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Abstract
We construct (modified) scattering operators for the Vlasov–Poisson system in three 
dimensions, mapping small asymptotic dynamics as t → −∞ to asymptotic dynam-
ics as t → +∞ . The main novelty is the construction of modified wave operators, but 
we also obtain a new simple proof of modified scattering. Our analysis is guided by 
the Hamiltonian structure of the Vlasov–Poisson system. Via a pseudo-conformal 
inversion, we recast the question of asymptotic behavior in terms of local in time 
dynamics of a new equation with singular coefficients which is approximately inte-
grated using a generating function.
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1  Introduction

The three-dimensional Vlasov–Poisson system describes the evolution of a particle 
distribution1 �(t, x, v) ∶ ℝ ×ℝ

3
×ℝ

3
→ ℝ satisfying

This is a model for a continuum limit of a classical many-body problem with Newto-
nian self-interactions through a force field ∇x� that can be attractive ( � = −1 ) as in 
a galactic setting, or repulsive ( � = 1 ) as in a plasma or ion gas, and which is gener-
ated by the spatial density �(t, x) of the particle distribution.

The mathematical theory for the initial value problem associated with (1.1) is 
classical and guarantees the global existence of unique solutions under suitable 
assumptions on the initial data [1, 24, 32, 33]. In recent years, there has been 
progress in understanding the long time asymptotic behavior: sharp decay rates 
of the density and force field are known in some settings [17, 19, 29, 31, 36, 38], 
and it has been shown that for sufficiently small initial data �0 the problem (1.1) 
exhibits a modified scattering dynamic [6, 20] defined in terms of a limit distribu-
tion �

∞
 and an asymptotic force field E

∞
[�

∞
] , defined by inverting the roles of x 

and v:

In this paper, using pseudo-conformal inversion, we prove the converse state-
ment, namely that any solution of the asymptotic dynamic arises in a unique way 
as a limit of a solution to (1.1), i.e., we construct the wave operator �

∞
↦ �0 . 

Thus, we obtain the existence of a scattering operator linking the asymptotic 
behavior in the past to the asymptotic behavior in the future ( �

−∞
↦ �0 ↦ �

+∞
).

Our main results can be summarized as follows:

Theorem 1.1  There exists 𝜀 > 0 such that:

	 (i)	 (Global existence and modified scattering) Given �1(x, v) satisfying

there exists a unique global strong solution � of the initial value prob-
lem for (1.1) with �(1, x, v) = �1(x, v) . In addition, there exist �

∞
(x, v) and 

E
∞
= E

∞
[�

∞
] as in (1.2) such that, locally uniformly in (x, v), 

(1.1)

(
�t + v ⋅ ∇x

)
� + �∇x� ⋅ ∇v� = 0, Δx�(t, x) = �(t, x), �(t, x) = ∫

ℝ3

�2
(t, x, v)dv.

(1.2)E
∞
[�](v) ∶=

1

4� ∬
v − w

|v − w|3
⋅ �2

(y,w)dydw.

(1.3)‖�1‖L2
x,v
+ ��⟨x − v⟩2�1

��L∞
x,v

+ ‖∇x,v�1‖L∞
x,v
≤ �,

1  To be precise, the physically relevant quantity f (t, x, v) = �2
(t, x, v) is the square of our unknown 

 �—see also [20].
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	 (ii)	 (Existence of modified wave operators) Given �
∞
∈ W2,∞

(ℝ
3
x
×ℝ

3
v
) and 

E
∞
= E

∞
[�

∞
] ∈ W3,∞

(ℝ
3
) as in (1.2) satisfying

there exists a unique strong global solution � of (1.1) for which (1.4) holds.
	 (iii)	 (Scattering map)  For any asymptotic state �

−∞
 with E

−∞
=

E
∞
[�

−∞
] ∈ W

3,∞
(ℝ

3
) as in (1.2), 

there exist a unique strong solution � of (1.1), �
+∞

∈ L2
x,v

∩ L∞
x,v

 and 
E
+∞

= E
∞
[�

+∞
] such that

We call the map defined in a neighborhood of the origin in the Schwartz space 
through (iii) above,

the Scattering map. We refer to Theorem 3.1 for a more precise statement of our 
results for (i) and to Theorem 4.2 for a more precise statement of (ii). In particular, 
we note that the force field has optimal decay �∇𝜓� ≲ ⟨t⟩−2 in all cases.

Remark 1.2  We comment on some points: 

(1)	 The main novelty of this work is the construction of the wave operator (ii). 
While the small data modified scattering dynamic (1.4) was already obtained in 
[20], the present result (i) is also of interest since it is stronger and the approach, 
while less generalizable, leads to a simple derivation of the asymptotic dynamic. 
We also refer to [30] for yet another point of view on the modified scattering as 
arising from mixing.

(2)	 Our topology for small data/modified scattering in (1.5) is weaker than in all 
other works on asymptotic behavior that we are aware of [1, 6, 17, 20, 29, 36, 
38]. It is unclear what the optimal topology is, but to get almost Lipschitz bounds 
on the force field, by (1.8), one cannot work in a much weaker setting than ours.

(3)	 We also obtain propagation of regularity: assuming more regularity on the initial 
data we obtain higher regularity on the final (scattering) data and vice versa.

(4)	 Our initial data for scattering may have infinite energy and momentum; in addi-
tion, a simple modification also allows for initial data of infinite mass. It is 
unclear which role (if any) the physical conservation laws play for the asymptotic 
behavior.

(1.4)�(t, x + tv − � ln(t)E
∞
(v), v) → �

∞
(x, v), t → +∞.

(1.5)
‖𝜇

∞
‖L2

x,v
+ ��⟨x⟩5𝜇∞

��L∞
x,v

+ ‖⟨x⟩∇x,v𝜇∞
‖L∞

x,v
+ ��⟨x⟩2∇2

x,v
𝜇
∞
��L∞

x,v

+ ‖E
∞
‖W3,∞ < ∞,

‖�
−∞

‖
L2
x,v
+ ��⟨x, v⟩5�−∞

��L∞
x,v

+ ‖⟨x⟩∇
x,v�−∞

‖
L∞
x,v
+ ��⟨x⟩2∇2

x,v
�
−∞

��L∞
x,v

≤ �,

(1.6)�(t, x + tv ∓ � ln(⟨t⟩)E
±∞

(v), v) → �
±∞

(x, v), t → ±∞.

(1.7)S ∶ �
−∞

↦ �
+∞

,
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(5)	 It is worth noting a curious fact: our proof can be adapted directly to the case 
of a plasma of two species (ions and electrons). In this case, using (ii), one can 
construct solutions for which the asymptotic electric field profile E

∞
≡ 0 van-

ishes and the solutions scatter linearly. In this case, the same equation allows 
two different asymptotic behaviors. It remains to be understood to which extent 
the linear scattering is nongeneric (say in case the total charge vanishes).

1.1 � About the Proof of Theorem 1.1

In the spirit of the prior work [20] (see also [9, 10, 22, 23]), we build on parallels 
between kinetic and dispersive equations. In particular, the Hamiltonian structure of 
(1.1) guides our analysis.

The simplest case for asymptotic behavior of a nonlinear equation is linear scat-
tering when the nonlinearity can simply be neglected to model asymptotic dynamics. 
For the Vlasov–Poisson system, this happens in the setting of Landau damping [2, 11, 
27], the ion/screened problem [3, 14], and in higher dimensions [36], where solutions 
asymptotically satisfy T(�) = 0 with T  defined in (1.9). The asymptotic behavior of 
modified scattering as in (1.4) and (1.6) can be viewed as a manifestation of the unre-
lenting relevance of nonlinear interactions in (1.1) throughout time. In (1.1) the non-
linear, long-range interactions are governed by a force field which does not decay fast 
enough to produce only a finite correction as time tends to infinity and produces the 
logarithmic corrections identified in the above theorem—see also [6, 20, 30] for the 
Vlasov–Poisson setting, and [15, 16, 18, 21, 28] for related results on other equations.

To understand the asymptotic behavior, we need to (i) identify a mechanism for 
decay (here dispersion), (ii) prove global existence, (iii) isolate an asymptotic dynamic 
and (iv) prove convergence to it. We offload the dispersion to the pseudo-conformal 
transform I  which compactifies time and reduces global existence to local existence for 
a singular equation in the transformed unknown

see also [4, 5, 7, 37] for similar ideas. At this point, the problem merely reduces to 
establishing convergence at the image of infinity, s = 0 , where, however, the equa-
tion has a violent singularity. We extend the force field E = −∇� via a variant of the 
continuity equation:

which does not involve the (singular) acceleration and provides good control of E so 
long as we control some moments of � . Once we obtain convergence of E to a fixed 
asymptotic field E0 , the equation becomes a simple perturbation of transport by a 
shear term:

�(s, q, p) ∶= �

(
1

s
,
q

s
, q − sp

)
, (s, q, p) ∈ ℝ ×ℝ

3
×ℝ

3,

(1.8)�sE + ∇Δ
−1div(�) = 0, �(s, q) = ∫ p�2(s, q, p)dp,

(
�s + �s−1E0(q) ⋅ ∇p

)
� = O(1),
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which is easily integrated to recover the dynamic originally isolated in [20]. To 
make this rigorous, we need to propagate mild control on appropriate norms. This is 
done through a bootstrap that allows some deterioration over time in different ways 
depending on the scenarios: growth of nonconvergent norms in the case of modified 
scattering and loss of moment in the case of wave operators (where we start from the 
singular time s = 0).

The proof of part (i) shows how natural the pseudo-conformal inversion I  is to 
study asymptotics of (1.1): working with only moments that are conserved in the lin-
ear evolution of (1.1) one directly obtains global solutions in a bootstrap argument. 
Additional regularity as in (1.3) is easily propagated to yield unique strong solutions 
and to recover the asymptotic behavior (1.4)—see Sect. 3.

Part (ii) is proved using a canonical change of variables in (1.12) to mitigate the 
strong singularity at s = 0—see Sect. 4. The Cauchy problem for the resulting equa-
tions (4.5) can in fact be (locally) solved starting from s = 0 for a sufficiently large 
class of initial data as in (1.5). Again, moments are easily bootstrapped, while prop-
agating derivatives requires us to identify a proper weighted norm which compen-
sates for the ill-conditioned Hessian of the new Hamiltonian by allowing one loss of 
moment. Since via I  this corresponds to a strong solution on [T ,∞) for some T > 0 , 
classical theory as in [24] then gives a global solution.

Finally (iii) follows simply by combining (ii) (backwards in time) to go from past-
asymptotic data to initial data and (i) to go from initial data to future asymptotic 
data.

While it may be less intuitive, using the pseudo-conformal transformation simpli-
fies the presentation over the physical space analysis as in [20], and quickly leads to 
the natural modified scattering behavior. It also sheds new light on some classical 
decay estimates like (1.13).

1.2 � Open Questions

We list some open questions which remain outstanding:

•	 Is there a topology that makes the scattering operator in (1.7) an endomorphism?
•	 In the plasma case � = +1 , what is the asymptotic behavior for large data? 

Solutions are global, there are no nontrivial equilibriums and the wave opera-
tors are defined for large data, so it is tempting to believe that Theorem 1.1 may 
be extended to all solutions (see [19, 31, 34] and references therein for general 
results in this direction, and [29, 35] for the case of more symmetric data).

•	 In the gravitational case � = −1 , is there a “ground state”, i.e., a smallest solution 
which does not scatter? Are there solutions which satisfy some form of modified 
scattering towards a nonzero stationary solution (of which there are many, see, 
e.g., [12, 22, 26])? This appears very challenging, but we note [30] for an exam-
ple of a stability result around a nonzero equilibrium in a related setting and [8, 
13] for related works.
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1.3 � Pseudo‑conformal Inversion

We define the involution of ℝ ×ℝ
3
×ℝ

3 given by the pseudo-conformal inversion 
(see also [22])

This transformation interacts favorably with free streaming,

since heuristically it exchanges the role of v with that of x − tv , both of which are 
conserved along the evolution (i.e., commute with T  ). Indeed, one can observe that 
if (s, q, p) = I(t, x, v),

and

so that composition with I  preserves the class of solutions of free streaming Tf = 0 . 
The transformation I  is almost symplectic in the sense that dq ∧ dp = −dx ∧ dv , and 
in particular the total charge is preserved:

1.3.1 � Recasting Vlasov–Poisson

Given a solution �(t, x, v) of (1.1), we let � = �◦I  , so that

The Vlasov–Poisson system involves a perturbation of free streaming (1.9) by a 
force field (in this paper, we stick to the plasma terminology and refer to it as the 
“Electric field”):

which also transforms naturally:

I ∶ (t, x, v) ↦

(
1

t
,
x

t
, x − tv

)
.

(1.9)T ∶= �t + v ⋅ ∇x,

�s = −s−2
(
�t + q ⋅ ∇x

)
− p ⋅ ∇v, ∇q = s−1∇x + ∇v, ∇p = −s∇v,

T(f◦I) = −s−2T(f )◦I.

∬ (f◦I)2dqdp = ∬ f 2dxdv.

(1.10)�(s, q, p) ∶= �

(
1

s
,
q

s
, q − sp

)
, �(t, x, v) = �

(
1

t
,
x

t
, x − tv

)
.

(1.11)

E[�](t, x) ∶= ∇xΔ
−1

x ∫ �2
(t, x, v)dv =

1

4� ∬
x − y

|x − y|3
⋅ �2

(t, y, v)dvdy,

E[�](t, tx) =
1

t2
E[�]

(
1

t
, x

)
,
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and we see that � solves (1.1) on 0 ≤ T
∗
≤ t ≤ T∗ if and only if � satisfies for 

0 ≤ (T∗
)
−1 ≤ s ≤ (T

∗
)
−1,

Remark 1.3  The natural energy estimate for (1.12) is

which, after rescaling, recovers one of the main integral estimates in [19, 31] and 
leads, for 𝜆 > 0 , to the optimal control of E[�] ∈ L∞

s
L2
q
.2

2 � The Force Field and the Continuity Equation

To prove both the modified scattering and wave operator theorems, we require gen-
eral estimates on the electric field E defined in (1.11). In Lemma 2.1, we prove fix-
time bounds on the operator � ↦ E . In Lemma 2.3 we obtain dynamic bounds for an 
electric field E = E[�] provided � satisfies (2.8), a slight strengthening of the conti-
nuity equation.

Lemma 2.1  Let � = �(q, p) be such that � ∈ L2
q,p

 , ⟨p⟩2� ∈ L∞
q,p

 and ∇q� ∈ L∞
q,p

 and 
E = E[�] defined by (1.11). For all A > 0 and � ∈ (0,

1

3
) we have

In fact, we will mostly make use of the second line of (2.1) corresponding to the 
choice A = ⟨ln(s)⟩4 , � =

1

30
 , i.e., the bound

Remark 2.2  In the estimates of this section, up to minor modifications, one may 
alternatively work with the ⟨p⟩−1L4

q,p
 norm of � , rather than its L2

q,p
 norm. This allows 

to consider initial data with infinite mass—see also Remark 1.2 (4).

Proof of Lemma 2.1  We decompose the electric field on different scales using a radi-
ally symmetric function � ∈ C∞

c
({

1

2
≤ |y| ≤ 2}) with ∫

ℝ3 �(y)dy = 1 , namely

(1.12)
(
�s + p ⋅ ∇q

)
� + �s−1E[�] ⋅ ∇p� = 0.

(1.13)

−s2
d

ds

(

∬ |p|2�2(s, q, p)dqdp + �

s ∫ |E[�](q)|2dq
)

= �∫ |E[�](q)|2dq,

(2.1)
‖E‖L∞

q
≲ A

�
‖𝛾‖2

L2
q,p

+ ‖𝛾‖2
L∞
q,p

�
+ A−1‖�p�2𝛾‖2

L∞
q,p

,

‖∇qE(s)‖L∞
q
≲ A‖𝛾‖2

L2
q,p

+ A
−

𝜅

3 ‖�p�2𝛾‖2
L∞
q,p

+ A
𝜅−

1

3 ‖𝛾‖L∞
q,p
‖∇q𝛾‖L∞

q,p
.

(2.2)‖∇qE(s)‖L∞
q
≲ ⟨ln(s)⟩4‖𝛾‖2

L2
q,p

+ ‖�p�2𝛾‖2
L∞
q,p

+ ⟨ln(s)⟩−
6

5 ‖𝛾‖L∞
q,p
‖∇q𝛾‖L∞

q,p
.

2  This in turn implies the optimal decay rate of ‖E[𝜇](t)‖
L2
x

≲ ⟨t⟩−1∕2 in the original variables.
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and we directly obtain the following elementary bounds

which is enough for large R. To go further, we introduce

with Ej
[�](q) = c ∫ ∞

R=0
∫ ∞

V=0
E
j

R,V
(q)

dV

V

dR

R2
 and we estimate

From this, we deduce that

and choosing A = B−1 , we obtain the first line of (2.1). Similarly, we see that for 
� ∈ (0,

1

3
)

After substituting A with A−1∕3 , this gives the second line of (2.1). 	�  ◻

Lemma 2.3  Fix 0 < s0 < s1 and let � ∈ L∞
s
([s0, s1];L

2
q,p
) . 

	 (i)	 Assuming that E = E[�] satisfies (1.8), we see that

Ej
[�](q) = c∫

∞

R=0

E
j

R
(q)

dR

R2
,

E
j

R
[�](q) ∶= ∬ R−1

{�qj�}(R
−1
(q − r)) ⋅ �2(r, u)drdu,

(2.3)�Ej

R
� ≲ R−1‖𝛾‖2

L2
q,p

, �𝜕qE
j

R
� ≲ R−2‖𝛾‖2

L2
q,p

,

E
j

R,V
[�](q) ∶= ∬ R−1

{�qj�}(R
−1
(q − r)) ⋅ �(V−1u) ⋅ �2(r, u)drdu,

(2.4)
�Ej

R,V
� ≲ R2 min{V3‖𝛾‖2

L∞
q,p

,V−1‖�p�2𝛾‖2
L∞
q,p

},

�𝜕qE
j

R,V
� ≲ Rmin{V−1‖�p�2𝛾‖2

L∞
q,p

,RV3‖∇q𝛾‖L∞
q,p
‖𝛾‖L∞

q,p
}.

�Ej
[𝛾]� ≲ ∫

∞

R=A

�Ej

R
�dR
R2

+ ∫
A

R=0
∫

B

V=0

�Ej

R,V
�dR
R2

dV

V

+ ∫
A

R=0
∫

∞

V=B

�Ej

R,V
�dR
R2

dV

V

≲ A
−2‖𝛾‖2

L2
q,p

+ AB
3‖𝛾‖2

L∞
q,p

+ AB
−1‖�p�2𝛾‖2

L∞
q,p

�𝜕qEj� ≲ ∫
∞

R=A

�𝜕qE
j

R
�dR
R2

+ ∫
A

R=0 ∫
R−𝜅

V=0

�𝜕qE
j

R,V
�dV
V

dR

R2
+ ∫

A

R=0 ∫
∞

V=R−𝜅

�𝜕qE
j

R,V
�dV
V

dR

R2

≲ A−3‖𝛾‖2
L2
q,p

+ A𝜅‖�p�2𝛾‖2
L∞
q,p

+ A1−3𝜅‖𝛾‖L∞
q,p
‖∇q𝛾‖L∞

q,p
.

(2.5)
‖E(s1) − E(s0)‖L∞

q
≲ ⟨ln(s1 − s0)⟩(s1 − s0)‖�‖L∞

s,q

+ (s1 − s0)
2

�
‖⟨p⟩2𝛾‖2

L∞
s,q,p

+ ‖𝛾‖2
L∞
s
L2
q,p

�
.
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We also have the corresponding estimate for ∇qE = ∇qE[�]:

from which we deduce

	 (ii)	 If � satisfies a slight strengthening of the continuity Eq. (1.8), namely

for some force field F(s, q), then for E = E[�] there holds that

Proof  We start with (ii): using (2.3) and (2.4), we see that for s ∈ {s0, s1},

and

and we conclude that

where

(2.6)

‖∇qE(s1) − ∇qE(s0)‖L∞
q
≲ ⟨ln(s1 − s0)⟩(s1 − s0)‖∇q�‖L∞

s,q

+ (s1 − s0)
2

�
‖⟨p⟩4𝛾‖2

L∞
s,q,p

+‖∇q𝛾‖2L∞
s,q,p

+ ‖𝛾‖2
L∞
s
L2
q,p

�
,

(2.7)
‖∇qE(s1) − ∇qE(s0)‖L∞

q
≲ ⟨ln(s1 − s0)⟩(s1 − s0)

�
‖⟨p⟩5𝛾‖2

L∞
s,q,p

+‖∇q𝛾‖2L∞
s,q,p

+ ‖𝛾‖2
L∞
s
L2
q,p

�
.

(2.8)�s
{
�2
}
+ divq

{
p�2

}
+ divp{F�

2
} = 0

‖E(s1) − E(s0)‖L∞
q
≲ ⟨ln(s1 − s0)⟩2(s1 − s0)‖�p�2𝛾‖2L∞

s,q,p

+ (s1 − s0)
2

�
‖𝛾‖2

L∞
s,q,p

+ ‖𝛾‖2
L∞
s
L2
q,p

�

+ (s1 − s0)
3

�
ln

� s1
s0

��
‖⟨p⟩2𝛾‖2

L∞
s,q,p

‖sF‖L∞
s,q
.

(2.9)∫
∞

R=A−1

�ER(s)�
dR

R2
≲ A2‖𝛾(s)‖2

L2
q,p

, ∫
A2

R=0

�ER(s)�
dR

R2
≲ A2‖⟨p⟩2𝛾(s)‖2

L∞
q,p

,

∫
A−1

R=0 ∫
B

V=0

�ER,V (s)�
dR

R2

dV

V
≲ A−1B3‖𝛾(s)‖2

L∞
q,p

,

∫
A−1

R=0 ∫
∞

V=B−3

�ER,V (s)�
dR

R2

dV

V
≲ A−1B3‖�p�2𝛾(s)‖2

L∞
q,p

,

����
E(s) − �

A−1

R=A2

ER,a(s)
dR

R2

����
≤ A−1B3‖⟨p⟩2�‖2

L∞
q,p

+ A2

�
‖�‖2

L2
q,p

+ ‖⟨p⟩2�‖2
L∞
q,p

�
,

ER,a ∶= � R−1
{�qj�}(R

−1
(q − r)) ⋅ �

{B≤⋅≤B−3}
(u) ⋅ �2(r, u)drdu,
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On the other hand, using Eq. (2.8), we find that

Since

we see that

and using a crude bound for the second integral in (2.10), we find that

Letting B = A2
= (s1 − s0)

2 , we obtain the result. For the variant (2.5), we do not 
localize in u. In this case, we need only use (2.9) and the last term in (2.10) simpli-
fies. We detail this in the similar analysis of ∇qE in (i) below.

For (i) we use a similar analysis without localizing in u. Passing the derivative 
onto � gives

and the continuity Eq. (2.8) gives

�
{B≤⋅≤B−3}

(u) = �
{B≤V≤B−3}

�(V−1u)
dV

V
.

(2.10)

0 = �
s1

s=s0
� R−1

{�qj�}(R
−1
(q − r)) ⋅ �

{B≤⋅≤B−3}
(u) ⋅

{
�s�

2
+ divr(�

2u) + divu(F�
2
)

}
drduds,

= ER,a(s1) − ER,a(s0)

+ �
s1

s=s0
� R−2uk{�qj�qk�}(R

−1
(q − r)) ⋅ �

{B≤⋅≤B−3}
(u) ⋅ �2(s, r, u)drduds,

− �
s1

s=s0
� R−1�qj�(R

−1
(q − r)) ⋅ �2(s, r, u) ⋅ (F ⋅ ∇u)�{B≤⋅≤B−3}

(u)drduds.

|||∇u𝜒{B≤⋅≤B−3}
(u)

||| ≲ B−1�
{|u|≤2B} + B3�

{|u|≥B−3∕2},

����� R
−1𝜕

qj
𝜒(R−1

(q − r)) ⋅ 𝛾2(r, u) ⋅ (F ⋅ ∇
u
)𝜒

{B≤⋅≤B−3}
(u)drdu

����
≲ ‖sF‖

L∞
q

⋅ s
−1
R
2
⋅

�
B
2‖𝛾‖2

L∞
q,p

+ B
6‖�p�2𝛾‖2

L∞
q,p

�
,

����∫
A−1

R=A2

�
ER,a(s1) − ER,a(s0)

�dR
R2

����
≲ (s1 − s0) ⋅ ‖�u�2𝛾‖2L∞

s,r,u

⋅ ∫
A−1

R=A2

dR

R
⋅ ∫

B−3

V=B

dV

V

+

�
ln

� s1
s0

��
⋅ ‖sF‖L∞

s,q
⋅ A−1B2‖⟨p⟩2𝛾‖2

L∞
s,q,p

.

∫
∞

R=A
−
2
3

�∇qER(s)�
dR

R2
≲ A2‖𝛾(s)‖2

L2
q,p

,

∫
A2

R=0

�∇qER(s)�
dR

R2
≲ A2‖∇q𝛾(s)‖L∞

q,p
⋅ ‖⟨p⟩4𝛾(s)‖L∞

q,p
,
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from which we deduce that

and integrating in A2 ≤ R ≤ A−1 , we obtain (2.7). 	�  ◻

Finally, we collect the modifications of Lemmas 2.1 and 2.3 above needed to con-
sider smoother solutions. The proofs are similar (passing the derivative through the 
density) and are omitted.

Lemma 2.4  There holds that for all � ∈ (0,
1

3
),

and

3 � Modified Scattering

While we only need to study (1.12) on a compact time interval, this equation is now 
time dependent with a violent singularity at s = 0 . This can be mitigated since the 
singular terms

can be integrated to main order:

0 = ∫
s1

s=s0
∬ R−1

{�qj�}(R
−1
(q − r)) ⋅ �j

{
�s�

2
+ divr(�

2u)
}
drduds

= �jER(s1) − �jER(s0)

+ 2∫
s1

s=s0
∬ R−2uk{�qj�qk�}(R

−1
(q − r)) ⋅ � ⋅ ∇q�(r, u)drduds,

‖∇qER(s1) − ∇qER(s0)‖L∞
q,p

≲ (s1 − s0) ⋅ R ⋅ ‖⟨p⟩5𝛾‖L∞
s,q,p

‖∇q𝛾‖L∞
s,q,p

‖∇2

q
E‖L∞

q
≲ A‖𝛾‖2

L2
q,p

+ A
−

𝜅

4 ‖�p�4𝛾‖L∞
q,p
‖∇q𝛾‖L∞

q,p
+ A

3𝜅−1

4 ‖𝛾‖L∞
q,p
‖∇2

q
𝛾‖L∞

q,p
,

‖∇2

q
E(s1) − ∇

2

q
E(s0)‖L∞

q
≲ ⟨ln(s1 − s0)⟩(s1 − s0)‖∇2

q
�‖L∞

s,q

+ (s1 − s0)
2

�
‖𝛾‖2

L∞
s
L2
q,p

+ ‖⟨p⟩5𝛾‖L∞
s,q,p

‖∇2

q
𝛾‖L∞

s,q,p

+‖⟨p⟩2.1∇q𝛾‖2L∞
s,q,p

�
.

(
�s + �s−1E(s, q) ⋅ ∇p

)
� = l.o.t.

(3.1)
Γ(s, q, p) = �

(
s, q, p + �∫

s

s�=1

E(s�, q)
ds�

s�

)
,

�(s, q, p) = Γ

(
s, q, p − �∫

s

s�=1

E(s�, q)
ds�

s�

)
.
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Since Γ satisfies an equivalent but more cumbersome equation, we prefer to work 
with (1.12) to bootstrap control of the norms, but a variant of (3.1) leads quickly to 
the modified dynamics (3.4) once E is shown to converge.

The main result of this section is the following statement about modified 
scattering:

Theorem 3.1  There exists 𝜀 > 0 such that if �1(q, p) satisfies

then there exists a unique solution � of (1.12) with “initial” data �(s = 1) = �1 
for all times 0 < s ≤ 1 , and � ∈ L∞

s
((0, 1], L∞

q,p
∩ L2

q,p
) satisfies

If in addition

then ‖⟨p⟩∇p,q𝛾(s)‖L∞
q,p

≲ 𝜀0⟨ln(s)⟩6 and there exist E0 = E[�0] ∈ L∞
q

 and �0 ∈ L∞
q,p

 
such that, uniformly in q, p,

Remark 3.2  We comment on some points of interest: 

(1)	 In fact, as we will show below one can obtain global solutions in a bootstrap 
argument involving only the moments ⟨p⟩2� . The higher regularity of (3.2) is 
only used to make sense of the equations in a stronger sense.

(2)	 The assumption (3.3) is used to guarantee the convergence (3.4). We note that 
this statement is slightly different from the one in Theorem 1.1, in that in (3.3) 
we start with uniform control of one additional moment in p on the gradients 
and obtain uniform (rather than local) convergence in (3.4). The proofs are easily 
adapted to establish the corresponding local statement under local assumptions 
as in Theorem 1.1.

(3)	 Our proof of Theorem 3.1 shows that control of higher moments (in both p and 
q) as well as higher regularity can be propagated. For higher moments in p, this 
is explicitly done in Proposition 3.4, and from this the propagation of moments 
in q follows by the commutation relations (3.6). For higher regularity, by (3.6) 
one needs control of derivatives of the electric field; these in turn can be directly 
bounded by derivatives of � via an adaptation of Lemmas 2.1 and 2.3 (see, e.g., 
Lemma 2.4 for one additional derivative). As a consequence, given more regu-
larity and/or moments on a solution, the convergence (3.4) can then be shown 
to hold in a correspondingly strengthened topology.

(4)	 The convergence (3.4) implies the asymptotic dynamic (1.4) of Theorem 1.1: 
Letting 

(3.2)‖�1‖L2
q,p
+ ��⟨p⟩2�1��L∞

q,p

+ ‖∇p,q�1‖L∞
q,p

≤ �0 ≤ �,

��⟨p⟩2𝛾(s)��L∞
q,p

≲ 𝜀0⟨ln(s)⟩2, ‖∇p,q𝛾(s)‖L∞
q,p

≲ 𝜀0⟨ln(s)⟩5.

(3.3)‖⟨p⟩∇p,q�1‖L∞
q,p

≤ �0,

(3.4)�(s, q + ps + �s ln(s)E0(q), p + � ln(s)E0(q)) → �0(q, p), s → 0.
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 by I2 = Id there holds that 

 which gives (1.4) with �
∞
(x, v) = �0(v, x) by relabeling the arguments.

The proof of Theorem 3.1 makes frequent use of the fact that (1.12) is a transport 
equation and we can propagate uniform bounds using the maximum principle along 
the characteristics. In particular, writing

we have that if h is a strong solution in a neighborhood of s = 1 to

with h(1) ∈ Lr
q,p

 for some r ≥ 1 , then since the transport field is divergence free, 
there holds that

for all 0 ≤ s ≤ 1 in the interval of existence.

3.1 � Commutation Relations

Now consider a solution � to (1.12), i.e., L[�] = 0 . To decide which equation we 
want to use, it will be convenient to compute some commutation relations: For any 
m, n ∈ {1, 2, 3} , we have

and we also remark that

3.2 � Bootstrap and Global Existence

As a first step, we see that as long as the electric field remains bounded, we can 
propagate all the moments we want.

A ∶ (s, q, p) ↦ (s, q + ps + �s ln(s)E0(q), p + � ln(s)E0(q)),

�◦A(s, q, p) = �◦(I◦A)(s, q, p) = �

(
1

s
,
q

s
+ p + � ln(s)E0(q), q

)
,

L ∶= �s + p ⋅ ∇q + �s−1E ⋅ ∇p, L[f ] = �sf + divq,p

{
(p, �s−1E(q)) ⋅ f

}

L[h] = F(s, q, p)

(3.5)‖h(s)‖Lr
q,p

≤ ‖h(1)‖Lr
q,p
+ �

1

s

‖F(s�)‖Lr
q,p
ds�

(3.6)

L[qm�] = L[qm]� = pm� , L[pm�] = �s−1Em� ,

L[�qm�] = �qm(L[�]) − (�qmL)[�] = −�s−1�qmE
j�pj� , L[�pm�] = −�qm� ,

(3.7)
L[pm�qn�] = −�s−1pm�qnE

j�pj� + �s−1Em�qn� ,

L[pm�pn�] = −pm�qn� + �s−1Em�pn� .
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Lemma 3.3  Let � be a strong solution of (1.12) on T∗ ≤ s ≤ 1 with “initial” data 
�(s = 1) = �1 . Assume that �1 satisfies for some a ∈ ℕ , r ∈ [2,∞] that

and that

Then there holds that

Proof  The proof follows by applying (3.6) and (3.5) inductively to p�� , � ∈ ℕ
3

0
 , with 

|�| ≤ a . 	� ◻

Proposition 3.4  Let 0 < 𝜀0 ≤ 𝜀1 ≪ 1 , and let � be a solution of (1.12) on T∗ ≤ s ≤ 1 
with “initial” data �(s = 1) = �1 satisfying

(1)	 (Moments and the electric field) If there holds that

then the electric field E(s) remains bounded and the solution satisfies the 
bounds

Moreover, there exists C > 0 (independent of T∗ ) such that for any 
T∗ ≤ s1 ≤ s2 ≤ 1 there holds

(2)	 (Derivatives) Assume additionally that for some b ∈ {0, 1} there holds that

Then, we have the bounds

‖⟨p⟩a�1‖Lr
q,p

≤ �0,

|E(s, q)| ≤ D, T∗ ≤ s ≤ 1.

‖�(s)‖Lr
q,p

≤ �0,

‖⟨p⟩a�(s)‖Lr
q,p

≤ �0 + aD�0⟨ln(s)⟩a.

(3.8)‖�1‖L2
q,p
+ ‖�1‖L∞

q,p
≤ �0.

(3.9)‖⟨p⟩�1‖L2
q,p
+ ��⟨p⟩m�1��L∞

q,p

≤ �1, m ≥ 2

(3.10)
‖⟨p⟩𝛾(s)‖L2

q,p
≲ 𝜀1⟨ln s⟩,

��⟨p⟩a𝛾(s)��L∞
q,p

≲ 𝜀1⟨ln s⟩a, 0 ≤ a ≤ m.

(3.11)�E(s1, q) − E(s2, q)� ≤ C�2
1
⟨ln(s1)⟩4⟨ln(s2 − s1)⟩2(s2 − s1).

(3.12)��⟨p⟩b∇p,q�1
��L∞

q,p

≤ �1.

(3.13)
��⟨p⟩a∇p𝛾(s)

��L∞
q,p

≲ 𝜀1⟨ln s⟩a, 0 ≤ a ≤ b,

��⟨p⟩a∇q𝛾(s)
��L∞

q,p

≲ 𝜀1⟨ln s⟩5+a, 0 ≤ a ≤ b.
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Proof  We start by establishing claim (1). Let C > 0 be a constant larger than all the 
implied constants appearing in Sect. 2 and let �1 be small enough so that

We make the following bootstrap assumption: Let I ⊂ [T∗, 1] be such that for s ∈ I , 
there holds

By the first line of (2.1) (with A = 1 ) and the assumptions (3.8), (3.9) we have that 
1 ∈ I ≠ � , and by continuity I is closed in [T∗, 1] . To establish the claim it then suf-
fices to prove that (3.15) holds with strictly smaller constants, implying that I is also 
open in [T∗, 1].

To this end, note that by Lemma 3.3 we have that for 0 ≤ a ≤ m,

By Lemma 2.3 and (3.14), it then follows for T∗ ≤ s1 ≤ s2 ≤ 1 that

and (3.11) is proved. In particular, when 2−k ≤ s1 ≤ s2 ≤ 21−k , k ≥ 1,

and since by (2.1) we have ‖E(1)‖L∞
q
≤ 2C�2

1
 , we see that for s ∈ I,

provided C is large enough.
To prove (2), we use a similar bootstrap argument based on the assumptions

Using the commutation relations (3.6) and (3.5), we deduce from (3.12) and (3.18) 
that

provided C > 0 is large enough.
From the transport bounds and the commutation relations (3.6), we then deduce 

the estimate for ∇q� : From (2.2) we have under our assumption (3.15) and with 
(3.16) and (3.19) that

(3.14)4C2�2
1
≤ 1.

(3.15)‖E(s)‖L∞
q
≤ 2C2�2

1
.

(3.16)‖⟨p⟩a�(s)‖L∞
q,p

≤ �1(1 + aC2�2
1
)⟨ln(s)⟩a, s ∈ I.

��E(s1) − E(s2)
��L∞

q

≤ 4C�2
1

�
⟨ln(s2 − s1)⟩2 + �2

1

�
ln

� s2
s1

���
⟨ln(s1)⟩4(s2 − s1)

(3.17)‖‖E(s1) − E(s2)
‖‖L∞

q

≤ 10C�2
1
k62−k

‖E(s)‖L∞
q
≤ ‖E(1)‖L∞

q
+ 10C𝜀2

1

�

k≥1
k62−k ≪ C2𝜀2

1
,

(3.18)
‖⟨p⟩b∇p�(s)‖L∞

q,p
≤ 2C4�1⟨ln(s)⟩b,

‖⟨p⟩b∇q�(s)‖L∞
q,p

≤ 2C2�1⟨ln(s)⟩5+b.

(3.19)‖∇p�(s)‖L∞
q,p

≤ ‖∇p�(1)‖L∞
q,p
+ �

1

s

‖∇q�(s
�
)‖L∞

q,p
ds� ≤ C32�1,
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so that by Grönwall’s lemma there holds that

provided �1 is small enough. A similar argument using (3.7), (3.15) and (3.18) shows 
that

For the last bound, we see from (3.7) that we need a bound on the derivative of the 
electric field. Using (2.2), (3.16) and (3.20), we find that

so that (3.7) with (3.5), (3.21), (3.15), (3.20) and (3.22) gives

This closes the bootstrap (3.18). 	�  ◻

‖∇
q
�(s)‖

L
∞

q,p
≤ ‖∇

q
�(1)‖

L
∞

q,p
+ �

1

s

‖∇
q
E‖

L
∞

q

‖∇
p
�‖

L
∞

q,p

ds�

s�

≤ �1 + �
1

s

�
⟨ln s�⟩4‖�‖2

L
2
q,p

+ ‖�p�2�‖2
L
∞

q,p

+ ⟨ln s�⟩−
6

5 ‖�‖
L
∞

q,p
‖∇

q
�‖

L
∞

q,p

�
‖∇

p
�‖

L
∞

q,p

ds�

s�

≤ �1 + ⟨ln s⟩5
�
�2
0
+ 4�2

1

�
⋅ 2C4�1 + 2C4�0�1 �

1

s

⟨ln s�⟩−
6

5 ‖∇
q
�(s�)‖

L
∞

q,p

ds�

s�
,

(3.20)‖∇q�(s)‖L∞
q,p

≤ 10�1⟨ln s⟩5,

(3.21)

‖pm�pn�(s)‖L∞
q,p

≤ ‖�p�∇p�(1)‖L∞
q,p

+ �
1

s

‖�p�∇q�(s
�
)‖L∞

q,p
ds� + �

1

s

‖E‖L∞
q
‖∇p�(s

�
)‖L∞

q,p

ds�

s�

≤ C3�1⟨ln s⟩.

(3.22)

‖∇qE(s)‖L∞
q
≤ C

�
⟨ln s⟩4‖�(s)‖2

L2
q,p

+ ��p2�(s)��
2

L∞
q,p

+ ⟨ln s⟩−
6

5 ‖�(s)‖L∞
q,p
‖∇q�(s)‖L∞

q,p

�

≤ C
�
�2
0
+ 4�2

1

�
⟨ln(s)⟩4 + 10C�0�1⟨ln s⟩5−

6

5

≤ 10C�2
1
⟨ln s⟩4,

‖pm∇q�(s)‖L∞
q,p

≤ ‖�p�∇q�(1)‖L∞
q,p

+ �
1

s

�
‖∇qE‖L∞

q
‖�p�∇p�‖L∞

q,p
+ ‖E‖L∞

q
‖∇q�‖L∞

q,p

�
ds�

s�

≤ �1 + �1 �
1

s

�
10C4�3

1
⟨ln s�⟩5 + 20C2�3

1
⟨ln s�⟩5

� ds�

s�

≤ �1⟨ln s⟩6.
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3.3 � Asymptotic Behavior

From (3.11), we can deduce that the electric field has an asymptotic limit:

Corollary 3.5  Let � be a solution of (1.12) as in Proposition 3.4, which is moreover 
defined for s ∈ (0, 1] . Then, the limit

exists and is bounded

In addition, we have the following convergence rate: if  0 ≤ s1 ≤ s2 ≤ 1, there holds

The rate of convergence (3.23) is linked to the topology we choose through 
the continuity Eq. (1.8). Our assumptions scale like � ∈ L∞

q
 and we obtain almost 

Lipschitz bounds in time.

Proof  It follows from (3.17) in the proof above that E(2−k) is Cauchy in L∞
q

 . Sum-
ming again (3.17) gives (3.23). 	�  ◻

Now, we are in the position to give the proof of the modified scattering result:

Proof of Theorem 3.1  From Proposition 3.4 we obtain a global solution � on (0, 1], 
which satisfies (3.10), (3.13) and (3.23). Next, we define

which satisfies

where

Hence by (2.2), Corollary 3.5 and (3.22) we have that

which is integrable over 0 ≤ s ≤ 1 . 	� ◻

E0(q) ∶= lim
s→0

E(s, q)

‖E0‖L∞
q
≲ 𝜀2

1
.

(3.23)‖E(s1) − E(s2)‖L∞
q
≲ 𝜀2⟨ln(s2)⟩6s2.

�(s, q, p) ∶= �(s, q + ps + �s ln(s)E0(q), p + � ln(s)E0(q)),

�s� = �s� + p ⋅ ∇q� + �(1 + ln(s))E0(q) ⋅ ∇q� + �s−1E0(q) ⋅ ∇p�

= �E0(q) ⋅ ∇q� + �s−1[E0(q) − E(s, q + ps + �s ln(s)E0(q))] ⋅ ∇p� ,

s−1��E0(q) − E(s, q + ps + 𝜆s ln(s)E0(q))
��

≲ s−1�E0(q) − E(s, q)� + �p + ln(s)E0(q)�‖∇E(s)‖L∞
q
.

‖𝜕s𝜈‖L∞
q,p

≲ 𝜀2
1
‖∇q𝛾‖L∞

q,p
+ 𝜀2

1
⟨ln(s)⟩4‖p∇p𝛾‖L∞

q,p
+ 𝜀2

1
⟨ln(s)⟩6‖∇p𝛾‖L∞

q,p
,
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4 � Wave Operators and Cauchy Problem at Infinity

Using the symplectic structure, Eq. (1.12) can be written as

with the Hamiltonian

where Δ�(s, q) = ∫ �2(s, q, p)dp . We wish to find a new coordinate system (w, z) for 
which the Cauchy problem at s = 0 can be solved. For this, we introduce the type-3 
generating function3 

where �0(q) = �(0, q) . This gives rise to the canonical change of coordinates

or

with Jacobian matrix

with the usual notation E = ∇� , E0 = ∇�0 . This corresponds to the new 
Hamiltonian

and vector field

It follows that

solves

�s + {� ,H} = 0, {f , g} ∶= ∇qf ⋅ ∇pg − ∇pf ⋅ ∇qg

H(s, q, p) ∶=
|p|2
2

− �s−1�(s, q),

S(s,w, p) ∶= w ⋅ p +
|p|2
2

s − � ln(s)�0(w),

z = ∇wS(w, p) = p − � ln(s)∇�0(w),

q = ∇pS(w, p) = w + ps = w + zs + �s ln(s)∇�0(w),

(4.1)
q = w + sz + �s ln(s)∇�0(w), w = q − sp,

p = z + � ln(s)∇�0(w), z = p − � ln(s)∇�0(q − sp),

(4.2)
�(w, z)

�(q, p)
=

(
Id − sId

−� ln(s)∇E0 Id + �s ln(s)∇E0

)
,

K(s,w, z) ∶= H(s, q, p) − �sS(s,w, p) = �s−1
[
�0(w) − �(s, q)

]

(4.3)
∇wK = −�s−1

{
E(s, q) − E0(w)

}
− �2 ln(s)E(s, q) ⋅ ∇E0(w), ∇zK = −�E(q).

(4.4)�(s,w, z) ∶= �(s, q, p)

3  See, e.g., [25, Chapter 8].
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Remark 4.1  We note that the new variables (w,  z) have a simple interpretation in 
terms of the original variables in (1.1): w = v , z = x − tv − � ln(t)E0(v) , which are 
the variables in which the modified scattering of Theorem 1.1 and [20] is expressed.

The main result of this section then is the following:

Theorem 4.2  Assume that initial data �0 and E0
4 satisfy

and

Then there exists T∗
= T∗

(c0) > 0 and a unique solution � ∈ C0
s
([0, T∗

) ∶ L2
w,z
) of 

(4.5) with “initial” data �(s = 0) = �0 , and such that s�s�, ∇w,z� ∈ C0
s,w,z

 . Moreo-
ver, for 0 ≤ s < T∗ we have that for any � ∈ ℕ,

and if c0 is sufficiently small we may take T∗
= 1.

The proof of Theorem 4.2 is given below in Sect. 4.3, after we have established 
some a priori estimates on the propagation of moments and derivatives for the sys-
tem (4.5) in Sects. 4.1 and 4.2.

4.1 � Commutation Relations

Writing � = �s + {⋅,K} , for moments in w, z we have the commutation relations

For the derivatives, we have

and this gives in block diagonal form

(4.5)0 = �s� + {�,K} = �s� + ∇w� ⋅ ∇zK − ∇z� ⋅ ∇wK.

(4.6)‖‖E0
‖‖W3,∞ ≤ c2

0
,

(4.7)‖�0‖L2
w,z
+ ‖⟨z⟩5�0‖L∞

w,z
+

�

0≤m+n≤2
‖⟨z⟩m∇m

z
∇

n
w
�0‖L∞

w,z
≤ c0.

(4.8)
‖𝜎(s)‖L2

w,z
+ ��⟨z⟩5𝜎(s)��L∞

w,z

+ ‖∇w,z𝜎(s)‖L∞
w,z

≲ c0,

‖⟨w, z⟩�𝜎(s)‖L∞
w,z

≲ ‖⟨w, z⟩�𝜎0‖L∞
w,z
,

(4.9)
�[wj�] = −�Ej(s, q)�,

�[zj�] =
(
�s−1[Ej(s, q) − E0,j(w)] + �2 ln(s)E(s, q) ⋅ ∇wE0,j(w)

)
�.

(4.10)
�(�1�) = {�1K, �}, �(�2�1�) = {�1K, �2�} + {�2K, �1�} + {�2�1K, �}

4  These are linked through (4.16).
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with

We note that the matrix ∇2
w,z
K is ill-conditioned, and to mitigate this effect, we intro-

duce a weight on the gradient:

which is linked to the vector field through (4.15) and satisfies nice differential 
equalities

4.2 � A Priori Estimates

The goal of this section is to bootstrap the following assumptions: given c0 as in 
(4.6), we assume that for 0 ≤ s ≤ T(c0) there holds that

As we will show below in Sect. 4.2.1, this implies in particular that

and that we have the derivative bounds

These in turn can then be used to close the bootstrap for (4.13), as in Sect. 4.2.2.

(4.11)�

(
∇w�

∇z�

)
=

(
−∇w∇zK ∇

2
w
K

−∇
2
z
K ∇w∇zK

)(
∇w�

∇z�

)
,

(4.12)

∇
2

wjwkK = −�s−1�j[Ek(s, q) − E0,k(w)]

− �2 ln(s)
{
�jE(s, q) ⋅ �kE0(w)

+�kE(s, q) ⋅ �jE0(w) + �j�kE0(w) ⋅ E(s, q)
}

− �3s ln(s)2�kE0,a(w)�jE0,b(w) ⋅ �aEb(s, q),

∇w∇zK = −�∇E(s, q) − �2s ln(s)(∇E(s, q) ⋅ ∇)E0(w),

∇
2

z
K = −�s∇E(s, q).

�(s, z) ∶=
⟨z⟩

1 + s⟨z⟩ ,
1

2
min{⟨z⟩, s−1} ≤ �(s, z) ≤ min{⟨z⟩, s−1},

�s� = −�2, ∇z� =

�
z

⟨z⟩3

�
⋅ �2.

(4.13)

‖�(s)‖L2
w,z
+ ‖⟨z⟩5�(s)‖L∞

w,z
≤ A ≤ 4c0,

‖∇w�(s)‖L∞
w,z
+ ‖�∇z�(s)‖L∞

w,z
≤ B ≤ 4c0,

‖∇2

w,w
�(s)‖L∞

w,z
+ ‖�∇2

w,z
�(s)‖L∞

w,z
+ ‖�2∇2

z,z
�(s)‖L∞

w,z
≤ C ≤ 4c0.

(4.14)
�∇zK(w, z)� ≤ 2c2

0
,

�∇wK(w, z)� ≤ c2
0

�
min{s−1, �z�} + ⟨ln(s)⟩3

�
,

(4.15)‖∇w∇zK‖L∞
w,z
+ ‖�∇z∇zK‖L∞

w,z
+ ‖�−1∇w∇wK‖L∞

w,z
≤ c2

0
⟨ln(s)⟩4.
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4.2.1 � A Priori Control on the Electric Field

Here we consider a particle density � ∈ C0
([0, s] ∶ L2

w,z
) such that �(0) = �0 and 

which satisfies the bounds (4.13). This creates an electric field E(s) through the 
formula

where � and � are related through (4.4). Simple bounds give uniformly in R > 0:

which ensures that E is continuous in time. In the next lemma, we adapt the bounds 
from Sect. 2 to obtain stronger control as in (4.14) and (4.15).

Lemma 4.3  Let � ∈ C0
([0, T], L2

w,z
) with �(0) = �0 such that E[�] satisfies the conti-

nuity equation (1.8) and E0 satisfies (4.6). Then there exists T∗
(c0) ∈ (0, T] such that

	 (i)	 Assuming the first line of (4.13) holds, we obtain (4.14) for 0 ≤ s ≤ T∗.
	 (ii)	 Assuming the first two lines of (4.13) hold, we obtain (4.15) for 0 ≤ s ≤ T∗.

Proof  (i) To use Lemma 2.3, we observe that

and that the change of variable (4.1) preserves volume, so that

In addition, since (see (4.2)) �z
�p

= Id + O(c0s⟨ln(s)⟩) has bounded Jacobian, we see 
that

and using (2.5), we obtain that for 2−k−1 ≤ s2 ≤ s1 ≤ 2−k,

and summing we see that E(2−k) is Cauchy in L∞
q

 and that

(4.16)
E[�](s,Q) = E(s,Q) = ∬

Q − q(s,w, z)

|Q − q(s,w, z)|3
�2
(s,w, z)dwdz

= ∬
Q − q

|Q − q|3
�2(s, q, p)dqdp,

�E(s2,Q) − E(s1,Q)� ≲ R‖⟨z⟩4𝜎‖2
L∞
s,w,z

+ R−2‖𝜎(s)‖L∞
s
L2
w,z
‖𝜎(s2) − 𝜎(s1)‖L2

w,z
,

(4.17)�p − z� ≤ c2
0
⟨ln(s)⟩, �q − w� ≤ s�z� + c2

0
s⟨ln(s)⟩

‖𝛾(s)‖
Lr
q,p

= ‖𝜎(s)‖
Lr
w,z
,

‖�p�𝛼𝛾(s)‖
Lr
q,p

≲ ‖�z�𝛼𝛾(s)‖
Lr
q,p
+ c

2𝛼
0
⟨ln(s)⟩𝛼‖𝛾(s)‖

Lr
q,p

≲ c
2𝛼
0
⟨ln(s)⟩𝛼‖𝜎(s)‖

Lr
w,z
+ ‖�z�𝛼𝜎(s)‖

Lr
w,z
.

‖�(s)‖L∞
q
≤ �����

�
�z� + c2

0
⟨ln(s)⟩

�
�2dz

����L∞
w

≤ c2
0
⟨ln(s)⟩‖⟨z⟩3�‖2

L∞
w,z

,

‖E(s2, q) − E(s1, q)‖L∞
q
≲ ⟨c0⟩2k22−k‖⟨z⟩3𝜎‖2L∞

s,w,z

+ 2−2k‖𝜎‖2
L∞
s
L2
w,z



	 P. Flynn et al.

1 3

Using the formulas in (4.3), the control on ∇zK follows directly, while we see that

and with (4.18), (4.13), (4.6) and (4.17), we obtain (4.14).
(ii) We want to use (2.6), which requires some additional control on the deriva-

tives. From (4.2), we see that

so that

and

For 2−k−1 ≤ s2 ≤ s1 ≤ 2−k , this gives by (2.6) that

and applying similar arguments as before we obtain

up to choosing T(c0) > 0 small enough. Using the formulas in (4.12), we directly see 
that

Moreover, using (4.6) and (4.19), we find that, up to choosing T(c0) > 0 smaller,

(4.18)‖E(s, q) − E0(q)‖L∞
q
≲ ⟨c0⟩2s⟨ln(s)⟩2‖⟨z⟩3𝜎‖2L∞

s,w,z

+ ⟨c0⟩2s2‖𝜎‖2L∞
s
L2
w,z

.

∇wK(w, z) = −�s−1
�
E(s, q) − E0(q)

�
− �s−1

�
E0(q) − E0(w)

�
+ O(c2

0
⟨ln(s)⟩)

∇q� = ∇w� − � ln(s)∇E0 ⋅ ∇z�

‖∇q𝛾‖Lr
q,p

≲ c2
0
⟨ln(s)⟩‖∇w,z𝜎‖Lr

w,z

‖∇q�(s)‖L∞
q
≲ c2

0
⟨ln(s)⟩

����∫
�
�z� + c2

0
⟨ln(s)⟩

�
�𝜎� ⋅ �∇w,z𝜎�dz

����L∞
w

≲ c4
0
⟨ln(s)⟩2

�
��⟨z⟩5𝜎��

2

L∞
w,z

+ ‖∇w,z𝜎‖2L∞
w,z

�
.

‖∇qE(s2, q) − ∇qE(s1, q)‖L∞
q
≲ ⟨c0⟩4k32−k ⋅

�
��⟨z⟩5𝜎��

2

L∞
s,w,z

+ ‖∇w,z𝜎‖2L∞
s,w,z

�

+ c10
0
2
−

3k

2

�
��⟨z⟩5𝜎��

2

L∞
s,w,z

+ ‖𝜎‖2
L∞
s
L2
w,z

�
,

(4.19)

‖∇qE(s, q) − ∇qE0(q)‖L∞
q
≲ ⟨c0⟩2s⟨ln(s)⟩3 ⋅

�
��⟨z⟩5𝜎��

2

L∞
s,w,z

+ ‖∇w,z𝜎(s,w, z)‖2L∞
s,w,z

�

+ c10
0
s

3

2

�
��⟨z⟩5𝜎��

2

L∞
s,w,z

+ ‖𝜎‖2
L∞
s
L2
w,z

�

≤ c2
0
s⟨ln(s)⟩4

��∇2

z,z
K� ≤ �∇E� ⋅ smin{s−1, �z�} ≤ c2

0
,

�∇2

w,z
K� ≤ �∇E�(1 + s⟨ln(s)⟩�∇E0�) ≤ 2c2

0
.
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from which we deduce (4.15). 	�  ◻

4.2.2 � A Priori Estimates on the Particle Density

Here, we close the bootstrap of (4.13):

Lemma 4.4  Assume that � ∈ C0
([0, T], L2

w,z
) satisfies (4.5), for some Hamiltonian K 

(not necessarily related to �) satisfying (4.14) and (4.15). If �0 = �(0) satisfies (4.7), 
there exists T(c0) > 0 such that (4.13) holds for A = B = C = 2c0.

Proof  We first close the bootstrap for A, then for A, B. Finally, we adapt the argu-
ment for A, B, C. The control follows from the commutation relations (compare with 
(4.11)):

As in (3.5), we find that

and we can easily propagate the first line of (4.13).
For the derivatives, we also need to control � . On the one hand, we can bound 

from above (note that �(ln �) can be very negative)

and we deduce from (4.20), (3.5) and (4.15) that

and this allows us to propagate the second line of (4.13) for short time.

�∇2

w,w
K� ≤ s−1�∇E0(q) − ∇E0(w)� + s−1�∇E(s, q) − ∇E0(w)�

+ ⟨ln(s)⟩
�
2�∇E0�2�∇E� + �∇2E0��E�

�
+ s⟨ln(s)⟩2�∇E0�2�∇E�

≤ c2
0
min{s−1, �z�} + c2

0
⟨ln(s)⟩4,

(4.20)

�(⟨z⟩m�) = �{⟨z⟩m,K} = −m�⟨z⟩m−2z ⋅ ∇wK,

�(�∇z�) = (� ln �) ⋅ �∇z� + �{∇zK, �}

= (� ln �) ⋅ �∇z� + �∇z� ⋅ ∇w∇zK − ∇w� ⋅ �∇z∇zK,

�(∇w�) = {∇wK, �} = �∇z� ⋅ �−1∇w∇wK − ∇w� ⋅ ∇z∇wK.

��⟨z⟩m�(s)��Lr
w,z

≤ ��⟨z⟩m�0��Lr
w,z

+ m�
s

0

��⟨z⟩−1∇wK(s�)��L∞
w,z

��⟨z⟩m�(s�
�
‖Lr

w,z
ds�,

�(ln 𝜃) = −

�
1 +

z

⟨z⟩3
∇wK

�
𝜃 ≲ c2

0
+ c2

0
⟨ln(s)⟩3

‖�∇z�(s)‖Lr
w,z

≤ ‖�∇z�0‖Lr
w,z
+ c2

0 �
s

0

⟨ln(s�)⟩4
�
‖�∇z�(s

�
)‖Lr

w,z
+ ‖∇w�(s

�
)‖Lr

w,z

�
ds�,

‖∇w�(s)‖Lr
w,z

≤ ‖∇w�0‖Lr
w,z
+ c2

0 �
s

0

⟨ln(s�)⟩4
�
‖�∇z�(s

�
)‖Lr

w,z
+ ‖∇w�(s

�
)‖Lr

w,z

�
ds�,
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We now propagate higher-order derivatives to bound the bootstrap for C. First by 
interpolation in (4.13), we observe that

We will use the weight � to control the �z derivatives. Using (4.10), we find that

and we can proceed as for the case of one derivative once we control the new terms

It remains to prove (4.21). Starting from

we deduce

and finally, from (4.12), we obtain that

Independently, we find that

‖⟨z⟩2.1∇w,z�‖L∞
w,z

≤ A + C.

�(�wj�wk�) = �−1∇w�wjK ⋅ (�∇z�wk�) + �−1∇w�wkK ⋅ (�∇z�wj�) − ∇z�wjK ⋅ ∇w�wk�

− ∇z�wkK ⋅ ∇w�wj� + �−1∇w�wj�wkK ⋅ (�∇z�) − ∇z�wj�wkK ⋅ ∇w�,

�(��zj�wk�) = �(ln �) ⋅ ��zj�wk� + �−1∇w�wkK ⋅ (�2∇z�zj�) − ∇z�wkK ⋅ (�∇w�zj�)

+ ∇w�zjK ⋅ (�∇z�wk�) − (�∇z�zjK) ⋅ ∇w�wk�

+ ∇w�zj�wkK ⋅ (�∇z�) − �∇z�zj�wkK ⋅ ∇w�,

�(�2�zj�zk�) = 2�(ln �) ⋅ �2�zj�zk� + ∇w�zkK ⋅ (�2∇z�zj�) − �∇z�zkK ⋅ (�∇w�zj�)

+ ∇w�zjK ⋅ (�2∇z�zk�) − (�∇z�zjK) ⋅ (�∇w�zk�)

+ �∇w�zj�zkK ⋅ (�∇z�) − �2∇z�zj�zkK ⋅ ∇w�,

(4.21)
‖�−1∇3

w,w,w
K‖L∞

w,z
+ ‖∇3

w,w,z
K‖L∞

w,z
+ ‖�∇3

w,z,z
K‖L∞

w,z
+ ‖�2∇3

z,z,z
K‖L∞

w,z
≤ c2

0
⟨ln(s)⟩5.

∇zK = −�E(q),
�qk

�zj
= s�k

j
,

�qk

�wj
= �k

j
+�s ln(s)�j�k�0(w),

�2�∇3

z,z,z
K� = (s�)2�∇2E(q)�,

��∇3

w,z,z
K� ≤ (s�) ⋅

�
1 + s⟨ln(s)⟩�∇E0�

�
⋅ �∇2E(q)�,

�∇3

w,w,z
K� ≤ �

1 + s⟨ln(s)⟩�∇E0�
�2

⋅ �∇2E(q)�
+

�
1 + s⟨ln(s)⟩�∇E0�

�
⋅
�
1 + s⟨ln(s)⟩�∇2E0�

�
⋅ �∇E(q)�,

�−1�∇3

w,w,w
K� ≤ �

s−1 + ⟨ln(s)⟩ ⋅ �∇E0�
�
⋅ �∇2E(s, q) − ∇

2E0(w)�
+ ⟨ln(s)⟩ ⋅

�
�∇2E� ⋅ �∇E0� + �∇E� ⋅ �∇2E0� + �∇3E0� ⋅ �E�

�

+ s⟨ln(s)⟩2 ⋅
�
�∇2E� ⋅ �∇E0�2 + �∇E� ⋅ �∇E0� ⋅ �∇2E0�

�

+ s2⟨ln(s)⟩3 ⋅
�
�∇2E� ⋅ �∇E0�3

�
.
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Now using Lemma 2.4 and the bootstrap assumptions, we obtain that

which easily leads to (4.21). 	�  ◻

4.3 � Local Solutions

We construct local solutions for the singular Eq. (4.5) via Picard iteration.

Proof of Theorem 4.2  We proceed in two steps.
Step 1: A priori estimates. We construct a sequence of approximate solutions 

on a time interval [0,  T] (with T > 0 to be chosen later) via Picard iteration: We 
define �

(0)(s,w, z) ∶= �0(w, z) , and given �
(n) ∈ C0

s
([0, T],C1

w,z
) satisfying (4.13) 

with A = B = C = 4c0 , we let �
(n+1) ∈ C0

s
([0, T],C1

w,z
) be the solution of

where �
(n) and �

(n) are related through (4.4). Using Lemma 4.3, we see that Kn sat-
isfies (4.14) and (4.15). Using Lemma 4.4, we see that �

(n+1) satisfies (4.13) with 
A = B = C = 2c0 . We deduce that (4.13) holds uniformly in n with A = B = C = 2c0 
on a fixed time interval 0 ≤ s ≤ T(c0).

In addition using the commutation relations (4.9), we easily propagate (4.8) uni-
formly in n.

Step 2: Contraction in L∞
s,w,z

 . Let

so that

and we can express

Invoking the uniform bounds for �
(n) , we will prove below that

‖∇2�(s)‖L∞
q
≲ c2

0
⟨ln(s)⟩2

����∫
�
�z� + c2

0
⟨ln(s)⟩

�
⋅

�
�𝜎� ⋅ �∇2

w,z
𝜎� + �∇w,z𝜎�2

�
dz
����L∞

w

≲ c4
0
⟨ln(s)⟩3

�
‖⟨z⟩5𝜎‖L∞

w,z
‖∇2

w,z
𝜎‖L∞

w,z
+ ‖⟨z⟩2.1∇w,z𝜎‖2L∞

w,z

�
.

‖∇2E(s, q) − ∇
2E0(w)‖L∞

w,z
≤ c2

0
⟨ln(s)⟩5 + c2

0
min{s−1, �z�},

�s�(n+1) + {�
(n+1),Kn} = 0, �

(n+1)(0) = �0,

Kn ∶= �s−1(�0(w) − �n(s, q)), Δ�n = ∫ �2
(n)
(s, q, p)dp,

�
(n) ∶= �

(n+1) − �
(n), �K

(n) ∶= Kn −Kn−1, �n ∶= �s +
{
⋅,Kn

}
, ��n = {⋅, �K

(n)},

(4.22)�n�(n) = ��n�(n),

(4.23)

∇z�K(n) = −�(En(s, q) − En−1(s, q)),

∇w�K(n) = −�s−1(En(s, q) − En−1(s, q)) − �2 ln(s)(En(s, q) − En−1(s, q)) ⋅ ∇E0(q).
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In combination with (4.22), we find that

from which we deduce that, possibly taking T(c0) > 0 smaller, �
(n) form a Cauchy 

sequence in L∞
s,w,z

 , and thus �
(n) → � ∈ L∞

s,w,z
 as n → ∞ . Interpolation gives conver-

gence in the other topologies. In particular,

so that �
(n) is Cauchy in C0

s
C1
w,z

 and the other bounds follow by Fatou’s Lemma or by 
conservation. In particular, (4.8) follows by pointwise convergence. Finally we note 
that if c0 is sufficiently small, the arguments give a contraction for any T ≤ 2.

It remains to show (4.24). The main point is that E is quadratic in � , so that in the 
estimates for �K

(n) , we can always factor out the difference �
(n) in L∞

w,z
 . The bound on 

∇z�K(n) follows from adaptation to Lemma 2.1 and this also allows to control all but 
the first term in ∇w�K(n) as in (4.23). These then follow from (2.5) using the differ-
ence continuity equation

with

and simple adaptations of Lemma 2.3. 	�  ◻

Finally, we prove the main theorem.

Proof of Theorem  1.1  For (i), using (1.10), the assumption (1.3) leads to (3.2) in 
Theorem 3.1 and the local convergence is easily adapted (see Remark 3.2). For (ii), 
the assumption (1.5) leads to (4.6), (4.7) and the conclusion follows from that of 
Theorem 4.2. Finally, for (iii), we can apply Theorem 4.2 to �

−∞
(x,−v) to get, using 

(4.4), (1.10) and (4.8) a solution for −∞ < t ≤ −1 such that

By local existence, we can extend these bounds for −1 ≤ t ≤ 1 , at which point we 
can simply apply (i). 	�  ◻

(4.24)‖∇w,z�K(n)(s)‖L∞
w,z

≤ c0⟨ln(s)⟩6
����(n−1)(s)

���L∞
w,z

.

‖𝛿
(n)(s)‖L∞

w,z
≲ ∫

s

0

‖∇w,z𝛿K(n)(s
�
)‖L∞

w,z
‖∇w,z𝜎(n)(s

�
)‖L∞

w,z
ds�

≲ c2
0 ∫

s

0

⟨ln(s�)⟩6‖𝛿
(n−1)(s

�
)‖L∞

w,z
ds�,

‖∇w,z𝛿(n)‖L∞
s,w,z

≲ ‖𝛿
(n)‖

1

2

L∞
s,w,z

�
��∇2

w,z
𝜎
(n+1)

��L∞
s,w,z

+ ��∇2

w,z
𝜎
(n)
��L∞

s,w,z

� 1

2

,

�s(En − En−1) + ∇Δ
−1divq

{
��n

}
, ��n = ∫

ℝ3
p

(�n + �n−1)(�n − �n−1) ⋅ pdp

‖𝛿�n‖L∞
q
≲ ‖𝛿

(n−1)‖L∞
w,z
⋅

�
��⟨p⟩5𝛾n��L∞

q,p

+ ��⟨p⟩5𝛾n−1��L∞
q,p

�

‖𝜇(−1)‖L2
x,v
+ ��⟨x, v⟩5𝜇(−1)��L∞

x,v

+ ‖∇x,v𝜇(−1)‖L∞
x,v
≲ 𝜀.
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