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Two-qubit gates in trapped-ion quantum computers are generated by applying spin-dependent forces

that temporarily entangle the internal state of the ion with its motion. Laser pulses are carefully designed

to generate a maximally entangling gate between the ions while minimizing any residual entanglement

between the motion and the ion. The quality of the gates suffers when the actual experimental parameters

differ from the ideal case. Here, we improve the robustness of frequency-modulated Mølmer-Sørensen

gates to motional mode-frequency offsets by optimizing the average performance over a range of sys-

tematic errors using batch optimization. We then compare this method with frequency-modulated gates

optimized for ideal parameters that include an analytic robustness condition. Numerical simulations show

good performance up to 12 ions, and the method is experimentally demonstrated on a two-ion chain.

DOI: 10.1103/PhysRevApplied.16.024039

I. INTRODUCTION

Trapped-ion systems are one of the leading candidates

for a scalable quantum computing platform [1,2]. In addi-

tion to near-perfect coherence properties [3,4] and single-

qubit gates with error rates below 10−4 [5–8], trapped-ion

qubits have significant advantages in terms of entangling-

gate fidelities. For systems with exactly two ions, state-

of-the-art two-qubit gates have reached a fidelity higher

than 99.9% when a state-dependent force is applied with

lasers [9,10] or magnetic field gradients [11]. For larger

systems, two-qubit gate fidelities greater than 99% for

a four-ion chain [12] and greater than 97% for 13-ion

and 17-ion chains [13,14] have been reported. Trapped-

ion systems with many qubits are particularly promising,

as long-range Coulomb interactions between ions lead to

all-to-all connectivity between qubits [13,15].

The central challenge in achieving scalability is to per-

form high-fidelity entangling gates with a large number of

qubits. Entangling gates are performed by briefly exciting

the ions’ normal modes of motion, which serve as a carrier

of quantum information [16,17]. The driving field needs

to be carefully controlled such that all motional modes
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are completely disentangled from the internal qubit states

at the end of the gate, while the qubit states undergo a

maximally entangling operation.

In the presence of noise and parameter drifts, pulse

design is necessary to achieve fast and robust high-fidelity

gates. One approach is to design the amplitudes of mul-

tichromatic beams that suppress the effect of noise [18–

23]. Another way is to control the amplitude [24–29],

phase [30–33], and/or frequency [12,14,34] modulation

over many time segments; this has recently been applied

in experiments with many ions [12,14,27–29,31].

While the methods above lead to analytic robustness

by guaranteeing high fidelity up to a certain order [22]

for the uncertainty in a control parameter, a promising

approach is to find a robust pulse numerically using opti-

mization algorithms inspired by machine learning (ML).

In particular, Ref. [35] showed that training with a large

sample set and minibatches of parameter offsets signifi-

cantly improves the robustness of the optimized pulse for

a generic Hamiltonian with control fields. For trapped-ion

systems, Ref. [36] demonstrated the application of deep

reinforcement learning to a robust single-qubit gate.

In this paper, we improve on previous discrete and con-

tinuous frequency-modulation (FM) schemes [12,34]. We

propose two algorithms for FM pulse optimization using

training with a large sample set and with minibatches,

namely, s(ample)-robust and b(atch)-robust FM, following
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the notation of Ref. [35]. The rest of the paper is orga-

nized as follows. In Sec. II, we briefly review the theory of

robust frequency-modulated Mølmer-Sørensen (MS) gates

[34] and introduce the optimization schemes for s-robust

and b-robust FM. In Sec. III, we show that s-robust and

b-robust FM are significantly more robust than the previ-

ous robust FM to motional mode-frequency drifts. We also

discuss the scalability of b-robust FM. In Sec. IV, we show

experimental results for a two-ion chain that demonstrate

that b-robust FM is more robust than robust FM to detun-

ing errors. Finally, we summarize our results and discuss

future directions in Sec. V.

II. ROBUST OPTIMIZATION METHODS FOR

FREQUENCY-MODULATED MS GATES

The frequency-modulated MS gate uses a state-

dependent force induced by lasers at a drive frequency,

modulated near sideband frequencies [16,17]. When

addressed by lasers with the correct optical phases, the

ions j1 and j2 undergo unitary evolution described by the

following equation [34,37]:

U(τ ) = exp

⎧

⎨

⎩

∑

j =j1,j2

∑
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Here, τ is the pulse length, � is the carrier Rabi frequency,

η
j

k is the Lamb-Dicke parameter of ion j with respect to

motional mode k, and σ̂
j
x is the bit-flip Pauli operator of

ion j . Also,

θk(t) =
∫ t

0

[µ(t′) − ωk] dt′ (4)

is the phase of motional mode k, which is the integral of the

detuning between the drive frequency µ(t) and the mode

frequency ωk. The first term in Eq. (1) describes state-

dependent displacement of the motional modes, while

the second term represents rotation with respect to the

two-qubit axis σ̂
j1
x σ̂

j2
x .

For an ideal MS gate, the qubits should be completely

disentangled from the motional modes [α
j

k(τ ) = 0 ∀j , k],

and the rotation angle �(τ) should reach exactly π/4 at the

gate’s conclusion [29,38]. Hence, the goal of robust FM

is to modulate the drive-frequency profile µ(t) such that

α
j

k(τ ) and |�(τ) − π/4| are sufficiently minimized in the

presence of mode-frequency offsets ǫk, i.e., ωk → ωk + ǫk.

Minimizing |αj

k(τ )| ∝ |
∫ τ

0
e−iθk(t) dt| is the intuitive cri-

terion for an optimized gate. However, such a gate is

sensitive to small changes ǫk ≪ 1/τ . Instead, the authors

of Ref. [34] induce robustness by minimizing the time-

averaged displacement |αj

k,avg| ∝ (1/τ)|
∫ τ

0

∫ t

0
e−iθk(t′) dt′ dt|,

which is proportional to the first-order correction to |αj

k(τ )|
when ωk → ωk + ǫk. Note that a time-symmetric pulse can

be used to guarantee that minimizing |αj

k,avg| also mini-

mizes |αj

k(τ )|. This optimization scheme, which we call

“robust FM,” has been used in recent experiments with

four-ion [12] and 17-ion [14] chains. Similar approaches

with amplitude and phase modulation [32,33] have also

been studied.

Although robust FM has been shown to be robust to

mode-frequency offsets that are an order of magnitude

smaller than 1/τ , it does not guarantee robustness to

ǫk � 1/τ . Moreover, robustness of the angle �(τ) ≈ π/4

to detuning errors is not enforced by this method.

Inspired by recent work on applying machine learn-

ing with a large sample set and minibatches to quantum

control [35], we present “s(ample)-robust” and “b(atch)-

robust” FM, which further enhance the robustness of a

two-qubit gate. Instead of minimizing the analytic first-

order correction, we minimize the average of |αj

k(τ )|2 over

an ensemble of offsets, thereby directly incorporating the

robustness condition into the cost function. Similarly, we

also include the condition for robustness of the angle �(τ)

in our cost function. Note that optimizing robustness of

the displacement has been achieved to some extent by

various methods [20,22,32], but not with the additional

goal of optimizing robustness of the angle [39], although

this is crucial for reaching high fidelity in the presence of

motional frequency drifts. We find the optimal FM pulse

µ(t) that minimizes the following cost function CE :

CE = 1

|SE |
∑

	ǫ∈SE

C(	ǫ),

C(	ǫ) =
∑

k

(

α
j1
k (τ , 	ǫ)2 +α

j2
k (τ , 	ǫ)2

)

+ 1

2

(

�(τ , 	ǫ)− π

4

)2

.

(5)

Here, E is the motional frequency uncertainty, and SE
consists of offset vectors 	ǫ whose components ǫk are

independently and randomly drawn from the normal distri-

bution N (0, E). α
j

k(τ , 	ǫ) and �(τ , 	ǫ) are the displacement

and angle when ωk → ωk + ǫk. The two terms of C(	ǫ)
are simply the displacement error representing residual

entanglement with the phonons, and the angle error.
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The carrier Rabi frequency � is updated at each itera-

tion such that �(τ , 	0) = π/4. Since the displacement error

is proportional to �2 and the angle error is proportional

to �4, this cost function naturally finds the low-� solu-

tion. This differs from the robust FM approach, which

sets � after the entire optimization [34], requiring explicit

regularization to fit the experimental constraints.

For s-robust FM, we set SE to a fixed training set

throughout the optimization. For b-robust FM, we set SE
to a batch, which is randomly updated at each iteration of

the optimization. Therefore, while s-robust FM calculates

the cost function repeatedly with a certain set of samples,

b-robust FM computes the cost function with a different

batch generated from the error distribution throughout the

entire optimization. In the work presented here, we set the

training-set size to 100 for s-robust FM and the batch size

to 10 for b-robust FM. For the batch method, we choose

the adaptive-moment-estimation [40] optimizer to stabilize

the gradient during training. We obtain sufficiently good

results without hyperparameter tuning.

III. COMPARISON OF OPTIMIZATION

METHODS

Figure 1(a) shows examples of continuous and discrete

pulses from robust and b-robust FM optimization over a

four-ion chain. Note that b-robust pulses do not have the

even-pulse constraint, and thus have twice as many degrees

of freedom as robust pulses. This allows b-robust FM to

explore a wider range of pulse shapes.

The continuous and discrete pulses have different time

complexities for evaluating the gradient of the angle �(τ)

over the pulse µ(t), which is the most time-consuming

routine of the optimization. For continuous pulses, neigh-

boring steps are connected by substeps that follow a cosine

envelope, and the evaluation time is quadratic in the num-

ber of substeps. However, for discrete pulses, the stepwise-

constant form allows efficient evaluation of the gradient of

�(τ), requiring time linear in the number of steps.

Figure 1(b) shows the learning curves for robust and

b-robust optimization. For robust FM, the cost function

quickly and smoothly drops to lower than 10−6. How-

ever, this guarantees a very accurate gate solution only

at offsets close to zero. Meanwhile, for b-robust FM, we

set the motional frequency uncertainty E to 2π × 1 kHz.

The cost function experiences larger fluctuations, as a new

batch of parameter offsets is used for optimization at each

iteration. Although the cost function reaches only approx-

imately 10−3, we expect our gate fidelity to be robust,

F ≥ 1 − 10−3, against all mode-frequency offsets within

the optimized range.

To evaluate the robustness performance, we calculate

the average unitary gate fidelity over the test set TE
of mode-frequency offsets. The unitary fidelity can be

expressed as F = (1/D) Tr(U†U(τ )), where U(τ ) is the
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FIG. 1. (a) Continuous (top) and discrete (bottom) pulses opti-

mized by robust and b-robust FM. The gray lines show the

sideband frequencies for a four-ion chain. Robust FM pulses are

time-symmetric, while b-robust FM pulses are not. (b) Learning

curves for robust and b-robust FM optimization.

unitary evolution in Eq. (1), U is the target unitary evolu-

tion, and D is the Hilbert-space dimension [41]. In terms

of displacement and angle, the average fidelity can be

expressed to second order as in the following equation

(see the supplementary information of Ref. [33] for the

derivation):

FE = 1

|TE |
∑

	ǫ∈TE

F(	ǫ),

F(	ǫ) = cos
(

�(τ , 	ǫ) − π

4

)

×
[

1 −
∑

k

(

α
j1
k (τ , 	ǫ)2 + α

j2
k (τ , 	ǫ)2

)

(

nk + 1

2

)

]

,

(6)

where nk is the mean phonon number of mode k, and TE
is the test set of the motional frequency uncertainty E ,

constructed similarly to SE . In order to evaluate the robust-

ness, the test set is completely random and independent of

the training set or minibatches used for optimization. We

choose the test-set size to be 1000. For an initial state with

an average of 0.5 phonons, the fidelity is simply equal to

1 minus the cost function to leading order in the errors:

F(	ǫ) = 1 − C(	ǫ).
Figure 2(a) shows the simulated average error 1 − FE

for pulses optimized by nonrobust, robust, s-robust, and

b-robust FM, for various values of the mode-frequency

uncertainty E . We use a pulse of length 200 µs to perform a
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FIG. 2. (a) Simulated unitary gate errors averaged over a test set of offsets drawn from distributions of various uncertainties E . A

200-µs pulse on the first two ions of a four-ion chain is used. Each s- and b-robust pulse is optimized over the corresponding uncertainty

E . Except when E is too small, s- and b-robust FM are significantly more robust than robust FM. (b) Displacements (arbitrary units)

of motional modes during the time when discrete robust and b-robust pulses are applied, where the mode frequencies drift by 1 kHz.

The displacements at the end (circles) are overall closer to the origin when a b-robust pulse is applied. (c) Angle �(t) during the time

when discrete robust and b-robust pulses are applied. When no drifts occur (dashed lines), the angle reaches exactly π/4 at the end of

both the robust and the b-robust pulses. When a uniform drift of 1 kHz occurs (solid lines), the angle is closer to π/4 when a b-robust

pulse is applied. For both (b) and (c), the b-robust pulse is optimized over E = 2π × 1 kHz.

MS gate on the first two ions in a four-ion chain. Note that

each point of the s-robust and b-robust data is optimized

with the respective range E . We perform 300 iterations for

nonrobust and robust FM and 1500 iterations for s- and

b-robust FM. Since the optimization performance depends

slightly on the choice of the random initial guess pulse,

we perform ten trials and choose the optimized pulse

with the best average fidelity over a cross-validation set,

constructed randomly and independently from the test set.

We find that s-robust and b-robust pulses have signif-

icantly smaller average errors than robust pulses, for an

error range E/2π ≥ 0.5 kHz using continuous pulses, and

for E/2π ≥ 1 kHz using discrete pulses. Notably, con-

tinuous s- and b-robust pulses have an average fidelity of

approximately 0.99 over an offset range of E/2π = 5 kHz.

This shows that s- and b-robust FM can be robust to offsets

as large as the inverse of the pulse length 1/τ = 5 kHz.

In general, b-robust FM performs slightly better than s-

robust FM, despite having ten times fewer cost-function

and gradient evaluations than s-robust FM has. This can be

understood as the advantage of exploring various values of

offsets 	ǫ, thus reducing the gap between the training curve

and the testing curve [35].

Figures 2(b) and 2(c) visualize the displacement and

angle errors for robust and b-robust pulses where the

motional mode frequencies drift by ǫk/2π = 1 kHz for all

four modes. As expected, the b-robust pulse has smaller

errors in both displacement and angle.

To visualize the robustness of the various FM meth-

ods, Fig. 3 plots the error landscapes over the motional

frequency offsets. We use a pulse of length 200 µs for a

MS gate on a two-ion chain, with offsets of the center-

of-mass mode (ǫ1) and tilt mode (ǫ2). Both continuous

and discrete pulses are used. The s-robust and b-robust

pulses are optimized over the mode-frequency uncertainty

E/2π = 1 kHz. The “high-fidelity regions” where the error

is less than 10−3 are marked with dashed contour lines. For

continuous pulses, the high-fidelity region is 4.5 and 6.4

times larger with the s-robust and b-robust pulses, respec-

tively, than with the robust pulse. For discrete pulses, the

high-fidelity region is 2.8 times larger with both the s-

robust and the b-robust pulses than with the robust pulse.

This shows that we can achieve significantly enhanced

robustness with s-robust and b-robust FM. Also, note that

the continuous b-robust pulse has a high-fidelity region 2.5

times larger than the discrete b-robust pulse has.

The error landscapes for s-robust and b-robust pulses

have two or three peaks of high fidelity that are clearly sep-

arated from the origin. The average position of the peaks

is near the origin, thus guaranteeing high fidelity at zero

offset as well. A large high-fidelity region that encom-

passes all peaks is formed. This provides an understanding
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Nonrobust Robust

T
i

T
i

FIG. 3. Error landscapes over frequency offsets of motional center-of-mass (c.m.) and tilt modes, simulated for various FM

pulses. A 200-µs pulse on a two-ion chain is used. The s- and b-robust pulses are optimized over a mode-frequency uncertainty

E = 2π × 1 kHz. The regions where the error is lower than 10−3 are marked with dashed contour lines. The s- and b-robust pulses are

clearly more robust over a wider region of offsets.

of how s-robust and b-robust FM are able to achieve sig-

nificantly better robustness than can robust FM, whose

landscape has a single sharp peak at the origin. Note that

a double-peak landscape is also observed in Ref. [35],

where minibatch optimization was performed over errors

in coupling strengths.

Now we discuss the scalability of robust and b-

robust FM. Unlike various generic pulse-optimization

algorithms whose computational cost increases exponen-

tially with the number of qubits [42–44], robust FM for

a trapped-ion system has a linear computational cost,

which makes the algorithm applicable to large-scale sys-

tems [45]. Our b-robust FM method also inherits this

advantage.

Figure 4 shows the performance of robust and b-robust

FM optimized for ion chains in a harmonic trap poten-

tial, with the number of ions ranging from 2 to 12.

For two- and four-ion chains, MS gates on all pairs

of ions are simulated. For ion chains of length N ≥ 6,

MS gates on all pairs in a subchain of length N − 2,

excluding the ions at the edges, which are too weakly

coupled to the motional modes, are simulated. The error

bars indicate the standard deviation over the ion pairs.

We use 400-µs pulses, both continuous and discrete.

The b-robust pulses are optimized over a motional fre-

quency uncertainty E/2π = 0.5 kHz. For continuous b-

robust optimization, we minimize only the displacement

error C(	ǫ) = ∑

k

(

α
j1
k (τ , 	ǫ)2 + α

j2
k (τ , 	ǫ)2

)

instead of the

entire error as in Eq. (5), due to computational-time

issues. 1500 iterations are performed for each optimiza-

tion.

Figure 4(a) plots the average fidelity FE , where

E/2π = 0.5 kHz, and Fig. 4(b) plots the Rabi frequency �.

For both continuous and discrete pulses, b-robust FM finds

a pulse solution with higher average fidelity and lower �,

and the advantages become more significant as the number

of ions increases. Note that explicit regularization of � is

possible for both methods, but at the cost of lower aver-

age fidelity. Nonetheless, the cost function of b-robust FM

for discrete (continuous) pulses scales as �4 (�2) with the

frequency offset, which naturally leads to convergence to a

low-� solution. We expect a further reduction in � can be

obtained by carefully choosing the initial guess pulse for

each pair of ions, as well as by designing the shape of the

trap potential for an even spacing between ions [45].

Figure 4(c) plots the run time for single pulse opti-

mization with each FM method, executed on a standard

consumer laptop. As expected, the run times scale lin-

early with the number of ions. The run time for discrete

b-robust FM is more than ten times longer than that for

discrete robust FM, due to the batch size of 10 and the

additional computation of �(τ). Nonetheless, even for

a 12-ion chain, discrete b-robust FM optimizes within

approximately 1 min, making it a practical candidate for

actual experiments.

For continuous b-robust FM, the run time is approx-

imately 20 times longer than for discrete b-robust FM,

even though we minimize only the displacement error. The

most time-consuming routine is evaluating � ∝ �(τ , 	0)1/2

and its gradient at each iteration, which is quadratic in

the number of substeps in the continuous case. How-

ever, we still find continuous b-robust FM a promising
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FIG. 4. Scalability of robust and b-robust FM, simulated for

up to a 12-ion chain. The error bars represent the standard devia-

tion over all ion pairs on which gates are applied. For numbers of

ions greater than or equal to 6, the ions at the edges are not used

for gates. Both continuous and discrete pulses of length 400 µs

are used. (a) Average fidelity over E = 2π × 0.5 kHz. (b) Rabi

frequency. (c) Run time for single pulse optimization. Calcula-

tions are performed on a consumer laptop with a 1.60-GHz Intel

Core i5 CPU and 16.0 GB RAM.

scheme for larger-scale systems, as for a 12-ion chain,

FE is significantly higher (average 99.7% over ion pairs)

than for the other FM methods. We note that the run

times could be improved by parallelization using graphics

processing units and the development of faster algorithms

for continuous pulses.

IV. EXPERIMENT

We compare experimental results for implementing dis-

crete robust and b-robust FM pulses of length 120 µs on a

two-ion chain of 171Yb+. The detailed experimental setup

is described in Ref. [12]. The rf source for modulating

the control lasers is upgraded from direct digital synthe-

sizers (AD9912) to a rf system-on-chip (ZCU111) driven

by firmware from Sandia National Laboratories [46].

FM and amplitude-modulation pulses require careful

tracking of ac Stark shifts during the modulation sequence.

This detail is suppressed in most derivations, since from

a theoretical viewpoint it is simply bookkeeping. For our

system, the dominant ac Stark shift is fourth-order by

design, and FM leads to negligible changes in the Stark

shift. This may not be the case for other ion qubits, where

tracking the ac Stark shift will be critical.

After initializing the qubits to the |00〉 state, we apply

a sequence of five MS gates, which ideally generates the

maximally entangled state (|00〉 + i |11〉)/
√

2. To eval-

uate the effect of motional frequency drifts, we apply

pulses with various detuning offsets. Figures 5(a) and 5(b)

show that with b-robust FM, the |00〉 and |11〉 popula-

tions deviate from 0.5 more slowly as the detuning offset

increases, compared with robust FM. Also, the popula-

tion of unwanted odd-parity states is more suppressed with

b-robust pulses. This indicates that b-robust FM is more

robust than robust FM to detuning errors.

Figure 5(c) plots the simulated MS-gate errors for dis-

crete robust and b-robust FM, both with and without

dissipative noise. Each error is averaged over a sequence of

five gates. We use a master equation [47] to simulate a MS

gate under dissipative noise, which consists of motional

dephasing, laser dephasing, and motional heating (see the

Supplemental Material of Ref. [12] for details). The noise

parameters that describe the current experiment are the fol-

lowing: motional coherence time 8 ms, laser coherence

time 333 ms, and motional heating rate 400 and 40 quanta/s

for the center-of-mass mode and the tilt mode, respec-

tively. Although the peak gate fidelity for b-robust FM is

lower than for robust FM without dissipative noise, it is

slightly higher (99.81%) than for robust FM (99.77%) with

noise. Appendix A shows that b-robust FM is more robust

than robust FM to slow dephasing noise, in the presence of

motional frequency drifts.

The peak fidelity for b-robust FM occurs at a detuning

offset of −0.4 kHz. This is because optimizing over mini-

batches does not necessarily set the peak fidelity so that it is

exactly at zero detuning. The simulations with dissipative

noise predict that b-robust FM has slightly lower fidelity at

zero detuning (99.74%) than robust FM has.

Appendix B shows that the b-robust FM pulse achieves

a MS-gate fidelity of 99.08(7)% in the experiment. Note

that this is lower than the MS-gate fidelity of 99.49(7)%

reported in Ref. [12], where a robust FM pulse was used

on the same system. The gate operates at zero detun-

ing, calibrated to the point where a crossover between

the populations of the |00〉 and |11〉 states occurs in the

experiment described in Fig. 5(b). In future experiments

with b-robust FM, the detuning offset should be calibrated

to the expected gate fidelity peak. Also, the gate suffers

from a high heating rate of the transverse center-of-mass

mode and off-resonant coupling to the motional modes in

other directions, which is ignored in the gate-pulse design.

We expect the gate fidelity to be improved when the trap

is operated at a higher rf voltage, which corresponds to

a higher transverse-mode frequency, lower heating rate,

and smaller off-resonant coupling. However, the rf volt-

age in our experiments is currently limited by several
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(a)

(b)

(c)
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Robust,

Robust

FIG. 5. (a),(b) Experimental (points) and simulated (lines)

state populations over a range of detuning offsets, after sequences

of five discrete (a) robust and (b) b-robust FM pulses are applied.

The error bars represent the shot noise. The smaller slope of the

even-parity curves and the flatter odd-parity curve indicate that

b-robust FM is more robust than robust FM to detuning errors. (c)

Gate errors averaged over sequences of five gates, simulated with

(solid) and without (dashed) dissipative noise. The peak error is

lower for b-robust FM in the presence of noise.

malfunctioning electrodes in the surface trap. Although

we disable those electrodes, the impedance of the trap

changes, and the ions are observed to be unstable when the

center-of-mass transverse-mode frequency is higher than

2π × 2.1 MHz.

V. CONCLUSION

In this paper, we present s-robust and b-robust FM

pulse optimization schemes for two-qubit entangling gates

in trapped-ion systems. We improve on the robust FM

scheme [34] by application of ML-inspired techniques,

using a large sample set and minibatches, respectively. In

our schemes, robustness is directly enforced by defining

the cost function as displacement and angle errors aver-

aged over various values of motional frequency offsets.

Our results show that s- and b-robust FM achieve a robust-

ness significantly improved from that of robust FM, finding

pulse solutions with multiple peaks in the fidelity land-

scape. Scalability of b-robust FM, in terms of a high aver-

age fidelity, low laser-power requirement, and reasonable

optimization run time, is demonstrated for up to 12 ions.

Finally, we provide proof-of-concept experimental results

that demonstrate improved robustness when b-robust FM

is used. We expect that b-robust FM has more significant

advantages over robust FM in more complicated experi-

ments with larger numbers of ions and uncertainty in the

motional frequencies, as shown in Figs. 4(a) and 2(a).

Immediate directions include analyzing the trade-off of

using the approximate error model in Eqs. (1)–(5) versus

using a more realistic model such as a master equation

for the cost function of b-robust optimization. Another

approach is to collect samples of gate errors at various

parameter offsets directly with the experimental apparatus.

The idea of b-robust FM can be extended to other types

of pulse modulation and noise. One future direction is to

extend the minibatch optimization scheme to find pulse

solutions that are robust to fast time-varying noise when

combined with quantum oscillator noise spectroscopy [48].

In general, we expect that ML-inspired pulse-optimization

tools for robust quantum control will make a signifi-

cant contribution to high-fidelity operations, not only in

trapped-ion systems but also on various other quantum

computing platforms [35].
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APPENDIX A: ROBUSTNESS TO DEPHASING

NOISE

Minimizing the time-averaged displacement

|αj

k,avg| ∝ (1/τ)|
∫ τ

0

∫ t

0
e−iθk(t′) dt′ dt| as in robust FM

achieves robustness not only to systematic frequency off-

sets but also to time-dependent fluctuations in the motional

mode frequencies and the laser amplitude, as demonstrated

in both simulations and experiments with phase modula-

tion [32]. Here we prove that minimizing |αj

k,avg| achieves
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robustness to slow dephasing noise. Then we provide sim-

ulation results that show that b-robust FM is more robust

to dephasing noise than robust FM is in the presence of

motional frequency drifts, despite only minimizing the

final displacements |αj

k(τ , 	ǫ)|.
Consider a time-dependent phase fluctuation ϕ(t) caused

by motional and/or optical dephasing noise. We assume

the fluctuation is small: |ϕ(t)| ≪ 1 (0 ≤ t ≤ τ ). We also

assume the fluctuation is slow compared with the inverse

gate time:

ϕ(t) = 1√
2π

∫ ∞

−∞
ϕ̃(ω)eiωt dω ≈ 1√

2π

∫ ωc

−ωc

ϕ̃(ω)eiωt dω,

(A1)

where ϕ̃(ω) is the Fourier transform of ϕ(t) and ωc ≪ 1/τ

is the cutoff frequency. We consider the case where the

final displacement is set to zero when there is no dephas-

ing noise. Replacing the phase θ(t) with θ(t) + ϕ(t), we

evaluate the displacement as in the following:

α
j

k(τ ) ∝
∫ τ

0

e−i[θk(t)+ϕ(t)] dt ≈
∫ τ

0

e−iθk(t)[1 − iϕ(t)] dt

= −i

∫ τ

0

e−iθk(t)ϕ(t) dt

≈ −i√
2π

∫ ωc

−ωc

dω ϕ̃(ω)eiωt

∫ τ

0

dt e−iθk(t)

≈ −i√
2π

∫ ωc

−ωc

dω ϕ̃(ω)

∫ τ

0

dt e−iθk(t)(1 + iωt)

= 1√
2π

∫ ωc

−ωc

dω ωϕ̃(ω)

∫ τ

0

dt te−iθk(t)

= − 1√
2π

∫ ωc

−ωc

dω ωϕ̃(ω)

∫ τ

0

dt

∫ t

0

dt′e−iθk(t′)

∝ α
j

k,avg, (A2)

where we perform integration by parts in the second to last

step. Therefore we conclude that α
j

k,avg ≈ 0 achieves first-

order robustness to slow dephasing noise.

To evaluate the robustness to slow dephasing noise in

the presence of motional frequency drifts, we compute the

time-averaged displacements averaged over a test set of

motional frequency uncertainty E :

C
avg
E

= 1

|TE |
∑

	ǫ∈TE

Cavg(	ǫ),

Cavg(	ǫ) =
∑

k

(

α
j1
k,avg(	ǫ)2 + α

j2
k,avg(	ǫ)2

)

.

(A3)

Figure 6 plots C
avg
E

for pulses optimized by nonrobust,

robust, s-robust, and b-robust FM, for various uncertainties

Continuous

Discrete

Robust

Nonrobust

Motional frequency

FIG. 6. Time-averaged displacements averaged over a test set

of offsets drawn from distributions of various uncertainties E . A

200-µs pulse on the first two ions of a four-ion chain is used.

Each s- and b-robust pulse is optimized over the correspond-

ing uncertainty E . Except when E is too small, s- and b-robust

FM have significantly smaller time-averaged displacements than

robust FM has. This implies that s- and b-robust FM are more

robust to dephasing noise in the presence of motional frequency

drifts.

E . As in Fig. 2(a), we use a 200-µs pulse on the first two

ions in a four-ion chain. We find that s-robust and b-robust

pulses have a significantly smaller C
avg
E

than for robust FM

when E/2π ≥ 1 kHz. While s- and b-robust FM minimize

the final displacements over the uncertainty range, they

naturally minimize the time-averaged displacements to sat-

isfy the condition for robustness to motional frequency

offsets. This also leads to robustness to dephasing noise,

which shares the same condition.

Notably, for continuous b-robust FM, C
avg
E

< 10−3 when

1 kHz ≤ E/2π ≤ 4 kHz. This leads to the displacement

errors being reduced by 1–2 orders of magnitude compared

with robust FM, because the displacement errors are pro-

portional to the time-averaged displacements. In this range,

the rotation-angle errors of the b-robust pulse dominate the

displacement errors.

APPENDIX B: EXPERIMENTAL GATE-FIDELITY

MEASUREMENT

We experimentally measure the MS-gate fidelity for dis-

crete b-robust FM on a two-ion chain, using the method of

Ref. [12]. We initialize the qubits to |00〉 and then apply
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1
–
fi
d

FIG. 7. Experimental errors in the maximally entangled state

generated by sequences of repeated MS gates. The purple,

orange, and black points represent the population leakage to the

|01〉 and |10〉 states, the loss of parity contrast, and the final-state

error, respectively. The gate error is given by the slope of the

linear fit to the black points.

a sequence of 1, 5, and 13 MS gates to generate the max-

imally entangled state (|00〉 + i |11〉)/
√

2. The population

of the |01〉 and |10〉 states and the parity contrast are used

to measure the state fidelity [49]. Using the fact that the

stochastic error accumulates linearly, the coherent error

accumulates quadratically, and the state-preparation-and-

measurement (SPAM) error remains constant, we extract

the gate fidelity without the SPAM error from a linear fit.

From Fig. 7, we measure the gate fidelity to be 99.08(7)%.

The data agree with the linear fit, indicating negligible

coherent error.

APPENDIX C: CONNECTIVITY OF A TEN-ION

CHAIN

To understand the performance of b-robust FM in a

larger system, Fig. 8 plots the connectivity of a ten-ion

chain. A MS gate for each ion pair is optimized with con-

tinuous b-robust FM with a pulse length of 400 µs. The

ions at the edges (1 and 10) are not used.

R
a
b
i 
fr

e
q
u
e
n
c
y

FIG. 8. Connectivity of a ten-ion chain, simulated for continu-

ous b-robust FM. The pulse length is 400 µs. Left: average error

over motional frequency uncertainty E = 2π × 0.5 kHz. Right:

Rabi frequency.

(a) (b)
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n
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Batch size = 1

Batch size = 10
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FIG. 9. (a) Learning curves for discrete b-robust FM opti-

mization on a four-ion chain with various batch sizes. The

dashed lines represent the final average error 1 − FE , where

E = 2π × 1 kHz. (b) Rabi frequency of the optimized pulse for

each batch size.

We expect to have a fully connected eight-qubit device

with fidelities ranging from 0.993 to 0.9998, even with an

uncertainty E = 2π × 0.5 kHz in the motional mode fre-

quencies. A larger Rabi frequency is required for pairs that

include the ion(s) close to the edges (2 or 9), due to smaller

participation in the excited modes. This can be improved

by carefully choosing the frequency offset of the initial

guess pulse and shaping the trap potential to obtain evenly

spaced ions [45].

APPENDIX D: BATCH SIZE AND OPTIMIZATION

PERFORMANCE

To describe the choice of the optimal batch size for b-

robust optimization, Fig. 9 plots the learning curves for

various batch sizes as in Ref. [35], as well as the Rabi

frequencies of the optimized pulses. A discrete pulse of

length 200 µs on the first two ions of a four-ion chain is

used to optimize over the motional frequency uncertainty

E = 2π × 1 kHz. Since the run time is proportional to the

number of evaluations of the cost function C(	ǫ) at a certain

frequency offset, we fix the batch size times the number of

iterations at 15 000.

Despite evaluating the cost function on the same num-

ber of samples, b-robust optimization with a smaller batch

size leads to a higher fidelity FE . This can be interpreted

as the effect of batch-induced noise, which is shown in

the fluctuations of the learning curve, leading to enhanced

robustness [35]. However, when the batch size is 1, the

Rabi frequency � of the optimized pulse is significantly

higher than when the batch size is 10 or 100. This justi-

fies our choice of the batch size as 10. We note that after

parallelization, increasing the batch size while fixing the

number of iterations does not necessarily increase the run

time.
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