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Abstract

We construct (modified) scattering operators for the Vlasov—Poisson system in three
dimensions, mapping small asymptotic dynamics as t - —oo to asymptotic dynam-
ics as t — +o0. The main novelty is the construction of modified wave operators, but
we also obtain a new simple proof of modified scattering. Our analysis is guided by
the Hamiltonian structure of the Vlasov—Poisson system. Via a pseudo-conformal
inversion, we recast the question of asymptotic behavior in terms of local in time
dynamics of a new equation with singular coefficients which is approximately inte-
grated using a generating function.
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1 Introduction

The three-dimensional Vlasov—Poisson system describes the evolution of a particle
distribution! u(z,x,v) : R X R? x R?® - R satisfying

(0, +v-V)u+iVay - Vou=0, Aytx) =ptx), ptx) = / W (8, x,v)dv.
R3

(1.1)
This is a model for a continuum limit of a classical many-body problem with Newto-
nian self-interactions through a force field V .y that can be attractive (1 = —1) as in

a galactic setting, or repulsive (4 = 1) as in a plasma or ion gas, and which is gener-
ated by the spatial density p(z, x) of the particle distribution.

The mathematical theory for the initial value problem associated with (1.1) is
classical and guarantees the global existence of unique solutions under suitable
assumptions on the initial data [1, 24, 32, 33]. In recent years, there has been
progress in understanding the long time asymptotic behavior: sharp decay rates
of the density and force field are known in some settings [17, 19, 29, 31, 36, 38],
and it has been shown that for sufficiently small initial data g, the problem (1.1)
exhibits a modified scattering dynamic [6, 20] defined in terms of a limit distribu-
tion u,, and an asymptotic force field E [ ], defined by inverting the roles of x
and v:

E ) := % // ﬁ - 12y, wdydw. (12)

In this paper, using pseudo-conformal inversion, we prove the converse state-
ment, namely that any solution of the asymptotic dynamic arises in a unique way
as a limit of a solution to (1.1), i.e., we construct the wave operator u,, = H.
Thus, we obtain the existence of a scattering operator linking the asymptotic
behavior in the past to the asymptotic behavior in the future (u_o, = py = Hoo)-

Our main results can be summarized as follows:

Theorem 1.1 There exists € > 0 such that:

(1) (Global existence and modified scattering) Given u,(x, v) satisfying
Il 4, “L'%.V + ||(x - ||L§°v + Vet ”L;-jv <e (1.3)
there exists a unique global strong solution u of the initial value prob-

lem for (1.1) with u(1,x,v) = p,(x,v). In addition, there exist u(x,v) and
E. =E_[u,lasin (1.2) such that, locally uniformly in (x, v),

! To be precise, the physically relevant quantity f(z,x,v) = p(t,x,v) is the square of our unknown
pu—see also [20].
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ut,x+tv—AIm@E, (), V) = py(x,v), t— 4oo. (1.4)

(ii) (Existence of modified wave operators) Given y,, € W2’°°(|R)3C X Ri) and
E, =E_[u,] € W¥(R?) as in (1.2) satisfying

”/’loo”L%L + ||<x>51uoo||Lgo‘ + ”('x)vx,vlloo“L;i_ + ||<'x>2v)25,vl’loo||L§<’t

+ [|Eg llyse < 00,

(1.5)

there exists a unique strong global solution u of (1.1) for which (1.4) holds.
(iii) (Scattering map) For any asymptotic state u_, with E__ =
Elu_.] € W3R as in (1.2),

li-slliz, + (106 Ml + 1OV bl + [V il <&

there exist a unique strong solution u of (1.1), p, € L)ZCV NL> and
E, = E [y, ] such that

ut,x +tvF ANN)E, (), V) = pUoo(x,v), t— xoo. (1.6)

We call the map defined in a neighborhood of the origin in the Schwartz space
through (iii) above,

S oo P Moo 1.7

the Scattering map. We refer to Theorem 3.1 for a more precise statement of our
results for (i) and to Theorem 4.2 for a more precise statement of (ii). In particular,
we note that the force field has optimal decay | V| < {(£)~2in all cases.

Remark 1.2 We comment on some points:

(1) The main novelty of this work is the construction of the wave operator (ii).
While the small data modified scattering dynamic (1.4) was already obtained in
[20], the present result (i) is also of interest since it is stronger and the approach,
while less generalizable, leads to a simple derivation of the asymptotic dynamic.
We also refer to [30] for yet another point of view on the modified scattering as
arising from mixing.

(2) Our topology for small data/modified scattering in (1.5) is weaker than in all
other works on asymptotic behavior that we are aware of [1, 6, 17, 20, 29, 36,
38]. It is unclear what the optimal topology is, but to get almost Lipschitz bounds
on the force field, by (1.8), one cannot work in a much weaker setting than ours.

(3) We also obtain propagation of regularity: assuming more regularity on the initial
data we obtain higher regularity on the final (scattering) data and vice versa.

(4) Odur initial data for scattering may have infinite energy and momentum; in addi-
tion, a simple modification also allows for initial data of infinite mass. It is
unclear which role (if any) the physical conservation laws play for the asymptotic
behavior.
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(5) It is worth noting a curious fact: our proof can be adapted directly to the case
of a plasma of two species (ions and electrons). In this case, using (ii), one can
construct solutions for which the asymptotic electric field profile E_ = 0 van-
ishes and the solutions scatter linearly. In this case, the same equation allows
two different asymptotic behaviors. It remains to be understood to which extent
the linear scattering is nongeneric (say in case the total charge vanishes).

1.1 About the Proof of Theorem 1.1

In the spirit of the prior work [20] (see also [9, 10, 22, 23]), we build on parallels
between kinetic and dispersive equations. In particular, the Hamiltonian structure of
(1.1) guides our analysis.

The simplest case for asymptotic behavior of a nonlinear equation is linear scat-
tering when the nonlinearity can simply be neglected to model asymptotic dynamics.
For the Vlasov—Poisson system, this happens in the setting of Landau damping [2, 11,
27], the ion/screened problem [3, 14], and in higher dimensions [36], where solutions
asymptotically satisfy 7(u) = 0 with 7 defined in (1.9). The asymptotic behavior of
modified scattering as in (1.4) and (1.6) can be viewed as a manifestation of the unre-
lenting relevance of nonlinear interactions in (1.1) throughout time. In (1.1) the non-
linear, long-range interactions are governed by a force field which does not decay fast
enough to produce only a finite correction as time tends to infinity and produces the
logarithmic corrections identified in the above theorem—see also [6, 20, 30] for the
Vlasov—Poisson setting, and [15, 16, 18, 21, 28] for related results on other equations.

To understand the asymptotic behavior, we need to (i) identify a mechanism for
decay (here dispersion), (ii) prove global existence, (iii) isolate an asymptotic dynamic
and (iv) prove convergence to it. We offload the dispersion to the pseudo-conformal
transform 7 which compactifies time and reduces global existence to local existence for
a singular equation in the transformed unknown

1 g
Y(SsCI,P) :ZM(;7 ;sq_sp)’ (S,q,p)ERXR3XR3,
see also [4, 5, 7, 37] for similar ideas. At this point, the problem merely reduces to
establishing convergence at the image of infinity, s = 0, where, however, the equa-
tion has a violent singularity. We extend the force field E = —Vy via a variant of the

continuity equation:
o,E + VAT'div(j)) =0, j(s,q) = /pyz(s, 4.p)dp, (1.8)

which does not involve the (singular) acceleration and provides good control of E so
long as we control some moments of y. Once we obtain convergence of E to a fixed
asymptotic field E,, the equation becomes a simple perturbation of transport by a
shear term:

(9, + AsT'Eqy(g) - V,)y = O(D),
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which is easily integrated to recover the dynamic originally isolated in [20]. To
make this rigorous, we need to propagate mild control on appropriate norms. This is
done through a bootstrap that allows some deterioration over time in different ways
depending on the scenarios: growth of nonconvergent norms in the case of modified
scattering and loss of moment in the case of wave operators (where we start from the
singular time s = 0).

The proof of part (i) shows how natural the pseudo-conformal inversion Z is to
study asymptotics of (1.1): working with only moments that are conserved in the lin-
ear evolution of (1.1) one directly obtains global solutions in a bootstrap argument.
Additional regularity as in (1.3) is easily propagated to yield unique strong solutions
and to recover the asymptotic behavior (1.4)—see Sect. 3.

Part (ii) is proved using a canonical change of variables in (1.12) to mitigate the
strong singularity at s = O—see Sect. 4. The Cauchy problem for the resulting equa-
tions (4.5) can in fact be (locally) solved starting from s = O for a sufficiently large
class of initial data as in (1.5). Again, moments are easily bootstrapped, while prop-
agating derivatives requires us to identify a proper weighted norm which compen-
sates for the ill-conditioned Hessian of the new Hamiltonian by allowing one loss of
moment. Since via Z this corresponds to a strong solution on [7, co) for some T > 0,
classical theory as in [24] then gives a global solution.

Finally (iii) follows simply by combining (ii) (backwards in time) to go from past-
asymptotic data to initial data and (i) to go from initial data to future asymptotic
data.

While it may be less intuitive, using the pseudo-conformal transformation simpli-
fies the presentation over the physical space analysis as in [20], and quickly leads to
the natural modified scattering behavior. It also sheds new light on some classical
decay estimates like (1.13).

1.2 Open Questions
We list some open questions which remain outstanding:

e Is there a topology that makes the scattering operator in (1.7) an endomorphism?

e In the plasma case A = +1, what is the asymptotic behavior for large data?
Solutions are global, there are no nontrivial equilibriums and the wave opera-
tors are defined for large data, so it is tempting to believe that Theorem 1.1 may
be extended to all solutions (see [19, 31, 34] and references therein for general
results in this direction, and [29, 35] for the case of more symmetric data).

¢ In the gravitational case A = —1, is there a “ground state”, i.e., a smallest solution
which does not scatter? Are there solutions which satisfy some form of modified
scattering towards a nonzero stationary solution (of which there are many, see,
e.g., [12, 22, 26])? This appears very challenging, but we note [30] for an exam-
ple of a stability result around a nonzero equilibrium in a related setting and [8,
13] for related works.
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1.3 Pseudo-conformal Inversion

We define the involution of R x R? x R3 given by the pseudo-conformal inversion
(see also [22])

Z:(x,v) - <%,§,x—tv>.

This transformation interacts favorably with free streaming,
T:=0,+v-V,, 1.9)

since heuristically it exchanges the role of v with that of x — #v, both of which are
conserved along the evolution (i.e., commute with 7). Indeed, one can observe that
if (s, q,p) = Z(t, x, v),

d, = _S_z(az t+q- Vx) -p-V,, Vq = S_lvx +V,. VP ==sV,,

and
T(foI) = —s >T(f)oL.

so that composition with Z preserves the class of solutions of free streaming 7f = 0.
The transformation 7 is almost symplectic in the sense that dg A dp = —dx A dv, and
in particular the total charge is preserved:

// (foZ)*dgdp = // F2dxdv.

1.3.1 Recasting Vlasov—Poisson

Given a solution u(t, x, v) of (1.1), we let y = poZ, so that
1 4q 1 x
y(s,q.p) I=M<§,§,q—sz7>, ﬂ(t,x,v)=7<;,;,x—tv>- (1.10)

The Vlasov—Poisson system involves a perturbation of free streaming (1.9) by a
force field (in this paper, we stick to the plasma terminology and refer to it as the
“Electric field”):

E[ul(t,x) :=VXA‘1/M2(t,x,v)dv= 1 // ) - 1A (t, y, v)dvdy,
* 4r lx —y|3
(1.11)

which also transforms naturally:

ELu)(t,1x) = tlZEm (}x)
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and we see that y solves (1.1) on 0 < T, <t < T* if and only if y satisfies for
0<(TH ' <s< (T,

(0,+p-V,)r+ AsT'Ely]- V,y = 0. (1.12)

Remark 1.3 The natural energy estimate for (1.12) is

_s%( // P17, 4. p)dgdp + 2 / |E[y](q)|2dq> =i / IELr)(@)"dg.

(1.13)

which, after rescaling, recovers one of the main integral estimates in [19, 31] and
leads, for A > 0, to the optimal control of E[y] € L;’°L;.2

2 The Force Field and the Continuity Equation

To prove both the modified scattering and wave operator theorems, we require gen-
eral estimates on the electric field E defined in (1.11). In Lemma 2.1, we prove fix-
time bounds on the operator y — E. In Lemma 2.3 we obtain dynamic bounds for an
electric field E = E[y] provided y satisfies (2.8), a slight strengthening of the conti-
nuity equation.

Lemma 2.1 Let y = y(q,p) be such that y € L2 (p)zy €LY and V,y € LY, and
E = E[y]defined by (1.11). Forall A > 0 andlc e O, )we have

IE|l - SA ”7”22 + ”y”ioc +A_l|||P|27||iw >
L
q q.p .p .p

2.1
_x o
IV ES= S ANV + AT PP IGe + A5 0l Vg7l -
q q.p q.p a-p 9P
In fact, we will mostly make use of the second line of (2.1) corresponding to the
choice A = (In(s))*, k = io’ i.e., the bound

_8
IV,E@ e S @Y I7IZ + PRI + ) 1l IV, 7l - 22)

Remark 2.2 In the estimates of this section, up to minor modifications, one may
alternatively work with the (p)~ 1L4p norm of y, rather than its L> norm. This allows
to consider initial data with infinite mass—see also Remark 1.2 (4)

Proof of Lemma 2.1 We decompose the electric field on different scales using a radi-
ally symmetric function y € C;"’({% < |y] £2}) with fR3 x(dy = 1, namely

2 This in turn implies the optimal decay rate of || E[](?)|| 2 S (t)~"/?in the original variables.
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E’[y](q)—C/R OE A )R2,
Ery)(g) = // R0, 1 YR (g = 1) - ¥*(r,u)drdu,

and we directly obtain the following elementary bounds

LAR T

10,EL] S R zllylly : 2.3)

which is enough for large R. To go further, we introduce

rl(g) := //R‘l{éﬂ}(R“(q— m) - x(V='u) -y (r, w)drdu,

with E'[y](¢) = ¢ /R‘ZO /vio Eie! )dvv ;—f and we estimate
|Egyl S R min{V2liyliZ . V= HPPY Il

o 2.4)

iyl S RminV P12, RVAIV 7l s, )

From this, we deduce that
; deV deV
|Efm|s/ |E’|—+/ / £, |8 / / 2}
r=0Jv=0 R r=0 Jv=B
SA” 2||7/||Lz +AB3||Y||L2°[ +AB7||p|? Y||Lf;o[
q.p P q.p

and choosing A = B~!, we obtain the first line of (2.1). Similarly, we see that for
Kk €(0,1)
3

. h dR
0, s/R |aq i
dv dR dV dR
19,E, v| R |9, VI R
V=0 V'R R=0 Jv=R-+ V'R
SA_3||7||L2 + A"l J’||2;°p +Al" 3"||y||L;,p||qu||L%.
After substituting A with A~'/3, this gives the second line of (2.1). |
Lemma2.3 Fix0 < s, < s;andlety € Lf([so,sl];Lip).

(1) Assuming that E = Ely] satisfies (1.8), we see that
l1ECsy) — E(So)“L;;o S (Insy — sp))(sy — So)”j”m

2.5
s iy, +iri,. |
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We also have the corresponding estimate for V E =V E[y]:
”VqE(sl) - VqE(So)”L;o S (In(sy = s9))(sy — SO)“qu”Lfi,
2 4,012
+ (s — o
(51 =502 [Ip) 7112, 2.6)
VIR, +riE,, |

from which we deduce

IV,E(s)) — VqE(So)”L;o S (In(s; — s9))(s; — So)[”(l’)SJ’”%;ow

Q.7
HIVGrIE, +riE,, |

(i) Ify satisfies a slight strengthening of the continuity Eq. (1.8), namely
o{r*} +div {py*} +div,{Fy*} =0 2.8)
for some force field F (s, q), then for E = E[y]there holds that
1EGs1) = ECso)llze S (InGs; = 50))*(s1 = so)lllp 7 II7
+ =PI, + 712y, |

+ =0 (10 (J2) Y1071 Pl

Proof We start with (ii): using (2.3) and (2.4), we see that for s € {s,, s, },

0 A2
dR
[ BRSOk, [ B S AI0R 0, . @)
R=A-1 R=0 R @

and

-1

drR dV
/ / Eny | B8 < A B,
R=0 V=0 a-p
A dR dV
/ / By 1B < A7 BP0,
V=B-3 R? ap

and we conclude that

A1
‘E(s) - / Eg.,
R=A2

= // R‘1 {aq;)(}(R_l(q — r)) . X{BS-SBﬂ}(u) . )/2(7', M)d}’du,

R -
<ATBIGPIE, + A% I, + 1)1, |-
3 q.p 3

where
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_1.,dV
Xip<<p3(U) = / x(V lu)7~
{B<V<B-3}
On the other hand, using Eq. (2.8), we find that

0= / h // R0, 0 YR (g — 1) Hpesps)@ - {077 +div,(y*u) + div,(Fy?) }drduds,
= ER,a(sl) - ER,a(SO)

S1
+ / // R2uM0,0, xR (g = 1) - Xip<<ps) W) - ¥*(s,r, u)drduds,
§=5)

51
- / // R0, 2R (g = 1) - 725, 1) - (F - V,) 1 pe.cpry (w)drduds.
5=59

(2.10)
Since

- 3
|VMIBS-SB-3}(”) S B jcom) + B jysp-2/2)

we see that

‘ // R0, xR (g —r) - 7*(r,u) - (F - V) ¥ p<.<p-+) (w)drdu

S lIsFlls 57 R - [BPIv I, + BONIpPr I, |

and using a crude bound for the second integral in (2.10), we find that

Al
dR

E -E —

' /R:Az { R’a(sl) R’a(so)} R?

[ AR /Bsd_v
o Jr=az R v=p V

S
+{m (s—1)> NsFlls - A7 BN I, -
0 4 5.q:p

2 2
S (s = s0) - Ml

Letting B = A% = (s, — s0)2, we obtain the result. For the variant (2.5), we do not
localize in u. In this case, we need only use (2.9) and the last term in (2.10) simpli-
fies. We detail this in the similar analysis of V_E in (i) below.

For (i) we use a similar analysis without localizing in u. Passing the derivative
onto y gives

© dR
/ IV Ex(9)l 2 S AP, .
ReA"3 9.p

A2
dR
[ BG40, - 106
R=0 ap ap

and the continuity Eq. (2.8) gives

@ Springer



Scattering Map for the Vlasov—Poisson System

0= / i // R0, xR (g — 1) - 0,{0y” + div,(y*u) drduds
5=5o
= 0,ER(sy) — 0;ER(s))
+2 / // RuM0,0, x YR (q— 1) - v - V y(r,wdrduds,
5=
from which we deduce that

IV Er(s) = Vo Er(solllis S (51 = 50) Ryl 1V, 7l
and integrating in A> < R < A~!, we obtain (2.7). O
Finally, we collect the modifications of Lemmas 2.1 and 2.3 above needed to con-

sider smoother solutions. The proofs are similar (passing the derivative through the
density) and are omitted.

Lemma 2.4 There holds that for all k € (0, %),
2 2 - 4 =l 2
IVZElLs SANYIG +AT5 Py e 1Vl + AT 17l 1Vor Nz .
q a.p 9.p (24 a.p (24
and
IVZEGs) = V2EGo)lls S (In(sy = 59))(s1 = s)lI Vil
q 5.9
2 2 5 2
G5 = 0P [Irleyy + 10Vl 192,

PV, |-

3 Modified Scattering

While we only need to study (1.12) on a compact time interval, this equation is now
time dependent with a violent singularity at s = 0. This can be mitigated since the
singular terms

(0, + 4s7'E(s.q) - V,)y = Lo.t.

can be integrated to main order:

N

ds’
I'(s,q,p) = y(s,q,p+ /1/ E(S’,q)7>,
s'=1

s i (3.1
y(s.q,p) = F(s, q.p — /1/ E(sﬁq)?).
s'=1
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Since T satisfies an equivalent but more cumbersome equation, we prefer to work
with (1.12) to bootstrap control of the norms, but a variant of (3.1) leads quickly to
the modified dynamics (3.4) once E is shown to converge.

The main result of this section is the following statement about modified
scattering:

Theorem 3.1 There exists € > 0 such that if y,(q, p) satisfies
2
ll7: “L;p + ”(P) 71 ”L,‘;f’,, + ||Vp,q7’1 ||L;3) g Z¢, 3.2)

then there exists a unique solution y of (1.12) with “initial” data y(s = 1) =y,
Jor all times 0 < s < 1,andy € L?((0, 1],L;°p N L;p) satisfies

[Pyl S €o(In®)%, 1V, Gl S £o(InGs))’,
If in addition
1PV rille < € 3.3)

then ||(p)Vp’qy(s)||L23) S go{In(s))® and there exist E, = E[y,] € LY and y, € Ly

such that, uniformly in q, p,

v(s,q + ps+ AsIn()Ey(q),p + AIn()E(q)) = vo(g.p), s — 0.  (3.4)

Remark 3.2 'We comment on some points of interest:

(1) In fact, as we will show below one can obtain global solutions in a bootstrap
argument involving only the moments (p)?y. The higher regularity of (3.2) is
only used to make sense of the equations in a stronger sense.

(2) The assumption (3.3) is used to guarantee the convergence (3.4). We note that
this statement is slightly different from the one in Theorem 1.1, in that in (3.3)
we start with uniform control of one additional moment in p on the gradients
and obtain uniform (rather than local) convergence in (3.4). The proofs are easily
adapted to establish the corresponding local statement under local assumptions
as in Theorem 1.1.

(3) Our proof of Theorem 3.1 shows that control of higher moments (in both p and
q) as well as higher regularity can be propagated. For higher moments in p, this
is explicitly done in Proposition 3.4, and from this the propagation of moments
in g follows by the commutation relations (3.6). For higher regularity, by (3.6)
one needs control of derivatives of the electric field; these in turn can be directly
bounded by derivatives of y via an adaptation of Lemmas 2.1 and 2.3 (see, e.g.,
Lemma 2.4 for one additional derivative). As a consequence, given more regu-
larity and/or moments on a solution, the convergence (3.4) can then be shown
to hold in a correspondingly strengthened topology.

(4) The convergence (3.4) implies the asymptotic dynamic (1.4) of Theorem 1.1:
Letting
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A2 (s,9,p) = (s.q + ps + AsIn()Ey(q), p + A1In(s)Ey(q)),
by Z? = Id there holds that

1
7o A(s.q.p) = uo(ZoA)s.0.p) = u( . % +p+ A1n()Ey(). ).
which gives (1.4) with u_ (x,v) = y,(v, x) by relabeling the arguments.

The proof of Theorem 3.1 makes frequent use of the fact that (1.12) is a transport
equation and we can propagate uniform bounds using the maximum principle along
the characteristics. In particular, writing

L:i=0,+p-V,+AT'E-V,, L[f]=0f +div,,{(p.As'E(@) - f}
we have that if /4 is a strong solution in a neighborhood of s = 1to
L[h] = F(s,q,p)

with h(1) € L"W for some r > 1, then since the transport field is divergence free,
there holds that

1
IWM%SWW%+/HMW%M (3.5)

for all 0 < s < 11in the interval of existence.

3.1 Commutation Relations

Now consider a solution y to (1.12), i.e., L[y] = 0. To decide which equation we
want to use, it will be convenient to compute some commutation relations: For any
m,n € {1,2,3}, we have

Llg"y1 = Llg"ly = p"y, LIyl = As"'E™y,

LI0my] = 0y (LLyD — (0 LO)ly] = —/ls‘ldqujdp,y, L[0yny] = —0yny,

3.6)
and we also remark that
LIp"0uy] = —As~'p"0,Ed,y + AsT'E"0,7.

3.7
LIp" 0yl = —p" oy + ﬂs_lE’"apny. 3-7)

3.2 Bootstrap and Global Existence

As a first step, we see that as long as the electric field remains bounded, we can
propagate all the moments we want.
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Lemma 3.3 Let y be a strong solution of (1.12) on T* < s < 1 with “initial” data
y(s = 1) = y,. Assume that y, satisfies for some a € N, r € [2, oo] that

KoYl < €0,
and that
|EG, @l <D, T"<s<l.
Then there holds that
IOl <&

IKp) YOI, < &g + aDeg(In(s))".

Proof The proof follows by applying (3.6) and (3.5) inductively to p’y, p € N3, with
1pl < a. O

Proposition 3.4 Let 0 < gy < €, < 1, and let y be a solution of (1.12) on T* < s < 1
with “initial” data y(s = 1) = y, satisfying

Illzz, +lnlle < €. (3.8)

(1) (Moments and the electric field) If there holds that

IKp)rillz, + 1P) 11l < €10 m 22 (3.9)

then the electric field E(s) remains bounded and the solution satisfies the
bounds

IKpYr($)lz2, S €1(Ins),

[P 7@e S er(ins), O<a<m. (3.10)

Moreover, there exists C >0 (independent of T*) such that for any
T* <5y <5, < 1there holds
|Es1.9) = Es5.9)| < Ce (In(s))) (In(s, — 5))*(s = 5,). 3.11)
(2) (Derivatives) Assume additionally that for some b € {0, 1} there holds that
1Y Vogrillis < e (3.12)
Then, we have the bounds

||(p)“pr(s)||L;} Selns)’, 0<a<b,

[P Vr®)l s S er(ns)*, 0<a<b. (3.13)
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Proof We start by establishing claim (1). Let C > 0 be a constant larger than all the
implied constants appearing in Sect. 2 and let £, be small enough so that

4C%7 < 1. (3.14)

We make the following bootstrap assumption: Let / C [T*, 1] be such that for s € I,
there holds

IE®I e < 2C%7. (3.15)

By the first line of (2.1) (with A = 1) and the assumptions (3.8), (3.9) we have that
1 € I # @, and by continuity / is closed in [T*, 1]. To establish the claim it then suf-
fices to prove that (3.15) holds with strictly smaller constants, implying that / is also
openin[T*, 1].

To this end, note that by Lemma 3.3 we have that for 0 < a < m,

P YOl < £1(1+aC?e)In(s))", s €. (3.16)

By Lemma 2.3 and (3.14), it then follows for 7* < s, <5, < 1that
s
|EG) = Es)]e < 4CE |(In(s, = 5))* + €3 In (S—Z))] (In(s)Y(s, = 51)
1

and (3.11) is proved. In particular, when 2~k < 5158, < 21k k>,

1EGs) = EGsy)]l o < 10CE7R27 (3.17)

and since by (2.1) we have ||E(1)|], < 2C5%, we see that for s € 1,
q

IE®)lls < IED)ls + 10Ce] Y Kt < e,
k>1

provided C is large enough.
To prove (2), we use a similar bootstrap argument based on the assumptions

KP)" V)7 ()l < 2C*e (In(s))",

1PV Oz, <2C%,(In). G189

Using the commutation relations (3.6) and (3.5), we deduce from (3.12) and (3.18)
that

1
IV, r Ol < IV, 7l +/ IVl ds” < CO2¢,. (3.19)

provided C > 0 is large enough.

From the transport bounds and the commutation relations (3.6), we then deduce
the estimate for V y: From (2.2) we have under our assumption (3.15) and with
(3.16) and (3.19) that
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ds’
Liv g

1
IVl < 1,7 (Dl + / IVl 19,71l

1
<e+ / [ 12, + oy
s q.p P

Ins')"% v v ds’
+ ) Syl 19,7, [ 19,71, S
1 /
<e +(Ins) (5 + 4€?) - 2C%e, +2C*e g, / (In s’)fg ||qu(s/)||L$°pi_§’
so that by Gronwall’s lemma there holds that
IVg7 )l < 10ei(Ins)’, (3.20)

provided g, is small enough. A similar argument using (3.7), (3.15) and (3.18) shows
that

12"y le < MPIV, (Dl

1 1
ds’
+/ |||p|qu(s’)||L;,pds’+/ ||E||L;||VPY(S/)||L;;7

< C%¢,(Ins).
(3.21)

For the last bound, we see from (3.7) that we need a bound on the derivative of the
electric field. Using (2.2), (3.16) and (3.20), we find that

1V, E@ s < €[ Iy, + [P r@)

_s
+ <1n s) 5 ||)/(S)”L20p “qu(s)“L{‘f’p]

(3.22)
6
< C(£(2) + 45%)(1n(s))4 + 10Ceyg,(In 5)°75
< 10Ce}(Ins)*,
so that (3.7) with (3.5), (3.21), (3.15), (3.20) and (3.22) gives
1"V gy, < NP1V, (Dl
! ds’
. / (VBN NP7, + NE N 19,7 s, )
! ds’
<eg +eg / (10C*&3(In s’y +20C%eX(Ins')*) —
P s
< g,(Ins)°.
This closes the bootstrap (3.18). O

@ Springer



Scattering Map for the Vlasov—Poisson System

3.3 Asymptotic Behavior
From (3.11), we can deduce that the electric field has an asymptotic limit:

Corollary 3.5 Let y be a solution of (1.12) as in Proposition 3.4, which is moreover
defined for s € (0, 1]. Then, the limit

Ey(g) :=lim E(s, q)
exists and is bounded
IEollzs S €
In addition, we have the following convergence rate: if 0 <s; <5, < 1, there holds
1EGs) = E(sy)l o S €%(In(s,)) 5. (3.23)

The rate of convergence (3.23) is linked to the topology we choose through
the continuity Eq. (1.8). Our assumptions scale like j € L? and we obtain almost
Lipschitz bounds in time.

Proof 1t follows from (3.17) in the proof above that E(27%) is Cauchy in LZ". Sum-
ming again (3.17) gives (3.23). O

Now, we are in the position to give the proof of the modified scattering result:

Proof of Theorem 3.1 From Proposition 3.4 we obtain a global solution y on (0, 1],
which satisfies (3.10), (3.13) and (3.23). Next, we define

v(s,q,p) :=y(s,q + ps + AsIn(s)Ey(q), p + Aln(s)Ey(q)),

which satisfies

ov=20y+p-V,y+ Al +In(s)Eyq) - V,r + /ls_lEO(q) “Vypr
= AEy(q) - V,r + AsT'[Eg(q) — E(s,q + ps + AsIn()Eo(q)] - V.7,

where

5T Eo(@) = E(s, g + ps + AsIn(5)Eg(9))|
S 57 Ey(q) = Es, )l + [P + S Ey(@IIVEG) -

Hence by (2.2), Corollary 3.5 and (3.22) we have that
19Vllze, < €1V 7Nl + ) PV, 1l + 1INV, Il

which is integrable over 0 < s < 1. O
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4 Wave Operators and Cauchy Problem at Infinity

Using the symplectic structure, Eq. (1.12) can be written as
ro+{r-Hy =0, {f.g}:=V,f-V,g=-V, f-Ve
with the Hamiltonian

. |P|2 —1
H(S’ C],P) - 7 - ).S ¢(S, 61)’

where A¢(s, q) = / 7%(s, g, p)dp. We wish to find a new coordinate system (w, z) for
which the Cauchy problem at s = 0 can be solved. For this, we introduce the type-3
generating function®

S L |
(s,w,p) i=w-p+ Ts — Aln(s)gpy(w),

where ¢,(q) = ¢(0, ). This gives rise to the canonical change of coordinates

2=V, S(w,p) =p — Aln(s)Vy(w),
q= VpS(w,p) =w4+ps=w+zs+ Asln(s)Vg,(w),

or

qg=w+sz+ Asln(s)Vgy(w), w=g—sp,
p =2+ Aln(s)Vey(w), z=p— Aln(s)Vey(q — sp). “.D

with Jacobian matrix

ow,z) _ Id —sld
(g, p) \—AIn()VE, Id + AsIn(s)VE, )’

with the usual notation E = V¢, E,= V¢, This corresponds to the new
Hamiltonian

K(s, w,2) i= H(s,q,p) = 0,5(s,w, p) = A5~ [ho(w) — (s, )]

4.2)

and vector field

VK ==AsTHE(s, q) — E\w)} — A In()E(s, q) - VE,(w), VK = —1E(q).
4.3)
It follows that

o(s,w,z) :=y(s,q,p) 4.4)

solves

3 See, e.g., [25, Chapter 8].
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0=006+{0,K}=0,0+V,06-VK-V, -V K. 4.5)

Remark 4.1 We note that the new variables (w, z) have a simple interpretation in
terms of the original variables in (1.1): w =v, z=x—tv — AIn(#)Ey(v), which are
the variables in which the modified scattering of Theorem 1.1 and [20] is expressed.

The main result of this section then is the following:

Theorem 4.2 Assume that initial data o, and E,* satisfy

1Eollwss < €55 (4.6)
and
5 mygymyzn
loollzz_+ 142) ol + O<mZ+n<2 1"V Vool < co @)

Then there exists T* = T*(c,) > 0 and a unique solution o € CO([O T*) : L2 ) of
(4.5) with “initial” data o(s = 0) = o, and such that sd;c, V,, .c € C0 Moreo—
ver, for 0 < s < T* we have that for any ¢ € N,

lo@llzz_+ [ 0@ +1V,:06)le S con

4.8)

16w, 2) 66l S w2 ol

and if ¢ is sufficiently small we may take T* = 1.
The proof of Theorem 4.2 is given below in Sect. 4.3, after we have established

some a priori estimates on the propagation of moments and derivatives for the sys-
tem (4.5) in Sects. 4.1 and 4.2.

4.1 Commutation Relations

Writing & = d, + {-, £}, for moments in w, z we have the commutation relations

B[w;o] = —AE(s, q)o,

_ 4.9
Lz;0] = (AsT[E[(s.q) — Ey ;)] + 4> In()E(s, q) - V. Ey ;(W)) 0. (49)
For the derivatives, we have
(0,0) ={0,K,0}, L(0,0,0)={0,K,0,0}+ {0,K,0,6} + {0,0,K,0}
(4.10)

and this gives in block diagonal form

4 These are linked through (4.16).
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Q v,o\ _ (-V,V.K VIK V,o
vo)~\ -vik v,vik)\ve) @10
with
V2, K = —asT O E (s, q) — Eg(w)]

— 22 In(5){0;E(s. q) - 0, Eo(w)

+0,E(s. q) - 0,Eg(W) + 0,0, Ey(W) - E(s.q) }

— AsIn(s)* 0. Ey ,(w)0,Eq ,(W) - 0,E(s. ),
V, VK = —AVE(s, q) — A%sIn(s)(VE(s, @) - V)Ey(w),
VK = —AsVE(s, q).

(4.12)

We note that the matrix va ZIC is ill-conditioned, and to mitigate this effect, we intro-
duce a weight on the gradient:
(z) 1 .

0(s,2) := e 5mm{(z),s—l} < 0(s,z) <min{(z),s7'},

which is linked to the vector field through (4.15) and satisfies nice differential
equalities

00=-0 Vo= i)-ez.
’ ‘ <<Z>3

4.2 A Priori Estimates

The goal of this section is to bootstrap the following assumptions: given ¢, as in
(4.6), we assume that for 0 < s < T'(c,) there holds that

llo@lz + ”<Z>56(S)IIL?:; <A <4,
IVuo@lls +10V06)le < B < 4, @.13)
IV}, ole + 10V}, o)l +16°V2 o)l < C < 4.

w,w

As we will show below in Sect. 4.2.1, this implies in particular that

|V.K(w,2)| < 203,

|VWIC(W, Z)l < Cé{min{s_l’ |Z|} + (ln(s))3}, (414)

and that we have the derivative bounds
IV, V.Klle +10V.V.Klle + 107V, V,Kll= < 3(In)*. (415

These in turn can then be used to close the bootstrap for (4.13), as in Sect. 4.2.2.
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4.2.1 A Priori Control on the Electric Field

Here we consider a particle density o € C°([0,s] : L2 ) such that 6(0) = o, and
which satisfies the bounds (4.13). This creates an electrlc field E(s) through the
formula

0 —q(s,w,z) 52
E[c]1(s,0) = E(s,Q) = // 10 gt Z)P (s, w, z)dwdz

// 0 3y *(s, ¢, p)dgdp,

where o and y are related through (4.4). Simple bounds give uniformly in R > 0:

(4.16)

|E(s5. Q) — E51. Q| S RI2Y 0l +RZMo($) sz _llo(sy) = olsp)llz -

which ensures that E is continuous in time. In the next lemma, we adapt the bounds
from Sect. 2 to obtain stronger control as in (4.14) and (4.15).

Lemma4.3 Leto € C°([0,T], L2 ) with 6(0) = o such that Elo] satisfies the conti-
nuity equation (1.8) and E,, sattsﬁes (4.6). Then there exists T*(cy) € (0, T such that

(1) Assuming the first line of (4.13) holds, we obtain (4.14) for0 < s < T*.
(i) Assuming the first two lines of (4.13) hold, we obtain (4.15) for0 < s < T*.

Proof (i) To use Lemma 2.3, we observe that
Ip =2l < c(In(s)).  Igq = wl < slzl +cgs(In(s)) @.17)
and that the change of variable (4.1) preserves volume, so that
lr®lly,, = o)l .
P17y ()l S W7l + XM@Y Oy,
S X)) Moz, +Ilzl*e)ly -
In addition, since (see (4.2)) Z—; = Id + O(cys{In(s))) has bounded Jacobian, we see

that

i < | [l + i)

. S ol .

and using (2.5), we obtain that for 2% <5, <5, <27%
1EGs2, @) = ECsp Dl $ (o) 27N ol +27llolle,.

and summing we see that E(27%) is Cauchy in L;" and that
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1EGs, @) = Eo@llz S (co)*s(In()* Y oIl +(co)s*lloliers - (4.18)
Using the formulas in (4.3), the control on V_K follows directly, while we see that
V,Kw,2) = =45 {E(s,q) = Eg(@)} = 257 { Eg(q) = Eg(w) } + O(ci(In(s)))

and with (4.18), (4.13), (4.6) and (4.17), we obtain (4.14).
(i) We want to use (2.6), which requires some additional control on the deriva-
tives. From (4.2), we see that

V,y=V,0—Aln(s)VE; -V o
so that

IVrll, S ()Y, ol
o/l

and

IV )llze S cG{In(s))

/ [lZl + C%(hl(s»] |O-| : |Vw,zo-|d’Z

Ly
S 6?0l + 19,002 |
For 2751 <5, <5, < 27%, this gives by (2.6) that
1V4E G2 @ = VB Dl S ()02 - (@ +1V,012, )
#0275 @l +lol.s |-
and applying similar arguments as before we obtain
1V,EG. @) = Vo Es@ s S (oPsiin) - (% + 19,06 w012, )

+clog [H(Z)SUHifW + ||a||§?LaJ]

< c’és(lﬂ(s))4
(4.19)

up to choosing T(c;) > 0 small enough. Using the formulas in (4.12), we directly see
that

0|V2 K| < |VE| - smin{s™", 2|} < ¢,

V2 K| < IVE|(L+ s(ns)|VE|) < 22,

Moreover, using (4.6) and (4.19), we find that, up to choosing T(c,) > 0 smaller,
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V2 K| <57 VEy(g) = VEyw)| + 57 [VE(s.q) = VEy(w)]
+ (In(9)) [2I VEo|*| VE| + |V2E||E|] + s{In(5))*| VE,|*| VE|

< ctmin{s™", |z]} + ci(In(s))*,

from which we deduce (4.15). O

4.2.2 A Priori Estimates on the Particle Density
Here, we close the bootstrap of (4.13):

Lemma 4.4 Assume that o € C°([0, T, L2 ) satisfies (4.5), for some Hamiltonian K
(not necessarily related to o) satisfying (4 14) and (4.15). If 6, = 6(0) satisfies (4.7),
there exists T(cy) > 0 such that (4.13) holds for A =B = C = 2c,,.

Proof We first close the bootstrap for A, then for A, B. Finally, we adapt the argu-
ment for A, B, C. The control follows from the commutation relations (compare with

(4.11)):
L(2)"0) = o{(2)". K} = —mo(z)" "z - VK,
(OV,0) = (8In0) - V,0c +0{V K, 0}
=(8In@)-0V,6 +6V,6-V, VK-V, o0V, VK,
(V,0)={V,K6}=0V6-07'V, VK-V, c-VVK.

(4.20)

As in (3.5), we find that

20, < Nl +m [ 160V @00 iy 5.

and we can easily propagate the first line of (4.13).
For the derivatives, we also need to control 8. On the one hand, we can bound
from above (note that (In 8) can be very negative)

2no) = —< - >3v IC>0 S cg + cg(In(s))’
and we deduce from (4.20), (3.5) and (4.15) that
16Vl <10V 00l +cj /0 s(ln(s’))4{ 10V.0(N, +1V,o (I, }ds’
IVuo@lly, < IV,00ll, +¢ /0 X<ln(s’)>4{ 16V.o(Hll,_+ 1V, }dsﬁ

and this allows us to propagate the second line of (4.13) for short time.
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We now propagate higher-order derivatives to bound the bootstrap for C. First by
interpolation in (4.13), we observe that

I€2)*!V,, 0l <A+C.

We will use the weight 8 to control the d, derivatives. Using (4.10), we find that

2(0,,0,40) = 07'V,0,,K - (0V,0,.0) +07'V 0,.K - (0V,0,,6) = V,0,,K - V,. 0,40

-V, 04K -V,0,6+07'V d,0,.K-(0V.0)-V.0,0,K V0,

2(00,9,:0) = &(n0) - 00,040 + 67V 0,.K - (6*°V,0,0) — V,0,,K - (6V,,0,06)
+V,0,K - (0V,0,.06) — (0V,0,K) - V,,0,:0
+V,0,0,.K - (0V,6) — 0V,0,0,.K - V,0,

(6°0,0,0) = 28(In0) - 0%9,0,.6 + V,,0,K - (6>V,0,06) — OV,0,.K - (8V,,0,0)
+V,0,K - (0*V,0,0) — (0V,0,K) - (0V,,0..0)

wrd
+0V,0,0.K - (0V,0) — 0°V.0,04K - V, 0,

w
and we can proceed as for the case of one derivative once we control the new terms

”0—lv3

w,w,w

Kl +1IV3,,, Kllze +16V5,, Kllpe +116°V2, Kl < c(In(s))’.
4.21)

It remains to prove (4.21). Starting from

V.K =—AE 0 _ sk 0 _ s neda
K =—-2E(q), 6_zf_s-7’ a—wj—j+3n(5)jk¢o(w),

we deduce
0°|V2, Kl = (s0)’|V*E(@),

9|v;u/q < (s0) - [1 4 s(In()|VE,|] - IV’E(g)l,

V3

w,w,z

Kl < [1+ (@) VE|] - |V2E(q)|
+ [1 + s(In())[VE,|] - [1 + s(In(s))|V?Ey] - IVE(g)],

and finally, from (4.12), we obtain that

071v3

wWW

Kl < [s7" +(In(s)) - [VEy] - [V2E(s, q) = VEg(w)|
+(In(s)) - [IV?E| - |VEy| + |VE| - [V?Ey| + |V’ Ey| - |E|]
+s(In(s))* - [IV?E| - [VEy|* + |VE| - |VE,| - [V?Ey]
+s%(In(s))’ - [IV2E| - |VE,|’].

Independently, we find that
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IV2j(8)llze < ci¢in(s))?

/ [lz] + c2(In(s))] - [lal V2 ol + |VW!Z6|2]dz

Ly
S 0@’ [0 le IV2 0lle + IV 012, |
Now using Lemma 2.4 and the bootstrap assumptions, we obtain that
IV2E(s, q) = VZEsW)le. < co(In(s))* + cgmin{s™, |z]},

which easily leads to (4.21). O

4.3 Local Solutions
We construct local solutions for the singular Eq. (4.5) via Picard iteration.

Proof of Theorem 4.2 'We proceed in two steps.

Step 1: A priori estimates. We construct a sequence of approximate solutions
on a time interval [0, T] (with T > 0 to be chosen later) via Picard iteration: We
define oy)(s,w,2) 1= 0p(w,2), and given o, € C?([O, T],Cv'm) satisfying (4.13)
with A = B = C = 4¢,, we let Cui1) € C?([O, T1, CVIV’Z) be the solution of

9,041y T {0441 Ky} =0, 64,41)(0) = o,
K, = s (o) — ¢,(s5.9)), Ag, = /7/(2,1)(5, q,p)dp,

where y, and ¢, are related through (4.4). Using Lemma 4.3, we see that C, sat-
isfies (4.14) and (4.15). Using Lemma 4.4, we see that o, satisfies (4.13) with
A =B = C = 2¢,. We deduce that (4.13) holds uniformly in n with A = B = C = 2¢,
on a fixed time interval 0 < s < T'(cy).

In addition using the commutation relations (4.9), we easily propagate (4.8) uni-
formly in n.

Step 2: Contraction in LY, . Let

5(7!) = Ot+1) = O(n) (SIC(n) = ICn - ICn—l’ gn = as + {"’Cn}’ 52,, = {"6K(n)}’
so that
L,6(n) = 62,0, (4.22)
and we can express

V0K = —AE,(s,9) — E,_i(s,9)),

V6K = —As (E,(s,9) — E,_,(5,q)) — A In(s)(E,(5.9) — E,_,(5,.9)) - VEo(q).
(4.23)

Invoking the uniform bounds for ¢,), we will prove below that
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1V,.:8K @l < coIn(s)°|

5<n_1>(‘)Hngz‘ 4.24)

In combination with (4.22), we find that
EROTI / 1V,.5K (M 1V 20l
g 0 w,Z w,Z
< / (IG5 N6 015" 5
: .‘

from which we deduce that, possibly taking 7(c,) > 0 smaller, 6,, form a Cauchy

sequence in L, and thus 6,y > ¢ € LY = as n — co. Interpolation gives conver-
. 5, W,2 . . w2

gence in the other topologies. In particular,

1

1
IViedumlles, . S W0z [“ng,za(n*'l)”L;‘j“ + ||V3v,z"<n>||L;gJ i

so that 6, is Cauchy in COC ! . and the other bounds follow by Fatou’s Lemma or by
conservation. In partlcular (4 8) follows by pointwise convergence. Finally we note
that if ¢ is sufficiently small, the arguments give a contraction for any 7" < 2.

It remains to show (4.24). The main point is that E is quadratic in y, so that in the
estimates for 6K ,), we can always factor out the difference 6, in L . The bound on
V. 6K, follows from adaptation to Lemma 2.1 and this also allows to control all but
the first term in V, 6KC,) as in (4.23). These then follow from (2.5) using the differ-
ence continuity equation

as(En - En—l) + VA_lddi{(Sjn}, 5jn = / (yn + yn—l)(yn - yn—l) : pdp
R}

with

183l 18 pllez, - [10Y 7l + 1027
and simple adaptations of Lemma 2.3. O

Finally, we prove the main theorem.

Proof of Theorem 1.1 For (i), using (1.10), the assumption (1.3) leads to (3.2) in
Theorem 3.1 and the local convergence is easily adapted (see Remark 3.2). For (ii),
the assumption (1.5) leads to (4.6), (4.7) and the conclusion follows from that of
Theorem 4.2. Finally, for (iii), we can apply Theorem 4.2 to u__ (x, —v) to get, using
(4.4), (1.10) and (4.8) a solution for —co < ¢t < —1 such that

li=Dllzz + [ B =D + IV (=Dl S &
By local existence, we can extend these bounds for —1 < ¢ < 1, at which point we

can simply apply (i). O
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