mgq,r - B38xp - B4ayp] - Bl ["/xx—yy - mzq’r - C3axp - C48yp:| 36b
= [CiB; — GBy] ’ (36b)
|:’7xy - m;’%’]
Othy + yuy = +— 1 (36¢)

D

The density gradients Oyp and d,p appearing in the above are computed using a central difference approach. The coefficients in Egs.
(36a)-(36¢), By, By, Bs, Cy, Cy, Cs, and D, are defined as a function of the model parameters, viz., the lattice speed of sound ¢, and the

grid aspect ratio a as

—22 -3¢ +a® 3u (3c2 - az)
B, = s T VT B, = s
’ p( w3 ;. Tt ) B 2 s
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I1l. RECTANGULAR RAW MOMENT LATTICE
BOLTZMANN METHOD USING NON-ORTHOGONAL
MOMENT BASIS (RNR-LBM)

We will now discuss the implementation of the RNR-LB algo-
rithm based on Eq. (8). For ease of presentation, a matrix-vector repre-
sentation will be used, while in the actual calculations, the matrix
products should not be implemented, but carried out in their compo-
nent forms by optimizing the operations involved.

¢ Compute pre-collision raw moments
m = Tf,

where T is given in Eq. (5) and the elements of f, ie., f] are at
time level t, i.e., f; = fi(x, t).

* Compute post-collision raw moments: Relaxation under collision
including sources for body forces

rhjszer](mJequj)Jr(l *wj/Z)(DjAt, j=0,l,...8.

Here, following Eq. (11), the extended moment equilibria for the
rectangular lattice are computed as m;q =m"" + At(m?’
—I—m;q’ ), where m?q’r7 m?*, and mC are given in Egs. (12),
(13), and (25)-(29). The required velocity gradients in the equi-
libria corrections are computed locally using Eqs. (36a) and
(36b). The source terms ®@; are obtained from Eq. (14).

* Compute post-collision distribution functions
f=T"'m,
where the inverse transformation matrix T~' mapping from raw

moments to distribution functions is given in Eq. (A1) in Appendix A.
* Perform streaming of distribution functions

filx,t+ At) = fi(x — At t).

e Update hydrodynamic fields
Based on fi(x, t + At) at the new time level t 4 At from the step
above, the hydrodynamic fields are updated via their moments as

8 8
1
p:Zf'7 pu:Zﬁej—f—iFAt.
=0 =0

IV. RECTANGULAR CENTRAL MOMENT LATTICE
BOLTZMANN METHOD USING NON-ORTHOGONAL
MOMENT BASIS (RC-LBM)

A more general rectangular LB scheme can be constructed using
central moments in a moving frame of reference based on the local
fluid velocity. Thus, we will now define the discrete central moments
of the distribution functions, their equilibria, and the source terms of
order (m + n) as

8
U Zf,-(eix —uy)" ey — uy)", (37a)
i=0
8
Mo = > (e — )" (eiy — uy)", (37b)
i=0
8
Oy = Z Silein — ux)" (eiy — uy)". (37¢)

i=0
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« »

Here, and in what follows, the superscript “c” is used to denote central
moments of a given quantity. For the natural moment basis indepen-
dently supported by the D2Q09 lattice given in Eq. (3), we will then list
the vectors m‘, m““4, and ®°, which enumerate the corresponding
components of the central moments as

c__ (,C .C ,C ,C c c c c c +
m° = (15, M, Mys Mawsyys Maweyys Mags Manys Magys Mangy) + (383)

ceq __ ceq ceq .ceq ,6€q c.eq ceq ceq ceq ceq\T
m = (g™ L 1 et s M)
(38b)
c _ c ¢ ,c c c c c c t
o = (0-07 Ox> Gy’ O-xx+yy7 O-xx—y,w O-xy7 axx)” O-xy)ﬂ O-xxyy) (38C)

In addition, analogously, we can define the components of the discrete
equilibrium central moments of the regular square lattice as n;lf?,f‘ as
part of the vector m“*?". They can be obtained by matching the corre-
sponding continuous central moments of the Maxwell distribution
function,””” and the components of the central moments of the sour-
ces can be prescribed to yield consistency with the NS equations.”
Thus,

+
ceqr __ c.eqr  ceqr .ceqr ..ceqr ,.ceqr ..c.eqr ..c.eqr . .c.eqr ..c.eqr
m g - (’70 7]1x g vny g 7’7qu 7’7}/}/(1 7]1xyq anxx)? 717)()/)? 7’7xxfy> I

:
=(0,0,0,p¢, pc2,0,0,0,pcf) (39a)
T
@ = (00,04 0y, s Ty Trys Ty Oy Ty
= (0,F,, F,,0,0,0,0,0,0)". (39b)

The components of the central moment equilibria m“? for the rectan-
gular lattice can be constructed from those of the square lattice m“*4"
by correcting for the grid anistropy and the non-GI terms, i.e.,

m = m“" 4+ At m*“* 4 At m*“C. (40)

As seen earlier, such corrections are related to the non-equilibrium
second order moments involving the viscous stress tensor. Since by
construction, the non-equilibrium second order central moments are
identical to those of raw moments, m®* and m®-° in Eq. (40) are the
same as to those given in Eqgs. (12), (13), and (25)-(29). Hence, the
central moment equilibria applicable for the rectangular lattice read as

0

ceq ]

0
my* 0

ceq 0

2

C,e 2 €q,s eq,
my 2pc; ms” + my

AL
S

ms 511 +m
ceq

e

6 0 0
0
_0

S O

G

ceq G

m“ = | m| =

c.eq

(=]

(41)
eq,G
5

c,eq
7
c,eq 4
mg PEs

In formulating the RC-LBM, we need to map between raw moments
and central moments, which can be represented as follows:

m'=Fm m=F 'm" (42)

where F is the frame transformation matrix, which converts the set of
raw moments into central moments. F forms a lower triangular
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matrix involving the fluid velocity components u, and u, and can
be obtained via enumerating the binomial transforms for the
finite set of moments. Its inverse F ' follows readily from an
interesting property of JF. These are briefly discussed in
Appendix B, and the elements of F and F ! are provided in Egs.
(B1) and (B2), respectively.

Then, based on the above considerations, the rectangular central
moment (RC)-LBE involving central moment relaxations under colli-
sion and forcing can be written as

f(x + eAt, t + At) — f(x,t)
=T'F A (m™“ —m°) + (1 - %> (I)CAt} : (43)
The RC-LB algorithm implementing Eq. (43) is given as follows:
¢ Compute pre-collision raw moments
m = Tf,

where T is given in Eq. (5). Hence, this step is the same as that
given in Sec. I1I.
* Compute pre-collision central moments

m‘ = Fm,

where JF is given in Eq. (B1).
* Compute post-collision central moments: Relaxation under colli-
sion including sources for body forces

s = mi + oj(m —m) + (1 - w;/2)0AL, j=0,1,...8.

Here, the extended central moment equilibria m;“! are given in

Eq. (41) and the central moments of sources ®; follow from Eq.
(39b).
e Compute post-collision raw moments

= F 'm‘,

where F ! is given in Eq. (B2).
* Compute post-collision distribution functions

f=T"'m,

where T™! is provided in Eq. (A1).
* Perform streaming of distribution functions

fi(x,t 4+ At) :fj(x — ¢At,t).

¢ Update hydrodynamic fields

8 8
1
p=Zﬁ, pu:ZﬁejJriFAt.
=0 =0
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A. Steady flow driven by a body force between two
parallel plates

First, we perform simulations of the flow between two parallel
plates separated by a distance of H and subjected to a constant body
force F, imposed in the direction of fluid flow using both RNR-LBM
and RC-LBM. The analytical solution for this problem is given by
u(y) = U[1 — (y — H/2)*/(H/2)?], where the normal coordinate y
is measured from the bottom plate and U is the maximum velocity
occurring at the midway location between the channel defined by
U = F.(H/2)*/2v. Here, v is the shear kinematic viscosity, which as
written in Eq. (33), is related to the relaxation parameters w; and w,
associated with the relaxation of the second order moments. For brev-
ity, here and in what follows, we express these two parameters in terms
of a relaxation time 7 given by T = 1/w, = 1/ws, which will be used
to adjust the desired shear viscosity. All the other relaxation parame-
ters in both RNR-LBM and RC-LBM, are set to unity in the simula-
tions presented in the following. Periodic boundary conditions are
employed along the flow directions, and no-slip boundary conditions
are imposed at the walls using the standard halfway bounce back
scheme. For the purpose of making comparisons, we define a charac-
teristic Reynolds number as Re = UH /v.

A tabulation of the model parameters used to simulate this flow
problem is provided in Table I. We employ different mesh resolutions
as the grid aspect ratio a is varied within a range of
{1.0,0.8,0.5,0.3,0.1}. It may be noted that the geometric anisotropy
of the rectangular lattice grid increases as the grid aspect ratio
decreases. All simulations are performed at a constant Reynolds num-
ber of Re = 50 using a fixed relaxation time 7 = 0.6. Figure 2 shows a
comparison between the computed velocity profiles obtained using
both RNR-LBM and RC-LBM using the grid aspect ratios of
a =1.0,0.5, and 0.1 against the analytical solution. Excellent agree-
ment between the computed results and the steady state exact solution
can be seen.

Then, in order to illustrate the order of accuracy of the rectangu-
lar LB formulations under grid refinement, we define a global relative
error in terms of the second norm of the difference between the com-
puted values of the velocity and the analytical solution as
>oillvei — uailly/ > ||4ajill,» where u. and u, are the computed
results and analytical solution, respectively, and the summation is car-
ried out for the entire domain. Figure 3 illustrates the variation of the
relative global errors at resolutions of N= 100, 200, 300, and 400 in
the y direction by fixing the number of nodes in the x to be 100
obtained using RNR-LBM and RC-LBM with two grid aspect ratios of
a=1.0 and 0.5. The errors for a = 0.5 are relatively larger than that of
a=10 since the former introduces additional truncation errors

TABLE I. Parameters used in the simulations of 2D channel flow at different lattice
grid aspect ratios a =0.8,0.5,0.3, and 0.1 with a constant Reynolds number
Re = 50.

a N; X N, F, U c T v
V. RESULTS AND DISCUSSION 0.8 100x125 9.16x 1077 00336 03333 0.6 0.03333
We will now present a numerical validation study of the new 0.5 100x200 2.11x1077 0016 0.16 0.6 0.016
rectangular LB formulations, i.e.,, RNR-LBM and RC-LBM, for a vari- 0.3 100x300 7.42x10~° 0.003  0.03 0.6 0.003
ety of canonical flow problems using different grid aspect ratios and 01 50x500 1.7x10~% 0.001 0.005 0.6 0.0005
characteristic flow parameters.
Phys. Fluids 33, 057110 (2021); doi: 10.1063/5.0049231 33, 0571109
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FIG. 2. Comparison of computed velocity profiles simulated using the RNR-LBM
and RC-LBM with the grid aspect ratios of a = 1.0, 0.5, and 0.1 against the analyti-
cal solution for 2D channel flow at Re = 50.

dependent on the grid aspect ratio in the higher order moments. It can
be seen that both the rectangular LB formulations exhibit a second
order grid convergence rate. This second order accuracy of both these
schemes under the usual diffusive scaling is consistent with the general
property of the standard LB discretization and not dependent on the
collision model used. However, the central moment based RC-LBM is
found to result in significantly lower magnitudes of global errors when
compared the raw moment based RNR-LBM. Since the RC-LBM per-
forms the collision step in a moving frame of reference relative to the
local fluid velocity involving the relaxation of the central moments to
their equilibria, it is Galilean invariant for all the moments supported
independently by the lattice. This results in smaller errors than that for
the raw moments based RNR-LBM, whose higher order moments are

—@&— RNR-LBM model a=1.0
_a —#— RNR-LBM model a=0.5
;n 10_2 B RC-LBM model a=1.0 | |
= —»— RC-LBM model a=0.5
o
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=
o
=
b
4L 1

a_; 10
=
<
)
~ -5
= 107 ¢ E
=
=
&)

100 3

100 200 300 400
Number of lattice grid nodes, N

500 600

FIG. 3. Relative global errors resulting from using the RNR-LBM and RC-LBM at
various grid resolutions for 2D channel flow at Re = 50.
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subjected to additional truncation errors dependent on the fluid veloc-
ity, which scales with the spatial discretization under diffusive scaling.
Hence, the RC-LBM is found to be more accurate than the RNR-LBM.
This is further evident from Table II, which demonstrates the RC-
LBM yields better accuracy than RNR-LBM for simulating this flow at
the same grid ratio of a=0.5 with various choices of the number of
grid nodes in the wall normal direction. In particular, the magnitudes
of the relatively global errors are found to decrease by a factor greater
than 3 with the use of RC-LBM when compared to RNR-LBM.

B. Transient shear driven flow between two parallel
plates

The second test problem is a transient flow between parallel
plates with a spacing of H driven by shear due to the motion of the
upper plate with a constant velocity U. The time-dependent analytical
solution of the velocity profile u(y, f) generated between the two plates
is given by’

201
— ) —ex
n

uy,t) = U2~ p [— "ZIZZZW} sin [n(1 — y/H)),

T n=1

where the wall-normal coordinate distance y is measured from the
lower plate. The characteristic timescale for this problem is T*
= H?/v and thus the dimensionless time T can be defined as
T =1t/T*. We consider a grid resolution of 50 x 500 with a grid
aspect ratio a = 0.1 to resolve the domain, in which the fluid is initially
at rest and the upper plate is set in motion with a velocity U= 0.02.
The relaxation time 7 is chosen to be 0.8. As in the previous case, peri-
odic boundary conditions are employed in the flow direction. The
motion of the top wall is accounted for in the no-slip boundary condi-
tion via applying the momentum augmented halfway bounce back
scheme. In the derivation of the halfway bounce back scheme for the
rectangular grid, since the momentum appears in the moment equilib-
ria, when it is mapped back to the distribution functions via the
inverse of the transformation matrix, i.e., T}, the resulting formulas
will be parameterized by the grid aspect ratio 4, in addition to the plate
velocity U and the speed of sound ¢,. That is, if xpisa fluid node near-
est to the wall and the opposite particle directions are represented by
e; = —e;, then the incoming particle distribution functions f; are
obtained from the outgoing post-collision particle distribution func-
dons 7, by filxyt+At) = F1(x.1) — (£%(p, U) — £%(p,., U),
where p,, is the density of fluid at the wall. Evaluating these for the
incoming directions associated with the top plate, ie., i = {4,7,8}
and using f*4 = T~ 'm*®4 based on the wall conditions, we get

TABLE II. Comparison of the relative global errors resulting from using RNR-LBM
and RC-LBM using a = 0.5 with N =100, 200, and 400 grid nodes in the wall normal
direction for 2D channel flow at Re = 50.

Grid resolution Relative global error Relative global error

RNR-LBM RC-LBM
100 7.90 x 1074 2.50 x 1074
200 6.25 x 1074 1.92 x 107*
400 4.74 x 107 1.56 x 107>
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falxp t + At) = fo(xr, 1), (44a)
2

Frlag,t+ A1) = fi(xy, 1) 2 gf;zU, (44b)
2

fo(xp t + At) = fo(xr,t) + % (44c)

These expressions, which parameterize the influence of the rectangular
lattice via g, are simpler than those presented in Ref. 24 due to the use
of non-orthogonal moment basis and the construction of the equilibria
directly from the Maxwell distribution function via matching without
the use of free parameters in this work. Based on these and performing
simulations by considering the fluid to be initially at rest, Fig. 4
presents the instantaneous velocity profiles u(y, f) computed using the
RNR-LBM and RC-LBM at various dimensionless time instants T of
2, 5, 10, 20, and 40, along with the analytical solution plotted at all
these time instants. Very good agreement between the two rectangular
LB schemes and the time-dependent analytical solution is found. The
temporal development of the velocity field leading to a steady state lin-
ear profile is well reproduced by both RNR-LBM and RC-LBM.

C. Pulsatile flow between two parallel plates driven by
a periodic body force

In addition, we now examine our rectangular LB approach for their
validation involving flow bounded by two parallel plates with a separation
distance of H and subjected to a sinusoidally time varying body force
F,(t), viz., for the classical Womersley flow. The imposed body force is
represented as F, = F,, cos wt, where @ is the angular frequency given
by @ = 27/ T with T being the time period and F,, is the peak amplitude
of the force. The analytical solution for this flow reads as

F. i CoS ﬁ—;
m it
u =R|—(1—-¢&"")—=~
<) @ ( ) cos f}
1 T T
————— NMRT-LB model L
A
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FIG. 4. Comparison of the instantaneous velocity profiles computed using RNR-LBM and
RC-LBM at a grid aspect ratio of a= 0.1 against the analytical solution at time instants of
T = 2,5,10, 20, and 40 for 2D shear driven flow between two parallel plates.
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where R[] implies taking the real part of the expression,

B =+v—iWo? and Wo is the Womersley number is related to the
ratio of the viscous flow timescale and the timescale of imposed force
variations, ie, Wo = \/w/vH. Figure 5 shows a comparison of the
velocity profiles obtained using the RC-LBM for simulation of
Womersley flow at Wo = 4.25, F,, = 1 x 107°, T=40000 and using
the relaxation time 7 = 1.0. We considered a grid resolution of 400
grid points along the wall normal direction choosing H = 50, which
means the rectangular grid has an aspect ratio of a =0.125. Since it
was found that the results of RNR-LBM are visually indistinguishable
from those obtained using RC-LBM, only the latter results are pre-
sented in this figure. Clearly, the spatiotemporal variations in the
velocity profiles at various instants within the time period shown by
the analytical solution are well reproduced by our new rectangular LB
scheme based on central moments.

D. Lid-driven cavity flow

Finally, we will now present simulations of the flow inside a
square cavity driven by the shear from the motion of the top lid. It is a
standard flow problem for benchmarking new CFD methods by going
beyond the use of analytical solutions and involves flow patterns char-
acterized by the presence of a main or primary vortex around center
of the cavity and accompanied by various secondary vortices around
the corners, whose sizes and locations depend on the Reynolds num-
ber Re. Prior rectangular LB schemes based on either SRT or orthogo-
nal MRT formulations have been used to perform simulations of this
problem,”* *****” which have reported results for only relatively low
Re as they were often subjected to numerical instability issues when
the Reynolds number was increased to even moderate values. Hence,
it would be interesting to study the performance of the present RNR-
LBM and RC-LBM for this case study. For a square cavity of side H
whose top lid is set into a uniform motion at a velocity U, the charac-
teristic Reynolds number can be defined as Re = UH/v. We carried

0.08 T T T
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0.02
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0 ’
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FIG. 5. Comparison of the velocity profiles computed using the RC-LBM (lines) with a
grid aspect ratio a= 0.125 with the analytical solution (open symbols) for 2D Womersley
flow at different instants within a time period T= 40000 and Wo = 4.25.
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TABLE IIl. Parameters used in the simulation of lid-driven cavity flow.

Re a N; X N, U c v T
100 2 100 x 50 0.1 0.3333 0.099 0.797
4 200 x 50 0.1 0.3333 0.199 1.097
0.8 100 x 125 0.1 0.3333 0.099 0.797
0.5 100 x 200 0.04 0.18 0.042 0.736
0.25 100 x 400 0.02 0.04 0.02 0.995
0.2 100 x 500 0.02 0.02 0.02 1.49
400 0.25 100 x 400 0.02 0.04 0.0049 0.623
0.2 100 x 500 0.02 0.02 0.0049 0.747
1000 0.5 150 x 300 0.02 0.04 0.0003 0.5745
3200 0.5 150 x 300 0.02 0.02 0.0009 0.546 8
5000 0.5 150 x 300 0.02 0.02 0.000 6 0.53
7500 0.5 150 x 300 0.05 0.03 0.0099 0.533

out simulations of this flow problem using both RNR-LBM and RC-
LBM involving rectangular lattices with grid aspect ratios of
a=4,2,0.8,0.5,0.25, and 0.2 at a wide range of Reynolds numbers
of 100, 400, 3200, 5000, and 7500 covering those reported in a prior
work providing benchmark numerical solutions based on a NS
solver.”* The choices of the various parameters considered for these
simulations are given in Table III. The halfway bounce back scheme
was used to impose the no-slip conditions on all the bounding walls,
with momentum correction being added to those for the top wall via
Egs. (44a)—(44c) constructed for use with the rectangular lattice.
Figures 6 and 7 show the velocity profiles along the vertical and
horizontal centerlines computed using RNR-LBM and RC-LBM,
respectively, with a = 0.8, 0.5, 0.25, and 0.2 at Re = 100. Good agree-
ment with the benchmark results™ can be seen for all the choices of
the grid aspect ratio. On the other hand, next we fix the grid aspect

ARTICLE scitation.org/journal/phf

ratio and vary the Reynolds number. Figures 8 and 9 present the veloc-
ity profiles along the vertical and horizontal centerlines obtained using
RNR-LBM and RC-LBM, respectively, with a=05 at
Re = 100, 1000, 3200, 5000, and 7500. The computed results again
match well with those provided in Ref. 54 for all the Re tested. By con-
trast, it may be noted that Ref. 24 reported that the use of a prior rect-
angular MRT-LB scheme™ became unstable for Re > 1000, while the
more recent rectangular MRT-LB formulations showed results for
Re = 100 in Ref. 27 and up to Re = 3200 in Ref. 24. All these prior
schemes used orthogonal moment basis. Furthermore, a more recent
rectangular SRT-LBM also showed results only up to Re = 1000.”° On
the other hand, our RNR-LBM and RC-LBM can reach significantly
higher values of Re, including 7500, the largest value for which the
benchmark data involving steady state results for making comparisons
are available.”* Moreover, in Sec. IV involving a numerical stability
study, simulations with even higher Reynolds numbers will be
reported. For further assessment, we investigate the ability of our rect-
angular LB schemes to evaluate the components of the viscous stress
tensor locally. We compute the normal stresses 7. and 7, and the
shear stress 7, based on the strain rate tensor components given in
Egs. (362)-(36¢) involving the non-equilibrium moments and param-
eterized by the grid aspect ratio a. Fig. 10 shows a comparison of the
normal and shear viscous stress profiles obtained using RC-LBM at
Re =100 for different choices of the grid aspect ratio, i.e., with
a =4.0,2.0,0.8,0.5, and 0.25. The results show that they are consis-
tent with each other for a wide range of the grid aspect ratio.

Next, Fig. 11 shows streamline patterns at Reynolds numbers of
100, 400, 1000, 3200, 5000, and 7500 computed using RC-LBM with a
grid aspect ratio of a = 0.5. The center of the primary vortex is seen to
move toward the middle of the cavity as the Reynolds number
increases. This can also be more clearly observed from Fig. 12, which
plots the coordinate locations of this vortex at different Re, which
match well with those given in Ref. 54. Meanwhile, additional second-
ary vortices emerge and grow in a counterclockwise direction at the
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FIG. 6. Velocity profiles (a) along the vertical centerline of the lid driven cavity flow for the u component and (b) along the horizontal centerline for the v component computed
using RNR-LBM with grid aspect ratios of a = 0.8, 0.5, 0.25, and 0.2 compared with the benchmark solution of Ghia et al.”* (symbols) at Re = 100.
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FIG. 7. Velocity profiles (a) along the vertical centerline of the lid driven cavity flow for the u component and (b) along the horizontal centerline for the v component computed
using RC-LBM with grid aspect ratios of a = 0.8, 0.5, 0.25, and 0.2 compared with the benchmark solution of Ghia et al.** (symbols) at Re = 100.

right and left of the bottom wall. At Reynolds number above 3200
[Fig. 11(d)], a secondary vortex appears on the upper left corner while
the secondary vortices at the bottom corner become relatively larger.
Furthermore, a second secondary vortex emerges at the right bottom
when Re reaches a values above 5000. All these features are consistent
with those presented in the benchmark results”™* and confirm the abil-
ity of our rectangular LB formulation to reproduce physically correct
complex vortical flow patterns well without any spurious grid anisot-
ropy effects that limited some of the prior rectangular LB schemes.

In addition, in order to provide some quantitative comparisons,
the locations of the primary vortices as well as those for various
secondary vortices are presented in the form of tabulated data in
Tables TV and V, respectively, at various Reynolds numbers. The
numerical results obtained using both the RNR-LBM and RC-LBM at
a grid aspect ratio a = 0.5 are compared with those given in the bench-
mark paper”* as well as those based on the recent cascaded LBM.”
Very good quantitative agreement seen between our rectangular LB
formulations and these earlier investigations provides further evidence
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FIG. 8. Velocity profiles (a) along the vertical centerline of the lid driven cavity flow for the u component and (b) along the horizontal centerline for the v component computed
using RNR-LBM with a grid aspect ratio of a=0.5 at different Reynolds numbers of Re = 100, 1000, 3200, 5000, and 7500 compared with the benchmark solution of Ghia

etal.” (symbols).
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FIG. 9. Velocity profiles (a) along the vertical centerline of the lid driven cavity flow for the u component and (b) along the horizontal centerline for the v component computed
using RC-LBM with a grid aspect ratio of a= 0.5 at different Reynolds numbers of Re = 100, 1000, 3200, 5000, and 7500 compared with the benchmark solution of Ghia

etal.” (symbols).

to their validity in computing physically consistent and accurate solu-
tions of this flow problem for a wide range of Reynolds numbers.

E. lllustration of computational advantages of using a
rectangular lattice over square lattice: Shear flow in a
shallow rectangular cavity

While the previous examples validated the accuracy of our rect-
angular LB formulations against benchmark solutions, we will now
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present a case study that demonstrates the computational advantages
of employing the rectangular lattice in lieu of the square lattice. In par-
ticular, when the spatial gradients in the flow field in one of the coordi-
nate directions are significantly larger than those in the other
direction, such as in inhomogeneous shear flows, the rectangular LB
schemes are expected to be more efficient. In order to emphasize this
numerically, we will now consider the shear flow in a shallow rectan-
gular cavity of width L and height H, where L is significantly larger
than H, driven by the motion of the top lid at a velocity U along the x
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FIG. 10. The normal stress profile (a) 7, and shear stress profile (b) ,, along the vertical centerline of the lid driven cavity flow computed using RC-LBM with grid aspect

ratios of a = 4.0,2.0, 0.5, and 0.25 at Re = 100.

Phys. Fluids 33, 057110 (2021); doi: 10.1063/5.0049231
Published under an exclusive license by AIP Publishing

33, 057110-14


https://scitation.org/journal/phf

Physics of Fluids ARTICLE scitation.org/journallphf

() Re=5000 (f) Re=7500

FIG. 11. Streamline contours of the flow field in a 2D lid driven cavity computed by RC-LBM on a rectangular lattice with the grid aspect ratio of a= 0.5 at different Reynolds
numbers (a) Re = 100, (b) Re = 400, (c) Re = 1000, (d) Re = 3200, (e) Re = 5000, and (f) Re = 7500.

Phys. Fluids 33, 057110 (2021); doi: 10.1063/5.0049231 33, 057110-15
Published under an exclusive license by AIP Publishing


https://scitation.org/journal/phf

Physics of Fluids ARTICLE

0.75
0
0.7 1
0.65 §
=
>
0.6 - g
)
0.55 - . O  RNR-LBM model 1
3 A RC-LBM model
& Ghia et.al. (1982)
Cascaded MRT LBM (2015)
0.5 L :
0.5 0.55 0.6 0.65

x/H

FIG. 12. Comparison of the computed results of the location of the primary vortex
at Reynolds numbers Re = 100, 1000, 3200, 5000, and 7500 using RNR-LBM and
RC-LBM with the grid aspect ratio of a= 0.5 with the benchmark numerical results
of Ghia et al.**

direction. Specifically, we choose H/L = 0.25 with the Reynolds num-
ber, defined by Re = UL/v, to be 100. In this flow configuration, the
gradients are dominant in the direction normal to the shearing lid at the
top, ie., the y direction. The use of the uniform square lattice would
require considerably larger computational resources as it does not
exploit the inhomogeneous features inherent in such flows. If N, and N,
are the number of grid nodes along x and y directions, respectively, the
grid spacings in the respective directions for this problem are Ax =
L/Ny and Ay = H/N,,. In the case of the square lattice, since Ax = Ay,
we require N, /N, = L/H. If the grid resolution normal to the top lid is
resolved with 100 nodes, i.e., N, = 100, for H/L = 0.25 this implies
that the number of grid nodes in the other direction to be N, = 400.

On the other hand, in the case of the rectangular lattice, based on
the characteristic of this flow, we could choose Ay < Ax. Since, by
definition, the grid aspect ratio is a = Ay/Ax, from the above it fol-
lows that N,./N, = a(L/H). Thus, even if we choose N, =125 (ie,
larger than that considered for the square lattice to resolve the flow
better in the dominant gradient direction) and by taking a = 0.2, the
number of grid nodes in the other direction Ny is only 100 in the case

scitation.org/journal/phf

of the rectangular lattice. We will now compare the flow fields com-
puted using the RC-LBM with the square lattice (a=1) considering
400 x 100 grids nodes and the rectangular lattice (a = 0.2) considering
a grid resolution of 100 x 125. The results for the velocity profiles
along the vertical and horizontal centerlines are presented in Fig. 13,
while the streamline contours within the shallow rectangular cavity at
Re = 100 are shown in Fig. 14. It is evident that the results of the rect-
angular LB scheme, which uses considerably fewer grid nodes adapted
to reflect the spatial variations in the flow, are in excellent agreement
with those for the obtained for the square lattice. The use of fewer grid
nodes in the case of the rectangular LB scheme results in considerable
savings in memory as well as reduction in the simulation turnaround
time, by a factor of about 3 in this case. Thus, this demonstrates that
the rectangular LBM provides a flexible and computationally efficient
approach for resolving inhomogeneous shear flows.

VI. NUMERICAL STABILITY TESTS: COMPARISONS
BETWEEN RNR-LBM AND RC-LBM

From Sec. V, it was clear the other existing rectangular LB
schemes™ *****’ are limited to relatively low or moderate Reynolds
number simulations due to numerical stability issues. This is generally
due to their choice of orthogonal moment basis and construction of
equilibria and the correction terms involving cumbersome specifica-
tions of several model parameters that limited the possible ranges of
variation of their transport coefficients. These aspects have been
avoided in the present work that uses a non-orthogonal moment basis,
a matching principle to construct the equilibria directly from the
Maxwell distribution function, and simpler expressions for tuning the
transport coefficients and specifying the correction terms to restore
isotropy. As a result, the RNR-LBM and RC-LBM developed here rep-
resent as significant improvements over the prior rectangular LB for-
mulations. Now, between these two options, the simulations carried
out earlier (see Table II) showed that the latter can deliver smaller
global relative errors compared to the former in a body force driven
flow. Besides such accuracy improvements, we will now clarify the util-
ity of performing the collision step in the local moving frame of refer-
ence in the case of RC-LBM in improving the robustness of
computations. In this regard, we will now perform two different types
of numerical stability tests involving the shear flow generated within a
square cavity due to the motion of the lid that compares the RNR-
LBM and RC-LBM. Such systematic numerical stability investigations
of rectangular LB formulations are lacking in the literature.

TABLE V. Location of primary vortices in a 2D lid-driven cavity flow at different Reynolds numbers obtained using RNR-LBM and RC-LBM with rectangular lattice grid aspect

ratio a= 0.5 and compared with the results of Ghia et al.>* based on a NS solver and cascaded LBM.*’

Primary vortex

Method Re=100 Re =1000 Re =3200 Re =5000 Re =7500
RNR-LBM (0.6182, 0.7355) (0.5314, 0.5649) (0.5132,0.5342) (0.5132,0.5342) (0.5124, 0.5313)
Error (%) (<0.0016) (<0.004) (<0.02) (<0.003 3) (<0.0016)
RC-LBM (0.6151, 0.736 5) (0.5299, 0.5649) (0.5179,0.541 1) (0.5151, 0.5337) (0.5122,0.5321)
Error (%) (<0.0034) (<0.004) (<0.01) (<0.007) (<0.0009)
Cascaded LBM”’ (0.614 8, 0.7354) (0.5307,0.5651) (0.5177,0.5402) (0.5149, 0.5352) (0.5129, 0.531 8)
Error (%) (<0.003 8) (<0.004 6) (<0.012) (<0.006) (<0.002)
Ghia et al.™ (0.6172,0.7344) (0.5313,0.5625) (0.516 5, 0.5469) (0.5115,0.5352) (0.5117,0.5322)
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TABLE V. Location of secondary vortices in a 2D lid-driven cavity flow at different Reynolds numbers obtained using RNR-LBM and RC-LBM with rectangular lattice grid aspect
ratio a= 0.5 and compared with the results of Ghia et al.>* based on a NS solver and cascaded LBM.*’

First secondary vortex Second secondary vortex

Method Top vortex Bottom left Bottom right Bottom left Bottom right
Re =100

RNR-LBM NA (0.038 3, 0.0382) (0.938, 0.0652) NA NA
RC-LBM NA (0.037 3, 0.0392) (0.9381, 0.065 7) NA NA
Cascaded LBM™’ NA (0.0387,0.0387) (0.938 3, 0.065 8) NA NA

Ghia et al.™ NA (0.0313,0.0391) (0.945 3, 0.062 5) NA NA

Re = 1000

RNR-LBM NA (0.086 0, 0.077 8) (0.8581,0.1147) NA (0.990 5, 0.006 5)
RC-LBM NA (0.0842, 0.076 4) (0.8612,0.1121) NA (0.991 2, 0.007 5)
Cascaded LBM”’ NA 0.0842,0.0791) (0.8631,0.1128) NA (0.992 3, 0.007 6)
Ghia et al.™ NA (0.0859, 0.078 1) (0.8594, 0.109 4) NA (0.9922, 0.007 8)
Re = 3200

RNR-LBM (0.053 6, 0.896 6) (0.0836,0.1191) (0.8206, 0.0859) (0.006 9, 0.008 9) (0.983 8, 0.009 4)
RC-LBM (0.0551, 0.896 2) (0.0839,0.1192) (0.8202, 0.0857) (0.007 7, 0.006 8) (0.9871, 0.010 3)
Cascaded LBM”’ (0.0547, 0.897 6) (0.0821, 0.1207) (0.8229, 0.085 3) (0.007 5, 0.007 5) (0.9875, 0.011 3)
Ghia et al.”* (0.0547, 0.898 4) (0.0859, 0.109 4) (0.8125, 0.0859) (0.007 8, 0.007 8) (0.984 4, 0.007 8)
Re = 5000

RNR-LBM (0.0649, 0.906 2) (0.0795, 0.1341) (0.8029, 0.072 8) (0.012 3, 0.007 3) (0.9883,0.0127)
RC-LBM (0.064 1, 0.907 3) (0.076 5, 0.1349) (0.8059, 0.0749) (0.0097, 0.006 1) (0.9796, 0.016 5)
Cascaded LBM”/ (0.064 4, 0.908 1) (0.0740, 0.137 8) (0.8037, 0.0739) (0.007 5, 0.007 5) (0.977 5, 0.020 0)
Ghia et al.” (0.0625,0.9102) (0.0703, 0.1367) (0.808 6, 0.074 2) (0.0117, 0.007 8) (0.9805, 0.0195)
Re = 7500

RNR-LBM (0.065 3, 0.9105) (0.063 5, 0.1532) (0.7804, 0.061 2) (0.0123,0.0123) (0.960 8, 0.026 0)
RC-LBM (0.0672,0.9108) (0.0672,0.150 1) (0.784 6, 0.063 6) (0.0130, 0.0117) (0.9542, 0.0370)
Cascaded LBM’’ (0.067 6, 0.9102) (0.065 4, 0.153 6) (0.789 2, 0.066 3) (0.0125,0.0125) (0.9508, 0.0429)
Ghia et al.”* (0.066 4, 0.9141) (0.064 5, 0.150 4) (0.7813, 0.062 5) (0.0117,0.0117) (0.9492, 0.043 0)

In the first cast study, we determine the maximum threshold veloc-
ity of the top plate U in a lid-driven cavity flow at various relaxation
times 7 for RNR-LBM and RC-LBM using the rectangular lattice with
grid aspect ratios of a = 1.0, 0.5, and 0.3. These aspect ratios corre-
spond to choosing fixed coarse grid resolutions of 21 x 21, 21 x 41, and
21 x 61, respectively. Following a strategy similar to Refs. 37 and 55, we
evaluate the maximum lid velocity which maintains stable simulations
for 100000 time steps for the rectangular LB formulations. Figure 15
shows the stability regime results for RNR-LBM and RC-LBM for differ-
ent choices of a. It can be seen that, in general, as the grid aspect ratio
decreases, characterized by greater geometric anisotropy of the lattice,
the numerically stable regime becomes narrower. However, in all cases,
the RC-LBM based on central moments is found to be significantly
more stable compared to the RNR-LBM based on raw moments, with
the former generally taking a relatively small additional computational
overhead of about 25% when compared to the former. As a second type
of numerical stability test, we perform simulations to investigate the
maximum Reynolds number sustained by each of the two rectangular
LB schemes at a fixed grid aspect ratio of a = 0.5, while maintaining a
constant lid velocity at U=0.2 and ¢ = 0.1 and reducing the shear vis-
cosity of the fluid to a smallest possible value for which the computa-
tions remains numerically stable. In this regard, the tests are carried out

for grid resolutions of 100 x 200, 200 x 400, 300 x 600 and, under the
above conditions in each case, the relaxation time 7 is decreased gradu-
ally until the computations become unstable. The results are tabulated
in Table VI and illustrated in Fig. 16. It can be seen that the RC-LBM is
found to be significantly more stable when compared to the latter.
Further improvements may be possible by adjusting the relaxation times
for the higher order moments and the speed of sound.

Here, it should be mentioned that the rectangular central
moment LB formulation, while better than its raw moment counter-
part, has a reduced stability range when compared to the square lattice
based central moment LBM (see, e.g., Ref. 37) This is due to the fact
that while the correction terms eliminate the truncation errors arising
from the use of the rectangular lattice in the second order moments
and recover the desired viscous stress tensor and hence the
Navier-Stokes equations, the effects of grid anisotropy and the associ-
ated non-GI terms remain in the higher order (kinetic) moments that
influence such numerical behavior. However, this stability reduction
can be compensated for by the flexibility available in the rectangular
LBM in choosing the grid sizes that reflect the nature of the flow being
resolved, such as in inhomogeneous shear flows, which then would
result in significant improvements in computational efficiency as dem-
onstrated in Sec. VE. The key aspect in such cases is the careful
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FIG. 13. Comparison of the velocity profiles along the centerlines of a shallow rectangular lid driven cavity of aspect ratio H/L = 0.25 at a Reynolds number Re = 100 com-
puted using RC-LBM with square lattice (a= 1.0) and rectangular lattice of grid aspect ratio of a=0.2. (a) u component along the vertical centerline, and (b) v component

along the horizontal centerline.

selection of the grid aspect ratio in the range that maintains numerical
stability while delivering reductions in the overall computational cost,
which depends on the type of flow problem to be simulated. We
believe that further improvements are possible by the development of
a multiblock rectangular central moment LBM, where instead of
resolving the entire domain using a single grid aspect ratio with a rela-
tively low value, appropriate grid aspect ratios can be utilized in few
selected zones of the flow domain in such a way that the multiblock
interfaces are constrained to match the hydrodynamics from the
respective zones. The construction of such general forms of rectangu-
lar lattice based LBM will be addressed in a future work.

VIl. SUMMARY AND CONCLUSIONS

In this paper, we presented two new rectangular LB schemes
based on raw moments and central moments, designated as RNR-
LBM and RC-LBM, respectively, where the collision step involves
relaxation of the corresponding moments, each with its own individual
rates. Unlike the other existing schemes, they are constructed using a
non-orthogonal moment basis and the moment equilibria are directly
obtained via matching with those of the continuous Maxwell distribu-
tion function, thereby involving higher order velocity terms and with-
out the use of many free parameters. By using a Chapman-Enskog

0

(a)

analysis, correction terms are derived to eliminate the grid anisotropy
introduced on the viscous stress tensor arising from the use of the rect-
angular lattice and the cubic non-Galilean invariant terms due to alias-
ing effects on the standard D2Q9 lattice. Such correction terms, which
are incorporated via extending the equilibria for the second order
moments, along with the expressions for the transport coefficients
have simpler functional relationships involving the grid aspect ratio,
the speed of sound and the diagonal components of the velocity gradi-
ent tensor. Formulas are derived to compute the latter locally based on
non-equilibrium moments. Furthermore, the attendant transforma-
tion matrices that map between the distribution functions and the
moments and parameterized by the grid aspect ratio are also consider-
ably simplified owing to the use of non-orthogonal moment basis. All
these considerations result in more robust and efficient implementa-
tions of the proposed RNR-LBM and RC-LBM when compared to the
other existing rectangular LB formulations. These two schemes are val-
idated against a variety of benchmark flow problems yielding accurate
solutions for a wide range of grid aspect ratio. Furthermore, simulations
demonstrate improvements in accuracy and significantly greater numer-
ical stability regime for shear driven flows with the use of the RC-LBM
when compared to RNR-LBM. Moreover, the effectiveness of using of
our rectangular LB scheme in lieu of that based on the square lattice in

2 0.2
< : < :
>0.1 >0.1
% 0.2 0.4 0.6 0.8 1 % 0.2 0.4 0.6 0.8 1
x/L x/L

(b)

FIG. 14. Comparison of the streamline patterns in a shallow rectangular cavity of aspect ratio H/L = 0.25 at a Reynolds number Re = 100 computed using RC-LBM with (a)
square lattice (a=1.0) using a grid resolution of 400 x 100 and (b) rectangular lattice (a = 0.2) using a grid resolution 100 x 125.
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FIG. 15. Numerical stability test results showing the maximum threshold velocity of
the lid U in a 2D lid driven cavity flow at different values of the relaxation parameter
controlling the shear viscosity. Comparisons are made between the RNR-LBM and
RC-LBM using rectangular lattice with grid aspect ratios of a = 1.0, 0.5, and 0.3.

TABLE V1. The maximum Reynolds number for numerical stability of RNR-LBM and
RC-LBM at different mesh resolutions with a grid aspect ratio of a=10.5.

Grid resolution RNR-LBM RC-LBM
100 x 200 4591 6733
200 x 400 6185 10050
300 x 600 8985 15842

16000 T T T
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FIG. 16. Comparison of the maximum Reynolds number for numerical stability of
RNR-LBM and RC-LBM at different mesh resolutions with a grid aspect ratio of
a=05.
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reducing the computational cost is shown. The present rectangular
central moment LB formulation can be extended to a 3D cuboid LB
approach, which will be reported in the near future. The approach
presented here involving the RNR-LBM and RC-LBM is for athermal
flows. It can also be extended to include temperature variations either
by using extended lattice sets or using dual distribution functions-
based formulations in a rectangular lattice for efficient simulations of
flow with heat transfer. Furthermore, while the present approach
allows local variations in the viscosity via the relaxation parameters,
a pressure-based rectangular central moment LB formulation involv-
ing variations in various fluid properties can be constructed using a
modified kinetic equation and equilibria via a transformation similar
to that presented for the square lattice in Ref. 48. Moreover, the
development of multiblock rectangular/cuboid lattice based central
moment LB schemes represents another interesting area. These are
important topics for practical applications and are subjects for future
investigations.
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APPENDIX A: INVERSE OF THE TRANSFORMATION
MATRIX FOR MAPPING RAW MOMENTS TO
DISTRIBUTION FUNCTIONS

The transformation from the raw moments to the distribution
functions T™! is obtained by inverting Eq. (5) for the rectangular
lattice and can be explicitly written as

—1
10 0 r r 0 0 0 —
a
1 1 1 1 1
0 - 0 - = 0 ——
2 4 4 2a? 2a?
1 1 1 1 1
00 — — — 0 — 0 -
2a  4a? 4q? 2a 2a?
1 1 1 1 1
0o-—- 0 - - 0 0 — -
2 4 4 2a? 2a?
_ 1 1 1 1 1
T'=]0 0 —— — - 0o — 0 - :
2a 4a? 4q2 2a 2a?
1 1 1 1
0 0 0 0 — — —
4a  4a  4a? 4q2
1 1 1 1
0 0 0 0 - = =
4a 4a 402>  4a?
1 1 1 1
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where r; = —3 (1 +2) and r, = —3 (1 — %), which is parameterized by the grid aspect ratio a. Note that the use of a non-orthogonal
moment basis leads to a simpler mapping matrix with several zero elements allowing a more efficient implementation in their component
form.

APPENDIX B: FRAME TRANSFORMATION MATRIX AND ITS INVERSE FOR MAPPING BETWEEN CENTRAL
MOMENTS AND RAW MOMENTS

The elements of the frame transformation matrix  that maps from raw moments to central moments follow from enumerating the
components of the binomial transforms written at different orders, which read

1 0 0 0 0 0 0 0 0
—Uy 1 0 0 0 0 0 0 0
—uy 0 1 0 0 0 0 0 0

u2 + uj —2u, —2u, 1 0 0 0 0 0
ul — uj —2u, 2uy 0 1 0 0 0 0
F = Uy Uy —uy —Uy 0 0 1 0 0 0 (B1)
) ) 1 1
—u Uy 2uyuy uy —Euy — Euy —2u, 1 0 0
3 5 1 1
— Ul u, 2uyy, — Eux Eux —2u, 0 1 0
1 1
uiuﬁ —2uxu§ —2ulu, 5 (u2 + u;) 5 (uj —ul) duauy, —2u, —2u; 1

On the other hand, the elements of the transformation from central moments to raw moments denoted by ' can be obtained directly
from those of F without needing to perform an explicit matrix inversion by replacing the signs of u, and u, (i.e., uy > —u, and u, < —u,)
based on an interesting property of binomial transforms that immediately follows from their generating function representation. In other
words, if F = F (uy, uy), then F~' = F(—u,, —u,). Thus, we have

[ 1 0 0 0 0 0 0 o]

Uy 1 0 0 0 0 0 0

uy, 0 0 0 0 0 0 0

uptuy o 2ue o 2uy 1 0 0 0 0 0

up = 2ux  —2u, 0 1 0 0 0 0
Fl = Uyl uy Uy 0 0 1 0 0 0 (B2)

5 5 1 1
iy 2ucldy, U 2 uy Uy 2uy 1 0 0
2 2 1 1
Uxld, u, 2uyuy 3 Uy —3 Uy 2u, 0 1 0
1 1

up,  2usuy 2uiuy 3 (2 + uf,) 5( > —ul) duau, 2u, 2u, 1
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