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ARTICLE INFO ABSTRACT

Keywords: Computation of vorticity, or the skew-symmetric velocity gradient tensor, in conjunction with the strain rate
Vorticity tensor, plays an important role in the flow classification, in vortical structure identification and in the modeling
Skew-symmetric velocity gradient tensor of various complex fluids and flows. For the simulation of flows accompanied by the advection-diffusion
Fluid flow

transport of a scalar field (e.g., temperature), double distribution functions (DDF) based lattice Boltzmann (LB)
methods, involving a pair of LB schemes are commonly used. We present a new local vorticity computation
approach by introducing an intensional anisotropy of the scalar flux in the third order, off-diagonal moment
equilibria of the LB scheme for the scalar field, and then combining the second order non-equilibrium compo-
nents of both the LB methods. As such, any pair of lattice sets in the DDF formulation that can independently
support the third order off-diagonal moments would enable local determination of the complete flow kinematics,
with the LB methods for the fluid motion and the transport of the passive scalar respectively providing the
necessary moment relationships to determine the symmetric and skew-symmetric components of the velocity
gradient tensor. Since the resulting formulation is completely local and do not rely on any finite difference
approximations for velocity derivatives, it is by design naturally suitable for parallel computation. As an illus-
tration of our approach, we formulate a DDF-LB scheme for local vorticity computation using a pair of multiple
relaxation times (MRT) based collision approaches on two-dimensional, nine velocity (D2Q9) lattices, where the
necessary moment relationships to determine the velocity gradient tensor and the vorticity are established via a
Chapman-Enskog analysis. Simulations of various benchmark flows demonstrate good accuracy of the predicted
vorticity fields using our approach against available solutions, including numerical results, with a second order
convergence. Furthermore, extensions of our formulation for a variety of collision models, including those based
on cascaded and non-cascaded central moments, to enable local vorticity computation are presented.

Scalar transport
Lattice Boltzmann method
Complex fluids

1. Introduction classification (e.g., Truesdell, 1953; Hunt et al., 1988; Chong et al.,

1990; Jeong and Hussain, 1995; Tian et al., 2018). Such approaches are

Qualitative distribution and quantitative measures of vorticity is of
fundamental interest in fluid mechanics. Indeed, fluid motions are often
associated with vortical structures, which can be characterized by
vorticity, and, more generally, by certain invariants of the velocity
gradient tensor (Saffman, 1992; Wu et al., 2007). The significance of
the rigid-body like rotational component of the fluid element was first
identified in a pioneering work by Helmholtz (1867) and the subject
has a long and rich history (Aref, 2010; Truesdell, 2018). This local
rotational property of the flow, given by the curl of the velocity field,
was termed vorticity by Lamb (1932). While there is no consensus on a
rigorous definition of a vortex, various quantitative measures have been
devised to identify regions associated with more rigid-body like rota-
tions than stretching or shearing motions that aid in flow
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based on a complete knowledge of the velocity gradient tensor, and the
local, Eulerian based methods for coherent structure identification are
popular (see Epps, 2017 for recent review).

In more detail, the velocity gradient tensor A; = dju; of the velocity
field u; can be decomposed into symmetric S; and anti- or skew-sym-
metric parts Q; as

1 1
6jui = E(ajui + 6,-uj) + 5(5,14,- — 6,-uj) = S,'J' + Qij,

(€]
where S; is the strain rate tensor and Qj is the intrinsic rotation rate
(spin) tensor, with Q; = —%eykwk. Here, wy is the Cartesian component

of the vorticity and ey is the Levi-Civita (permutation) tensor, and the
vorticity can be defined as w; = ¢ djux or w = V X u. Both w; and Sy, or,
in general, dju; play an important role in eduction techniques for vortex
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structure identification. In particular, many of these methods
(Epps, 2017) are based on the second and third invariants of the ve-
locity gradient tensor OJu;, ie, Q= —%S,-J-Sij + iwkwk and
R= %(Siijk Ski + %w,- w;Sy). Similarly, sometimes the Lamb vector
L; = erwjui plays a prominent role in the analysis of vortex dynamics
(Hamman et al., 2008). Thus, a complete knowledge of the local velo-
city gradient tensor oju;, or equivalently, S; and Qy or wy is of basic
interest in structure identification and classification of flows and in the
determination of efficient stretching and folding of material surfaces for
quantifying the mixing of fluids (Ottino and Ottino, 1989). This also
allows a local determination of the components of the convective ac-
celeration of the fluid elements. In addition, the distribution of vorticity
is related to the sound generation and propagation in flow generated
acoustics (Howe, 2003). Furthermore, many models for the re-
presentation of turbulence (e.g., Pope, 1975), rheological fluid flows
such as those involving viscoelasticity, and complex fluid systems such
as liquid crystals and polar fluids depend on the local measures of the
complete velocity gradient tensor dju; (Leslie, 1979; Beris et al., 1994;
Larson, 1999; Deville and Gatski, 2012). Moreover, molecular liquid
flows under nanoscale confinement involves the relaxation of the in-
trinsic angular momentum to the vorticity of the fluid element, and its
coupling to the linear momentum, which needs to be modeled
(De Groot and Mazur, 2013; Hansen et al., 2009; 2011; 2015). It is thus
highly desirable for computational methods for fluid dynamics that
allow especially local determination of all components of the velocity
gradient tensor, including the skew symmetric part (i.e., the vorticity).
Here, we emphasize that ‘local’ implies that such methods do not de-
pend on finite difference approximations for velocity derivatives, but
are entirely based on operations of suitable quantities available at a
single grid node, and hence are naturally suitable for parallel com-
puting.

The lattice Boltzmann method (LBM) is a kinetic computational
approach for a variety of fluid mechanics and transport problems (He
and Luo, 1997; d’Humieres et al., 2002; Succi, 2001; Aidun and
Clausen, 2010; Luo et al., 2010; Guo and Shu, 2013; Geier et al., 2015;
Kruger et al., 2016). Generally, the standard versions of the LB schemes
can only represent the symmetric part of dju;, i.e., the strain rate tensor
S; based on local algorithms via the second order non-equilibrium
moments of the distribution function, which are, in turn, related to the
spatial derivatives of the first and third order moment equilibria. The
latter are constructed based on symmetry and isotropy considerations
that respect the underlying isotropy of the viscous stress tensor of the
fluid motion represented by the Navier-Stokes equations. It is known
that such LB approaches can recover the strain rate tensor components
locally with second order accuracy (see e.g., Kriiger et al., 2010; Yong
et al., 2012; Ning et al., 2016). However, most of the existing LBMs are
not constructed to recover the antisymmetric velocity gradient tensor
Q;; locally and need to rely on finite difference computations. One no-
table exception is the recent and interesting work (Peng et al., 2017),
which introduced an approach based on modifying the fifth order
moment equilibria of the LB solver for fluid flow that enables vorticity
computation. This approach is restricted to only lattices that can sup-
port fifth order independent moments and thus is applicable only to the
three-dimensional, twenty seven velocity (D3Q27) lattice, and not for
other standard lattice sets, including the common two-dimensional,
nine velocity (D2Q9) lattice, and D3Q15 and D3Q19 lattices in 3D.
Furthermore, since it is based on certain prescribed form of the higher
order moment equilibria, it may be challenging to extend such LB
scheme for thermal flows as well as those with significant compressi-
bility effects that involve constraints on the higher moments of the
single distribution function, and may also impact its Galilean invariance
of solving the fluid motion. Also, since it involves combining second
and fourth order non-equilibrium moments, which may be subjected to
hyperviscosity effects (Geier et al., 2015), the attendant higher order
moment equilibria for the solution of the fluid motion need to be
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constructed carefully.

Our approach is based on different considerations than the above
mentioned work for vorticity computation. When the goal is to simulate
the fluid motion along with an advection-diffusion transport of a scalar
field, represented by the following Navier-Stokes equations (NSE) and
the convection-diffusion equation (CDE), respectively:

o0 + V-(ou) = 0, 2
d,(ou) + V-(ouu) = —Vp + V-T + F, 3)
0/ + V-(¢u) = V-(DgVe), “4)

where p, u and p are the fluid density, velocity, and pressure, respec-
tively, T = 20vS; — %pvakukﬁij + p¢0kuidy is the deviatoric stress tensor
(with v and ¢ being the kinematic shear and bulk viscosities, respec-
tively, and d being the number of spatial dimensions), F is the local
body force, and ¢ is the scalar field (with D, being its diffusivity), they
can be solved by means of a double distribution functions (DDF) based
approach using two LB schemes — one for the flow field and the other
for the scalar field. Such situations related to solving the additional
passive scalar field dynamics arise widely, including those related to the
transport of energy or temperature field in thermal convection, and of
the concentration field of a chemical species in reacting systems, as well
as in the interface capturing using phase field models in multiphase
flows. Indeed, the modeling of flow and scalar transport using DDF
based LBEs is quite common and is a subject of a number of in-
vestigations (e.g., Ponce Dawson et al., 1993; He et al., 1998b; Van der
Sman and Ernst, 2000; Lallemand and Luo, 2003; Rasin et al., 2005;
Chopard et al., 2009; Yoshida and Nagaoka, 2010; Wang et al., 2013;
Chai and Zhao, 2013; Contrino et al., 2014; Hajabdollahi and
Premnath, 2018a; Hajabdollahi and Premnath, 2018c; Hajabdollahi
et al., 2019). In such cases, our essential philosophy is to use the ad-
ditional degrees of freedom (DOF) available in the LBE for the solution
of the CDE to construct a procedure for local vorticity computation
(Hajabdollahi, 2019). This is possible because as the evolution of the
scalar field ¢ is influenced by the local fluid velocity u, its solution
procedure can, in principle, contain the complete kinematics of the flow
field, which can be obtained from the corresponding LBM with careful
construction of its equilibria.

The basic idea behind our approach is as follows. Local vorticity
computation in the DDF-LB schemes can be achieved by prescribing an
intensional anisotropy of the scalar flux in the third order, off-diagonal
moment equilibria of the LBM for the scalar field and then combining
the second order, off-diagonal non-equilibrium moment components of
both the LBMs. In essence, the LBM for the fluid flow provides local
expressions for the strain rate tensor S; and the LBM for the scalar field
yields local relations for the skew-symmetric velocity gradient tensor
Qy, and hence the vorticity w. This formulation leads to various ad-
vantages. The numerical characteristics of the LBM for the fluid motion
are preserved as no additional modifications in terms of constraints on
its equilibria are imposed (but only on those for the scalar field) and the
resulting approach is non-invasive in representing the fluid flow. The
freedom from the need to prescribing extra constraints for higher mo-
ments for the LB flow solver allows ready extension to construct LB
schemes for complex flow physics. In addition, any pair of lattice sets,
each supporting only lower (i.e., third) order independent moments, in
this DDF-LBE approach can enable local vorticity computation. Thus,
this method is applicable for all standard lattices (e.g., D2Q9, D3Q15,
D3Q19 and D3Q27) and in different dimensions. Furthermore, the since
method is based on two distribution functions which by themselves are
generally solved with second order accuracy, the numerically predicted
vorticity magnitudes are second order by construction, just like the
computed strain rate tensor. Moreover, the local expressions for the
vorticity field, which are not dependent on finite difference approx-
imations of the velocity field, naturally lend themselves to parallel
computation. Finally, it can be used to establish a LB framework for



F. Hajabdollahi and K.N. Premnath

fully local modeling and computation of complex fluids (e.g., viscoe-
lastic or polar fluids), which generally depend on both the symmetric
and skew-symmetric velocity gradient tensor and are usually re-
presented by the evolution of additional distribution functions to re-
present the attendant multiphysics effects.

For the purpose of illustration without losing generality, in this
work, we will specialize our DDF approach by formulating in detail two
LB schemes using natural (non-orthogonal) moment basis and multiple
relaxation times (MRT) for the solution of flow and scalar transport
using the standard D2Q9 lattice to locally compute the complete in-
formation about the flow kinematics, including the skew-symmetric
velocity gradient tensor components. However, our method can be
readily extended to LBM based on other collision models and various
other lattice sets in different dimensions. For completeness, we will also
present the extension of our approach for the single relaxation time
(SRT) LBM and the cascaded and non-cascaded central moment LB
schemes the D2Q9 lattice in the appendices. While the objective of this
paper is to formulate, mathematically analyze and numerical validate
our new LB approach in 2D, its extension to 3D lattices will be pre-
sented in a follow-up investigation.

This paper is organized as follows. The next section (Section 2) will
present a MRT-LBM for computing the fluid motion, and its Chapman-
Enskog (C-E) analysis to determine the symmetric components of the
velocity gradient tensor. Section 3 will then discuss another MRT-LBM
for representing the advection-diffusion transport of a scalar field with
the required modifications as indicated earlier, and its C-E analysis to
obtain the necessary relations for the skew-symmetric components of
the velocity gradient tensor. The expression for the local computation of
the vorticity field is derived in Section 4. Then, results and discussion of
the comparisons of the computed vorticity fields against the analytical/
numerical solutions for various representative fluid flow problems are
given in Section 5. Finally, Section 6 presents a summary and conclu-
sions of this work. In addition, Appendix A lists the matrices that map
between moments and distribution functions, and Appendix B presents
the system of non-equilibrium moments and spatial derivatives of
various attendant components of moment equilibria needed in the de-
rivation of our approach. Appendix C discusses a formulation to recover
the skew-symmetric velocity gradient tensor for the SRT-LBM, while
Appendix D and Appendix E present extensions of our idea for different
versions of the LBM based on central moments.

2. MRT-LBM for fluid motion

In order to solve the fluid motion in two-dimensions (2D) re-
presented by the mass and momentum conservation equations given in
Egs. (2) and (3), respectively, we will now present a MRT-LBM using a
natural, non-orthogonal moment basis (Premnath and Banerjee, 2009).
In this regard, a D2Q09 lattice is used, and whose particle velocities are
given by the following:

le,) =(0,1,0,-1,0,1, -1, =1, 1)T, (5a)
le,) = (0,0,1,0, =1, 1,1, =1, =1)T, (5b)

where T is the transpose operator and the standard Dirac’s bra-ket no-
tation is used to represent the vectors. The Cartesian components for
any particle direction a are represented by e, and ey, where
a =0, 1, ..,8. In addition, we need the following 9-dimensional vector
whose inner product with the particle distribution function f, yields its
zeroth moment:

ny=@,1,1,1,1,1,1, 1, )%, ®)
The non-orthogonal basis vectors can then be written as
T=11), Ti=le) T=le),

2
Ty = lesey),

2 2 2 2
T=le; +ey), T,=leg—ey),

2 2,2
T; = lecey), T = lecey), Tg=legey).

)
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In the above, symbols such as Ie,fey) = lecece,) denote a vector that
arise from the elementwise vector multiplication of vectors ley ), lex) and
ley). In order to map changes of moments back to changes in the dis-
tribution function, we group the above set of vectors as a transforma-
tion matrix T, which reads as

T=[h 5 5 G L, G T B K. (®

Its components are presented in Appendix A.

We then define the raw moments of order (m + n) of the distribu-
tion function f,, its equilibrium f??, and the source terms S, to represent
the body force, respectively, as

A ,
K€ myn

o s [f

neq _ eq |,m ,n
Kymyn | = z th Corx Cary-

Aeq a=0 Soz
a.,.m.,n

Xy ©)

Here, and in what follows, the prime (‘) symbols denote various raw
moments. In terms of the nominal, nonorthogonal transformation ma-
trix T the relation between the various moments and their corre-
sponding states in the velocity space can be written as

A

M=Tf MAY=Tf4 S=Ts, (10)

where

f = (£, foon DTS
S = (So, Sty S3,05S8)’

£4 = (£, 20, 29, fEO,

are the various quantities in the velocity space, and

A A A A A T
m = (Mg, My, My, ..., Ms)

f
2" A" A" A A A A A A A A
= [ Ko, Ky, Ky Koe 4 Ky Koy = Ky Kgpr Kr Ky Ko |
(11a)
A eq Aeq Aeq Aeq A eqyt
m = (my,m , My ,..,Mg )
i
_ | red ned ned ped’ | ped’ peqd’  ped ped peq peq peq
=Ko oKy Ky s K Ky K — Ky, Ky K Kigys Ky | 5
(11b)
A A A A At
S = (So» S1, S2,--558)
’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 1’
_ A A A A A A A A A A A
= | ps O» Oy> Ox + Opyr Te = Ty Ty Tigr iy Ty 110
C

are the corresponding states in the moment space.
The MRT-LBM with trapezoidal rule to represent the source term
with second order accuracy can be written as

£(x + €0, t + 6,) — f(x, t) = T =A(h — D]
+ %T‘l[g(x + e, t +6) + 8(x, )14,
(12)
where the diagonal relaxation time matrix A can be represented as
A = diag(0, 0, 0, 3, @y, ws, wg, W3, Ws). 13)

In order to obtain an effectively explicit scheme, we apply the
transformation (He et al., 1998a; 1999) f; =f, - %Saét, or equivalently

A A 14 A’ n’ A’
m = m — -8 and Ky = K mpn — 25, mnd;, and the MRT-LBE can be
written as

F(x + e, t + 8,) — E(x, 1) = T=A( — M) + T—l[(l - %A)ﬁ]@,

14

eq . .
mn at different orders can be written as

The moment equilibria 7'<\x y,
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(Premnath and Banerjee, 2009)
neq neq' neq'
Ko =P, Kx =pPUx, Ky = PUy,

ned o 2 ped o 2 aed
Koo = 6o+ pUy, Ky, =Cp+ pUy, Ky = Pllly,

/\ELI'_ 2 2 /\qu_ 2 2
Kxxy =G puy + PUy uy) nyy = C5 PUx + puxuy,

eq'

1?,0%,— 4o + c2p(u? +u2)+pu§ uy, (15)
which are obtained from the discrete representation of the local con-
tinuous Maxwellian by transforming back their central moments at a
given order to their corresponding raw moments. Here, c; is the speed of
sound, and in the present work, we typically set ¢Z = 1/3. Also, mo-

ments of the source terms aqu follows as (Premnath and

Banerjee 2009)

A A
0y =0, o,=F, Uy=Fy,

3)“ = 2F.uy, c/}yy = 2F,u,, /J\xy = Fuy + Fuy,
A 2 A 2
Oy = Buy + 2Euyuy, 0y, = Fuy + 2K uyuy,
5. = 2(F.u,u? + Fu,u?)
gy = 4 Uxlly yUyUy), ae6)

where F = (F, F,). The hydrodynamic fields are given by

3 -

= z L
a=0

where u = (uy, u,). The above represents the solution of the NSE

(Egs. (2) and (3)), with the kinematic bulk and shear viscosities related

to the relaxation times via ¢ = c; (% - —)5[ and v =c; (— - —)5,,
@j

where j =4, 5 respectively. The remaining relaxation times for the
higher order moments, which influence the numerical stability, are set
to unity in this work.

p=cp,

uMw

f e, + lF5t,
2 a7

2.1. Moment relationships for the symmetric velocity gradient tensor:
Chapman-Enskog analysis

We will now perform a Chapman-Enskog analysis (Chapman and
Cowling, 1990) to determine the expressions that relate the symmetric ve-
locity gradient tensor to certain components of the local (non-equilibrium)
moments. Expanding the moments about its equilibria as well as applying
the standard multiscale expansion of the time derivatives in the MRT-LB
scheme given in the previous section

0 . o0
- Sl o= e,
j=0

j=0 (18)

where € is a small bookkeeping perturbation parameter, and also per-
forming a Taylor series expansion of the streaming operator in Eq. (14), i.e.,
Fr+ec,t+e) =D =6 + e VY, D).

= 19
and converting all quantities in the velocity space to the moment space (via
Eq. (10)) and using m=h - %ﬁét, we obtain the following system of
moment equations at consecutive order in e:

/\(o) A e q

0(c%: =m (20a)
0@E): (B + Eoph©@ = —Ad® + 8, (20b)
0} A 1Al A A A2
O(EZ)I 5[11/1\1 + (ato + E,ﬁl)[l - EA]I/I\I = —AI/I\I , (200)

where I%i = T(e;)T, i € {x, y} and the components of these matrices are

given in Appendix A. It may be noted that the O(¢®) moment system
A

in Eq. (200) 3, + (3, + Eid)

A A
" + 16, + Eaym"” - 16, + Ed)S = —Am®

follows from

and rewriting its
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third term using Eq. (20b) by eliminating the space/time derivatives of '
in favor of the non-equilibrium moment . In order to obtain the hy-
drodynamic macroscopic equations, in the leading, i.e., O(e) system (see
Eg. (20b)), the equations representing the evolution of the moment com-
ponents up to the second order are necessary, which read as (see
Appendix B for details)

atop + ax(pux) + ay(puy) =0, (21a)
ato(/oux) + ax(cszp + pu)?) + ay(louxuy) =F (21b)
alo(puy) + ax(:ouxuy) + ay(cszp + pu;) = F;) (21¢)

81270 + p(ug + u)) + 8. [(1 + c)pux + puruy] + 3y[(1 + ¢)puy + puu,]

1
= — m3n’>13( ) + 2(Fuy + Fu,y),

(21d)
iy (ug — u)) + 3:[(1 — eHpux — puxuy] + 3,[(—1 + c)puy, + puiuy]
= — i + 2B, - Buy),
(21e)
8o (U tty) + 8y(cipuy + ,ouzuy) + 3y(cZpuy + puyuy)
= —wsms +Fuy+Fux (211)

Analogously, at the next, i.e., 0(e?) level (see Eq. (200)), the re-
levant moment equations to recover the equations of the fluid motion
written up to the first order as

Oyp =0, (22a)
1 1 @, 1 1 @ 1 @
3 (ouy) + ax[5(1 - Ew3)/r\l3 + E(l - Ew“) 2 ] +0 [(1 - 5@5) 7 ] =0,
(22b)
d1(ouy) + dx[(l - %m)rﬁ;l)] + By[%(l - %ms)rﬁf) - %(1 - %am)rm(l)] —o.
(22¢)

In more detail, these three equations follow from using the first

A A
three rows of the matrices E, and E, given in Appendix A after multi-
plying them with the vector of the non-equilibrium moments "
A
scaled by the matrix involving the relaxation parameters, i.e., [I - %A]

and placing the results within the appropriate spatial derivatives as

prescribed in Eq. (20c). Here, the components of the second-order non-

AQD A and A /\(1) A Ar@)

equilibrium moments m; ", m, (which represent %,

s
Q;,El) Ay'y( Y and ;Qxy( , respectively) are unknowns. They can be obtained
from Egs. (21d)-(21f), respectively, where the time derivatives

3,,(2ctp + p(ui + u)), 8, (p(u? — up)) and 8y (ou,u,) are eliminated in
favor the spatial derivatives using the leading order mass and mo-
mentum equations (i.e., Egs. (21a)—(21c), respectively). For details, see
e.g., (Premnath and Banerjee, 2009; Hajabdollahi and Premnath,
2018b). Neglecting all terms of 0(®) and higher, we can obtain the
expressions for the various components of the non-equilibrium second
order moments related to the symmetric part of the velocity gradient
tensor Sy = %(@vui + diuy) (i.e., 0.y, Oyu, and dyu, + dyuy), which read
as (Premnath and Banerjee 2009; Hajabdollahi and Premnath 2018b)

A a0 a0y 26

s = Ry = - + o) 230)
o) ay ay 20

hy =Ry — K, = “" (@t = o) (23b)

As(l) = Q;yl) sP (Bxuty + Byuy) (239

When these expressions are substituted in Eqs. (22b) and (22c), and
then combining the O(e) and 0(e¢*) moment equations up to the first
order, the NSE given Egs. (2) and (3) follows. It may be noted that since
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the LB schemes are generally based on a small set of discrete particle
velocities, they are applicable for computing flows in the in-
compressible limit. Thus, the step involving the elimination of the
higher order terms based on the fluid velocities in the above and in the
rest of this paper, which is a common assumption in deriving LB al-
gorithms to simulate incompressible flows, is valid and appropriate.
The non-equilibrium moment relations given in Egs. (23a)—(23c) will be
combined further with the developments given in the next section to
develop a local computing approach for the vorticity field later in
Section 4.

3. MRT-LBM for transport of a passive scalar

The solution of the advection-diffusion of the passive scalar field ¢
given by the CDE in Eq. (4) will now be represented by using another
MRT-LBM. Considering the D2Q9 lattice again, which, as required,
supports the off-diagonal third order moment equilibria independently
as noted in the Introduction, we use the same natural moment basis
given in Eq. (7) as well as the resulting transformation matrix T (see
Eq. (8)). First, we define the relation between the various raw moments
and the corresponding distribution function g, and their equilibria g:?
for this MRT-LBE as
n=Tg, n=Tgy, @4
where
g=(88 &8 89=(@g" g g% g (25)
are given in the velocity space, and

A A A A A
n = (o, iy, My---Mg)'

Al N /\’ N Y Y N A N
= (o> Mo Ty g + Tygs Poe = Ao Ty Thngs Py Mgy (26)
Neq _ Ne€q Aeq Aeq  Aedy.
n'=(,,n ,n,  -ng)
_(ned peqd peq peqt  neq neq”  neq peq peq /\Bq neq
(UO’nX’ny’nxx Ty > e = Ny gy > T Mgy )cxyy)
27)

represent the equivalent states in the moment space. Here, the various
sets of raw moments are defined as follows:

7 ymyn 8 8u
Aeq' = Z ge‘l € e“)”
1 xmyn a=0 \7% (28)

Then the MRT-LBE using a non-orthogonal moment basis for the
solution of the CDE can be written as

gx + €8, t +8) — glx, ) = ~TIA (B — A, 29)
where A¢ is the diagonal relaxation time matrix given by

¢ .
A" = diag(0, w1¢, coz"", cuf, cuf, cuf, a)f, cuf, cugs, ) (30)

A key element in this work is the prescription of the moment
equilibria n (Eq. (27)) used in Eq. (29) to enable a local computation
of the antisymmetric velocity gradient tensor or the vorticity field. The
passive scalar ¢ is advected by the local velocity field u, and and hence
its solution procedure, in principle, has a complete information on the
kinematics of the fluid elements undergoing a variety of motions when
it is carefully designed. As such, most of the components of the moment
equilibria i? can be constructed in analogy with m* given in Eq. (15),
where the density p is replaced by the scalar field ¢. On the other hand,
in view of the above consideration, in order to extract the local intrinsic
rotation rate of the fluid element related to the antisymmetric velocity
gradient tensor, we prescribe anisotropy in the scalar flux (¢u) com-
ponents used in the third order equilibria (i.e., xxy and xyy), which, as
we shall see in the following, does not affect the recovery of the mac-
roscopic CDE. Thus, we set
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neq'

h =¢ Ay = s, ny —¢uy,

neq'
nm = Cs¢¢ + ¢ux9 nyy = cs¢¢ + ¢uy! ny = ¢uxuyy

neq' aeq’
ey = + guiny, = + g,
neq’
77xxyy = c§ﬁ¢ + c_\%ﬁgs(u)? + u2) + ¢ux y? (31)

where c,, is an independent parameter related to the diffusivity D, (see
below), and we typically set c% = 1/3 in this work. Here, ;, and B, are
free parameters that prescribe anisotropy on the scalar flux appearing
in the third order moment equilibria. Typically, f; = 1 and 8, = 1, but
B, — B, # 0, i.e., a small intentional anisotropy is introduced to locally
recover the magnitude of the intrinsic rotation rate of the fluid motion
(see the following section). The scalar field ¢ is then obtained as the
zeroth moment of the distribution function g,, which evolves according
to Eq. (29) in the form of the standard collide-and-steam steps:

¢= D, 8
;} (32)
Then, the above represents the solution of the CDE (Eq. (4)), with

1

the diffusivity related to the relaxation times via Dy = cszqs % e [
@

J
where j = 1, 2. It may be noted that Appendix C-Appendix E present
extensions of our approach to other collision models, including the SRT-
LBM and central moment LB formulations.

3.1. Moment relationships for the scalar gradient vector and skew-
symmetric velocity gradient tensor: Chapman-Enskog analysis

We will now perform a C-E analysis of the MRT-LBE for the passive
scalar field. Applying the moment expansion about its equilibria and a
multiscale expansion of the time derivative to Eq. (29)

i /\(})7 6 = i €jatj,

j=0 (33)
where ¢ = §, and also using a Taylor expansion of the streaming op-

e :
= Yo 1@ + e V)g(x, 1),
moment equations at consecutive order in e can be obtained:

erator g (x + eye, [+ €) the following

0@): 7?2 =hH, (342)

O@): (3 + EdpA® = —A*A®, (34b)
. O} A 1Aé]a APAQ)

0(ed): 3,0 + (B + E,-ai)[ - —A ]“ =-ANn7, (340)

where I/éi is the same as that given earlier. Some of the relevant com-
ponents at the leading order (i.e., (O(g))) of the moment system (see
Eq. (34b)) are given as

at0¢ + ax(¢ux) + ay(¢uy) =0, (35a)
Buo(Bu) + 8.k + ud) + 8y (Puyuy) = —w A", (35b)
Bro(Buy) + B, (Buxity) + 8y(cks + gup) = ~wfh,", (350)
6[0(2C32¢ + ¢(u§ + uj)) + ax[(l + 52052¢)¢Mx + ¢uxuj]
+0,[(1 + Bie)puy + duiuy)
_ ¢h (1)
= —wzng , (35d)
5[0(‘25(”3 - u;)) + ax[(l - 62Qv2¢)¢”x + ¢”xu5]
+0,[(—1 + B puy + puiu,]
A1)
= —wpny (35e)
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i (Puxuy) + O[Bichpuy + duiuyl + 8,[B,chdux + puyuy

= — wsphl, (35f)

where the above can be obtained by replacing xxgnyn in the corre-
sponding C-E analysis for the fluid motion with f)\;myn (see the previous
section and Appendix B for details) and allowing for the relaxation of
the first order moments, since only the scalar field ¢ is conserved in the
present case. Similarly, the leading component (i.e., the zeroth order) of
the moment system at the 0(e?) level to recover the CDE is obtained
from Egs. (34c) can be written as

¢ ¢
at1¢+ax[(1 —) (D]+a[(1——] “)] 0.
2 2 (36)

Now, in order to derive the CDE, we need to combine Eq. (35a) and

¢ times Eq. (36) by using 6; = 9, + €d,, which requlres n( ) and A A(l)

These first order non-equilibrium moments (n1 ) and A )) can be ob—

tained from Egs. (35b) and (35c), respectively, where the time deri-
vatives are eliminated in favor of the spatial derivatives by using the
leading order mass, momentum and scalar conservation equations (i.e.,
Egs. (21a), (21b), (21c) and (35a)). Hence after some simplification,
and neglecting terms of O(u?) and higher, we get the components of the
first order non-equilibrium moments in terms of the components of the
scalar gradient vector d;¢ as

A (1) ALY

1
=7, = _w_{;scsz¢ax¢

(37a)

A _ AQY 1,
ny =1, ——w—fcs¢6y¢>,

[}
|
|

(37b)

It may be noted that in the derivation of these non-equilibrium
moment components, only Fhe spatial derivatives of the second order
moment equilibria (i.e., 7’7\3, 7'7\;;1 and 7'7\;1) are involved and do not in-
volve the introduced anisotropy, which appears at a higher order level,
i.e., for the third order moments of the equilibrium distribution via the
factors ; and 3, and hence the advection-diffusion of the passive scalar
transport is correctly recovered.

As shown in the previous section, the symmetric components of the
velocity gradient tensor Oxlly, dyut, and d,u, + J,u, can be obtained from
the MRT-LBM for fluid flow. In order to obtain the skew-symmetric
component, i.e., dxU, — d,uy, which would then provide a complete
information about the velocity gradient tensor dju; and hence the vor-
ticity field, we now exploit the additional degree of freedom available
in the off-diagonal, second-order non-equilibrium moment equation
resulting from the MRT-LBM for CDE, i.e., Eq. (35f). Simplifying this
equation by eliminating the time derivative in favor of spatial deriva-
tives and eliminating higher order terms (i.e., (0(u®) and above), we
get

@
Brcspde(uy) + Byl (puy) = —wlhs (38)
which can be rewritten as

NCT
=2 Octhy + B0,Uy) + 3t + Bouxd,)].
ns w5¢ (@ (B, 0xuy + Br0yux) + (Byuy0xd + Brux0y¢)] 39)

Clearly, the anisotropy introduced into the scalar flux components
in the third order moment equilibria results in an additional flexibility
via an independent equation given above (Eq. (39)). In this equation,
the gradients of the scalar field in the Cartesian coordinate directions
Ox¢ and dy¢ can be obtained locally from Eqs. (37a) and (37b); and with
the knowledge of the off-diagonal second-order non-equilibrium mo-
ment component r'z\s( 1), then Eq. (39) represents an additional in-
dependent equation to compute the antisymmetric velocity gradient
tensor component, which will be exploited further in the next section.
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4. Derivation of local expressions for the complete velocity
gradient tensor and vorticity field

In order to independently determine the cross-derivative compo-
nents of the velocity gradient tensor, i.e., 0,1, and 0,1, we combine the
analysis presented in the two earlier sections. In particular, the
Eq. (23c) resulting from the solution of the MRT-LBM for fluid flow and
Eq. (39) from the MRT-LBM for CDE, can be rewritten as

Oxty + Oyl = Ny, (40a)
B,0xuy + By0yuy = NE, (40b)
where, when ¢ = 0,
Ws A (1)

Ny = ———=ms ',

T et (41a)
Ng = 2540 _ (61uy 8.4 + Bruxd,p).

¥ ¢cs¢ (41b)

Solving Egs. (40a) and (40b), we get following independent and
local expressions for the off-diagonal components or the cross deriva-
tives of the velocity field, which is one of the main results of this work:

. = ny — ﬁszy
Y 51 - 52 ' (42a)
s, = PN — Ny
- 51 - 52 (42b)

The diagonal components of the velocity gradient tensor, i.e., 0,
and 0,u, follow from solving the Egs. (23a) and (23b) resulting from the
MRT-LBE for the fluid motion, which reads as
A 1) A (1)

+ wym,
4cS o @ty ] (43a)

1 A1) A (1)
— Wy I,

(43b)

and this completes the determination of all the components of the ve-
locity gradient tensor. Finally, a local expression for the pseudo-vector,
viz., the vorticity field w =V xu = (0, 0, w,) can be obtained by
combining Eqs. (42a) and (42b) as
2N¢, — (B, + BN,
W, = Oy, — OyUy = —r = B+ ) iy
(31 - Bz) 44)

which is another key result arising from our analysis.

The terms N,;, and N, )fv given in Egs. (41a) and (41b), respectively, which
are needed in Eqs. (42a), (42b) and (44) can be evaluated locally using

A A neq A’

5 = Ky T Ky = Ky T PUxlly, (45a)
AD A neq' A
Ns =7y =Ny =Ny~ Puxuy, (45b)

and also since A" = 4, - 49 =4, — ¢u, and nz(l) = 7/7\y - ﬁ;ql = ;)\y — ¢u,, and
from Egs. (37a) and (37b), we have the required local expressions for the

derivatives of the scalar field, which read as

()

¢ ¢
oup = —h - pud, B¢ = —2[h — du,]
cs:ﬁ Cs¢ (46)

Note that 3; = 1 and 8, = 1, but $; = S, and are otherwise free

parameters. We typically set 8, = 1, 8, = 0.9 in this work. In addition,

1 . .
the expressions for m( ) and rﬁ: ) needed in the diagonal components of

the velocity gradient tensor, i.e., Egs. (43a) and (43b) can be written as

& (1)

=R+ xyy) — Qo+ pWi + u)), (472)
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My = (R — Ryy) — p(u? = ud). 47b)
In the above, 7'c\xx /c\W ﬁxy ﬁx /;\y and fy\xy are the raw moment com-
ponents of different orders of the respective distribution functions. The
formulation presented above thus allows local computation of the
complete velocity gradient tensor and hence the vorticity field without
relying on any finite difference approximations of the velocity field.

5. Results and discussion

In this section, we will perform a numerical validation study of the
new DDF MRT-LB scheme for vorticity computation. In this regard, we
will consider a set of well-defined benchmark flow problems for which
analytical solutions or numerical results for the vorticity field are
available or can be derived. In the simulations results presented in the
following, the relaxation times for the second order moments of the
MRT-LBM for the flow field (ws = ws = 1/7) are chosen to specify the
desired fluid viscosity, while those for the first order moments of the
MRT-LBM for the scalar field (wf = of = 1/7#) are prescribed to select
the diffusivity. The relaxation times of all the higher order moments for
both the LB schemes are set to unity for simplicity. Unless otherwise
specified, we consider the use of lattice units, i.e., 6, = & = 1.0 typical
for LB simulations and a reference density of unity is considered in this
work. For all the benchmark problems reported in what follows, we set
the coefficients for the scalar flux terms in the third order moment
equilibria of the MRT-LBM for the scalar field to 8, = 1.0 and 8, = 0.9.

5.1. Poiseuille flow

As the first benchmark problem, a steady flow between two parallel
plates with a width 2L driven by a constant body force F,, i.e., the
Poiseuille flow, is simulated. This flow problem has an analytical so-
lution for the vorticity field as the linear profile w,(y) = 2Unaxy/L?,
which can be obtained from the parabolic velocity profile
ux(y) = Unax[1 - i_z]’ where Upax = I;);l;z
velocity, v and p are fluid kinematic viscosity and density, respectively.
Periodic boundary conditions are employed in the streamwise direction
and no-slip condition for the velocity field are imposed using the half-
way bounce back scheme. The computational domain is resolved using
3 X 151 lattice nodes. For the scalar field, we consider fixed values at
the bottom and top walls as ¢, = 1.0 and ¢,; = 2.0, respectively, and its
diffusivity is specified by choosing ¢ = 0.57. At a fixed body force
F. = 3 X 107°, computations are carried by adjusting the fluid kinematic
viscosity such that the following five sets of maximum centerline ve-
locities are considered: Upa, = 0.01, 0.03, 0.05, and 0.08. The corre-
sponding Peclet numbers Pe are 32.1, 96.4, 160.7 and 257.1, where
Pe = UpuL/Dy with the diffusion coefficient D, given below Eq. (32)
and the length scale L being the half-width of the plate. Fig. 1 shows a
comparison between numerical results for the vorticity profiles ob-
tained using the DDF MRT-LB scheme and the analytical solutions for
the above set of values for Uy, . Excellent agreement is seen. It may be
noted that while the above specific value for ¥ was chosen to report our
results, we also tested our LB algorithm for various other choices of this
relaxation parameter, including z# ~ 1.0. It was found that the results
for the vorticity field are accurate and robust for a wide range of the
possible values of ¢* that is typical of the applicability of the LB schemes
for the solution of the convection-diffusion equation.

is the maximum centerline

5.2. Four-rolls mill flow problem

In order to examine the validity of our approach for a flow problem
with fully two-dimensional (2D) spatially varying distribution of the
vorticity field, we consider next the four-rolls mill flow. It is a steady,
rotational flow consisting of an array of counter-rotating vortices gen-
erated by the stirring action of a suitably specified local body force
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Fig. 1. Comparison of the computed profiles of the vorticity field and the
analytical solution in a Poiseuille flow for different values of the centerline
velocity Upax = 0.01, 0.03, 0.05, and 0.08 obtained by varying the fluid viscosity
at a fixed body force F, = 3 x 107°. Here, the lines represent the analytical
solution and symbols refer to the numerical results obtained by the present DDF
MRT-LB scheme.

E =F(x,y) and F, = E/(x,y) in a periodic square domain of size
21t x 2m;. It is a modified form of the Taylor-Green vortex flow. The
spatially varying driving body force can be written as
E.(x,y) = 2p,vugsinx siny and F,(x, y) = 20,vi, cosx cosy, where pg is
the reference density, v is kinematic viscosity and u is the velocity scale
and 0 < x, y < 2m. A solution of the simplified form of the Navier-
Stokes equations with the above described body force yields the explicit
form of the local velocity field, which reads as u,(x, y) = ugsinxsiny
and u,(x, y) = ugcosx cosy. Then, the analytical solution for the local
vorticity field w,(x, y) can be derived by taking the curl of the above
velocity field, which can be written as

w, (X, ¥) = —2uy sinx cosy. (48)

For the purpose of setting up simulations, the Reynolds number for
this flow problem can be defined as Re = uy27/v and the viscosity can
be written as v = %(r - %)Ax, where Ax = At = 27t/N, where N is the
number of grid nodes in each direction. We consider a grid resolution of
84 x 84 and a velocity scale uy = 0.035 to simulate four-rolls mill flow
at Re = 40. The scalar field is initialized to a uniform value of 2.0 in this
periodic domain with the relaxation time % = 0.57. The Peclet number
Pe using u, as the velocity scale and 2n as the length scale for this
problem is 9.4. Fig. 2 presents a comparison between the spatial dis-
tribution of the computed vorticity field obtained using the DDF MRT-
LB scheme and the analytical solution. Due to the presence of a system
of counter-rotating vortices, the vorticity field, represented by har-
monic functions analytically, dramatically varies both in its magnitude
and sign. Good agreement between the two results are evident.

Furthermore, in order to make a more head-on comparison, Fig. 3
shows the computed vorticity profiles w,(x, y) computed using our LB
scheme along various horizontal sections at y = 0, 7/4, /2, &, 57/4
along with results based on the analytical solution. It is evident that
there is a very good agreement between our numerical results and the
analytical solution.

5.2.1. Grid convergence study

We will now assess the order of accuracy of the convergence of the
vorticity computation via our DDF MRT-LB scheme. In this regard, at a
fixed viscosity of v = 0.00218 with a velocity scale u, = 0.045, we con-
sider the following sequence of four different resolutions: 24 X 24,
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Fig. 2. Comparison of the spatial distribution of the computed vorticity field with the analytical solution in a four-rolls mill flow within a square domain of size
25t X 2 for Re = 40. The surface plot on the left corresponds to the numerical results obtained by the present DDF MRT-LB scheme and that on the right is based on

the analytical solution.
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Fig. 3. Comparison of computed profiles of the vorticity field and the analytical
solution in a four-rolls mill flow along various horizontal sections at
y =0, /4, 7/2, m, 5/4. Here, the lines represent the analytical solution and
symbols refer to the numerical results obtained by the present DDF MRT-LB
scheme.

48 X 48,96 X 96 and 192 X 192. For each case, we measure the
following global relative error (Eg,) between the vorticity field com-
puted using the DDF MRT-LB scheme given by w. and the corresponding
analytical solution denoted by wy:

“Z(wc - wa)z

E, ., =
BTN B(we)? (49)

where the summations in the above are for the whole computational
domain. The rate of convergence of the global relative error is depicted
using a log-log scale in Fig. 4. From this figure, it can be seen that the
relative error exhibits a slope of -2.0, which demonstrates that the
vorticity computation using our approach is second order accurate.

5.3. Womersley flow

In order to validate our approach for the calculation of the vorticity
field in unsteady flows, a 2D pulsatile flow between two parallel plates
separated by a width 2L driven by a sinusoidally time-dependent body
force F,(t) is considered. This classical Womersley flow problem is
subjected to a periodic body force given by F, = F,cos(Qt), where F,, is
the maximum amplitude of the force and Q = 27/T is the angular
frequency and T being the time period. Considering that this pulsatile
flow is laminar and incompressible, the analytical solution for velocity
field is given as (Currie, 2002)

Ll(y, [) _ R{l%l:l _ cos(Vy/L)}eim}’

cosy (50)
where y = ViWo? and Wo = L/(Q/v) is the Womersley number. Here,
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Fig. 4. Evaluation of the order of accuracy of the present DDF MRT-LB scheme
for vorticity computation in the four-rolls mill flow problem with a constant
kinematic viscosity v = 0.00218 at different grid resolutions.

and in the following R{-} refers to the real part of the expression. Then,
the analytical solution for the local time dependent vorticity field w,(y,
t) can be readily obtained by taking the curl of the velocity field as

_ gV | SING/L) | o
w, (¥, t)_R{lQL[ cosy ]e .

(51
We consider a grid resolution of 3 X 101, maximum force ampli-
tude F, = 1.0 X 107> with a time period T = 10, 000 and two different
values of the Womersley number, i.e., Wo = 4.0 and Wo = 7.0, which
are specified by setting the relaxation times for the MRT-LBM for the
flow field to be 7 = 0.781 and 7 = 0.596, respectively. Periodic boundary
conditions and the no-slip boundary conditions are considered for the
inlet/outlet in the streamwise direction and along the two parallel
walls, respectively. The parameters and the boundary conditions for the
scalar field are the same as those considered for the Poiseuille flow
simulations discussed earlier. The Peclet numbers are also in the same
range as those reported for the Poiseuille flow cases. Fig. 5 presents a
comparison between the computed vorticity profiles obtained using the
DDF MRT-LB scheme and the corresponding analytical solution at dif-
ferent time instants within a time period T. It is evident that the vor-
ticity field is subjected to strong temporal and spatial variations, which
are seen to increase with the Womersley number. These are very well
reproduced quantitatively by our local computational approach.
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Fig. 5. Comparison of computed profiles of the vorticity field and the analytical solution in a pulsatile flow in a channel (i.e., Womersley flow) at different instants
within a time period for two different Womersley numbers of Wo = 4.0 and Wo = 7.0. Here, lines represent the analytical solution and the symbols refer to the

numerical results obtained using the present DDF MRT-LB scheme.

5.4. Lid-driven cavity flow

As the final validation study, we consider simulation of a shear
driven flow within a square cavity due to the motion of its top lid in
order to compare the computed vorticity fields against those based on
numerical results obtained by a finite-difference method. The lid-driven
cavity flow is a classical benchmark problem characterized by complex
flow features involving vortical patterns of different sizes which are
strongly influenced by the nonlinear effects, i.e., the Reynolds number
(see e.g., Ghia et al., 1982; Erturk et al., 2005; Bruneau and Saad,
2006). If Uy is the velocity imposed on the top lid of a square cavity of
side length L, its Reynolds number Re can be expressed as Re = UyL/v.
We perform numerical simulations of shear-driven flow within a cavity
at Re =400, 1000 and 3200 by considering grid resolutions of
100 x 100, 300 x 300 and 450 X 450. In this regard, the lid velocity
Uy is set to be 0.05. The no-slip boundary conditions are prescribed on
the walls via the standard half-way bounce-back condition, and in-
cluding a momentum augmentation term for the moving top lid (see
e.g., Ning et al., 2016 for details). The scalar field ¢ is set be equal to 1.0
on all the boundaries. Using the lid velocity as the velocity scale and the
side length of the cavity as the length scale, the Peclet numbers for the
above three cases are 214.2, 642.8 and 964.2. In general, the choice of
the Peclet number Pe is based on the physics of the evolution of the
scalar field, such as the temperature or concentration, i.e., whether it is
diffusion-dominated, where Pe is relatively small, or convection-
dominated corresponding to relatively large Pe. This then determines
the relaxation time of the LB scheme for the CDE. The applicability
range of our LB scheme for the computation of the vorticity is found to
be similar to that of common LB schemes for the solution of the CDE.
Based on the above set of parameters, simulations are carried out until
steady state is reached in each case. Fig. 6 presents comparisons of the
computed contours of the vorticity fields obtained using our DDF-LB
scheme against numerical results based on the finite-difference (FD)
method at Re = 400, 1000 and 3200.

The vorticity patterns are found to agree very well with one another.
It is worth emphasizing that our DDF-LB formulation used a completely
local algorithm, while the FD computations involved non-local opera-
tions to estimate the velocity derivatives. As Re increases, the flow
becomes progressively more complex involving the clustering of finer
vortical features near walls, which are well reproduced by our scheme.
In addition, quantitative comparisons of our DDF-LB predictions of the
vorticity field against the FD results using the second-order central
difference approximations of the derivatives velocity field at selected
locations inside the cavity at Re = 1000 and Re = 3200 are presented in

Tables 1 and 2, respectively. Our predicted numerical results based on
local moment relationships are in excellent agreement with the tradi-
tional method, which as mentioned above is non-local.

6. Summary and conclusions

A quantitative knowledge of the local skew-symmetric velocity
gradient tensor, or equivalently the vorticity field, in conjunction with
the symmetric velocity gradient tensor is crucial for various applica-
tions, including those related to techniques for the identification of flow
structures and in the modeling of complex fluids. In many situations, it
is required to compute the fluid motion coupled to the transport by
advection and diffusion of a scalar field. In the mesoscopic LB methods,
the hydrodynamics (i.e., the NSE) and the scalar transport (i.e., the
CDE) are commonly computed via the evolution of a pair of distribution
functions represented by means of two LBMs. In such double distribu-
tion functions (DDF) based LB approaches, we present a new strategy
for computing the vorticity field locally via exploiting the additional
degrees of freedom available in the construction of the higher order
moment equilibria in the collision model for the representation of the
scalar transport to obtain the necessary additional independent rela-
tions. In particular, we have shown that this can be achieved by in-
troducing an intensional anisotropy in the scalar flux components in the
third order, off-diagonal moment equilibria, and then combining the
second-order, off-diagonal non-equilibrium moment components of
both the LB schemes. This approach for local vorticity computation has
several advantages, which include the following. Any pair of lattice sets
in the DDF-LBMs that support the third order off diagonal moments
independently, which includes the various standard lattice velocity
models in different dimensions, can allow a local determination of the
complete flow kinematics, including the skew-symmetric velocity gra-
dient tensor. It imposes no additional constraints on the higher order
equilibrium moments of the LBM for the flow field, which can be solved
by using any standard formulation without modification thereby
maintaining its numerical characteristics intact. Since the vorticity
computation are based on distribution functions, which are generally
solved to be second order accurate, the resulting mesoscopic and local
computation of vorticity and the strain rate tensor are second order
accurate as well. Moreover, the algorithm is completely local and do
not depend on any finite difference approximations of the velocity
derivatives, which is consistent with the general philosophy of the LBM
as it well suited for implementation on parallel computers. The pre-
sented strategy is general and is applicable to a variety of collision
models.
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Fig. 6. : Comparison of computed contours of the vorticity field obtained using the DDF-LB scheme against the numerical solutions based on the finite-difference
method for lid-driven cavity flow at three different Reynolds numbers: Re = 400, Re = 1000 and Re = 3200.

In the present work, for the purpose of demonstration, we formulate
our approach by constructing in detail a DDF formulation using a MRT-
LBM for the solution of the fluid motion and another MRT-LBM invol-
ving an anisotropy in the scalar flux components in the third order

10

equilibria for the transport of a scalar field, each on a D2Q9 lattice. By
means of a Chapman-Enskog analysis, we have shown that the former
provides the necessary second order non-equilibrium moment equa-
tions to determine the symmetric velocity gradient tensor, while the
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Table 1

Comparison of the magnitude of the vorticity at selected locations inside the
square cavity predicted using our DDF-LB formulation (local) against the results
obtained using finite-differencing of the velocity field (non-local) for Re = 1000.
The origin of the coordinate system is at the bottom left corner of the cavity.

Coordinate location DDF-LB prediction Finite difference results

(150, 150) 0.000346 0.000346

(150, 100) 0.000349 0.000349

(100, 150) 0.000352 0.000352

(100, 100) 0.000376 0.000376
Table 2

Comparison of the magnitude of the vorticity at selected locations inside the
square cavity predicted using our DDF-LB formulation (local) against the results
obtained using finite-differencing of the velocity field (non-local) for Re = 3200.
The origin of the coordinate system is at the bottom left corner of the cavity.

Coordinate location DDF-LB prediction Finite difference results

(225, 225) 0.000206 0.000206
(225, 100) 0.000215 0.000215
(100, 225) 0.000216 0.000216
(100, 100) 0.000206 0.000206

latter yields additional corresponding moment relations to obtain the
skew-symmetric velocity gradient tensor. For simplicity, the MRT-LBMs
are constructed using natural, non-orthogonal moment bases. In order
to validate our new approach, we have presented comparisons of the
computed vorticity fields against the analytical and/or numerical so-
lutions for various benchmark problems such as the steady flow in a
channel, four-rolls mill flow, time-dependent pulsatile (Womersley)
flow in a channel, and lid-driven cavity flow at different Reynolds
numbers, which demonstrate its good accuracy. In addition, an analysis
of the method for various grid resolutions establishes its second order
convergence for computing vorticity. In general, it was found that the
computation of the vorticity field works well yielding good accuracy for
the choices made for the initial and boundary conditions for the scalar
field ¢. However, care needs to be exercised in choosing the relaxation
time z# so as not to be in the extreme range, such as when # > 1 which
is typically at the outer limits of the applicability of the LB schemes for
the CDE when the accuracy can diminish. While the focus of this work is
on presenting and validating a new method for local computation of
vorticity field using a DDF-LB scheme based on a MRT formulation, we
have also discussed its development for other collision models such as
those based on SRT and cascaded or non-cascaded central moments.
Since our DDF-LBM for vorticity relies on lattices supporting off-
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diagonal third-order moments, we point out it cannot be used with the
minimal lattice sets such as D2Q5 and D3Q7, but nevertheless are ap-
plicable for other common lattice sets such as D2Q9 and D3Q15.
Interestingly, we note that our formulation should also extend to other
smaller, but not so common, lattice sets such as D2Q7 and D3Q13,
which have support for such third-order moments. Extensions our ap-
proach to 3D for various standard lattice sets (i.e., D3Q15, D3Q19 and
D3Q27) and using a variety of collision models (Premnath and
Hajabdollahi, 2019) will be reported in a future investigation. It may be
noted that the method presented here can be extended to vectorial
(Dellar, 2005) and tensorial (Denniston et al., 2001) forms of dis-
tribution functions to model and locally compute the skew-symmetric
velocity gradient contributions in the general constitutive relations for
complex fluids. Moreover, spin relaxation to the vorticity and the
coupling of the intrinsic angular momentum to the linear momentum
need to be accounted for in molecular liquid flows in nanoscale con-
fined geometries (Hansen et al., 2009; 2011; 2015), which can be
modeled as generalization of the Cosserat theory for micropolar fluids
(Dahler and Scriven, 1963; Eringen, 1966; 1964; De Groot and Mazur,
2013). The approach presented here can also be used to construct LB
schemes to locally represent such effects, which are subjects for future
studies.
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Appendix A. Matrices for mapping between moments and distribution functions for D2Q9 lattice

The components of the transformation matrix T given in Eq. (8) that maps the distribution functions to the independent moments supported by

the D2Q9 lattice can be expressed as

11 1 1 11 1 1 1
01 0-1 01-1-1 1
00 1 0-11 1 -1-1
01 1 1 12 2 2 2
T=[01-1 1-10 0 0 O
00 O 0 01-1 1 -1
00 O 0 01 1 -1-1
o0 0 O 01-1-1 1
00 O 0 01 1 1 1

11
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The matrices I%x and I%y defined below Eq. (20c) and used in the Chapman-Enskog analysis in the derivation of the macroscopic equations can be
written explicitly as follows:

0100000 00
ooolloo oo
2 2
0000010 00
0100000 10
— —1
Ee=TDT" =g 100000 -10
0000001 00
0000010 00
0000000 01
0000000 10
and
00 10 00000
00 00 01000
00 ol-2oooo
2 2
A L, 100 10 00100
E=TeDT'=lg0-10 00100
00 00 000T10
00 00 00001
00 00 01000
00 00 00100

Appendix B. Relation between non-equilibrium moments and spatial derivatives of components of moment equilibria for D2Q9 lattice

For better clarity, the O(¢) moment system using a non-orthogonal moment basis given in Eq. (20b) in Section 2, i.e.,
A A
0y + E )M O _ _Am® + S, which forms a main element in the derivation, can be expanded explicitly in terms of their various components as
follows:

neq’

atoxo + ok o Oy,

||
$>

neq' neq'

Oro Ky +6x7c +67c

II
>§Q>

neq'

8[0y +8x1c +67c =

Q>

neq' /\Bq neq’ /\ﬁq Aﬁq neq' A A A
Ot (K )+6( )+8y + Ky ) = —W3M3 " + O + 0y

1
6[0 Qeq _ {C\eq) ¥, (/\eq /\eq) 4 ay( neq' /\eq — —a)4m: ) + U Uyy’
5[0xy+5xk +67< ——a)5/ﬁ5()+a

1
N xxy+ax +ay1’c‘eq :—a)ﬁr’hﬁ()+o

1
6[0 ny + Bxk y 6y1/c\cq = —w7r§\17( ) + O'

A (1)

6,0Wy+6x7c +67c = —wgMg +a

In general, it can be seen that any non-equilibrium moment of order n depends on the spatial derivatives of equilibrium moments of order (n + 1)

and (n — 1). In particular, the dlagonal components of the second order moment (r'r\l; ) and rﬁ‘f )) depend on the spatial derivatives of the moment

neq' A (D)

equilibria of first order (i, ) depends only on those of the

and % x ) and third order (K and xxw),

while the off-diagonal second order moment (#15
third order equilibrium moments (K " and km,) These considerations are important in establishing the relationship between the non-equilibrium
second-order moments and the veloc1ty gradient tensor components. In the case of the LBE for computing fluid flow, the symmetry of their moment
equilibria to respect the isotropy of the viscous stress tensor limits the dependence of the corresponding non-equilibrium second order moments to
only on the symmetric part of the velocity gradient tensor (i.e., the strain rate tensor). However, the construction of the LBE for computing the
transport of a passive scalar represented by the CDE does not need to satisfy these restrictive constraints, and the additional degrees of freedom
available for the higher order moments can be suitably exploited (Hajabdollahi, 2019). Indeed, since the diffusion term of the CDE need only to
satisfy a lower degree of isotropy than that of the viscous term of the NSE, the third order moment equilibria for solving the former case can be

specifically designed to locally represent the skew-symmetric part of the velocity gradient tensor via the respective off-diagonal non -equilibrium

second-order moment (based on an equation analogous to the sixth equation in the above moment system with K ,n replaced by 7}Xm » and n/%( ) by

A-( —See Section 3).
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Appendix C. SRT-LBM for solution of scalar transport to recover the skew-symmetric velocity gradient tensor

In this appendix, we will present a special case of the single-relaxation-time (SRT)-LBM for the solution of the convection-diffusion equation of a
passive scalar field to recover the skew-symmetric velocity gradient tensor. This can be written as

1
g, (x, 1) = , ) — — 1) —gXl(x, )],
8. (x, 1) =g, (x, 1) = [g, (x, 1) — g;1(x, D)] C.12)

8. (x,t+6) =8, (x — e, 1), (C.1b)

where the post-collision distribution functions §, are prescribed by an update of g, involving their relaxation to local equilibrium distribution
functions g:? at a single relaxation time z,. A key aspect here is the construction of g% = g?(¢, u, 8, 8,) that facilitates the recovery of
Q; = %@ui — d;u;), which we achieve by mapping the various equilibrium moment components derived earlier for the D2Q9 lattice (see Section 3)

to the velocity space. In this regard, defining
(A(fq’ é\leq’ ‘/1\29‘1’ o .’(/1\89‘1)f

’

_(Aeq neq' neq’ neq' pneq neq /\5 /\eq /\eq )T

To > 5Ty 5> N s Ty s Ny s Mg gy (C.2)
we can relate it to g = (g;9, g%, g9, ---,g¢")" via 4°? = Pg® using the bare moment basis P given by
P = [k, P\, P, P;, P, P;, R, P;, Bg], (C.3)
where
R=11), Pi=le), Pr=le), Py=le}), B =le),
P =lecey), R = Iexey>, P, = Iexeyz), B = Ie,fey2 . (C.4)
Inverting, that is,
g =P7q", (C.5)
we can then obtain the one-to-one mapping between the equilibrium moments and the equilibrium distribution functions. Thus, we have
neq pneq’ peq  opneq
81 =T ~ e Ty F gy (C.6a)
1| nea” | ned  neq’  ped
g1eq = Py e 00 =gy ~ gy |
B (C.6b)
1| ned’ | ped’ aeq neq
eq — -
gz - 2 7)y + yy 7)xxy UW ’
B (C.60)
1 ped' e | oped ped
eq — — | _
&= S| e e g~ g, |
B (C.6d)
1 neqd oneqt oneq peq
eq — — | _ -
84 5 Ny F 0y T = gy |
| (C.6e)
1| nea’ | pned’ | ped | ped
eq — -
&1 = 7| My g + gy + iy |-
B (C.6f)
eq _ 1| _ped | ned ped’ | ped
8 =7 TP Ty T gy T gy |
i (C.6g)
1| ned’  ned’  ped’ | ped
eq — — — —
&= 7|~ ow ~ oy + oy |
B (C.6h)
1 neq' peq | neq’ pned
eq — | A _
g3—4 Ny oy T Ty + gy |
i (C.61)
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where ﬁfg.yn are given in Eq. (31). In particular, the third order moment equilibrium components ﬁ;fy and r’)\;y(fv contain the intensional anisotropy

needed for recovering the skew-symmetric velocity gradient tensor. Setting the relaxation time 7, in terms of the relaxation parameter w? as

j
cuf = 1/74 and using the definitions of ﬁ\xmyn and ﬁ:glyn given in Section 3, the local expressions derived earlier in Section 4 for Nf;, 1/1\5( ), Oxtp, Oyeh, Ol

and 0,u, and w, in terms of the non-equilibrium moments are valid.

Appendix D. Cascaded LBM based on central moments for solution of scalar transport to recover the skew-symmetric velocity gradient
tensor

In this section, we will present further development of our formulation to a more general cascaded LBM based on central moments (Geier et al.,
2006) extended for the solution of a scalar transport (Hajabdollahi and Premnath, 2018a; 2018c; Hajabdollahi et al., 2019) capable of locally
computing the skew-symmetric velocity gradient tensor. In this regard, we define the central moments of the distribution functions and their
equilibrium as

T ) & (&
/\tqy = Z (giq)(eax — u)"(eey — Uuy)".
xy" a=0 \7¢ (D.1)

We prescribe the central moment equilibria based on those of the local Maxwellian, by replacing the density with the scalar field ¢ (see e.g.,
Hajabdollahi and Premnath, 2018a; Hajabdollahi and Premnath, 2018c; Hajabdollahi et al., 2019). Usually, the third order central moment equi-

. Aeq Aeq . 1ol s Aeq’ Aeq’ . .
libria then become 7 oy = Mgy =0 and the corresponding raw moment equilibria are Doy = Sz¢¢uy + ¢u? u, and Ny = S2¢¢ux + Pu, uy2 (Hajabdollahi

and Premnath, 2018a; 2018c; Hajabdollahi et al., 2019). On the other hand, to enable local computation of the vorticity field, our derivation in
Sections 3 and 4 required the above raw moment components to be modified to 7’7\}2‘, = Bicypuy, + ¢uluy, and 7’7\;[; = Bychdux + puyuy. These are

equivalent to modifying the central moment equilibria ﬁ;gv and ﬁ;?y as 7’7\;‘; = (8, — Dey¢uy and ﬁ\:;ly = (8, — 1cgyuy, where (3, — 1) and (8, — 1)

represent the degree of anisotropy in the scalar flux components ¢u, and ¢u,, respectively. Hence, we enumerate all the central moment equilibria
for the D2Q9 lattice as

neq neq _ peq Neq _ neq o neq
Ny =¢ 0, =17, =0, 10, =1, =cy¢, 1,6 =0

Ny = | By = Deipduy |, 1, =| B = Degue |, Aoy, = ¢ 0.2)

The cascaded LBM then reads as
A
g, (x, 1) =g, (x, t) + (Kh)g, (D.3a)
8, (x, 1 +6) =§,(x — 5, 1), (D.3b)

A A A AN
where h = (hy, hy, ..., hg)" represents the changes in different moments due to collision via relaxation of central moments in a cascaded fashion. Here,
K = (Ko, Ki,...,K3)' represents a matrix holding the orthogonal basis vectors given by

Ko=11), K =le), Ko=le,), Ki=3lel+e))—4ll),
Ky=lel —¢}), Ks=lewe,), Kg=lele,), Ko =lee)),
Ks = 9lefey) — 6lef + e)) + 4l1). (D.4)
To obtain the change in moments under collision lAl we need the following inner products:
A A A A A
(1IKh) =0, (exIK-h) = 6h;, (e,IKh) = 6h,,
AN A N N N N N N

(e2IK-hy = 6hy + 2hy,  (e]IK-h) = 6l — 2hy,  (ecey|Kh) = 4hs,

A A A A A A
(efey|K~h) = 4h2 - 4h6, <exej|Kh) = 4]’!1 - 4h7,

AN AN AN
(eZeIK-hy = 8hs + 4hs. (D.5)
Then, we prescribe the relaxation of various central moments to their corresponding equilibria supported by the D2Q9 lattice as

A
((ex — uy)™(ey — u,1)"K-h) = wf [ﬁj&yn - ﬁxmyn], D.6)

where 1 = I1), e, = le,), e, = le;) and w? being the relaxation parameter of the central moment of order (m + n). With the zeroth moment being
conserved, i.e., a collision invariant, and evaluating Eq. (D.6) at various orders and then simplifying the resulting expressions, we obtain the changes
in different moments due to cascaded collision as
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hy = 0,
A w{’” Aeq A
h = ?[nx MR

¢
A _ Wy - Aeq A
h = ?[ﬂy - 7)y],

¢
A w A A
hy = AL + 1) = O+ )] + (ks + wyho),

¢
A w, A A
h = =Hl0 = A) = (o = D)) + 3w — who),

¢
A @ 3 A A
hs = 5y = )+ 2 (uchs + uyh),

¢
N W A 1 A 3 A
ho = = =y = oy = 2chs = —uyhs = Sy
2 AN A
+ (1 + 3ug/2)h, + 3u,uyhy,
¢
A w A 1 A 3 A
h; = - 77[;)\;; - r/)\xyy] — 2uyhs + Euxhét - E”xhs
+ 3uxuyﬁ2 +Q1+ 3uy2/2)ﬁ1,

¢
A w A A A
hy = TS ﬁ;gyy - 7/7\)oryy] — 2uyhy; — 2uyhg — duyuyhs

+ %(uf - uyz)ﬁ4 -2 +3u2+ uj)/Z)l%
A A%
+ (2 + 3uDuyhy + (2 + 3u))uhy, (D.7)

where w? = w$ controls the diffusivity Dy = cs2¢ (% - %)@, where j = 1, 2, while the relaxation parameters for the higher order moments w{ = ¢,
of
J

w?, wf, of and w can be adjusted to improve numerical stability. Finally, expanding (K‘ﬁ)a in Eq. (D.3a), the updates for the post-collision
distribution functions read as

5 A A A

& = & + [ho—4(hs — hy)],

B A A A A A A

§& = g+ lho+h—hs+ hy+ 2(h; — hy)],

5 A A A A A A

8 = g+ [ho+ hy—hy — hy + 2(he — hy)],

B A AA A A A

& = g +[ho—h—hs+ hy—2(h; + hy)l,

5 A A A A A A

g, = g+ [ho—hy—h3— hy — 2(he + hg)],
A A A A A A A A

gs=g5+[h()+h1+h2+2h3+h5—h6—h7+h3],
A A A A A A A A

g6=g6+[ho—h1+h2+2h3—h5—h6+h7+h8],
A N A N A N A N

g7=g7+[I’l()—l’ll—h2+2h3+h5+h6+h7+h3],

- A A A A A A A A
8 = g8+[I’l0+l’l1—h2+2h3—h5+h6—h7+h3]. (DS)

Appendix E. Non-cascaded central moment LBM for solution of scalar transport to recover the skew-symmetric velocity gradient tensor

For completeness, we will also present another version of a LBM based on central moments for solving the transport of the scalar field that allows
local computation of the vorticity. Unlike Appendix D, the formulation given below is non-cascaded, i.e., the change of higher moments under
collision do not depend on those of the lower moments. Rather, it is based on the relaxation of various central moments to their equilibria under
collision, while involving systematic transformations between the distribution functions, raw moments and central moments before and after col-
lision (similar to the algorithms presented in Geier et al., 2015). In this regard, we first enumerate the distribution functions, bare raw moments and
central moments for the D2Q9 lattice, represented by vectors g, § and §°, respectively, as

g=(8 & & 8" (E.1)

A _ Ay Ay A AN o
q= (3 ¢ q,-qg)
A ANONON A A A A A

= (yr s Dy Dr Dy Dy Tngr Ty nﬂyy)-‘-’ (E.2)

I\C_ AC AC AC /\CT
q =(q,. g, g,
_ A A A A A A A A A T
=Ngs N> Ty Ner Tyys Doy Doy Drgys Ty (E.3)

Then, the mappings between the central moments, raw moments and distribution functions may be formally expressed in matrix-vector forms as

q‘=74, q4=7"q, q4=Pg g=P'q, (E.4)
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where P is a matrix representing the transformation from the distribution functions to the raw moments (see Egs. (C.3) and (C.4)) and ¥ is a frame
transformation matrix that maps the raw moments to the central moments, i.e., containing the elements of (ex — u,1)"(ey — u,1)". However, since P
and P~! are both sparse, while ¥ as well as 7! are of special lower triangular forms arising from the coefficients of binomial expansions, it is neither
necessary nor efficient to use them in matrix forms. Rather, we only list the resulting mapping expressions of the elements of each transformation
before and after collision in the algorithm in what follows.

(a) Pre-collision raw moments
Expanding q = Pg, the raw moments before collision read as

7I7\0 = g t8& t8& T8 8+ 5

Al

N, = & —8& +8 —8 — & t &>
rlj\yl = &8 +t8& —8& & — 8
7{)\);( = & t8& 5,
Ny = &+8&+5%

A

Ny = & ~ 8 T8 — 8

Al

Ney = & T8 — & — &

Ny = 8 —8 — & + &

gy = o0 (E.5)
where

Sg=8 +8 +8 *+8&

(b) Pre-collision central moments

Based on §° = 74, the central moments from raw moments before collision follows. Hence, we obtain

AN
N = N>
A — A A
N = N = UxTy,
AN A
Ny = 1y — Uyl
A _ A A 2/\/
Do = N — Zuxnx + U7y,
A _ N A 2N
Ny = Ny = 27, + Uy,
A _ Al A A Al
Ny = Ny = Ul — UxD), + Uxlly7),
A Y Al 2N AY Al 5 At
oy = Moy — 2ux7)xy + Ux?), — Uyl + 2uxuy77)c — U Uy,
A Y N 2N N A 2N
gy = Mgy — 2uyr;xy +uy7, — Ux), + Zuxuyny — UxUy7,
A N A A 2N 2N
Nogy = Thogy = 2Uxly, = 2UyT), + UST), + Uy,
Al 2 A 2N 2. 2N
+ 4“x“y7]xy - 2uxuy7]y = 2uxuym, + uguyn, (E.6)

(c) Post-collision central moments: Relaxation of central moments under collision

We then prescribe the relaxation of various central moments to their equilibria at individual rates under collision, where the central moment
equilibria that account for the anisotropy at the third order to recover the vorticity field are given in Eq. (D.2). Hence, the post-collision central

moments can be written as
N
Mo = Mo
eq
N = 7,7\;; + w1¢[7’7\x _7/)\,;],

eq
5, = f,+oflh, -9l

Te + By = (B + ) + 0F [(Br + D) — P + A5
T = By = (o — Ay) + &f (A = A — B — A,

g = By + ol [h, — )
ey = By + 08 Mgy = Hgs

oy = Dy + 0F gy = Ay .
e A b rned A
Negy = Thogy + OF Mgy = Mgy ]- (E.7)

The choices of the various relaxation times cu]‘-”, where j =1, 2, ...,8 are the same as those given in Appendix D.
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(d) Post-collision raw moments

International Journal of Heat and Fluid Flow 83 (2020) 108577

The post-collision central moments can be mapped to those of raw moments via § = T‘lﬁc. It may be noted that the elements of 7! (representing
the inverse of binomial expansions) are the same of those of ¥ (representing the binomial expansions) after making all the coefficients in the latter to

be positive. Hence, we get

~

Bo =t

Boo= Ao+ ud,

'/’ny = ’Z"' “y’/%’

7{; = 7/71‘ + 2ux7§C + ufr']\NO,

;’Tyly = ;’Tyy + Z“y{;y + uyzf%,

Bo= B+ wh + ud, + wady,

/ny = 7/71,0, + 2ux7/]\ny + us/]\Ny + uyrlym + 2uxuy7i + ufuy/;o,
%:yy = ;}XXW + Zuy{;xy + uyzgc + ux{?jy + zuxuy%\:v + uxuj;lxo,
;Z)oy = VI’TJocyy + zux’lgcw + zuy;{og} + uf;l:y + uyZTI}T)OC

+ 4uxuyf]\xy + 2u3uy7/7\y + Zuxujﬁx + ufujf)‘o

(e) Post-collision distribution functions

(E.8)

Finally, the post-collision distribution functions can be obtained by simplifying g = P‘la, which yield

~ _ T A A

8 = Mo = Ny =Nyt Ny

O ¥ O S R
81—577,(4'7)“—7},” Mgy |
O ¥ A < N
gz—gny‘f"}yy—ﬂxxy Mgy |
- 1 x X x A
gg—g—ﬁx"'xx'i"?xyy Doy |
R ¥ O O N A
84—5—77y+77w+77xxy Mgy |
Y + A " A’ + A

& = 1 Ny T ey T Ny + 00y )
N_E_R"_‘_T’_/’?"_'_'R"
8 = 2 Ny T Ny ~ Nigy T Ny |
- l N _ N g i g

& = 4 Ny = Moy ™ Mgy T Mgy |
- _ l _k/l _ ~/ + TI + xl
& = 2 Ny ™ Doy T Nigy T Ny
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